(54) 发明名称
支撑型复合碳分子筛膜

(57) 摘要
支撑型复合碳分子筛膜，由如下方法制备：
a. 制备成膜原料：将微孔材料、聚合物材料及溶剂均匀混合；b. 将步骤a 所制备的成膜原料涂覆于载体表面并干燥；c. 高温碳化处理。所述分子筛膜在高温热解过程中在碳分子筛膜内引入一定的金属元素和含氯物质，从而在一定程度上提高膜的渗透性能。本发明产品制备重复性高，所制备得到的产品膜具有优秀的气体分离性能，在气体分离领域具有广阔的应用前景。
1. 支撑型复合碳分子筛膜，由如下方法制备：
 a. 制备成膜原料；将微孔材料、聚合物材料及溶剂均匀混合；
 b. 将步骤a所制备的成膜原料涂覆于载体表面并干燥；
 c. 高温碳化处理。
2. 根据权利要求1所述的支撑型复合碳分子筛膜，其特征在于，所述步骤a中的微孔材料为可碳化微孔材料。
3. 根据权利要求2所述的支撑型复合碳分子筛膜，其特征在于，所述步骤a中的微孔材料为沸石咪唑酯骨架结构材料。
4. 根据权利要求1所述的支撑型复合碳分子筛膜，其特征在于，所述步骤a中的聚合物材料选自聚醚亚胺类聚合物、聚砜类聚合物、聚醚砜类聚合物或聚醚醚酮类聚合物。
5. 根据权利要求4所述的支撑型复合碳分子筛膜，其特征在于，所述步骤a中的聚合物材料是聚醚亚胺类聚合物。
6. 根据权利要求1所述的支撑型复合碳分子筛膜，其特征在于，所述步骤a中的溶剂选自DMF、DMEA、NMP、THF或其混合物。
7. 根据权利要求1所述的支撑型复合碳分子筛膜，其特征在于，所述步骤a中的微孔材料、聚合物材料及溶剂质量比为1:1～10:100～500。
8. 根据权利要求1所述的支撑型复合碳分子筛膜，其特征在于，所述步骤a中的高温碳化是涂覆于载体表面的成膜原料在惰性气体保护下升温热解的过程，所述升温为三段式升温过程，每段升温速率为0.1～15°C/分钟，最高温度(Tmax)500～900°C，于最高温度恒温1～10小时。
9. 根据权利要求1所述的支撑型复合碳分子筛膜，其特征在于，所述的载体为多孔氧化物基膜或多孔金属膜。
10. 根据权利要求1所述的支撑型复合碳分子筛膜，由如下方法制备：
 a. 将ZIF材料、聚酰亚胺及DMF按照质量比为1:1～10:100～500均匀混合，室温下搅拌1～120小时制得成膜原料；
 b. 载体涂覆：取步骤a所制备的成膜原料，将多孔支撑体固定于提拉机中，提拉机上行及下行速度为1～200毫米/分钟，停留时间为0～200秒，拉1～5次；
 c. 惰性气体保护下干燥；温度0～200°C，升温速率为0.1～15°C/分钟，恒温时间为1～120小时；
 d. 管式炉高温碳化，升温热解过程包括：
 d1. 以10～15°C/分钟的升温速率从30°C加热至250°C；
 d2. 以1～5°C/分钟的升温速率从250°C加热至(Tmax-15)°C；
 d3. 以0.1～0.5°C/分钟的升温速率从(Tmax-15)°C加热至Tmax°C；
 d4. 在最高温度Tmax停留2小时，所述Tmax500～900°C；
其中的惰性气体选自氮气、氢气或氩气；惰性气体流量1～1000毫升/分钟。
支撑型复合碳分子筛膜

技术领域
[0001] 本发明属于膜分离领域，尤其涉及一种用于气体分离的支撑型复合碳分子筛膜的制备。

背景技术
[0002] 与传统的分离技术相比，气体膜分离技术具有能耗低、装置简单以及环境污染小等众多优点，因此在天然气净化、氢气回收、富氧、富氮以及烯烃烷烃的分离等领域具有广泛的应用前景。
[0003] 碳分子筛膜是由含碳材料的前驱体在惰性气氛的保护下经高温热解碳化制备而成一种新型的无机膜材料。由于碳材料本身具有均匀的孔径和丰富的微孔结构，因此利用其制备的碳分子筛膜同时结合了碳材料与膜材料的优势，不仅具有较高的热稳定性而且对于某些小分子气体有很好的吸附选择性，因此被认为是先进希望实现工业化及应用的一类新型的无机膜材料，因此该类膜材料在小分子气体的分离纯化方面具有广阔的应用前景。
[0004] 但是由于碳分子筛膜本身的渗透性很低，一般不超过5GPM，且由于该材料的脆性很大，因此在某些程度上限制了其进一步的工业应用。

发明内容
[0005] 本发明的目的首先在于提供一种支撑型复合碳分子筛膜，由如下方法制备：
[0006] a. 制备成膜原料：将微孔材料、聚合物材料及溶剂均匀混合；
[0007] b. 将步骤 a 所制备的成膜原料涂覆于载体表面并干燥；
[0008] c. 高温碳化处理。
[0009] 显然，本发明另一方面的目的也在于提供上述膜的制备方法。
[0010] 本发明的支撑型的碳分子筛膜，由于支撑体的存在，大大改善膜的机械性能，同时在支撑体上不仅可以制备出厚度较薄的膜，还可以避免一些缺陷，从而提高其渗透性能。并且，通过将一些微孔材料掺杂在其中制备支撑型的复合碳分子筛膜，这类材料在高温热解过程中在碳分子筛膜内引入一定的金属元素和含氮物质，从而在一定程度上提高膜的渗透性能。本发明的方法重复性高，所制备得到的产品膜具有优秀的气体分离性能，在气体分离领域具有广阔的应用前景。

附图说明
[0011] 本发明附图 8 幅，分别为：
[0012] 图 1 为实施例 1 合成的 ZIF-108 纳米颗粒 X-射线衍射图；
[0013] 图 2 为实施例 1 合成的 ZIF-108 纳米颗粒扫描电子显微镜图；
[0014] 图 3 为实施例 1 合成的 ZIF-108 纳米颗粒 77K 下 N\textsubscript{2}吸附等温线图，其中，实心圆代表吸附，空心圆代表脱附；
[0015] 图 4 为实施例 1 合成的 ZIF-108 纳米颗粒的热重分析曲线；
具体实施方式

本发明首先提供一种支撑型复合碳分子筛膜，由如下方法制造：

a. 制备成膜原料：将微孔材料、聚合物材料及溶剂均匀混合；
b. 将步骤 a 所制备的成膜原料涂覆于载体表面并干燥；
c. 高温化学处理。

具体实施方式中，所述步骤 a 中的微孔材料为孔径化微孔材料。优选沸石咪唑酯骨架结构材料（ZIF）。最优选 ZIF-108。

具体实施方式中，所述步骤 a 中的聚合物材料选自聚酰胺类聚合物，聚砜类聚合物，聚醚砜类聚合物或聚硫醚酮类聚合物。优选聚酰胺类聚合物。尤其优选聚酰亚胺（P84）。具体实施方式中，所述步骤 a 中的溶剂选自 DMF（氟，氯 - 二甲基甲酰胺），DMEC（氟，氯 - 二甲基乙酰胺），NMP（N- 甲基吡咯烷酮），THF（四氢呋喃）或其他混合物。优选 DMF（氟，氯 - 二甲基甲酰胺）。

具体实施方式中，所述的成膜原料为微孔材料、聚合物材料和溶剂按质量比 1:1 ～ 10:100 ~ 500 混合所得；具体的混合方式之一，是将微孔材料、聚合物材料和溶剂混合搅拌 1 ～ 120 小时。

具体实施方式中，所述步骤 c 中高温热化是涂覆于载体表面的成膜原料在惰性气体保护下升温热解的过程, 所述升温为三段式升温过程，每段升温速率为 0.1 ～ 15℃ / 分钟，最高温度 T_{max} 500 ～ 900℃，于最高温度恒温 1 ～ 10 小时。较为具体的实施方案，所述的升温热解过程包括：

a. 以 10 ～ 15℃ / 分钟的升温速率从 30℃加热至 250℃；
b. 以 1 ～ 5℃ / 分钟的升温速率从 250℃加热至 T_{max} - 15℃；
c. 以 0.1 ～ 0.5℃ / 分钟的升温速率从 (T_{max} - 15℃) 加热至 T_{max}℃；
d. 在最高速度 T_{max}℃停留 2 小时。

其中所述的惰性气体选自氮气、氩气或氢气；所述的惰性气体流量 1 ～ 1000 毫升 / 分钟。

再一方面，本发明所述的支撑型复合碳分子筛膜中，所述的载体为多孔氧化物基膜或多孔金属膜。所述多孔氧化物基膜为多孔氧化铝或多孔氧化钛。优选多孔氧化铝。所述支撑体选自片状、管状，中空纤维或网状支撑体。

具体实施方式中，所述的步骤 b 的涂覆方式为浸涂法，提拉法，旋涂法或喷涂法。优选提拉成膜法。

容易理解，上述本发明的具体技术方案的选择技术特征可相互组合，以得到本发明的优选技术方案。优选的技术方案之一举例说明如下：

本发明所述的支撑型复合碳分子筛膜，由如下方法制造：
【0038】a. 将 ZIF 材料、聚酰亚胺及 DMF 按照质量比 1:1 ～ 10:100 ～ 500 均匀混合，室温下搅拌 1 ～ 120 小时制得成膜原料；
【0039】b. 载体涂覆：取步骤 a 所制备的成膜原料，将多孔支撑体固定于提拉槽中，提拉机上行及下行速度为 1 ～ 200 毫米 / 分钟，停留时间为 0 ～ 200 秒，提拉 1 ～ 5 次；
【0040】c. 管式炉高温碳化，升温速率 1 ～ 15℃ / 分钟，恒温时间为 1 ～ 120 小时；
【0041】d. 管式炉高温碳化，升温速率过程包括：
【0042】d-1. 以 10 ～ 15℃ / 分钟的升温速率从 30℃加热至 250℃；
【0043】d-2. 以 1 ～ 5℃ / 分钟的升温速率从 250℃加热至 (T_{max} - 15)℃；
【0044】d-3. 以 0.1 ～ 0.5℃ / 分钟的升温速率从 (T_{max} - 15)℃加热至 T_{max}℃；
【0045】d-4. 在最高温度 T_{max}℃停留 2 小时，所述 T_{max}500 ～ 900℃。
【0046】其中的惰性气体选自氮气、氢气或氩气；惰性气体流量 1 ～ 1000 毫升 / 分钟。
【0047】所述复合碳分散纤维膜的厚度为 0.1 ～ 400 微米。
【0048】下面的实施例将对本发明予以进一步的说明，但并不因此而限制本发明。
【0049】实施例 1
【0050】1. 微孔材料 ZIF-108 的制备：
【0051】称取 0.318 克二水合醋酸锌 (Zn(Ac)_{2} • 2H_{2}O) 溶于 16 毫升氨水，氨—二甲基甲酰胺中 (DMF)，0.32 克 2—硝基苯胺 (nHm) 溶于 40 毫升氨水，氨—二甲基甲酰胺中。将前者加入到后者中混合室温反应 2.5 小时，反应完成后离心，每次用 20 毫升氨水，氨—二甲基甲酰胺超声洗涤 15 分钟，产物待用。
【0052】X 射线衍射检测产物，具有规则的晶型 (如图 1)，分别在扫描电子显微镜图片显示产物形状均勾 (如图 2)，颗粒大小为纳米级。N_{2}吸附实验证明了该材料具有微孔结构 (图 3)，其比表面面积为 1371 m^{2} / g。
【0053】热重分析实验证明该微孔材料在高温热解下发生分解 (如图 4)，因此可以有效的引入金属元素和含氮物质等。为了便于对比，同时给出了一种聚合物前驱体材料 P84 的 X 射线衍射分析图 (如图 5) 和热重分析曲线 (如图 6)。
【0054】2. 成膜原料的制备：
【0055】将步骤 1 所制得的 ZIF-108 材料按照 9wt%掺入 P84 中，具体步骤为称取 1.1916 克 P84 溶解于适量 DMF 中，搅拌 24 小时；将 ZIF-108 材料超声分散于 DMF 中，随后按照 (W_{ZIF-108} + W_{P84}) ：W_{DMF} = 1:12.7 的比例将 P84 溶液与 ZIF-108 分散液混合，搅拌 24 小时，其中 W 代表质量。
【0056】3. 载体涂覆：
【0057】以多孔氧化铝为支撑体，以步骤 2 所制备的成膜原料涂覆支撑体。所述支撑体孔径 20～100 纳米。通过提拉法制备成膜，浸入速率 200 毫米 / 分钟，提拉速率为 20 毫米 / 分钟；完成涂覆的载体置于管式炉内，在流速为 30 毫升 / 分钟的氢气保护下于 80℃干燥 24 小时，继而于 150℃干燥 6 小时。
【0058】4. 碳化：
【0059】步骤 3 处理完成后的涂膜载体在 30 毫升 / 分钟氢气保护下升温碳化，碳化过程为：
[0060] (1) 以 11.6°C / 分钟的升温速率从 30°C 加热至 250°C；
[0061] (2) 以 3.85°C / 分钟的升温速率从 250°C 加热至 \((T_{\text{max}} - 15)\) °C；
[0062] (3) 以 0.25°C / 分钟的升温速率从 \((T_{\text{max}} - 15)\) °C 加热至 \(T_{\text{max}}\) °C；
[0063] (4) 在最高温度 \(T_{\text{max}}\) 停留 2h。
[0064] 其中，分别制备了 3 个不同的 \(T_{\text{max}}\) 条件下的复合碳分子筛膜产品，分别于：
[0065] \(T_{\text{max}} = 600°C\) 条件，获得产品 A；
[0066] \(T_{\text{max}} = 675°C\) 条件，获得产品 B；
[0067] \(T_{\text{max}} = 800°C\) 条件，获得产品 C；
[0068] 所制备的复合碳分子筛膜产品 A 的 X 射线衍射图如图 7 所示，在 20 度有明显的峰
包，对应的晶面间距为 4.5 埃，与石墨的 (002) 晶面相对应，可见其已经发生碳化；膜的截面
电镜图如图 8 所示，从电镜照片中可以看出膜厚约为 5 ～ 6 微米。
[0069] 实施例 2
[0070] 1. 按照实施例 1 产品 A 的制备方法中步骤 2 ～ 4 制备碳分子筛膜产品 D，其中步骤
2 中制备成膜原料的方法为：
[0071] 直接称取 1.1916 克聚合物 P84, 按 \(W_{\text{P84}}:W_{\text{DMF}} = 1:12.7\) 的比例加入 15.0835 克 DMF
配制聚合物溶液，搅拌 24 小时，其中 \(W\) 代表质量。
[0072] 2. 渗透性和选择性是评估材料气分离性能的两个重要指标，分别用渗透率 (P) 和
分离系数 (a) 来表征。渗透率 P = J / A * Δ P，其中 J 为气体的渗透流量，单位 mol m⁻² s⁻¹，A
为有效的膜面积，单位 m²，Δ P 为膜两侧的压力差，单位 Pa；分离系数 a = P_i / P_j，其中 P_i
为气体 i 的渗透率，P_j 为气体 j 的渗透率。使用 Wicke - Kallenberg（膜测试的一种方法）
方法结合在线气相色谱技术对合成得到的复合碳分子筛膜的气体渗透性能进行系统测试。
测试条件为：温度 25°C，膜两侧的压差为 1bar。测试结果见 1 表所示。
[0073] 表 1
[0074] | 产品编号 | \(T_{\text{max}}\) | 气体 | 渗透率 (10⁻¹² mol m⁻² s⁻¹ Pa⁻¹) | 分离系数 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H₂</td>
<td>CO₂</td>
<td>N₂</td>
</tr>
<tr>
<td>A</td>
<td>600°C</td>
<td>15299</td>
<td>2470</td>
<td>45.0</td>
</tr>
<tr>
<td>B</td>
<td>675°C</td>
<td>449</td>
<td>153</td>
<td>4.15</td>
</tr>
<tr>
<td>C</td>
<td>800°C</td>
<td>199.3</td>
<td>100.5</td>
<td>1.89</td>
</tr>
<tr>
<td>D</td>
<td>600°C</td>
<td>100.2</td>
<td>70.54</td>
<td>1.47</td>
</tr>
</tbody>
</table>
图 1

图 2