81855 A2 | IV P 0 0 O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

9 September 2005 (09.09.2005)

(10) International Publication Number

WO 2005/081855 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/US2005/005159

(22) International Filing Date: 18 February 2005 (18.02.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/783,390 20 February 2004 (20.02.2004) US

(71) Applicant and
(72) Inventor: PANDYA, Ashish, A. [US/US]; 4318 Lafayette
Drive, El Dorado Hills, CA 95762 (US).

(74) Agent: LEAL, Peter, R.; DLA Piper Rudnick Gray Cary
US LLP, Attn: Patent Department, 2000 University Av-
enue, East Palo Alto, CA 94303-2248 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: A DISTRIBUTED NETWORK SECURITY SYSTEM AND HARDWARE PROCESSOR THEREFOR

MAN/WAN

5504 (1) g
Clien’t‘%@_‘ LAN
.!Eﬁﬂ-h
&

Enterprise Network with Distributed Security

Switches

5511
B

Wireless LAN NAS

N-Tier Server Farm

Storage

(57) Abstract: An architecture provides capabilities to transport and process Internet Protocol (IP) packets from Layer 2 through
& transport protocol layer and may also provide packet inspection through Layer 7. A set of engines may perform pass-through packet
1y, classification, policy processing and/or security processing enabling packet streaming through the architecture at nearly the full fine
& rate. A scheduler schedules packets to packet processors for processing. An internal memory or local session database cache stores
& a session information database for a certain number of active sessions. The session information that is not in the internal memory
is stored and retrieved to/from an additional memory. An application running on an Initiator or target can in certain instantiations
O register a region of memory, which is made available to its peer(s) for access directly without substantial host intervention through
RDMA data transfer. A security system is also disclosed that enables a new way of implementing security capabilities inside enter-
prise networks in a distributed manner using a protocol processing hardware with appropriate security features.

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159

A DISTRIBUTED NETWORK SECURITY SYSTEM AND A HARDWARE PROCESSOR
THEREFOR

RELATED APPLICATIONS

Priority is claimed to U.S. Application Serial No. 10/783,890, filed on February 20, 2004.

BACKGROUND OF THE INVENTION

This invention relates generally to storage networking semiconductors and in particular to a
high performance network storage processor that is used to create Internet Protocol (IP)

based storage networks.

Internet protocol (IP) is the most prevalent networking protocol deployed across various
networks like local area networks (LANs), metro area networks (MANs) and wide area
networks (WANs). Storage area networks (SANs) are predominantly based on Fibre
Channel (FC) technology. There is a need to create IP based storage networks.

When transporting block storage traffic on IP designed to transport data streams, the data
streams are transported using Transmission Control Protocol (TCP) that is layered to run on
top of IP. TCP/IP is a reliable connection/session oriented protocol implemented in software
within the operating systems. TCP/IP software stack is very slow to handle the high line rates
that will be deployed in future. Currently, a 1 GHz processor based server running TCP/IP
stack, with a 1Gbps network connection, would use 50-70% or more of the processor cycles,
leaving minimal cycles available for the processor to allocate to the applications that run on
the server. This overhead is not tolerable when transporting storage data over TCP/IP as
well as for high performance IP networks. Hence, new hardware solutions would accelerate
the TCP/IP stack to carry storage and network data traffic and be competitive to FC based
solutions. In addition to the TCP protocol, other protocols such as SCTP and UDP

protocols can be used, as well as other protocols appropriate for transporting data streams.

Enterprise and service provider networks are rapidly evolving from 10/100Mbps line rates to
1Gbps, 10Gbps and higher line rates. Traditional model of perimeter security to protect
information systems pose many issues due to the blurring boundary of an organization's
perimeter. Today as employees, contractors, remote users, partners and customers require
access to enterprise networks from outside, a perimeter security model is inadequate. This
usage model poses serious security vulnerabilities to critical information and computing
resources for these organizations. Thus the traditional model of perimeter security has to be
bolstered with security at the core of the network. Further, the convergence of new sources

of threats and high line rate networks will create a need for enabling security processing in

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159

hardware inside core or end systems beside a perimeter firewall as one of the prominent
means of security.

SUMMARY OF THE INVENTION

| describe a high performance hardware processor that sharply reduces the TCP/IP protocol
stack overhead from host processor and enables a high line rate storage and data transport
solution based on IP.

This patent also describes the novel high performance processor that sharply reduces the
TCP/IP protocol stack overhead from the host processor and enables high line rate security
processing including firewall, encryption, decryption, infrusion detection and the like.

Traditionally, TCP/IP networking stack is implemented inside the operating system kernel as a
software stack. The software TCP/IP stack implementation consumes, as mentioned above, more
than 50% of the processing cycles available in a 1 GHz processor when serving a 1Gbps network.
The overhead comes from various aspects of the software TCP/IP stack including checksum
calculation, memory buffer copy, processor interrupts on packet arrival, session establishment,
session tear down and other reliable transport services. The software stack overhead
becomes prohibitive at higher lines rates. Similar issues occur in networks with lower line
rates, like wireless networks, that use lower performance host processors. A hardware
implementation can remove the overhead from the host processor.

The software TCP/IP networking stack provided by the operating systems uses up a majority
of the host processor cycles. TCP/IP is a reliable transport that can be run on unreliable
data links. Hence, when a network packet is dropped or has errors, TCP does the
retransmission of the packets. The errors in packets are detected using checksum that is
carried within the packet. The recipient of a TCP packet performs the checksum of the
received packet and compares that to the received checksum. This is an expensive
compute intensive operation performed on each packet involving each received byte in the
packet. The packets between a source and destination may arrive out of order and the TCP
layer performs ordering of the data stream before presenting it to the upper layers. 1P
packets may also be fragmented based on the maximum transfer unit (MTU), of the link layer
and hence the recipient is expected to de-fragment the packets. These functions result in
temporarily storing the out of order packets, fragmented packets or unacknowledged packets
in memory on the network card for example. When the line rates increase to above 1 Gbps,
the memory size overhead and memory speed bottleneck resulting from these add significant
cost to the network cards and also cause huge performance overhead. Another function that

consumes a lot of processor resources is the copying of the data to/from the network card

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159

buffers, kernel buffers and the application buffers.

Microprocessors are increasingly achieving their high performance and speed using deep
pipelining and super scalar architectures. Interrupting these processors on arrival of small
packets will cause severe performance degradation due to context switching overhead,
pipeline flushes and refilling of the pipelines. Hence interrupting the processors should be
minimized to the most essential interrupts only. When the block storage traffic is
transported over TCP/IP networks, these performance issues become critical, severely
impacting the throughput and the latency of the storage traffic. Hence the processor
intervention in the entire process of transporting storage traffic needs to be minimized for IP
based storage solutions to have comparable performance and latency as other specialized
network architectures like fibre channel, which are specified with a view to a hardware
implementation. Emerging IP based storage standards like iSCSI, FCIP, iFCP, and others
(like NFS, CIFS, DAFS, HTTP, XML, XML derivatives (such as Voice XML, EBXML,
Microsoft SOAP and others), SGML, and HTML formats) encapsulate the storage and data
traffic in TCP/IP segments. However, there usually isn't alignment relationship between the
TCP segments and the protocol data units that are encapsulated by TCP packets. This
becomes an issue when the packets artive out of order, which is a very frequent event in
today's networks. The storage and data blocks cannot be extracted from the out of order
packets for use until the intermediate packets in the stream arrive which will cause the
network adapters to store these packets in the memory, retrieve them and order them when
the intermediate packets arrive. This can be expensive from the size of the memory storage
required and also the performance that the memory subsystem is expected to support,
particularly at line rates above 1Gbps. This overhead can be removed if each TCP segment
can uniquely identify the protocol data unit and its sequence. This can allow the packets to
be directly transferred to their end memory location in the host system. Host processor
intervention should also be minimized in the transfer of large blocks of data that may be
transferred to the storage subsystems or being shared with other processors in a clustering
environment or other client server environment. The processor should be interrupted only

on storage command boundaries to minimize the impact.

The IP processor set forth herein eliminates or sharply reduces the effect of various issues
outlined above through innovative architectural features and the design. The described
processor architecture provides features to terminate the TCP traffic carrying the storage
and data payload thereby eliminating or sharply reducing the TCP/IP networking stack
overhead on the host processor, resulting in packet streaming architecture that allows
packets to pass through from input to output with minimal latency. To enable high line rate

10

156

20

25

30

WO 2005/081855 PCT/US2005/005159

storage or data traffic being carried over IP requires maintaining the transmission control
block information for various connections (sessions) that are traditionally maintained by host
kernel or driver software. As used in this patent, the term "IP session" means a session for a
session oriented protocol that runs on IP. Examples are TCP/IP, SCTP/IP, and the like.
Accessing session information for each packet adds significant processing overhead. The
described architecture creates a high performance memory subsystem that significantly
reduces this overhead. The architecture of the processor provides capabilities for intelligent
flow control that minimizes interrupts to the host processor primarily at the command or data

transfer completion boundary.
Today, no TCP/IP processor is offered with security.

The conventional network security model deployed today involves perimeter security in the
form of perimeter firewall and intrusion detection systems. However, as increasing amount
of business gets conducted on-line, there is a need to provide enterprise network access to
"trusted insiders" - employees, partners, customers and contractors from outside. This
creates potential threats to the information assets inside an enterprise network. Recent
research by leading firms and FBI found that over 70 percent of the unauthorized access to
information systems is committed by employees or trusted insiders and so are over 95
percent of intrusions that result in substantial financial loss. In an environment where remote
access servers, peer networks with partners, VPN and wireless access points blur the
boundary of the network, a perimeter security is not sufficient. In such an environment
organizations need to adopt an integrated strategy that addresses network security at all
tiers including at the perimeter, gateways, servers, switches, routers and clients instead of

using point security products at the perimeter.

Traditional firewalls provide perimeter security at network layers by keeping offending IP
addresses out of the internal network. However, because many new attacks arrive as
viruses or spam, exploiting known vulnerabilities of well-known software and higher level
protocols, it is desirable to develop and deploy application layer firewalls. These should also

be distributed across the network instead of being primarily at the perimeter.

Currently as the TCP/IP processing exists as the software stack in clients, servers and other
core and end systems, the security processing also is done in software particularly the
capabilities like firewall, intrusion detection and prevention. As the line rates of these
networks go to 1Gbps and 10Gbps, it is imperative that the TCP/IP protocol stack be
implemented in hardware because a software stack consumes a large portion of the

available host processor cycles. Similarly, if the security processing functions get deployed

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159

on core or end systems instead of being deployed only at the perimeter, the processing
power required to perform these operations may create a huge overhead on the host
processor of these systems. Hence software based distributed security processing would
increase the required processing capability of the system and increase the cost of deploying
such a solution. A software based implementation would be detrimental to the performance
of the servers and significantly increase the delay or latency of the server response to clients
and may limit the number of clients that can be served. Further, if the host system software
stack gets compromised during a network attack, it may not be possible to isolate the
security functions, thereby compromising network security. Further, as the TCP/IP protocol
processing comes to be done in hardware, the software network layer firewalls may not have
access to all state information needed to perform the security functions. Hence, the protocol
processing hardware may be required to provide access to the protocol layer information that
it processes and the host may have to redo some of the functions to meet the network
firewall needs.

The hardware based TCP/IP and security rules processing processor of this patent solves
the distributed core security processing bottleneck besides solving the performance
bottleneck from the TCP/IP protocol stack. The hardware processor of this patent sharply
reduces the TCP/IP protocol stack processing overhead from the host CPU and enables
security processing features like firewall at various protocol layers such as link, network and
transport layers, thereby substantially improving the host CPU performance for intended
applications. Further, this processor provides capabilities that can be used to perform deep
packet inspection to perform higher layer security functions using the programmable
processor and the classification/policy engines disclosed. The processor of this patent thus
enables hardware TCP/IP and security processing at all layers of the OSI stack to implement
capabilities like firewall at all layers including the network layer and application layers.

The processor architecture of this patent also provides integrated advanced security
features. This processor allows for in-stream encryption and decryption of the network traffic
on a packet by packet basis thereby allowing high line rates and at the same time offering
confidentiality of the data traffic. Similarly, when the storage traffic is carried on a network
from the server to the storage arrays in a SAN or other storage system, it is exposed to
various security vulnerabilities that a direct attached storage system does not have to deal
with. This processor allows for in stream encryption and decryption of the storage traffic
thereby allowing high line rates and at the same time offering confidentiality of the storage
data traffic.

Classification of network traffic is another task that consumes up to half of the processing

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159

cycles available on packet processors leaving few cycles for deep packet inspection and
processing. |IP based storage traffic by the nature of the protocol requires high speed low
latency deep packet processing. The described IP processor significantly reduces the
classification overhead by providing a programmable classification engine. The
programmable classification engine of this patent allows deployment of advanced security
policies that can be enforced on a per packet, per transaction, and per flow basis. This will
result in significant improvement in deploying distributed enterprise security solutions in a
high performance and cost effective manner to address the emerging security threats from
within the organizations.

To enable the creation of distributed security solutions, it is critical to address the need of
Information Technology managers to cost effectively manage the entire network. Addition of
distributed security, without means for ease of managing it can significantly increase the
management cost of the network. The disclosure of this patent also provides a security
rules/policy management capability that can be used by IT personnel to distribute the
security rules from a centralized location to various internal network systems that use the
processor of this patent. The processor comprises hardware and software capabilities that
can interact with centralized rules management system(s). Thus the distribution of the
security rules and collection of information of compliance or violation of the rules or other
related information like offending systems, users and the like can be processed from one or
more centralized locations by IT managers. Thus multiple distributed security deployments

can be individually controlied from centralized location(s).

This patent also provides means to create a secure operating environment for the protocol
stack processing that, even if the host system gets compromised either through a virus or
malicious attack, allows the network security and integrity to be maintained. This patent
significantly adds to the trusted computing environment needs of the next generation
computing systems.

Tremendous growth in the storage capacity and storage networks have created storage area
management as a major cost item for IT departments. Policy based storage management is
required to contain management costs. The described programmable classification engine
allows deployment of storage policies that can be enforced on packet, transaction, flow and
command boundaries. This will have significant improvement in storage area management

costs.

The programmable |IP processor architecture also offers enough headroom to allow
customer specific applications to be deployed. These applications may belong to multiple

10

15

20

25

WO 2005/081855 PCT/US2005/005159

categories e.g. network management, storage firewall or other security capabilities,
bandwidth management, quality of service, virtualization, performance monitoring, zoning,
LUN masking and the like.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 illustrates a layered SCSI architecture and interaction between respective layers
located between initiator and target systems.

Fig. 2 illustrates the layered SCSI architecture with iISCSI and TCP/IP based transport
between initiator and target systems.

Fig. 3 illustrates an OSI stack comparison of software based TCP/IP stack with hardware -
oriented protocols like Fibre channel.

Fig. 4 illustrates an OSI stack with a hardware based TCP/IP implementation for providing
performance parity with the other non-IP hardware oriented protocols.

Fig. 5 illustrates a host software stack illustrating operating system layers implementing
networking and storage stacks.

Fig. 6 illusirates software TCP stack data transfers.

Fig. 7 illustrates remote direct memory access data transfers using TCP/IP offload from the
host processor as described in this patent.

Fig. 8 illustrates host software SCSI storage stack layers for transporting block storage data
over IP networks.

Fig. 9 illustrates certain iISCSI storage network layer stack details of an embodiment of the
invention.

Fig. 10 illustrates TCP/IP network stack functional details of an embodiment of the invention.

Fig. 11 illustrates an iSCSI storage data flow through various elements of an embodiment of

the invention.
Fig. 12 illustrates iISCSI storage data structures useful in the invention.

Fig. 13 illustrates a TCP/IP Transmission Control Block data structure for a session database
entry useful in an embodiment of the invention.

10

15

20

25

WO 2005/081855 PCT/US2005/005159

Fig. 14 illustrates an iSCSI session database structure useful in an embodiment of the
invention. ’

Fig. 15 illustrates iISCSI session memory structure useful in an embodiment of the invention.

Fig. 16 illustrates a high-level architectural block diagram of an IP network application

processor useful in an embodiment of the invention.

Fig. 17 illustrates a detailed view of the architectural block diagram of the IP network
application processor of Fig. 16.

Fig. 18 illustrates an input queue and controller for one embodiment of the |P processor.

Fig. 19 illustrates a packet scheduler, sequencer and load balancer useful in one embodiment
of the IP processor.

Fig. 20 illustrates a packet classification engine, including a policy engine block of one
embodiment of the IP storage processor.

Fig. 21 broadly illustrates an embodiment of the SAN packet processor block of one
embodiment of an IP processor at a high-level.

Fig. 22 illustrates an embodiment of the SAN packet processor block of the described IP
processor in further detail.

Fig. 23 illustrates an embodiment of the programmable TCP/IP processor engine which can
be used as part of the described SAN packet processor.

Fig. 24 illustrates an embodiment of the programmable IP Storage processor engine which
can be used as part of the described SAN packet processor.

Fig. 25 illustrates an embodiment of an output queue block of the programmable IP processor
of Fig. 17.

Fig. 26 illustrates an embodiment of the storage flow controller and RDMA controller.

Fig. 27 illustrates an embodiment of the host interface controller block of the IP processor

useful in an embodiment of the invention.
Fig. 28 illustrates an embodiment of the security engine.

Fig. 29 illustrates an embodiment of a memory and controller useful in the described

10

15

20

25

WO 2005/081855 PCT/US2005/005159

processor.

Fig. 30 illustrates a data structure useable in an embodiment of the described classification

engine.

Fig. 31 illustrates a storage read flow between initiator and target.

Fig. 32 illustrates a read data packet flow through pipeline stages of the described processor.
Fig. 33 illustrates a storage write operation flow between initiator and target.

Fig. 34 illustrates a write data packet flow through pipeline stages of the described

processor.

Fig. 35 illustrates a storage read flow between initiator and target using the remote DMA
(RDMA) capability between initiator and target.

Fig. 36 illustrates a read data packet flow between initiator and target using RDMA through
pipeline stages of the described processor.

Fig. 37 illustrates a storage write flow between initiator and target using RDMA capability.

Fig. 38 illustrates a write data packet flow using RDMA through pipeline stages of the

described processor.

Fig. 39 illustrates an initiator command flow in more detail through pipeline stages of the

described processor.

Fig. 40 illustrates a read packet data flow through pipeline stages of the described processor
in more detai.

Fig. 41 illustrates a write data flow through pipeline stages of the described processor in more
detail.

Fig. 42 illustrates a read data packet flow when the packet is in cipher text or is otherwise a

secure packet through pipeline stages of the described processor.

Fig. 43 illustrates a write data packet flow when the packet is in cipher text or is otherwise a
secure packet through pipeline stages of the described processor of one embodiment of the
invention.

Fig. 44 illustrates a RDMA buffer advertisement flow through pipeline stages of the described

10

156

20

25

WO 2005/081855 PCT/US2005/005159
10

processor.

Fig. 45 illustrates a RDMA write flow through pipeline stages of the described processor in
more detail.

Fig. 46 illustrates a RDMA Read data flow through pipeline stages of the described processor

in more detail.

Fig. 47 illustrates steps of a session creation flow through pipeline stages of the described

processor.

Fig. 48 illustrates steps of a session tear down flow through pipeline stages of the described
processor.

Fig. 49 illustrates a session creation and session teardown steps from a target perspective
through pipeline stages of the described processor.

Fig. 50 illustrates an R2T command flow in a target subsystem through pipeline stages of the

described processor.

Fig. 51 illustrates a write data flow in a target subsystem through pipeline stages of the

described processor.

Fig. 62 illustrates a target read data flow through the pipeline stages of the described
processor.

Fig. 53 illustrates a typical enterprise network with perimeter security.

Fig. 54 illustrates an enterprise network with distributed security using various elements of
this patent.

Fig. 55 illustrates an enterprise network with distributed security including security for a

storage area network using various elements of this patent.

Fig. 56 illustrates a Central Manager/Policy Server & Monitoring Station.
Fig. 57 illustrates Central Manager flow of the disclosed security feature.
Fig. 58 illustrates rule distribution flow for the Central Manager.

Fig. 59 illustrates Control Plane Processor/Policy Driver Flow for the processor of this patent.

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159
11

Fig. 60 illustrates a sample of packet filtering rules that may be deployed in distributed
security systems.

DESCRIPTION

| provide a new high performance and low latency way of implementing a TCP/IP stack in
hardware to relreve the host processor of the severe performance impact of a software TCP/IP
stack. This hardware TCP/IP stack is then interfaced with additional processing elements to

enable high performance and low latency IP based storage applications.

This system also enables a new way of implementing security capabilities like firewall inside
enterprise networks in a distributed manner using a hardware TCP/IP implementation with
appropriate security capabilities in hardware having processing elements to enable high
performance and low latency IP based network security applications. The hardware
processor may be used inside network interface cards of servers, workstations, client PCs,
notebook computers, handheld devices, switches, routers and other networked devices. The
servers may be web servers, remote access servers, file servers, departmental servers,
storage servers, network attached storage servers, database servers, blade servers,
clustering servers, application servers, content /media servers, grid computers/servers, and
the like. The hardware processor may also be used inside an I/O chipset of one of the end
systems.

This system enables distributed security capabilities like firewall, intrusion detection, virus
scan, virtual private network, confidentiality services and the like in internal systems of an
enterprise network. The distributed security capabilities may be implemented using the
hardware processor of this patent in each system, or some of its critical systems and others
may deploy those services in software. Hence, overall network will include distributed
security as hardware implementation or software implementation or a combination thereof in
different systems depending on the performance, cost and security needs as determined by
IT managers. The distributed security systems will be managed from one or more centralized
systems used by IT managers for managing the network using the principles described. This
will enable an efficient and consistent deployment of security in the network using various

elements of this patent.

This can be implemented in a variety of forms to provide benefits of TCP/IP termination, high
performance and low latency IP storage capabilities, remote DMA (RDMA) capabilities,
security capabilities, programmable classification and policy processing features and the like.
Following are some of the embodiments that can implement this:

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159

12

Server

The described architecture may be embodied in a high performance server environment
providing hardware based TCP/IP functions or hardware TCP/IP and security functions that
relieve the host server processor or processors of TCP/IP and/or security software and
performance overhead. The IP processor may be a companion processor to a server
chipset, providing the high performance networking interface with hardware TCP/IP and/or
security. Servers can be in various form factors like blade servers, appliance servers, file
servers, thin servers, clustered servers, database server, game server, grid computing
server, VOIP server, wireless gateway server, security server, network attached storage
server or traditional servers. The current embodiment would allow creation of a high

performance network interface on the server motherboard.

Companion Processor to a server Chipset

The server environment may also leverage the high performance IP storage processing
capability of the described processor, besides high performance TCP/IP and/or RDMA
capabilitiés. In such an embodiment the processor may be a companion processor to a
server chipset providing high performance network storage 1/O capability besides the TCP/IP
offloading from the server processor. This embodiment would allow creation of high
performance IP based network storage 1/0 on the motherboard. In other words it would
enable IP SAN on the motherboard.

Storage System Chipsets

The processor may also be used as a companion of a chipset in a storage system, which
may be a storage array (or some other appropriate storage system or subsystem) controller,
which performs the storage data server functionality in a storage networking environment.
The processor would provide IP network storage capability to the storage array controller to
network in an IP based SAN. The configuration may be similar to that in a server
environment, with additional capabilities in the system to access the storage arrays and

provide other storage-centric functionality.

Server/Storage Host Adapter Card

The IP processor may also be embedded in a server host adapter card providing high speed
TCP/IP networking. The same adapter card may also be able to offer high speed network
security capability for IP networks. Similarly, the adapter card may also be able to offer high
speed network storage capability for IP based storage networks. The adapter card may be

used in traditional servers and may also be used as blades in a blade server configuration.

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159
13

The processor may also be used in adapters in a storage array (or other storage system or
subsystem) front end providing IP based storage networking capabilities.

Processor Chipset Component

The TCP/IP processor may be embodied inside a processor chipset, providing the TCP/IP
offloading capability. Such a configuration may be used in the high end servers, workstations
or high performance personal computers that interface with high speed networks. Such an
embodiment could also include IP storage or RDMA capabilities or combination of this
invention to provide IP based storage networking and/or TCP/IP with RDMA capability
embedded in the chipset. The usage of multiple capabilities of the described architecture
can be made independent of using other capabilities in this or other embodiments, as a

trade-off of feature requirements, development timeline and cost, silicon die cost and the like.

Storage or SAN System or Subsystem Switching Line Cards

The IP processor may also be used to create high performance, low latency IP SAN
switching system (or other storage system or subsystem) line cards. The processor may be
used as the main processor terminating and originating IP-based storage traffic to/from the
line card. This processor would work with the switching system fabric controller, which may
act like a host, to transport the terminated storage traffic, based on their IP destination, to the
appropriate switch line card as determined by the forwarding information base present in the
switch system. Such a switching system may support purely IP based networking or may
support multi-protocol support, allow interfacing with IP based SAN along with other data
center SAN fabrics like Fibre channel. A very similar configuration could exist inside a
gateway controller system, that terminates IP storage traffic from LAN or WAN and
originates new sessions to carry the storage traffic into a SAN, which may be IP based SAN
or more likely a SAN built from other fabrics inside a data center like Fibre channel. The
processor could also be embodied in a SAN gateway controller. These systems would use
security capabilities of this processor to create a distributed security network within enterprise

storage area networks as well,

Network Switches, routers, wireless access points

The processor may also be embedded in a network interface line card providing high speed
TCP/IP networking for switches, routers, gateways, wireless access points and the like. The
same adapter card may also be able to offer high speed network security capability for IP
networks. This processor would provide the security capabilities that can then be used in a
distributed security network.

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
14

Storage Appliance

Storage networks management costs are increasing rapidly. The ability to manage the
significant growth in the networks and the storage capacity would require creating special
appliances which would be providing the storage area management functionality. The
described management appliances for high performance IP based SAN, would implement my
high performance IP processor, to be able to perform its functions on the storage traffic
transported inside TCP/IP packets. These systems would require a high performance
processor to do deep packet inspection and extract the storage payload in the IP traffic to
provide policy based management and enforcement functions. The security, programmable
classification and policy engines along with the high speed TCP/IP and IP storage engines
described would enable these appliances and other embodiments described in this patent to
perform deep packet inspection and classification and apply the policies that are necessary
on a packet by packet basis at high line rates at low latency. Further these capabilities can
enable creating storage management appliances that can perform their functions like
virtualization, policy based management, security enforcement, access control, intrusion
detection, bandwidth management, traffic shaping, quality of service, anti-spam, virus
detection, encryption, decryption, LUN masking, zoning, link aggregation and the like in-
band to the storage area network traffic. Similar policy based management, and security
operations or functionality may also be supported inside the other embodiments described in
this patent.

Clustered Environments

Server systems are used in a clustered environment to increase the system performance
and scalability for applications like clustered data bases and the like. The applications
running on high performance cluster servers require ability to share data at high speeds for
inter-process communication. Transporting this inter-process communication traffic on a
traditional software TCP/IP network between cluster processors suffers from severe
performance overhead. Hence, specialized fabrics like Fibre channel have been used in
such configurations. However, a TCP/IP based fabric which can allow direct memory access
between the communicating processes' memory, can be used by applications that operate
on any TCP/IP network without being changed to specialized fabrics like fibre channel. The
deécribed IP processor with its high performance TCP/IP processing capability and the
RDMA features, can be embodied in a cluster server environment to provide the benefits of
high performance and low latency direct memory to memory data transfers. This
embodiment may also be used to create global clustering and can also be used to enable

data transfers in grid computers and grid networks.

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159
15

Additional Embodiments

The processor architecture can be partially implemented in software and partially in
hardware. The performance needs and cost implications can drive trade-offs for hardware
and software partitioning of the overall system architecture of this invention. |t is also
possible to implement this architecture as a combination of chip sets along with the hardware
and software partitioning or independent of the patrtitioning. For example the security
processor and the classification engines could be on separate chips and provide similar
functions. This can result in lower silicon cost of the IP processor i[ncluding the development
and manufacturing cost, but it may in some instances increase the part count in the system
and may increase the footprint and the total solution cost. Security and classification
engines could be separate chips as well. As used herein, a chip set may mean a multiple-
chip chip set, or a chip set that includes only a single chip, depending on the application.

The storage flow controller and the queues could be maintained in software on the host or
may become part of another chip in the chipset. Hence, muitiple ways of partitioning this
architecture are feasible to accomplish the high performance IP based storage and TCP/IP
offload applications that will be required with the coming high performance processors in the
future. The storage engine description has been given with respect to iISCSI, however, with
TCP/IP and storage engine programmability, classifier programmability and the storage flow
controller along with the control processor, other IP storage protocols like iFCP, FCIP and
others can be implemented with the appropriate firmware. iSCSI| operations may also
represent IP Storage operations. The high performance IP processor core may be coupled
with multiple input output ports of lower line rates, matching the total throughput to create

multi-port [P processor embodiment as well.

It is feasible to use this architecture for high performance TCP/IP offloading from the main
processor without using the storage engines. This can result in a silicon and system solution
for next generation high performance networks for the data and telecom applications. The
TCP/IP engine can be augmented with application specific packet accelerators and leverage
the core architecture to derive new flavors of this processor. It is possible to change the
storage engine with another application specific accelerator like a firewall engine or a route
look-up engine or a telecom/network acceleration engine, along with the other capabilities of
this invention and target this processor architecture for telecom/networking and other
applications.

Detailed Description

Storage costs and demand have been increasing at a rapid pace over the last several years.

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159
16

This is expected to grow at the same rate in the foreseeable future. With’ the advent of
e-business, availability of the data at any time and anywhere irrespective of the server or
system downtime is critical. This is driving a strong need to move the server attached
storage onto a network to provide storage consolidation, availability of data and ease of
management of the data. The storage area networks (SANs) are today predominantly
based on Fibre Channel technology, that provide various benefits like low latency and high
performance with its hardware oriented stacks compared to TCP/IP technology.

Some system transport block storage traffic on IP designed to transport data streams. The
data streams are transported using Transmission Control Protocol (TCP) that is layered to run
on top of IP. TCP/IP is a reliable connection oriented protocol implemented in software
within tﬁe operating systems. A TCP/IP software stack is slow to handle the high line rates
that will be deployed in the future. New hardware solutions will accelerate the TCP/IP stack
to carry storage and network traffic and be competitive to FC based solutions.

The prevalent storage protocol in high performance servers, workstations and storage
controllers and arrays is SCSI protocol which has been around for 20 years. SCSI
architecture is built as layered protocol architecture. Fig. 1 illustrates the various SCSI
architecture layers within an initiator, block 101, and target subsystems, block 102. As used
in patent, the terms "initiator" and "target" mean a data processing apparatus, or a subsystem
or system including them. The terms "initiator" and "target" can also mean a client or a
server or a peer. Likewise, the term "peer" can mean a peer data processing apparatus, or
a subsystem or system thereof. A "remote peer" can be a peer located across the world or

across the room.

The initiator and target subsystems in Fig. 1 interact with each other using the SCSI
application protocol layer, block 103, which is used to provide a client-server request and
response transactions. It also provides device service request and response between the
initiator and the target mass storage device which may take many forms like a disk arrays,
tape drives, and the like. Traditionally, the target and initiator are interconnected using the
SCSI bus architecture carrying the SCSI protocol, block 104. The SCSI protocol layer is the
transport layer that allows the client and the server to interact with each other using the
SCSl application protocol. The transport layer must present the same semantics to the
upper layer so that the upper layer protocols and application can stay transport protocol

independent.

Fig. 2 illustrates the SCSI application layer on top of IP based transport layers. An IETF
standards track protocol, iSCSI (SCSI over IP) is an attempt to provide |IP based storage

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
17

transport protocol. There are other similar attempts including FCIP (FC encapsulated in IP),
iFCP(FC over IP) and others. Many of these protocols layer on top of TCP/IP as the
transport mechanism, in a manner similar to that illustrated in Fig. 2. As illustrated in Fig. 2,
the iSCSI protocol services layer, block 204, provides the layered interface to the SCSI
application layer, block 203. iSCSI carries SCSI commands and data as iSCSI protocol data
units (PDUs) as defined by the standard. These protocol data units then can be transported
over the network using TCP/IP, block 205, or the like. The standard does not specify the
means of implementing the underlying transport that carries iISCS| PDUs. Fig. 2 illustrates
iISCSI layered on TCP/IP which provides the transport for the iSCSI| PDUs.

The IP based storage protocol like iISCSI can be layered in software on top of a software
based TCP/IP stack. However, such an implementation would suffer serious performance
penalties arising from software TCP/IP and the storage protocol layered on top of that.
Such an implementation would severely impact the performance of the host processor and
may make the processor unusable for any other tasks at line rates above 1Gbps. Hence, we
would implement the TCP/IP stack in hardware, relieving the host processor, on which the
storage protocol can be built. The storage protocol, like iISCSI, can be built in software
running on the host processor or may, as described in this patent, be accelerated using
hardware implementation. A software iSCSI stack will present many interrupts to the host
processor to extract PDUs from received TCP segments to be able to act on them. Such an
implementation will suffer severe performance penalties for reasons similar to those for which
a software based TCP stack would. The described processor provides a high performance
and low latency architecture to transport Storage protocol on a TCP/IP based network that
eliminates or greatly reduces the performance penalty on the host processor, and the
resulting latency impact.

Fig. 3 illustrates a comparison of the TCP/IP stack to Fibre channel as referenced to the OSI
networking stack. The TCP/IP stack, block 303, as discussed earlier in the Summary of the
Invention section of this patent, has performance problems resulting from the software
implementation on the hosts. Compared to that, specialized networking protocols like Fibre
channel, block 304, and others are designed to be implemented in hardware. The
hardware implementation allows the networking solutions to be higher performance than the
IP based solution. However, the ubiquitous nature of IP and the familiarity of IP from the IT
users' and developers' perspective makes IP more suitable for wide spread deployment.
This can be accomplished if the performance penalties resulting from TCP/IP are reduced to
be equivalent to those of the other competing specialized protocols. Fig. 4 illustrates a
protocol level layering in hardware and software that is used for TCP/IP, block 403, to

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
18

become competitive to the other illustrated specialized protocols.

Fig. 5 illustrates a host operating system stack using a hardware based TCP/IP and storage
protocol implementation of this patent. The protocol is implemented such that it can be
introduced into the host operating system stack, block 513, such that the operating system
layers above it are unchanged. This allows the SCSI application protocols to operate
without any change. The driver layer, block 515, and the stack underneath for IP based
storage interface, block 501, will represent a similar interface as a non-networked SCSI
interface, blocks 506 and 503 or Fibre Channel interface, block 502,

Fig. 6 illustrates the data transfers involved in a software TCP/IP stack. Such an
implementation of the TCP/IP stack carries huge performance penalties from memory copy of
the data transfers. The figure illustrates data transfer between client and server networking
stacks. User level application buffers, block 601, that need to be transported from the client
to the server or vice versa, go through the various levels of data transfers shown. The user
application buffers on the source get copied into the OS kernel space buffers, block 602.
This data then gets copied to the network driver buffers, block 603, from where it gets DMA-
transferred to the network interface card (NIC) or the host bus adapter (HBA) buffers, block
604. The buffer copy operations involve the host processor and use up valuable processor
cycles. Further, the data being transferred goes through checksum calculations on the host
using up additional computing cycles from the host. The data movement into and out of the
system memory on the host multiple times creates a memory bandwidth bottleneck as well.
The data transferred to the NIC/HBA is then sent on to the network, block 609, and reaches
the destination system. At the destination system the data packet traverses through the
software networking stack in the opposite direction as the host though following similar buffer
copies and checksum operations. Such implementation of TCP/IP stack is very inefficient
for block storage data transfers and for clustering applications where a large amount of data

may be transferred between the source and the destination.

Fig. 7 illustrates the networking stack in an initiator and in a target with features that allow
remote direct memory access (RDMA) features of the architecture described in this patent.
The following can be called an RDMA capability or an RDMA mechanism or an RDMA
function. In such a system the application running on the initiator or target registers a region
of memory, block 702, which is made available to its peer(s) for access directly from the,
NIC/HBA without substantial host intervention. These applications would also let their
peer(s) know about the memory regions being available for RDMA, block 708. Once both
peers of the communication are ready to use the RDMA mechanism, the data transfer from
RDMA regions can happen with essentially zero copy overhead from the source to the

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
19

destination without substantial host intervention if NIC/HBA hardware in the peers implement
RDMA capability. The source, or initiator, would inform its peer of its desire to read or write
specific RDMA enabled buffers and then let the destination or target, push or pull the data
to/from its RDMA buffers. The initiator and the target NIC/HBA would then transport the data
using the TCP/IP hardware implementation described in this patent, RMDA 703, TCP/IP
offload 704, RMDA 708 and TCP/IP offload 709, between each other without substantial
intervention of the host processors, thereby significantly reducing the processor overhead.
This mechanism would significantly reduce the TCP/IP processing overhead on the host
processor and eliminate the need for multiple buffer copies for the data transfer illustrated in
Fig. 6. RDMA enabled systems would thus allow the system, whether fast or slow, to
perform the data transfer without creating a performance bottleneck for its peer. RDMA
capability implemented in this processor in storage over IP solution eliminates host
intervention except usually at the data transfer start and termination. This relieves the host
processors in both target and initiator systems to perform useful tasks without being
interrupted at each packet arrival or fransfer. RDMA implementation also allows the system
to be secure and prevent unauthorized access. This is accomplished by registering the
exported memory regions with the HBA/NIC with their access control keys along with the
region IDs. The HBA/NIC performs the address transiation of the memory region request
from the remote host to the RDMA buffer, performs security operations such as security key
verification and then allows the data transfer. This processing is performed off the host processor in
the processor of this invention residing on the HBA/NIC or as a companion processor to the
host processor on the motherboard, for example. This capability can also be used for large
data transfers for server clustering applications as well as client server applications. Real
time media applications transferring large amounts of data between a source or initiator and

a destination or target can benefit from this.

Fig. 8 illustrates the host file system and SCSI stack implemented in software. As indicated
earlier the IP based storage stack, blocks 805, 806, 807, 808 and 809, should represent a
consistent interface to the SCS| layers, blocks 803 and 804, as that provided by SCSI
transport layer, block 811, or Fibre channel transport, block 810. This figure illustrates high
level requirements that are imposed on the IP based storage implementation from a system
level, besides those imposed by various issues of IP which is not designed to transport
performance sensitive block data.

Fig. 9 illustrates the iSCSI stack in more detail from that illustrated in Fig. 8. The iSCSI stack
blocks 805 though 809, should provide an OS defined driver interface level funictionality to the
SCSI command consolidation layer blocks 803 & 804, such that the behavior of this layer

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
20

and other layers on top of it are unchanged. Fig. 9 illustrates a set of functions that would be
implemented to provide [P storage capabilities. The functions that provide the iSCSI
functionality are grouped into related sets of functions, although there can be many variations
of these as any person skilled in this area would appreciate. There are a set of functions
that are required to meet the standard (e.g. target and initiator login and logout) functions,
block 916, connection establishment and teardown functions, block 905. The figure
illustrates functions that allow the OS SCSI software stack to discover the iSCSI device,
block 916, set and get options/parameters, blocks 903 and 909, to start the device, block 913
and release the device, block 911. Besides the control functions discussed earlier, the iISCS!
implementation provides bulk data transfer functions, through queues 912 and 917, to
transport the PDUs specified by the iSCSI standard. The iSCSI stack may also include
direct data transfer/placement (DDT) or RDMA functions or combination thereof, block 918,
which are used by the initiator and target systems to perform substantially zero buffer copy
and host intervention-less data transfers including storage and other bulk block data

transfers. The SCSI commands and the block data transfers related to these are
implemented as command queues, blocks 912 and 917, which get executed on the described
processor. The host is interrupted primarily on the command completion. The completed
commands are queued for the host to act on at a time convenient to the host. The figure
illustrates the iSCSI protocol layer and the driver layer layered on the TCP/IP stack, blocks
907 and 908, which is also implemented off the host processor on the IP processor system

described herein.

Fig. 10 illustrates the TCP/IP stack functionality that is implemented in the described 1P
processor system. These functions provide an interface to the upper layer protocol functions
to carry the IP storage traffic as well as other applications that can benefit from direct OS
TCP/IP bypass, RDMA or network sockets direct capabilities or combination thereof to utilize
the high performance TCP/IP implementation of this processor. The TCP/IP stack provides
capabilities to send and receive upper layer data, blocks 1017 and 1031, and command
PDUs, establish the transport connections and teardown functions, block 1021, send and
receive data transfer functions, checksum functions, block 1019, as well as error handling
functions, block 1022, and segmenting and sequencing and windowing operations, block
1023. Certain functions like checksum verification/creation touch every byte of the data
transfer whereas some functions that transport the data packets and update the transmission
control block or session data base are invoked for each packet of the data transfer. The
session DB, block 1025, is used to maintain various information regarding the active
sessions/connections along with the TCP/IP state information. The TCP layer is built on top
of IP layer that provides the IP functionality as required by the standard. This layer provides

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
21

functions to fragment/de-fragment, block 1033, the packets as per the path MTU, providing
the route and forwarding information, block 1032, as well as interface to other functions
necessary for communicating errors like, for example, ICMP, block 1029. The IP layer
interfaces with the Ethernet layer or other media access layer technology to transport the
TCP/IP packets onto the network. The lower layer is illustrated as Ethernet in various
figures in this description, but could be other technologies like SONET, for instance, to
transport the packets over SONET on MANs/WANSs. Ethernet may also be used in similar
applications, but may be used more so within a LAN and dedicated local SAN environments,
for example.

Fig. 11 illustrates the iSCSI data flow. The figure illustrates the receive and transmit path of
the data flow. The Host's SCSI command layer working with the iSCSI driver, both depicted
in block 1101, would schedule the commands to be processed to the command scheduler,
block 1108, in the storage flow controller seen in more detail in Fig. 26. The command
scheduler 1108 schedules the new commands for operation in the processor described in
more detail in Fig. 17. A new command that is meant for the target device with an existing
connection gets en-queued to that existing connection, block 1111. When the connection to
the target device does not exist, a new command is en-queued on to the unassigned
command queue, block 1102. The session/connection establishment process like that
shown in Fig. 47 and blocks 905 and 1006 is then called to connect to the target. Once the
connection is established the corresponding command from the queue 1102 gets en-queued
to the newly created connection command queue 1111 by the command scheduler 1108 as
illustrated in the figure. Once a command reaches a stage of execution, the receive 1107 or
transmit 1109 path is activated depending on whether the command is a read or a write
fransaction. The state of the connection/session which the command is transported is used
to record the progress of the command execution in the session database as described
subsequently. The buffers associated with the data transfer may be locked till such time as
the transfer is completed. If the RDMA mechanism is used to transfer the data between the
initiator and the target, appropriate region buffers identifiers, access control keys and related
RDMA state data is maintained in memory on board the processor and may also be
maintained in off-chip memory depending on the implementation chosen. As the data
transfer, which may be over multiple TCP segments, associated with the command is
completed the status of the command execution is passed onto the host SCSI layer which
then does the appropriate processing. This may involve releasing the buffers being used for
data transfers to the applications, statistics update, and the like. During transfer, the iSCSI
PDUs are transmitted by the transmit engines, block 1109, working with the transmit
command engines, block 1110, that interpret the PDU and perform appropriate operations

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159

22

like retrieving the application buffers from the host memory using DMA to the storage
processor and keeping the storage command flow information in the iSCSI connection
database updated with the progress. As used in this patent the term "engine" can be a data
processor or a part of a data processor, appropriate for the function or use of the engine.
Similarly, the receive engines, block 1107, interpret the received command into new
requests, response, errors or other command or data PDUs that need to be acted on
appropriately. These receive engines working with the command engines, block 1106, route
the read data or received data to the appropriate allocated application buffer through direct
data transfer/placement or RDMA control information maintained for the session in the iISCSI
session table. On command completion the control to the respective buffers, blocks 1103
and 1112, is released for the application to use. Receive and transmit engines can be the
SAN packet processors 1706(a) to 1706(n) of Fig. 17 of this IP processor working with the
session information‘recorded in the session data base entries 1704, which can be viewed as
a global memory as viewed from the TCP/IP processor of Fig. 23 or the IP processor of Fig.
24. The same engines can get reused for different packets and commands with the
appropriate storage flow context provided by the session database discussed in more detail
below with respect to block 1704 and portion of session database in 1708 of Fig. 17. For
clarification, the terms IP network application processor, [P Storage processor, IP Storage
network application processor and IP processor can be the same entity, depending on the
application. An IP network application processor core or an IP storage network application

processor core can be the same entity, depending on the application.

Similarly a control command can use the transmit path whereas the received response would
use the receive path. Similar engines can exist on the initiator as well as the target. The
data flow direction is different depending on whether it is the initiator or the target.
However, primarily similar data flow exists on both initiator and target with additional steps at
the target. The target needs to perform additional operations to reserve the buffers needed
to get the data of a write command, for instance, or may need to prepare the read data
before the data is provided to the initiator. Similar instances would exist in case of an
intermediate device, although, in such a device, which may be a switch or an appliance,
some level of virtualization or frame filtering or such other operation may be performed that
may require termination of the session on one side and originating sessions on the other.
This functionality is supported by this architecture but not illustrated explicitly in this figure,
inasmuch as it is well within the knowledge of one of ordinary skill in the art.

Fig. 12 through Fig. 15 illustrate certain protocol information regarding transport sessions and

how that information may be stored in a database in memory.

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159

23

Fig. 12 illustrates the data structures that are maintained for iSCSI protocol and associated
TCP/IP connections. The data belonging to each iSCSI session, block 1201, which is
essentially a nexus of initiator and target connections, is carried on the appropriate
connection, block 1202. Dependent commands are scheduled on the queues of the same
connection to maintain the ordering of the commands, block 1203. However, unrelated
commands can be assigned to different transport connection. It is possible to have all the
commands be queued to the same conneciion, if the implementation supports only one
connection per session. However, multiple connections per session are feasible to support
line trunking between the initiator and the target. For example, in some applications, the
initiator and the target will be in communication with each other and will decide through
negotiation to accept multiple connections. In others, the initiator and target will
communicate through only one session or connection. Fig. 13 and Fig. 14 illustrate the
TCP/IP and iSCSI session data hase or transmission control block per session and
connection. These entries may be carried as separate tables or may be carried together as
a composite table as seen subsequently with respect to Figs. 23, 24, 26 and 29 depending
on the implementation chosen and the functionality implemented e.g. TCP/IP only, TCP/IP
with RDMA, IP Storage only, IP storage with TCP/IP, IP Storage with RDMA and the like.
Various engines that perform TCP/IP and storage flow control use all or some of these fields
or more fields not shown, to direct the block data transfer over TCP/IP. The appropriate
fields are updated as the connection progresses through the multiple states during the
course of data transfer. Fig. 15 illustrates one method of storing the transmission control
entries in a memory subsystem that consists of an on-chip session cache, blocks 1501 and
1502, and off-chip session memory, blocks 1503,1504, 1505,1506 and 1507, that retains the

state information necessary for continuous progress of the data transfers.

Fig. 16 illustrates the IP processor architecture at a high level of abstraction. The processor
consists of modular and scalable IP network application processor core, block 1603. lis
functional blocks provide the functionality for enabling high speed storage and data transport
over IP networks. The processor core can include an intelligent flow controller, a
programmable classification engine and a storage/network policy engine. Each can be
considered an individual processor or any combination of them can be implemented as a
single processor. The disclosed processor also includes a security processing block to
provide high line rate encryption and decryption functionality for the network packets. This,
likewise, can be a single processor, or combined with the others mentioned above. The
disclosed processor includes a memory subsystem, including a memory controller interface,
which manages the on chip session cache/memory, and a memory controller, block 1602,
which manages accesses to the off chip memory which may be SRAM, DRAM, FLASH,

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
24

ROM, EEPROM, DDR SDRAM, RDRAM, FCRAM, QDR SRAM, or other derivatives of static
or dynamic random access memory or a combination thereof. The IP processor includes
appropriate system interfaces to allow it to be used in the targeted market segments,
providing the right media interfaces, block 1601, for LAN, SAN, WAN and NMAN networks,
and similar networks, and appropriate host interface, block 1606. The med ia interface block
and the host interface block may be in a multi-port form where some of the ports may serve
the redundancy and fail-over functions in the networks and systems in which the disclosed
processor is used. The processor also may contain the coprocessor interface block 1605,
for extending the capabilities of the main processor for example creating a multi-processor
system. The system controller interface of block 1604 allows this processor to interface with
an off-the-shelf microcontroller that can act as the system controller for thes system in which
the disclosed processor may be used. The processor architecture also su pport a control
plane processor on board, that could act as the system controller or session manager. The
system controller interface may still be provided to enable the use of an external processor.
Such a version of this processor may not include the control processor for die cost reasons.
There are various types of the core architecture that can be created, targeting specific
system requirements, for example server adapters or storage controllers o r switch line cards
or other networking systems. The primary differences would be as discussed in the earlier
sections of this patent. These processor blocks provide capabilities and performance to
achieve the high performance IP based storage using standard protocols like iSCSI, FCIP,
iFCP and the like. The detailed architecture of these blocks will be discusssed in the following
description.

Fig. 17 illustrates the IP processor architecture in more detail. The archite cture provides
capabilities to process incoming IP packets from the media access control (MAC) layer, or
other appropriate layer, through full TCP/IP termination and deep packet imspection. This
block diagram does not show the MAC layer block 1601, or blocks 1602,1604 or 1605 of Fig.
16. The MAC layer interface blocks to the input queue, block 1701, and output queue, block
1712, of the processor in the media interface, block 1601, shown in Fig. 16G. The MAC
functionality could be standards based, with the specific type dependent on the network.
Ethernet and Packet over SONET are examples of the most widely used interfaces today
which may be included on the same silicon or a different version of the pro cessor created
with each.

The block diagram in Fig. 17 illustrates input queue and output queue blockks 1701 and 1712
as two separate blocks. The functionality may be provided using a combi ned block. The

input queue block 1701 consists of the logic, control and storage to retrieve the incoming

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
25

packets from the MAC interface block. Block 1701 queues the packets as they arrive from
the interface and creates appropriate markers to identify start of the packet, end of the
packet and other attributes like a fragmented packet or a secure packet, and the like,
working with the packet scheduler 1702 and the classification engine 1703. The packet
scheduler 1702, can retrieve the packets from the input queue controller and passes them for
classification to the classification engine. The classification block 1703, is shown to follow
the scheduler, however from a logical perspective the classification engine receives the
packet from the input queue, classifies the packet and provides the classification tag to the
packet, which is then scheduled by the scheduler to the processor array 1706(a).. .1706(n).
Thus the classification engine can act as a pass-through classification engine, sustaining
the flow of the packets through its structure at the full line rate. The classification engine is a
programmable engine that classifies the packets received from the network in various
categories and tags the packet with the classification result for the scheduler and the other
packet processors to use. Classification of the network traffic is a very compute intensive
activity which can take up to half of the processor cycles available in a packet processor.
This integrated classification engine is programmable to perform Layer 2 through Layer 7
inspection. The fields to be classified are programmed in with expected values for
comparison and the action associated with them if there is a match. The classifier collects
the classification walk results and can present these as a tag to the packet identifying the
classification result as seen subsequently with respect to Fig. 30. This is much like a tree
structure and is understood as a "walk." The classified packets are then provided to the
scheduler 1702 as the next phase of the processing pipeline.

The packet scheduler block 1702 includes a state controller and sequencer that assign
packets to appropriate execution engines on the disclosed processor. The execution
engines are the SAN packet processors, block 1706(a) through 1706(n), including the
TCP/IP and/or storage engines as well as the storage flow/RDMA controller, block 1708 or
host bypass and/or other appropriate processors, depend on the desired implementation.
For clarity, the term T, when used to designate hardware components in this patent, can
mean "and/or" as appropriate. For example, the component "storage flow/RDMA controller”
can be a storage flow and RDMA coniroller, a storage flow controller, or an RDMA controller,
as appropriate for the implementation. The scheduler 1702 also maintains the packet order
through the processor where the state dependency from a packet to a packet on the same
connection/session is important for correct processing of the incoming packets. The
scheduler maintains various tables to track the progress of the scheduled packets through
the processor until packet retirement. The scheduler also receives commands that need to
be scheduled to the packet processors on the outgoing commands and packets from the host

10

156

20

25

30

35

WO 2005/081855 PCT/US2005/005159
26

processor or switch fabric controller or interface.

The TCP/IP and storage engines along with programmable packet processors are together
labeled as the SAN Packet Processors 1706(a) through 1706(n) in Fig. 17. These packet
processors are engines that are independent programmable entities that serve a specific
role. Alternatively, two or more of them can be implemented as a single processor depending
on the desired implementation. The TCP/IP engine of Fig. 23 and the storage engines of
Fig. 24 are configured in this example as coprocessors to the programmable packet
processor engine block 2101 of Fig. 21. This architecture can thus be applied with relative
ease to applications other than storage by substituting/removing for the storage engine for
reasons of cost, manufacturability, market segment and the like. In a pure networking
environment the storage engine could be removed, leaving the packet processor with a
dedicated TCP/IP engine and be applied for the networking traffic, which will face the same
processing overhead from TCP/IP software stacks. Alternatively one or more of the engines
may be dropped for desired implementation e.g. for processor supporting only IP Storage
functions may drop TCP/IP engine and/or packet engine which may be in a separate chip.
Hence, multiple variations of the core scalable and modular architecture are possible. The
core architecture can thus be leveraged in applications beside the storage over IP
applications by substituting the storage engine with other dedicated engines, for example a
high performance network security and policy engine, a high performance routing engine, a
high performance network management engine, deep packet inspection engine providing
string search, an engine for XML, an engine for virtualization, and the like, providing support
for an application specific acceleration. The processing capability of this IP processor can
be scaled by scaling the number of SAN Packet Processor blocks 1706 (a) through 1706 (n)
in the chip to meet the line rate requirements of the network interface. The primary limitation
from the scalability would come from the silicon real-estate required and the limits imposed
by the silicon process technologies. Fundamentally this architecture is scalable to very high
line rates by adding more SAN packet processor blocks thereby increasing the processing
capability. Other means of achieving a similar result is to increase the clock frequency of

operation of the processor to that feasible within the process technology limits.

Fig. 17 also illustrates the IP session cache/memory and the memory controller block 1704.
This cache can be viewed as an internal memory or local session database cache. This
block is used to cache and store the TCP/IP session database and also the storage session
database for a certain number of active sessions. The number of sessions that can be
cached is a direct result of the chosen silicon real-estate and what is economically feasible

to manufacture. The sessions that are not on chip, are stored and retrieved to/from off chip

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
27

memory, viewed as an external memory, using a high performance memory controller block
which can be part of block 1704 or otherwise. Various processing elements of this processor
share this controller using a high speed internal bus to store and retrieve the session
information. The memory controller can also be used to temporarily store packets that may
be fragmented or when the host interface or outbound queues are backed-up. The controller
may also be used to store statistics information or any other information that may be
collected by the disclosed processor or the applications running on the disclosed or host

processor.

[start here]The processor block diagram of Fig. 17 also illustrates host interface block 1710,
host input queue, block 1707 and host output queue, block 1709 as well as the storage flow /
RDMA controller, block 1708. These blocks provide the functions that are required to transfer
data to and from the host (also called "peer") memory or switch fabric. These blocks also
provide features that allow the host based drivers to schedule the commands, retrieve
incoming status, retrieve the session database entry, program the disclosed processor, and
the like to enable capabilities like sockets direct architecture, full TCP/IP termination, IP
storage offload and the like capabilities with or without using RDMA. The host interface
controller 1710, seen in greater detail in Fig. 27, provides the configuration registers, DMA
engines for direct memory to memory data transfer, the host command block that performs
some of the above tasks, along with the host interface transaction controller and the host
interrupt controller. The host input and output queues 1707,1709 provide the queuing for
incoming and outgoing packets. The storage flow and RDMA controller block 1708 provides
the functionality necessary for the host to queue the commands to the disclosed processor,
which then takes these commands and executes them, interrupting the host processor on
command termination. The RDMA controller portion of block 1708 provides various
capabilities necessary for enabling remote direct memory access. It has tables that include
information such as RDMA region, access keys, and virtual address translation functionality.
The RDMA engine inside this block performs the data transfer and interprets the received
RDMA commands to perform the transaction if the transaction is allowed. The storage flow
controller of block 1708 also keeps track of the state of the progress of various commands
that have been scheduled as the data transfer happens between the target and the initiator.
The storage flow controller schedules the commands for execution and also provides the
command completion information to the host drivers. The above can be considered RDMA
capability and can be implemented as described or by implementing as individual
processors, depending on designer's choice. Also, additional functions can be added to or

removed from those described without departing from the spirit or the scope of this patent.

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
28

The control plane processor block 1711 of this processor is used to provide relatively slow
path functionality for TCP/IP and/or storage protocols which may include error processing
with ICMP protocol, name resolution, address resolution protocol, and it may also be
programmed to perform session initiation/teardown acting as a session controller/connection
manger, login and parameter exchange, and the like. This control plane processor could be
off chip to provide the system developer a choice of the control plane processor, or may be
on chip to provide an integrated solution. If the control plane processor is off-chip, then an
interface block would be created or integrated herein that would allow this processor to
interface with the control plane processor and perform data and command transfers. The
internal bus structures and functional block interconnections may be different than illustrated
for all the detailed figures for performance, die cost requirements and the like and not depart
from the spirit and the scope of this patent.

Capabilities described above for Fig. 17 blocks with more detail below, enable a packet
streaming architecture that allows packets to pass through from input to output with minimal
latency, with in-stream processing by various processing resources of the disclosed processor.

Fig. 18 illustrates the input queue and controller block shown generally at 1701 of Fig. 17 in
more detail. The core functionality of this block is to accept the incoming packets from
muitiple input ports, Ports 1 to N, in blocks 1801 and 1802(i) to 1802(n), and to queue them
using a fixed or programmable priority on the input packet queue, block 1810, from where the
packets get de-queued for classifier, scheduler and further packet processing through
scheduler I/F blocks 1807-1814. The input queue controller interfaces with each of the input
ports (Port 1 through Port N in a multi-port implementation), and queues the packets to the
input packet queue 1810. The packet en-queue controller and marker block 1804 may
provide fixed priority functions or may be programmabile to allow different policies to be
applied to different interfaces based on various characteristics like port speed, the network
interface of the port, the port priority and others that may be appropriate. Various modes of
priority may be programmable like round-robin, weighted round-robin or others. The input
packet de-queue controller 1812 de-queues the packets and provides them to the packet
scheduler, block 1702 of Fig. 17 via scheduler I/F 1814. The scheduler schedules the
packets to the SAN packet processors 1706 (a) - 1706 (n) once the packets have been
classified by the classification engine 1703 of Fig. 17. The encrypted packets can be
classified as encrypted first and passed on to the security engine 1705 of Fig. 17 by the
secure packet interface block 1813 of Fig. 18 for authentication and/or decryption if the
implementation includes security processing otherwise the security interfaces may not be

present and an external security processor would be used to perform similar functions. The

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
29

decrypted packets from clear packet interface, block 1811, are then provided to the input
queue through block 1812 from which the packet follows the same route as a clear packet.
The fragmented IP packets may be stored on-chip in the fragmented packet store and
controller buffers, block 1806, or may be stored in the internal or external memory. When
the last fragment arrives, the fragment controller of block 1806, working with the
classification engine and the scheduler of Fig. 17, merges these fragments to assemble the
complete packet. Once the fragmented packet is combined to form a complete packet, the
packet is scheduled into the input packet quéue via block 1804 and is then processed by the
packet de-queue controller, block 1812, to be passed on to various other processing stages
of this processor. The input queue controller of Fig. 18 assigns a packet tag/descriptor to
each incoming packet which is managed by the attribute manager of block 1809 which uses
the packet descriptor fields like the packet start, size, buffer address, along with any other
security information from classification engine, and stored in the packet attributes and tag
array of block 1808. The packet tag and attributes are used to control the flow of the packet
through the processor by the scheduler and other elements of the processor in an efficient
manner through interfaces 1807, 1811, 1813 and 1814.

Fig. 19 illustrates the packet scheduler and sequencer 1702 of Fig. 17 in more detail. This
block is responsible for scheduling packets and tasks to the execution resources of this
processor and thus also acts as a load balancer. The scheduler retrieves the packet
headers from the header queue, block 1902, from the input queue controller 1901 to pass
them to the classification engine 1703 of Fig. 17 which returns the classification results to the
classifier queue, block 1909, that are then used by the rest of the processor engines. The
classification engine may be presented primarily with the headers, but if deep packet
inspection is also programmed, the classification engine may receive the complete packets
which it routes to the scheduler after classification. The scheduler comprises a classification
controller/scheduler, block 1908, which manages the execution of the packets through the
classification engine. This block 1908 of Fig. 19 provides the commands to the input queue
controller, block 1901, in case of fragmented packets or secure packets, to perform the
appropriate actions for such packets e.g. schedule an encrypted packet to the security
engine of Fig. 17. The scheduler state control and the sequencer, block 1916, receive state
information of various transactions/operations active inside the processor and provide
instructions for the next set of operations. For instance, the scheduler retrieves the packets
from the input packet queue of block 1903, and schedules these packets in the appropriate
resource queue depending on the results of the classification received from the classifier or
directs the packet to the packet memory, block 1913 or 1704 through 1906, creating a
packet descriptor/tag which may be used to retrieve the packet when appropriate resource

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159

30

needs it to performs its operations at or after scheduling. The state control and sequencer
block 1916 instructs/directs the packets with their classification result, block 1914, to be
stored in the packet memory, block 1913, from where the packets get retrieved when they
are scheduled for operation. The state controller and the sequencer identify the execution
resource that should receive the packet for operation and creates a command and assigns
this command with the packet tag to the resource queues, blocks 1917 (Control Plane), 1918
(port i-port n), 1919 (bypass) and 1920 (host) of Fig. 19. The priority selector 1921 is a
programmable block that retrieves the commands and the packet tag from the respective
queues based on the assigned priority and passes this to the packet fetch and command
controller, block 1922. This block retrieves the packet from the packet memory store 1913
along with the classification results and schedules the packet transfer to the appropriate
resource on the high performance processor command and packet busses such as at 1926
when the resource is ready for operation. The bus interface blocks, like command bus
interface controller 1905, of the respective recipients interpret the command and accept the
packet and the classification tag for operation. These execution engines inform the
scheduler when the packet operation is complete and when the packet is scheduled for its
end destination (either the host bus interface, or the output interface or control plane
interface, etc.). This allows the scheduler to retire the packet from its state with the help of
retirement engine of block 1904 and frees up the resource entry for this session in the
resource allocation table, block 1923. The resource allocation table is used by the
sequencer to assign the received packets to specific resources, depending on the current
state of internal state of these resources, e.g. the session database cache entry buffered in
the SAN packet processor engine, the connection 1D of the current packet being executed in
the resource, and the like. Thus packets that are dependent on an ordered execution get
assigned primarily to the same resource, which improves memory traffic and performance by
using the current DB state in the session memory in the processor and not have to retrieve
new session entries. The sequencer also has interface to the memory controller, block 19086,
for queuing of packets that are fragmented packets and/or for the case in which the scheduler
queues get backed-up due to a packet pracessing bottleneck down stream, which may be
caused by specific applications that are executed on packets that take more time than that
allocated to maintain a full line rate performance, or for the case in which any other

downstream systems get full, unable fo sustain the line rate.

If the classifier is implemented before the scheduler as discussed above with respect toFig.

17 where the classification engine receives the packet from the input queue, items
1901,1902, 1908, 1909 and 1910 would be in the classifier, or may not be needed,
depending on the particular design. The appropriate coupling from the classifier to/from the

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
31

scheduler blocks 1903, 1907, 1914 and 1915 may be created in such a scenario and the
classifier coupled directly to the input queue block of Fig. 18.

Fig. 20 illustrates the packet classification engine shown generally at 1703 of Fig. 17.
Classification of the packets into their various attributes is a very compute intensive operation.
The classifier can be a programmable processor that examines various fields of the received
packet to identify the type of the packet, the protocol type e.g. IP, ICMP, TCP, UDP etc, the
port addresses, the source and destination fields, etc. The classifier can be used to test a
particular field or a set of fields in the header or the payload. The block diagram illustrates
a content addressable memory based classifier. However, as discussed earlier this could
be a programmable processor as well. The primary differences are the performance and
complexity of implementation of the engine. The classifier gets the input packets through the
scheduler from the input queues, blocks 2005 and 2004 of Fig. 20. The input buffers 2004
queue the packets/descriptor and/or the packet headers that need to be classified. Then the
classification sequencer 2003 fetches the next available packet in the queue and extracts the
appropriate packet fields based on the global field descriptor sets, block 2007, which are, or
can be, programmed. Then the classifier passes these fields to the content addressable
memory (CAM) array, block 2009, to perform the classification. As the fields are passed
through the CAM array, the match of these fields identifies next set of fields to be compared
and potentially their bit field location. The match in the CAM array results in the action/event
tag, which is collected by the result compiler, (where "compiling” is used in the sense of
"collecting") block 2014 and also acted on as an action that may require updating the data in
the memory array, block 2013, associated with specific CAM condition or rule match. This
may include performing an arithmetic logic unit (ALL)) operation, block 2017, which can be
considered one example of an execution resource) on this field e.g. increment or decrement
the condition match and the like. The CAM arrays are programmed with the fields, their
expected values and the action on match, including next field to compare, through the
database initialization block 2011, accessible for programming through the host or the control
plane processor interfaces 1710, 1711. Once the classification reaches a leaf node the
classification is complete and the classification tag is generated that identifies the path
traversed that can then be used by other engines of the IP processor avoid performing the
same classification tasks. For example a classification tag may include the flow or session
ID, protocol type indication e.g. TCP/UDP/ICMP etc., value indicating whether to processes,
bypass, drop packet, drop session, and the like, or may also include the specific firmware
code routine pointer for the execution resource to start packet processing or may include
signature of the classification path traversed or the like. The classification tag fields are
chosen based on processor implementation and functionality. The classifier retirement

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
32

queue, block 2015, holds the packets/descriptors of packets that are classified and
classification tag and are waiting to be retrieved by the scheduler. The classification data
base can be extended using database extension interface and pipeline control logic block
2006. This allows systems that need extensibility for a larger classification database to be
built. The classification engine with the action interpreter, the ALU and range matching block
of 2012 also provide capabilities to program storage / network policies / actions that need to
be taken if certain policies are met. The policies can be implemented in the form of rule and
action tables. The policies get compiled and programmed in the classification engine
through the host interface along with the classification tables. The database interface and
pipeline control 2006 could be implemented to couple to companion processor to extend the
size of the classification/policy engine.

Fig. 21 illustrates the SAN Packet Processor shown generally at 1706 (a) through 1706 (n) of
Fig. 17. A packet processor can be a specially designed packet processor, or it can be any
suitable processor such as an ARM, ARC, Tensilica, MIPS, StrongARM, X86, PowerPC,
Pentium processor, iA64 or any other processor that serves the functions described herein.
This is also referred as the packet processor complex in various sections of this patent. This
packet processor comprises a packet engine, block 2101, which is generally a RISC OR
VLIW machine with target instructions for packet processing or a TCP/IP engine, block 2102
or an IP storage engine, block 2103 or a combination thereof. These engines can be
configured as coprocessors to the packet engine or can be independent engines. Fig. 22
illustrates the packet engine in more detail. The packet engine is a generally RISC OR VLIW
machine as indicated above with instruction memory, block 2202, and Data Memory, block
2206, (both of which can be RAM) that are used to hold the packet processing micro routines
and the packets and intermediate storage. The instruction memory 2202 which, like all such
memory in this patent, can be RAM or other suitable storage, is initialized with the code that
is executed during packet processing. The packet processing code is organized as tight
micro routines that fit within the allocated memory. The instruction decoder and the
sequencer, block 2204, fetches the instructions from instruction memory 2202, decodes
them and sequences them through the execution blocks contained within the ALU, block
2208. This machine can be a simple pipelined engine or a more complex deep pipelined
machine that may also be designed to provide a packet oriented instruction set. The DMA
engine, block 2205 and the bus controller, block 2201, allow the packet engine to move the
data packets from the scheduler of Fig. 19 and the host interface into the data memory 2206
for operation. The DMA engine may hold multiple memory descriptors to store/retrieve
packet/data to/from host memory/packet memory. This would enable memory accesses to
happen in parallel to packet processor engine operations. The DMA engine 2205 also may

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
33

be used to move the data packets to and from the TCP and storage engines 2210, 2211.
Once the execution of the packet is complete, the exiracted data or newly generated packet
is transferred to the output interface either towards the media interface or the host interface.

Fig. 23 illustrates a programmable TCP/IP packet processor engine, seen generally at 2210
of Fig. 22, in more detail. This engine is generally a programmable processor with common
RISC OR VLIW instructions along with various TCP/IP oriented instructions and execution
engines but could also be a micro-coded or a state machine driven processor with
appropriate execution engines described in this patent. The TCP processor includes a
checksum block, 2311, for TCP checksum verification and new checksum generation by
executing these instructions on the processor. The checksum block extracts the data packet
from the packet buffer memory (a Data RAM is one example of such memory), 2309, and
performs the checksum generation or verification. The packet look-up interface block, 2310,
assists the execution engines and the instruction sequencer, 2305, providing access to
various data packet fields or the full data packet. The classification tag interpreter, 2313, is
used by the instruction decoder 2304 to direct the program flow based on the results of the
classification if such an implementation is chosen. The processor provides specific
sequence and windowing operations including segmentation, block 2315, for use in the
TCP/IP data sequencing calculations for example, to look-up the next expected sequence
number and see if that received is within the agreed upon sliding window, which sliding
window is a well known part of the TCP protocol, for the connection to which the packet
belongs. This element 2315 may also include a segmentation controller like that show at
2413 of Fig. 24. Alternatively, one of ordinary skill in the art, with the teaching of this patent,
can easily implement the segmentation controllers elsewhere on the TCP/IP processor of
this Fig. 23. The processor provides a hash engine, block 2317, which is used to perform
hash operations against specific fields of the packet to perform a hash table walk that may
be required to get the right session entry for the packet. The processor also includes a
register file, block 2316, which extracts various commonly used header fields for TCP
processing, along with pointer registers for data source and destination, context register
sets, and registers that hold the TCP states along with a general purpose register file. The
TCPI/IP processor can have multiple contexts for packet execution, so that when a given
packet execution stalls for any reason, for example memory access, the other context can
be woken up and the processor continue the execution of another packet stream with little
efficiency loss. The TCP/IP processor engine also maintains a local session cache, block
2320, which holds most recently used or most frequently used entries, which can be used
locally without needing to retrieve them from the global session memory. The local session
cache can be considered an internal memory of the TCP/IP processor, which can be a

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
34

packet processor. Of course, the more entries that will be used that can be stored locally in
the internal memory, without retrieving additional ones from the session, or global, memory,
the more efficient the processing will be. The packet scheduler of Fig. 19 is informed of the
connection IDs that are cached per TCP/IP processor resource, so that it can schedule the
packets that belong to the same session to the same packet processor complex. When the
packet processor does not hold the session entry for the specific connection, then the TCP
session database lookup engine, block 2319, working with the session manager, block 2321,
and the hash engine retrieves the corresponding entry from the global session memory
through the memory controller interface, block 2323. There are means, such as logic
circuitry inside the session manager that allow access of session entries or fields of session
entries, that act with the hash engine to generate the session identifier for storing/retrieving
the corresponding session entry or its fields to the session database cache. This can be
used to update those fields or entries as a result of packet processing. When a new entry is
fetched, the entry which it is replacing is stored to the global session memory. The local
session caches may follow exclusivity caching principles, so that multiple processor
complexes do not cause any race conditions, damaging the state of the session. Other
caching protocols like MESI protocol may also be used to achieve similar results. When a
session entry is cached in a processor complex, and another processor complex needs that
entry, this entry is transferred to the new processor with exclusive access or appropriate
caching state based on the algorithm. The session entry may also get written to the global
session memory in certain cases. The TCP/IP processor also includes a TCP state machine,
block 2322, which is used to walk through the TCP states for the connection being operated
on. This state machine receives the state information stored in the session entry along with
the appropriate fields affecting the state from the newly received packet. This allows the
state machine to generate the next state if there is a state transition and the information is
updated in the session table entry. The TCP/IP processor also includes a frame
controller/out of order manager block, 2318, that is used to exiract the frame information and
perform operations for out of order packet execution. This block could also include an
RDMA mechanism such as that shown at 2417 of Fig. 24, but used for non-storage data
transfers. One of ordinary skill in the art can also, with the teaching of this patent,
implement an RDMA mechanism elsewhere on the TCP/IP processor. This architecture
creates an upper layer framing mechanism which may use packet CRC as framing key or
other keys that is used by the programmable frame controller to extract the embedded PDUs
even when the packets arrive out of order and allow them to be directed to the end buffer

‘ destination. This unit interacts with the session database to handle out of order arrival

information which is recorded so that once the intermediate segments arrive; the
retransmissions are avoided. Once the packet has been processed through the TCP/IP

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
35

processor, it is delivered for operation to the storage engine, if the packet belongs to a
storage data transfer and the specific implementation includes a storage engine, otherwise
the packet is passed on to the host processor interface or the storage flow/RDMA controller of
block 1708 for processing and for DMA to the end buffer destination. The packet may be
transferred to the packet processor block as well for any additional processing on the packet.
This may include application and customer specific application code that can be executed on
the packet before or after the processing by the TCP/IP processor and the storage processor.
Data transfer from the host to the output media interface would also go through the TCP/IP
processor o form the appropriate headers to be created around the data and also perform
the appropriate data segmentation, working with the frame controller and/or the storage
processor as well as to update the session state. This data may be retrieved as a result of
host command or received network packet scheduled by the scheduler to the packet
processor for operation. The internal bus structures and functional block interconnections
may be different than illustrated for performance, die cost requirements and the like. For
example, Host Controller Interface 2301, Scheduler Interface 2307 and Memory Controller
Interface 2323 may be part of a bus controller that allows transfer of data packets or state
information or commands, or a combination thereof, to or from a scheduler or storage
flow/RDMA controller or host or session controller or other resources such as, without
limitation, security processor, or media interface units, host interface, scheduler, .
classification processor, packet buffers or controller processor, or any combination of the

foregoing.

Fig. 24 illustrates the |P storage processor engine of Fig. 22 in more detail. The storage
engine is a programmable engine with an instruction set that is geared towards IP based
storage along with, usually, a normal RISC OR VLIW-like packet processing instruction set.
The IP storage processor engine contains block 2411, to perform CRC operations. This
block allows CRC generation and verification. The incoming packet with IP storage is
transferred from the TCP/IP engine through DMA, blocks 2402 and 2408, into the data
memory (a data RAM is an example of such memory), block 2409. When the
implementation does not include TCP/IP engine or packet processor engine or a
combination thereof, the packet may be received from the scheduler directly for example.
The TCP session database information related to the connection can be retrieved from the
local session cache as needed or can also be received with the packet from the TCP/IP
engine. The storage PDU is provided to the PDU classifier engine, block 2418, which
classifies the PDU into the appropriate command, which is then used to invoke the
appropriate storage command execution engine, block 2412. The command execution can
be accomplished using the RISC OR VLIW, or equivalent, instruction set or using a dedicated

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
36

hardware engine. The command execution engines perform the command received in the
PDU. The received PDU may contain read command data, or R2T for a pending write
command or other commands required by the IP storage protocol. These engines retrieve
the write data from the host interface or direct the read data to the destination buffer. The
storage session database entry is cached, in what can be viewed as a local memory,

block 2420, locally for the recent or frequent connections served by the processor. The
command execution engines execute the commands and make the storage database entry
updates working with the storage state machine, block 2422, and the session manager,
block 2421. The connection ID is used to identify the session, and if the session is not
present in the cache, then it is retrieved from the global session memory 1704 of Fig. 17 by
the storage session look-up engine, block 2419. For data transfer from the initiator to target,
the processor uses the segmentation controller, block 2413, to segment the data units into
segments as per various network constraints like path MTU and the like. The segmentation
controller attempts to ensure that the outgoing PDUs are optimal size for the connection. If
the data transfer requested is larger than the maximum effective segment size, then the
segmentation controller packs the data into multiple packets and works with the sequence
manager, block 2415, to assign the sequence numbers appropriately. The segmentation
controller 2413 may also be implemented within the TCP/IP processor of Fig. 23. That is, the
segmentation controller may be part of the sequence/window operations manager 2315 of
Fig. 23 when this processor is used for TCP/IP operations and not storage operations. One
of ordinary skill in the art can easily suggest alternate embodiments for including the
segmentation controller in the TCP/IP processor using the teachings of this patent. The
storage processor of Fig. 24 (or the TCP/IP processor of Fig. 23) can also include an RDMA
engine that interprets the remote direct memory access instructions received in the PDUs for
storage or network data transfers that are implemented using this RDMA mechanism. In
Fig. 24, for example, this is RDMA engine 2417. In the TCP/IP processor of Fig. 23 an
RDMA engine could be part of the frame controller and out of order manager 2318, or other
suitable component. If both ends of the connection agree to the RDMA mode of data
transfer, then the RDMA engine is utilized to schedule the data transfers between the target
and initiator without substantial host intervention. The RDMA transfer state is maintained in
a session database entry. This block creates the RDMA headers to be layered around the
data, and is also used to extract these headers from the received packets that are received
on RDMA enabled connections. The RDMA engine works with the storage flow/ RDMA
controller, 1708, and the host interface controller, 1710, by passing the
messages/instructions and performs the large block data transfers without substantial host
intervention. The RDMA engine of the storage flow/RDMA controller block, 1708, of the [P

processor performs protection checks for the operations requested and also provides

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
37

conversion from the RDMA region identifiers to the physical or virtual address in the host
space. This functionality may also be provided by RDMA engine, block 2417, of the storage
engine of the SAN packet processor based on the implementation chosen. The distribution
of the RDMA capability between 2417 and 1708 and other similar engines is an
implementation choice that one with ordinary skill in the art will be able to do with the
teachings of this patent. Outgoing data is packaged into standards based PDU by the PDU
creator, block 2425. The PDU formatting may also be accomplished by using the packet
processing instructions. The storage engine of Fig. 24 works with the TCP/IP engine of Fig.
23 and the packet processor engine of Fig. 17 to perform the IP storage operations involving
data and command transfers in both directions i.e. from the initiator to target and the target
to the host and vice versa. That is, the Host controller Interface 2401, 2407 store and
retrieve commands- or data or a combination thereof to or from the host processor. These
interfaces may be directly connected to the host or may be connected through an
intermediate connection. Though shown as two apparatus, interfaces 2401 and 2407 could
be implemented as a single apparatus. The flow of data through these blocks would be
different based on the direction of the transfer. For instance, when command or data is
being sent from the host to the target, the storage processing engines will be invoked first to
format the PDU and then this PDU is passed on to the TCP processor to package the PDU
in a valid TCP/IP segment. However, a received packet will go through the TCP/IP engine
before being scheduled for the storage processor engine. The internal bus structures and
functional block interconnections may be different than illustrated for performance, die cost
requirements, and the like. For example, and similarly to Fig. 23, Host Controller Interface
2401, 2407 and Memory Controller Interface 2423 may be part of a bus controller that allows
transfer of data packets or state information or commands, or a combination thereof, to or
from a scheduler or host or storage flow/RDMA controller or session controller or other
resources such as, without limitation, security processor, or media interface units, host
interface, scheduler, classification processor, packet buffers or controller processor, or any

combination of the foregoing.

In applications in which storage is done on a chip not including the TCP/IP processor of Fig.
23 by, as one example, an IP Storage processor such as an iSCSI processor of Fig. 24, the
TCP/IP Interface 2406 would function as an interface to a scheduler for scheduling IP
storage packet processing by the IP Storage processor. Similar variations are well within the

knowledge of one of ordinary skill in the art, viewing the disclosure of this patent.

Fig. 25 illustrates the output queue controller block 1712 of Fig. 17 in more detail. This block
receives the packets that need to be sent on to the network media independent interface 1601

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
38

of Fig. 16. The packets may be tagged to indicate if they need to be encrypted before being
sent out. T he controller queues the packets that need to be secured to the security engine
through the queue 2511 and security engine interface 2510. The encrypted packets are
received from the security engine and are queued in block 2509, to be sent to their
destination. The output queue controller may assign packets onto their respective quality of
service (QOS) queues, if such a mechanism is supported. The programmable packet priority
selector, block 2504, selects the next packet to be sent and schedules the packet for the
appropriate port, Port1 ... PortN. The media contfroller block 1601 associated with the port
accepts the packets and sends them to their destination.

Fig. 26 illustrates the storage flow controller /RDMA controller block, shown generally at
1708 of Fig. 17, in more detail. The storage flow and RDMA controller block provides the
functionality necessary for the host to queue the commands (storage or RDMA or sockets
direct or a combination thereof) to this processor, which then takes these commands and
executes them, interrupting the host processor primarily on command termination. The
command queues, new and active, blocks 2611 and 2610, and completion queue, block
2612, can be partially on chip and partially in a host memory region or memory associated
with the IP processor, from which the commands are fetched or the completion status
deposited. The RDMA engine, block 2602, provides various capabilities necessary for
enabling remote direct memory access. [t has tables, like RDMA look-up table 2608, that
include information like RDMA region and the access keys, and virtuai address translation
functionality. The RDMA engine inside this block 2602 performs the data transfer and
interprets the received RDMA commands to perform the transaction if allowed. The storage
flow controller also keeps track of the state of the progress of various commands that have
been scheduled as the data transfer happens between the target and the initiator. The
storage flow controller schedules the commands for execution and also provides the
command completion information to the host drivers. The storage flow controller provides
command queues where new requests from the host are deposited, as well as active
commands are held in the active commands queue. The command scheduler of block 2601,
assigns new commands, that are received which are for targets for which no connections
exist, to the scheduler for initiating a new connection. The scheduler 1702, uses the control
plane processor shown generally at 1711 of Fig. 17 to do the connection establishment at-
which point the connection entry is moved to the session cache, shown generally in Fig. 15
and 1704 in Fig. 17, and the state controller in the storage flow controller block 2601 moves
the new command to active commands and associates the command to the appropriate
connection. The active commands, in block 2610, are retrieved and sent to the scheduler,
block 1702 for operation by the packet processors. The update to the command status is

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
39

provided back to the flow controller which then stores it in the command state tables, blocks
2607 and accessed through block 2603. The sequencer of 2601 applies a programmable
priority for command scheduling and thus selects the next command to be scheduled from
the active commands and new commands. The flow controller also includes a new requests
queue for incoming commands, block 2613. The new requests are transferred to the active
command queue once the appropriate processing and buffer reservations are done on the
host by the host driver. As the commands are being scheduled for execution, the state
controller 2601 initiates data pre-fetch by host data pre-fetch manager, block 2617, from the
host memory using the DMA engine of the host interface block 2707, hence keeping the data
ready to be provided to the packet processor complex when the command is being
executed. The output queue controller, block 2616, enables the data transfer, working with
the host controller interface, block 2614. The storage flow/RDMA controller maintains a
target-initiator table, block 2609, that associates the target/initiators that have been resolved
and connections established for fast look-ups and for associating commands to active
connections. The command sequencer may also work with the RDMA engine 2602, if the
commands being executed are RDMA commands or if the storage transfers were negotiated
to be done through the RDMA mechanism at the connection initiation. The RDMA engine
2602, as discussed above, provides functionality to accept multiple RDMA regions, access
control keys and the virtual address translation pointers. The host application (which may be
a user application or an OS kernel function, storage or non-storage such as downloading
web pages, video files, or the like) registers a memory region that it wishes to use in RDMA
transactions with the disclosed processor through the services provided by the associated
host driver. Once this is done, the host application communicates this information to its peer
on a remote end. Now, the remote machine or the host can execute RDMA commands,
which are served by the RDMA blocks on both ends without requiring substantial host
intervention. The RDMA transfers may include operations like read from a region, a certain
number of bytes with a specific offset or a write with similar attributes. The RDMA
mechanism may also include send functionality which would be useful in creating
communication pipes between two end nodes. These features are useful in clustering
applications where large amounts of data transfer is required between buffers of two
applications running on servers in a cluster, or more likely, on servers in two different clusters
of servers, or such other clustered systems. The storage data transfer may also be
accomplished using the RDMA mechanism, since it allows large blocks of data transfers
without substantial host intervention. The hosts on both ends get initially involved to agree
on doing the RDMA transfers and allocating memory regions and permissions through
access control keys that get shared. Then the data transfer between the two nodes can

continue without host processor intervention, as long as the available buffer space and

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
40

buffer transfer credits are maintained by the two end nodes. The storage data transfer
protocols would run on top of RDMA, by agreeing to use RDMA protocol and enabling it on
both ends. The storage flow controller and RDMA controller of Fig. 26 can then perform the
storage command execution and the data transfer using RDMA commands. As the expected
data transfers are completed the storage command completion status is communicated to
the host using the completion queue 2612. The incoming data packets arriving from the
network are processed by the packet processor complex of Fig. 17 and then the PDU is
extracted and presented to the flow controller of Fig. 26 in case of storage/RDMA data
packets. These are then assigned to the incoming queue block 2604, and transferred to the
end destination buffers by looking up the memory descriptors of the receiving buffers and
then performing the DMA using the DMA engine inside the host interface block 2707. The
RDMA commands may also go through protection key look-up and address translation as per
the RDMA initialization.

The foregoing may also be considered a part of an RDMA capability or an RDMA mechanism
or an RDMA function.

Fig. 27 illustrates host interface controller 1710 of Fig. 17 in more detail. The host interface
block includes a host bus interface controller, block 2709, which provides the physical
interface to the host bus. The host interface block may be implemented as a fabric
interface or media independent interface when embodied in a switch or a gateway or similar
configuration depending on the system architecture and may provide virtual output queuing
and/or other quality of service features. The transaction controller portion of block 2708,
executes various bus transactions and maintains their status and takes requested
transactions to completion. The host command unit, block 2710, includes host bus
configuration registers and one or more command interpreters to execute the commands
being delivered by the host. The host driver provides these commands to this processor
over Host Output Queue Interface 2703. The commands serve various functions like setting
up configuration registers, scheduling DMA transfers, setting up DMA regions and
permissions if needed, setup session entries, retrieve session database, configure RDMA
engines and the like. The storage and other commands may also be transferred using this

interface for execution by the IP processor.

Fig. 28 illustrates the security engine 1705 of Fig. 17 in more detail. The security engine
illustrated provides authentication and encryption and decryption services like those required
by standards like IPSEC for example. The services offered by the security engine may
include multiple authentication and security algorithms. The security engine may be on-
board the processor or may be part of a separate silicon chip as indicated earlier. An

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
41

external security engine providing |P security services would be situated in a similar position
in the data flow, as one of the first stages of packet processing for incoming packets and as
one of the last stages for the outgoing packet. The security engine illustrated provides
advanced encryption standard (AES) based encryption and decryption services, which are
very hardware performance efficient algorithms adopted as security standards. This block
could also provide other security capabilities like DES, 3DES, as an example. The supported
algorithms and features for security and authentication are driven from the silicon cost and
development cost. The algorithms chosen would also be those required by the IP storage
standards. The authentication engine, block 2803, is illustrated to include the SHA-1
algorithm as one example of useable algorithms. This block provides message digest and
authentication capabilities as specified in the IP security standards. The data flows through
these blocks when security and message authentication services are required. The clear
packets on their way out to the target are encrypted and are then authenticated if required
using the appropriate engines. The secure packets received go through the same steps in
reverse order. The secure packet is authenticated and then decrypted using the engines
2803, 2804 of this block. The security engine also maintains the security associations in a
security context memory, block 2809, that are established for the connections. The security
associations (may include secure session index, security keys, algorithms used, current
state of session and the like) are used to perform the message authentication and the
encryption/decryption services. It is possible to use the message authentication service and

the encryption/decryption services independent of each other.

Fig. 29 illustrates the session cache and memory controller complex seen generally at 1704
of Fig. 17 in more detail. The memory complex includes a cache/memory architecture for
the TCP/IP session database called session/global session memory or session cache in this
patent, implemented as a cache or memory or a combination thereof. The session cache
look-up engine, block 2904, provides the functionality to look-up a specific session cache
entry. This look-up block creates a hash index out of the fields provided or is able to accept a
hash key and looks-up the session cache entry. If there is no tag match in the cache array
with the hash index, the look-up block uses this key to find the session entry from the
external memory and replaces the current session cache entry with that session entry. It
provides the session entry fields to the requesting packet processor complex. The cache
entries that are present in the local processor complex cache are marked shared in the
global cache. Thus when any processor requests this cache entry, it is transferred to the
global cache and the requesting processor and marked as such in the global cache. The
session memory controller is also responsible to move the evicted local session cache
entries into the global cache inside this block. Thus only the latest session state is available

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
42

at any time to any requesters for the session entry. |f the session cache is full, a new enfry
may cause the least recently used entry to be evicted to the external memory. The session
memory may be single way or multi-way cache or a hash indexed memory or a combination
thereof, depending on the silicon real estate available in a given process technology. The
use of a cache for storing the session database entry is unique, in that in networking
applications for network switches or routers, generally there is not much locality of reference
properties available between packets, and hence use of cache may not provide much
performance improvement due to cache misses. However, the storage fransactions are
longer duration transactions between the two end systems and may exchange large
amounts of data. In this scenario or cases where a large amount of data transfer occurs
between two nodes, like in clustering or media servers or the like a cache based session
memory architecture will achieve significant performance benefit from reducing the
enormous data transfers from the off chip memories. The size of the session cache is a
function of the available silicon die area and can have an impact on performance based on
the trade-off. The memory controller block also provides services to other blocks that need
to store packets, packet fragments or any other operating data in memory. The memory
interface provides single or multiple external memory controllers, block 2901, depending on
the expected data bandwidth that needs to be supported. This can be a double data rate
controller or controller for DRAM or SRAM or RDRAM or other dynamic or static RAM or
combination thereof. The figure illustrates multi-controllers however the number is variable
depending on the necessary bandwidth and the costs. The memory complex may also
provide timer functionality for use in retransmission time out for sessions that queue
themselves on the retransmission queues maintained by the session database memory
block.

Fig. 30 illustrates the data structures details for the classification engine. This is one way of
organizing the data structures for the classification engine. The classification database is
illustrated as a tree structure, block 3001, with nodes, block 3003, in the tree and the actions,
block 3008, associated with those nodes allow the classification engine to walk down the tree
making comparisons for the specific node values. The node values and the fields they
represent are programmable. The action field is extracted when a field matches a specific
node value. The action item defines the next step, which may include extracting and
comparing a new field, performing other operations like ALL) operations on specific data
fields associated with this node-value pair, or may indicate a terminal node, at which point the
classification of the specific packet is complete. This data structure is used by the
classification engine to classify the packets that it receives from the packet scheduler. The
action items that are retrieved with the value matches, while iterating different fields of the

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
43

packet, are used by the results compiler to create a classification tag, which is attached to
the packet, generally before the packet headers. The classification tag is then used as a
reference by the rest of the processor to decide on the actions that need to be taken based
on the classification results. The classifier with its programmable characteristics allows the
classification tree structure to be changed in-system and allow the processor to be used in
systems that have different classification needs. The classification engine also allows
creation of storage /network policies that can be programmed as part of the classification
tree-node-value-action structures and provide a very powerful capability in the IP based
storage systems. The policies would enhance the management of the systems that use this
processor and allow enforcement capabilities when certain policies or rules are met or
violated. The classification engine allows expansion of the classification database through
external components, when that is required by the specific system constraints. The number
of trees and nodes are decided based on the silicon area and performance tradeoffs. The
data structure elements are maintained in various blocks of the classification engine and are
used by the classification sequencer to direct the packet classification through the structures.
The classification data structures may require more or less fields than those indicated
depending on the target solution. Thus the core functionality of classification may be
achieved with fewer components and structures without departing from the basic architecture.
The classification process walks through the trees and the nodes as programmed. A
specific node action may cause a new tree to be used for the remaining fields for
classification. Thus, the classification process starts at the tree root and progress through
the nodes until it reaches the leaf node.

Fig. 31 illustrates a read operation between an initiator and target. The initiator sends a
READ command request, block 3101, to the target to start the transaction. This is an
application layer request which is mapped to specific SCSI protocol command which is than
transported as an READ protocol data unit, block 3102, in an IP based storage network. The
target prepares the data that is requested, block 3103 and provides read response PDUs,
block 3105, segmented to meet the maximum transfer unit limits. The initiator then retrieves
the data, block 3016, from the IP packets and is then stored in the read buffers allocated for
this operation. Once all the data has been transferred the target responds with command
completion and sense status, block 3107. The initiator then retires the command once the
full transfer is complete, block 3109. If there were any errors at the target and the command
is being aborted for any reason, then a recovery procedure may be initiated separately by the
initiator. This transaction is a standard SCSI READ transaction with the data transport over
IP based storage protocol like iISCS| as the PDUs of that protocol.

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
44

Fig. 32 illustrates the data flow inside the IP processor of this invention for one of the
received READ PDUs of the transaction illustrated in Fig. 31. The internal data flow is
shown for the read data PDU received by the IP processor on the initiator end. This figure
illustrates various stage of operation that a packet goes through. The stages can be
considered as pipeline stages through which the packets traverse. The number of pipe
stages traversed depends on the type of the packet received. The figure illustrates the pipe
stages for a packet received on an established connection. The packet traverses through

the following major pipe stages:

1. Receive Pipe Stage of block 3201, with major steps illustrated in block 3207:
Packet is received by the media access controller. The packet is detected, the
preamble/ trailers removed and a packet extracted with the layer2 header and the payload.
This is the stage where the Layer2 validation occurs for the intended recipient as well as any
error detection. There may be quality of service checks applied as per the policies

established. Once the packet validation is clear the packet is queued to the input queue.

2 Security Pipe Stage of block 3202, with major steps illustrated in block 3208.
The packet is moved from the input queue to the classification engine, where a quick
determination for security processing is made and if the packet needs to go through security
processing, it enters the security pipe stage. If the packet is received in clear text and does
not need authentication, then the security pipe stage is skipped. The security pipe stage
may also be omitted if the security engine is not integrated with the IP processor. The
packet goes through various stages of security engine where first the security association for
this connection is retrieved from memory, and the packet is authenticated using the message
authentication algorithm selected. The packet is then decrypted using the security keys that
have been established for the session. Once the packet is in clear text, it is queued back to

the input queue controller.

3. Classification Pipe Stage of block 3203, with major steps illustrated in
block 3209. The scheduler retrieves the clear packet from the input queue and schedules the
packet for classification. The classification engine performs various tasks like extracting the
relevant fields from the packet for layer 3 and higher layer classification, identifies TCP/IP/
storage protocols and the like and creates those classification tags and may also take
actions like rejecting the packet or tagging the packet for bypass depending on the policies
programmed in the classification engine. The classification engine may also tag the packet
with the session or the flow to which it belongs along with marking the packet header and
payload for ease of extraction. Some of the tasks listed may be or may not be performed
and other tasks may be performed depending on the programming of the classification

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
45

engine. As the classification is done, the classification tag is added to the packet and packet
is queued for the scheduler to process.

4, Schedule Pipe Stage of block 3204, with major steps illustrated in block 3210.
The classified packet is retrieved from the classificaition engine queue and stored in the
scheduler for it to be processed. The scheduler performs the hash of the source and
destination fields from the packefc header to identify the flow to which the packet belongs, if
not done by the classifier. Once the flow identification is done the packet is assigned to an
execution resource queue based on the flow dependency. As the resource becomes
available to accept a new packet, the next packet in the queue is assigned for execution to
that resource.

5. Execution Pipe Stage of block 3205, with major steps illustrated in block
3211. The packet enters the execution pipe stage when the resource to execute this packet
becomes available. The packet is transferred to the packet processor complex that is
supposed to execute the packet. The processor looks at the classification tag attached to
the packet to decide the processing steps required for the packet. If this is an IP based
storage packet, then the session database entry for this session is retrieved. The database
access may not be required if the local session cache already holds the session entry. If the
packet assignment was done based on the flow, then the session entry may not need to be
retrieved from the global session memory. The packet processor then starts the TCP engine/
the storage engines to perform their operations. The TCP engine performs various TCP
checks including checksum, sequence number che cks, framing checks with necessary CRC
operations, and TCP state update. Then the storage PDU is extracted and assigned to the
storage engine for execution. The storage engine interprets the command in the PDU and in
this particular case identifies it to be a read response for an active session. It than verifies the
payload integrity and the sequence integrity and then updates the storage flow state in the
session database entry. The memory descriptor of the destination buffer is also retrieved
from the session data base entry and the extracted PDU payload is queued to the storage
flow/RDMA controller and the host interface block for them to DMA the data to the final buffer
destination. The data may be delivered to the flow controller with the memory descriptor and
the command/operation to perform. In this case deposit the data for this active read
command. The storage flow controller updates its active command database. The
execution engine indicates to the scheduler the packet has been retired and the packet
processor complex is ready to receive its next command.

6. DMA Pipe Stage of block 3206, with major steps illustrated in block 3212.
Once the storage flow controller makes the appropriate verification of the Memory descriptor,

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
46

the command and the flow state, it passes the data block to the host DMA engine for transfer
to the host memory. The DMA engine may perform priority based queuing, if such QOS
mechanism is programmed or implemented. The data is transferred to the host memory
location through DMA. If this is the last operation of the command, then the command
execution completion is indicated to the host driver. If this is the last operation for a
command and the command has been queued to the completion queue, the resources
allocated for the command are released to accept new command. The command statistics
may be collected and transferred with the completion status as may be required for
performance analysis, policy management or other network management or statistical
purposes.

Fig. 33 illustrates write command operation between an initiator and a target. The Initiator
sends a WRITE command, block 3301, to the target to start the transaction.. This command
is transported as a WRITE PDU, block 3302, on the IP storage network. The receiver
queues the received command in the new request queue. Once the old commands in
operation are completed, block 3304, the receiver allocates the resources to accept the
WRITE data corresponding to the command, block 3305. At this stage the receiver issues
a ready to transfer (R2T) PDU, block 33086, to the initiator, with indication of the amount of
data it is willing to receive and from which locations. The initiator interprets the fields of the
R2T requests and sends the data packets, block 3307, to the receiver as per the received
R2T. This sequence of exchange between the initiator and target continues until the
command is terminated. A successful command completion or an error condition is
communicated to the initiator by the target as a response PDU, which then terminates the
command. The initiator may be required to start a recovery process in case of an error.
This is not shown in the exchange of the Fig. 33.

Fig. 34 illustrates the data flow inside the IP processor of this invention for one of the R2T
PDUs and the following write data of the write transaction illustrated in Fig. 33. The initiator
receives the R2T packet through its network media interface. The packet passes through all
the stages, blocks 3401, 3402, 3403, and 3404 with detailed major steps in corresponding
blocks 3415, 3416, 3409 and 3410, similar to the READ PDU in Fig. 32 including Receive,
Security, Classification, Schedule, and Execution. Security processing is not iliustrated in
this figure. Following these stages the R2T triggers the write data fetch using the DMA
stage shown in Fig. 34, blocks 3405 and 3411. The write data is then segmented and put in
TCPI/IP packets through the execution stage, blocks 3406 and 3412. The TCP and storage
session DB entries are updated for the WRITE command with the data transferred in
response to the R2T. The packet is then queued to the output queue controller. Depending

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
47

on the security agreement for the connection, the packet may enter the security pipe stage,
block 3407 and 3413. Once the packet has been encrypted and message authentication
codes generated, the packet is queued to the network media interface for the transmission
to the destination. During this stage, block 3408 and 3414 the packet is encapsulated in the
Layer 2 headers, if not already done so by the packet processor and is transmitted. The
steps followed in each stage of the pipeline are similar to that of the READ PDU pipe stages
above, with additional stages for the write data packet stage, which is illustrated in this
figure. The specific operations performed in each stage depend on the type of the
command, the state of the session, the command state and various other configurations for
policies that may be setup.

Fig. 35 illustrates the READ data transfer using RDMA mechanism between and initiator and
target. The initiator and target register the RDMA buffers before initiating the RDMA data
transfer, blocks 3501, 3502, and 3503. The initiator issues a READ command, block 3510,
with the RDMA buffer as the expected recipient. This command is transported to the target,
block 3511. The target prepares the data to be read, block 3504, and then performs the
RDMA write operations, block 3505 to directly deposit the read data into the RDMA buffers at
the initiator without the host intervention. The operation completion is indicated using the

command completion response.

Fig. 36 illustrates the internal architecture data flow for the RDMA Write packet implementing
the READ command flow. The RDMA write packet also follows the same pipe stages as any
other valid data packet that is received on the network interface. This packet goes through
Layer 2 processing in the receive pipe stage, blocks 3601 and 3607, from where it is queued
for scheduler to detect the need for security processing. If the packet needs to be
decrypted or authenticated, it enters the security pipe stage, blocks 3602 and 3608. The
decrypted packet is then scheduled to the classification engine for it to perform the
classification tasks that have been programmed, blocks 3603 and 3609. Once classification
is completed, the tagged packet enters the schedule pipe stage, blocks 3604 and 3610,
where the scheduler assigns this packet to a resource specific queue dependent on flow
based scheduling. When the intended resource is ready to execute this packet, it is
transferred to that packet processor complex, blocks 3605 and 3611, where all the TCP/IP
verification, checks, and state updates are made and the PDU is extracted. Then the
storage engine identifies the PDU as belonging to a storage flow for storage PDUs
implemented using RDMA and interprets the RDMA command. In this case it is RDMA write
to a specific RDMA buffer. This data is extracted and passed on to the storage flow/RDMA
controller block which performs the RDMA region translation and protection checks and the

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159
48

packet is queued for DMA through the host interface, blocks 3606 and 3612. Once the
packet has completed operation through the packet processor complex, the scheduler is
informed and the packet is retired from the states carried in the scheduler. Once in the DMA
stage, the RDMA data transfer is completed and if this is the last data transfer that
completes the storage command execution, that command is retired and assigned to the

command completion queue.

Fig. 37 illustrates the storage write command execution using RDMA Read operations. The
initiator and target first register their RDMA buffers with their RDMA controllers and then also
advertise the buffers to their peer. Then the initiator issues a write command, block 3701, to
the target, where it is transported using the IP storage PDU. The recipient executes the
write command, by first allocating the RDMA buffer to receive the write and then requesting
an RDMA read to the initiator, blocks 3705, and 3706. The data to be written from the
initiator is then provided as an RDMA read response packet, blocks 3707 and 3708. The
receiver deposits the packet directly o the RDMA buffer without any host interaction. If the
read request was for data larger than the segment size, then muiltiple READ response PDUs
would be sent by the initiator in response to the READ request. Once the data transfer is
complete the completion status is transported to the initiator and the command completion is
indicated to the host.

Fig. 38 illustrates the data flow of an RDMA Read request and the resulting write data
transfer for one section of the flow transaction illustrated in Fig. 37. The data flow is very
similar to the write data flow illustrated in Fig. 34. The RDMA read request packet flows
through various processing pipe stages including: receive, classify, schedule, and execution,
blocks 3801, 3802, 3803, 3804, 3815, 3816, 3809 and 3810. Once this requ‘est is executed,
it generates the RDMA read response packet. The RDMA response is generated by first
doing the DMA, blocks 3805 and 3811, of the requested data from the system memory, and
then creating segments and packets through the execution stage, blocks 3806 and 3812.
The appropriate session database entries are updated and the data packets go to the
security stage, if necessary, blocks 3807 and 3813. The secure or clear packets are then
queued to the transmit stage, block 3808 and 3814, which performs the appropriate layer 2
updates and transmits the packet to the target.

Fig. 39 illustrates an initiator command flow for the storage commands initiated from the
initiator in more details. As illustrated following are some of the major steps that a command
follows:

1. Host driver queues the command in processor command queue in the storage

10

15

20

25

WO 2005/081855 PCT/US2005/005159
49

flow/RDMA controller;

2. Host is informed if the command is successfully scheduled for operation and to
reserve the resources;

3 The storage flow/RDMA controller schedules the command for operation to
the packet scheduler, if the connection to the target is established. Otherwise the controller
initiates the target session initiation and once session is established the command is
scheduled to the packet scheduler;

4. The scheduler assigns the command to one of the SAN packet processors
that is ready to accept this command;

5. The processor complex sends a request to the session controller for the
session entry;

6. The session entry is provided to the packet processor complex;

7. The packet processor forms a packet to carry the command as a PDU and is
scheduled to the output queue; and

8. The command PDU is given to the network media interface, which sends it to
the target.

This is the high level flow primarily followed by most commands from the initiator to the target
when the connection has been established between an initiator and a target.

Fig. 40 illustrates read packet data flow in more detail. Here the read command is initially
send using a flow similar to that illustrated in Fig. 39 from the initiator to the target. The target
sends the read response PDU to the initiator which follows the flow illustrated in Fig. 40. As
illustrated the read data packet passes through following major steps:

1. Input packet is received from the network media interface block;

2. Packet scheduler retrieves the packet from the input queue;

3. Packet is scheduled for classification;

4, Classified packet returns from the classifier with a classification tag;

5. Based on the classification and flow based resource allocation, the packet is

assigned to a packet processor complex which operates on the packet;

10

15

20

25

WO 2005/081855 PCT/US2005/005159

50
6. Packet processor complex looks-up session entry in the session cache (if not
present locally);
7. Session cache entry is returned to the packet processor complex;
8. Packet processor complex performs the TCP/IP operations / IP storage

operations and extracts the read data in the payload. The read data with appropriate
destination tags like MDL({memory descriptor list) is provided to the host interface output

controlier; and
9. The host DMA engine transfers the read data to the system buffer memory.

Some of these steps are provided in more details in Fig. 32, where a secure packet flow is
represented, where as the Fig. 40 represents a clear text read packet flow. This flow and
other flows illustrated in this patent are applicable to storage and non-storage data transfers by
using appropriate resources of the disclosed processor, that a person with ordinary skill in
the art will be able to do with the teachings of this patent.

Fig. 41 illustrates the write data flow in more details. The write command follows the flow
similar to that in Fig. 39. The initiator sends the write command to the target. The target
responds to the initiator with a ready to transfer (R2T) PDU which indicate's to the initiator
that the target is ready to receive the specified amount of data. The initiator then sends the
requested data to the target. Fig. 41 illustrates the R2T followed by the re quested write data

packet from the initiator to the target. The major steps followed in this flow are as follows:

1. Input packet is received from the network media interface block;

2. Packet scheduler retrieves the packet from the input queue;

3. Packet is scheduled for classification;

4. Classified packet returns from the classifier with a classification tag;

a. Depending on the classification and flow based resource allocation, the

packet is assigned to a packet processor complex which operates on the packet;

5. Packet processor complex looks-up session entry in the session cache (if not
present locally);

6. Session cache entry is returned to the packet processor complex;

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159
51

7. The packet processor determines the R2T PDU and requests the write data
with a request to the storage flow/RDMA Controller;

8. The flow controller starts the DMA to the host interface;
9. Host interface performs the DMA and returns the data to the host input queue;
10. The packet processor complex receives the data from the host input queue;

11. The packet processor complex forms a valid PDU and packet around the data,

updates the appropriate session entry and transfers the packet to the output queue; and

12. The packet is transferred to the output network media interface block which
transmits the data packet to the destination.

The flow in Fig. 41 illustrates clear text data transfer. If the data transfer needs to be secure,
the flow is similar to that illustrated in Fig. 43, where the output data packet is routed through
the secure packet as illustrated by arrows labeled 11a and 11b. The input R2T packet, if

secure would also be routed through the security engine (this is not illustrated in the figure).

Fig. 42 illustrates the read packet flow when the packet is in cipher text or is secure. This
flow is illustrated in more details in Fig. 32 with its associated description earlier. The
primary difference between the secure read flow and the clear read flow is that the packet is
initially classified as secure packet by the classifier, and hence is routed to the security
engine. These steps are illustrated by arrows labeled 2a, 2b, and 2c. The security engine
decrypts the packet and performs the message authentication, and transfers the clear
packet to the input queue for further processing as illustrated by arrow labeled 2d. The clear
packet is then retrieved by the scheduler and provided to the classification engine as
illustrated by arrows labeled 2e and 3 in Fig. 42. The rest of the steps and operations are the
same as that in Fig. 40, described above.

Fig. 44 illustrates the RDMA buffer advertisement flow. This flow is illustrated to be very
similar to any other storage command flow as illustrated in the Fig. 39. The detailed actions
taken in the major steps are different depending on the command. For RDMA buffer
advertisement and registration, the. RDMA region id is created and recorded along with the
address translation mechanism for this region is recorded. The RDMA registration also
includes the protection key for the access control and may include other fields necessary for
RDMA transfer. The steps to create the packet for the command are similar to those of Fig.
39.

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159
52

Fig. 45 illustrates the RDMA write flow in more details. The RDMA writes appear like normal
read PDUs to the initiator receiving the RDMA write. The RDMA write packet follows the
same major flow steps as a read PDU illustrated in Fig. 40. The RDMA transfer involves the
RDMA address translation and region access control key checks, and updating the RDMA
database entry, beside the other session entries. The major flow steps are the same as the
regular Read response PDU.

Fig. 46 illustrates the RDMA Read data flow in more details. This diagram illustrates the
RDMA read request being received by the initiator from the target and the RDMA Read data
being written out from the initiator to the target. This flow is very similar to the R2T response
followed by the storage write command. In this flow the storage write command is
accomplished using RDMA Read. The major steps that the packet follows are primarily the
same as the R2T/write data flow illustrated in Fig. 41.

Fig. 47 illustrates the major steps of session creation flow. This figure illustrates the use of
the control plane processor for this slow path operation required at the session initiation
between an initiator and a target. This functionality is possible to implement through the
packet processor complex. However, it is illustrated here as being implemented using the
control plane processor. Both approaches are acceptable. Following are the major steps

during session creation:
1. The command is scheduled by the host driver;

2 The host driver is informed that the command is scheduled and any control

information required by the host is passed;

3. The storage flow/RDMA controller detects a request to send the command to a
target for which a session is not existing, and hence it passes the request to the control plane

processor to establish the transport session;
4, Control plane processor sends a TCP SYN packet to the output queue;

5. The SYN packet is transmitted to the network media interface from which is

transmitted to the destination;

6. The destination, after receiving the SYN packet, responds with the SYN-ACK
response, which packet is queued in the input queue on receipt from the network media
interface;

7. The packet is retrieved by the packet scheduler;

10

15

20

25

WO 2005/081855 PCT/US2005/005159

33
8. The packet is passed to the classification engine;
9. The tagged classified packet is returned to the scheduler;

10. The scheduler, based on the classification, forwards this packet to control

plane processor;
11. The processor then responds with an ACK packet to the output queue;

12. The packet is then transmitted to the end destination thus finishing the session
establishment handshake; and

13. Once the session is established, this state is provided to the storage flow
controller. The session entry is thus created which is then passed to the session memory
controller (this part not illustrated in the figure).

Prior to getting the session in the established state as in step 13, the control plane processor
may be required to perform a full login phase of the storage protocol, exchanging
parameters and recording them for the specific connection if this is a storage data transfer
connection. Once the login is authenticated and parameter exchange complete, does the

session enter the session establishment state shown in step 13 above.

Fig. 48 illustrates major steps in the session tear down flow. The steps in this flow are very
similar to those in Fig. 47. Primary difference between the two flows is that, instead of the
SYN, SYN-ACK and ACK packets for session creation, FIN, FIN-ACK and ACK packets are
transferred between the initiator and the target. The major steps are otherwise very similar.
Another major difference here is that the appropriate session entry is not created but
removed from the session cache and the session memory. The operating statistics of the
connection are recorded and may be provided to the host driver, although this is not
illustrated in the figure.

Fig. 49 illustrates the session creation and session teardown steps from a target perspective.
Following are the steps followed for the session creation:

1. The SYN request from the initiator is received on the network media interface;
2. The scheduler retrieves the SYN packet from the input queue;
3. The scheduler sends this packet for classification to the classification engine;

4, The classification engine returns the classified packet with appropriate tags;

WO 2005/081855 PCT/US2005/005159

54
5. The scheduler, based on the classification as a SYN packet, transfers this
packet to the control plane processor;
6. Control plane processor responds with a SYN-ACK acknowledgement packet.

It also requests the host to allocate appropriate buffer space for unsolicited data transfers
5 from the initiator (this part is not illustrated);

7. The SYN-ACK packet is sent to the initiator;

8. The initiator then acknowledges the SYN-ACK packet with an ACK packet,
completing the three-way handshake. This packet is received at the network media interface
and queued to the input queue after layer 2 processing;

10 9. The scheduler retrieves this packet;
10. The packet is sent to the classifier;

11. Classified packet is returned to the scheduler and is scheduled to be provided

to the control processor to complete the three way handshake;
12. The controller gets the ACK packet;

15 13. The control plane processor now has the connection in an established state
and it passes the to the storage flow controller which creates the entry in the session cache;
and

14. The host driver is informed of the completed session creation.

The session establishment may also involve the login phase, which is not illustrated in the

20 Fig. 49. However, the login phase and the parameter exchange occur before the session
enters the fully configured and established state. These data transfers and handshake may
primarily be done by the control processor. Once these steps are taken the remaining
steps in the flow above may be executed.

Figs. 50 and 51 illustrate write data flow in a target subsystem. The Fig. 50 illustrates an

25 R2T command flow, which is used by the target to inform the initiator that it is ready to
accept a data write from the initiator. The initiator then sends the write which is received at
the target and the internal data flow is illustrated in Fig. 51. The two figures together
illustrate one R2T and data write pairs. Following are the major steps that are followed as
illustrated in Figs. 50 and 51 together:

10

15

20

25

WO 2005/081855 PCT/US2005/005159
55

1. The target host system in response to receiving & write request like that
illustrated in Fig. 33, prepares the appropriate buffers to accept the write data and informs
the storage flow controller when it is ready, to send the ready to transfer request to the
initiator;

2. The flow controller acknowledges the receipt of the request and the buffer
pointers for DMA to the host driver;

3. The flow controller then schedules the R2T command to be executed to the
scheduler;
4, The scheduler issues the command to one of the packet processor

complexes that is ready to execute this command;

5. The packet processor requests the session entry from the session cache
controller;

6. The session entry is returned to the packet processor;

7. The packet processor forms a TCP packet and e ncapsulates the R2T

command and sends it to the output queue;

8. The packet is then sent out to network media inte rface which then sends the
packet to the initiator. The security engine could be involved, if the transfer needed to be

secure transfer;

9. Then as illustrated in Fig. 51, the initiator responds to R2T by sending the
write data to the target. The network media interface receives th e packet and queues it to the
input queue;

10. The packet scheduler retrieves the packet from thie input queue;
11. The packet is scheduled to the classification engine;

12. The classification engine provides the classified p acket to the scheduler with
the classification tag. The flow illustrated is for unencrypted packet and hence the security
engine is not exercised:;

13. The scheduler assigns the packet based on the flow based resource
assignment queue to packet processor queue. The packet is th en transferred to the packet
processor complex when the packet processor is ready to execute this packet;

10

15

20

25

WO 2005/081855 PCT/US2005/005159

56

14. The packet processor requests the session cache entry (if it does not already
have it in its local cache);

15. The session entry is returned to the requesting packet processor;

16. The packet processor performs all the TCP/IP functions, updates the session
entry and the storage engine extracts the PDU as the write command in response to the
previous R2T. It updates the storage session entry and routes the packet to the host output
gueue for it to be transferred to the host buffer. The packet may be tagged with the
memory descriptor or the memory descriptor list that may be used to perform the DMA of this
packet into the host allocated destination buffer; and

17. The host interface block performs the DMA, to complete this segment of the

Write data command.

Fig. 52 illustrates the target read data flow. This flow is very similar to the initiator R2T and

write data flow illustrated in Fig. 41. The major steps followed in this flow are as follows:

1. Input packet is received from the network media interface block;
2. Packet scheduler retrieves the packet from the input queue;
3. Packet is scheduled for classification;
4, Classified packet returns from the classifier with a‘classification tag;
a. Depending on the classification and flow based resource allocation, the

packet is assigned to a packet processor complex which operates on the packet

5. Packet processor complex looks-up session entry in the session cache (if not

present locally);
6. Session cache entry is returned to the packet processor complex;

7. The packet processor determines the Read Command PDU and requests the
read data with a request to the flow controller;

8. The flow controller starts the DMA to the host interface;
9. Host interface performs the DMA and returns the data to the host input queue;

10. The packet processor complex receives the data from the host input queue;

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159

57

11. The packet processor complex forms a valid PDU and packet around the data,
updates the appropriate session entry and transfers the packet to the output queue; and

12. The packet is transferred to the output network media interface block which
transmits the data packet to the destination.

The discussion above of the flows is an illustration of some the major flows involved in high
bandwidth data transfers. There are several flows like fragmented data flow, error flows
with multiple different types of errors, name resolution service flow, address resolution flows,
login and logout flows, and the like are not illustrated, but are supported by the IP processor
of this invention.

As discussed in the description above, the perimeter security model is not sufficient to
protect an enterprise network from security threats due to the blurring boundary of enterprise
networks. Further, a significant number of unauthorized information access occurs from
inside. The perimeter security methods do not prevent such security attacks. Thus it is
critical to have security deployed across the network and protect the network from within as
well as the perimeter. The network line rates inside enterprise networks are going to 1Gbps,
multi-Gbps and 10Gbps in the LANs and SANs. As previously mentioned, distributed firewall
and security methods require a significant processing overhead on each of the system host
CPU if implemented in software. This overhead can cause increase in latency of the
response of the servers, reduce their overall throughput and leave fewer processing cycles
for applications. An efficient hardware implementation that can enable deployment of
software driven security services is required to address the issues outlined above. The
processor of this patent addresses some of these key issues. Further, at high line rates it is
critical to offload the software based TCP/IP protocol processing from the host CPU to
protocol processing hardware to reduce impact on the host CPU. Thus, the protocol
processing hardware should provide the means to perform the security functions like firewall,
encryption, decryption, VPN and the like.

The processor provides such a hardware architecture that can address the growing need of

distributed security and high network line rates within enterprise networks.

Fig. 53 illustrates a traditional enterprise network with perimeter firewall. This figure
illustrates local area network and storage area networks inside enterprise networks. The
figure illustrates a set of clients, 5301 (1) though 5301 (n), connected to an enterprise
network using wireless LAN. There may be multiple clients of different types like handheld
computers, PCs, thin clients, laptops, notebook computers, tablet PCs and the like. Further,

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159

58

they may connect to the enterprise LAN using wireless LAN access points (WAP), 5303.
There may be one or more WAP connected to the LAN. Similarly, the figure also illustrates
multiple clients connected to the enterprise LAN through wired network. These clients may
be on different sub segments or the same segment or be directly linked to the switches in a
point to point connection, depending on the size of the network, the line rates and the like.
The network may have multiple switches and routers that provide the internal connectivity for
the network of devices. The figure also illustrates network attached storage devices, 5311,
providing network file serving and storage services to the clients. The figure also illustrates
one or more servers, 5307(1) through 5307(n) and 5308(1) through 5308(n), attached to the
network providing various application services being hosted on these servers to the clients
inside the network as well as those being accessed through the outside as web access or
other network access. The servers in the server farm may be connected in a traditional
three-tier or n-tier network providing different services like web server, application servers,
database servers, and the like. These servers may hold direct attached storage devices for
the needed storage and/or connect to a storage area network (SAN), using SAN connectivity
and switches, 5309(1) through 5309(n) to connect to the storage systems, 5310(1) through
5310(n) for their storage needs. The storage area network may also be attached to the LAN
using gateway devices, 5313 to provide the access to storage system to the LAN clients.
The storage systems may also be connected to the LAN directly, similar to NAS, 5311, to
provide block storage services using protocols like iSCSI and the like. This is not illustrated
in the figure. The network illustrated in this figure is secured from the external network by
the perimeter firewall, 5306. As illustrated in this figure the internal network in such an
environment does not enable security, which poses serious security vulnerabilities to insider
attacks.

Figure 54 illustrates an enterprise network with a distributed firewall and security capabilities.
The network configuration illustrated is similar to that in Fig. 53. The distributed security
features shown in such a network may be configured, monitored, managed, enabled and
updated from a set of central network management systems by central [T manager(s), 5412.
The manager(s) is(are) able to set the distributed security policy from management
station(s), distribute appropriate policy rules to each node enabled to implement the
distributed security policy and monitor any violations or reports from the distributed security
processors using the processor of this patent. The network may be a network that comprises
of one or mare nodes, one or more management stations or a combination thereof. The
figure illustrates that the SAN devices are not under the distributed security network. The
SAN devices in this figure may be under a separate security domain or may be trusted to be
protected from insiders and outsiders with the security at the edge of the SAN.

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159

59

Figure 55 illustrates an enterprise network with a distributed firewall and security capabilities
where the SAN devices are also under a distributed security domain. The rest of the
network configuration may be similar to that in Fig. 54. In this scenario, the SAN devices may
implement similar security policies as the rest of the network devices and may be under the
control from the same IT management systems. The SAN security may be implemented
different from the rest of the network, depending on the security needs, sensitivity of the
information and potential security risks. For instance, the SAN devices may implement full
encryption/decryption services beside firewall security capabilities to ensure that no
unauthorized access occurs as well as the data put out on the SAN is always in a
confidential mode. These policies and rules may be distributed from the same network
management systems or there may be special SAN management systems, not shown, that
may be used to create such distributed secure SANs. The systems in Fig. 54 and fig 55 use
the processor and the distributed security system of this patent.

Fig. 56 illustrates a central manager/policy server and monitoring station, also called the
central manager. The central manager includes security policy developer interface, block
5609, which is used by the IT manager(s) to enter the security policies of the organization.
The security policy developer interface may be a command line interface, a scripting tool, a
graphical interface or a combination thereof which may enable the IT manager to enter the
security policies in a security policy description language. It may also provide access to the
IT manager remotely under a secure communication connection. The security policy
developer interface works with a set of rule modules that enables the IT manager to enter
the organization's policies efficiently. The rule modules may provide rule templates that may
be filled in by the IT managers or may be interactive tools that ease the entry of the rules.
These modules provide the rules based on the capabilities that are supported by the
distributed security system. Networking layers 2 through 4 (L2, L3, L4) rules, rule types,
templates, and the like is provided by block 5601 to the security developer interface. These
rules may comprise of IP addresses for source, destination, L2 addresses for source,
destination, L2 payload type, buffer overrun conditions, type of service, priority of the
connection, link usage statistics and the like or a combination thereof. The Protocol/port
level rules, block 5602, provides rules, rule types, templates and the like to the security
developer interface. These rules may comprise of protocol type like IP, TCP, UDP, ICMP,
IPSEC, ARP, RARP or the like, or source port, or destination port including well-known ports
for known upper level applications/protocols, or a combination thereof. The block 5603
provides application level or upper layer (L5 through L7) rules, rule types, templates and the
like to the security developer interface. These rules may comprise rules that are dependent
on a type of upper layer application or protocol like HTTP, XML, NFS, CIFS, iSCS|, iFCP,

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
60

FCIP, SSL, RDMA or the like, their usage model, their vulnerabilities or a combination
thereof. The content based rules, block 5604, provide rules, rule types, templates, or the like
to the security developer interface for entering content dependent rules. These rules may
evolve over time, like the other rules, to cover known threats or potential new threats and
comprise of a wide variety of conditions like social security numbers, confidential/proprietary
documents, employee records, patient records, credit card numbers, offending URLs, known
virus signatures, buffer overrun conditions, long web addresses, offending language,
obscenities, spam, or the like or a combination thereof. These rules, templates or the rule
types may be provided for ease of creation of rules in the chosen policy description
language(s) for the manager of the distributed security system. Security policy developer
interface may exist without the rules modules and continue to provide means to the IT
managers to enter the security policies in the system. The rules represented in the security
policy language entered through the interface would then get compiled by the security rules
compiler, block 5611, for distribution to the network nodes. Security rules compiler utilizes a
network connectivity database, 5605, and a nodes capabilities and characteristics database,
5606, to generate rules specific for each node in the network that is part of
monitoring/enforcing the security policy. The network connectivity database comprises
physical adjacency information, or physical layer connectivity, or link layer connectivity, or
network layer connectivity, or OS| layer two addresses or OS| layer three addresses or
routing information or a combination thereof. The nodes capabilities and characteristics
database comprises hardware security features or software security features or size of the
rules engine or performance of the security engine(s) or quality of service features or host
operating system or hosted application(s) or line rates of the network connectivity or host
performance or a combination thereof. The information from these databases would enable
the security rules compiler to properly map security policies to node specific rules. The node
specific rules and general global rules are stored to and retrieved from the rules database,
5607. The security rules compiler then works with the rules distribution engine, 5608, to
distribute the compiled rules to each node. The rules distribution engine interacts with each
security node of the distributed security system to send the rule set to be used at that
specific node. The rule distribution engine may retrieve the rule sets directly from the rules
database or work with the security rules compiler or a combination thereof to retrieve the
rules. Once the rules are proliferated to respective nodes the central manager starts

monitoring and managing the network.

The central manager works with each node in the security network to collect events or reports
of enforcement, statistics, violations and the like using the event and report
collection/management engine, 5616. The event/report collection engine works with the

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
61

security monitoring engine, 5613, to create the event and information report databases, 5614
and 5615, which keep a persistent record of the collected information. The security
monitoring engine analyzes the reports and events to check for any violations and may in
turn inform the IT managers about the same. Depending on the actions to be taken when
violations occur, the security monitoring engine may create policy or rule updates that may
be redistributed to the nodes. The security monitoring engine works with the security policy
manager interface, 5612, and policy update engine, 5610, for getting the updates created
and redistributed. The security policy manager interface provides tools to the IT manager to
do event and information record searches. The IT manager may be able to develop new
rules or security policy updates based on the monitored events or other searches or changes
in the organizations policies and create the updates to the policies. These updates get
compiled by the security policy compiler and redistributed to the network. The functionality of
security policy manager interface, 5612, and policy update engine, 5610, may be provided by
the security policy developer interface, 5609, based on an implementation choice. Such
regrouping of functionality and functional blocks is possible without diverging from the
teachings of this patent. The security monitoring engine, the security policy manager
interface and the event/report collection/management interface may also be used to manage
specific nodes when there are violations that need to be addressed or any other actions
need to be taken like enabling a node for security, disabling a node, changing the role of a
node, changing the configuration of a node, starting /stopping/deploying applications on a
node, or provisioning additional capacity or other management functions or a combination
thereof as appropriate for the central manager to effectively manage the network of the
nodes.

Fig. 57 illustrates the central manager flow of this patent. The central manager may
comprise various process steps illustrated by the blocks of the flow. The IT manager(s)
create and enter the security policies of the organization in central management system(s)
that are illustrated by block 5701. The policies are then compiled into rules, by the security
policy compiler, using a network connectivity database and a node capabilities and
characteristics database as illustrated by block 5702. The central manager then identifies
the nodes from the network that have security capability enabled, from the node
characteristics database, in block 5703, to distribute rules to these nodes. The manager
may then select a node from these nodes, as illustrated by block 5704, and retrieve the
corresponding security rules from the rules database, as illustrated by block 5705, and then
communicate the rules to the node, as illustrated by 5706, and further illustrated by Fig. 58.
The central manager continues the process of retrieving the rules and communicating the
rules until all nodes have been processed as illustrated by the comparison of all nodes done

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
62

in block 5707. Once rules have been distributed to all the nodes, the central manager goes
into managing and monitoring the network for policy enforcements, violations or other
management tasks as illustrated by block 5708. If there are any policy updates that result
from the monitoring, the central manager exits the monitoring to create and update new policy
through checks illustrated by blocks, 5709 and 5710. If there are new policy updates, the
central manager traverses through the flow of Fig. 57 to compile the rules and redistribute
them to the affected nodes and then continue to monitor the network. The event collection
engine of the central manager continues to monitor and log events and information reports,
when other modules are processing the updates to the security policies and rules. Thus the
network is continuously monitored when the rule updates and distribution is in progress.
Once the rule updates are done, the security monitoring engine and other engines process
the collected reports. Communication of rules to the nodes and monitoring/managing of the
nodes may be done in parallel to improve the performance as well as effectiveness of the
security system. Central manager may communicate new rules or updates to multiple nodes
in parallel instead of using a serial flow, and assign the nodes that have already received the
rules into monitoring/managing state for the central manager. Similarly the policy creation or

updates can also be performed in parallel to the rule compilation, distribution and monitoring.

Fig. 58 illustrates the rule distribution flow of this patent. The rule distribution engine working
with the security policy compiler, retrieves the rules or rule set to be communicated to a
specific node as illustrated by 5801. It then initiates communication with the selected node
as illustrated by 5802. The central manager and the node may authenticate each other
using agreed upon method or protocol as illustrated by 5803. Authentication may involve a
complete login process, or secure encrypted session or a clear mode session or a
combination thereof. Once the node and the central managers authenticate each other, the
communication is established between the central manager and the control plane processor
or host based policy driver of the node as illustrated by 5804. Once the communication is
established, the rule distribution engine sends the rules or rule set or updated rules or a
combination thereof to the node as illustrated in 5805. This exchange of the rules may be
over a secure/encrypted session or clear link dependent on the policy of the organization.
The protocol deployed to communicate the rules may be using a well known protocol or a
proprietary protocol. Once the rule set has been sent to the node, the central manager may
wait to receive the acknowledgement from the node of successful insertion of the new rules
at the node as illustrated by 5806. Once a successful acknowledgement is received the rule
distribution flow for one node concludes as illustrated by 5807. The appropriate rule
database entries for the node would be marked with the distribution completion status. The
flow of Fig. 58 is repeated for all nodes that need to receive the rules from the rule

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
63

distribution engine of the central manager. The rule distribution engine may also be able to
distribute rules in parallel to multiple nodes to improve the efficiency of the rule distribution
process. In this scenario the rule distribution engine may perform various steps of the flow
like authenticate a node, establish communication with a node, send rule or rules to a node
and the like in parallel for multiple nodes.

Fig. 59 illustrates a control plane processor or a host based policy driver flow of this patent.
This flow is executed on each node following the distributed security of this patent, comprising
a hardware processor. Upon initiation of policy rule distribution by the central manager or
upon reset or power up or other management event or a combination thereof the policy
driver establishes communication with the central manager/policy server as illustrated by
5901. The policy driver receives the rule set or updates to existing rules from the central
manager as illustrated by 5902. If the rules are formatted to be inserted into the specific
policy engine implementation, size and the like, the rules are accepted to be configured in the
policy engine. If the rules are always properly formaited by the central manager it is feasible
to avoid performing the check illustrated in block 5903. Otherwise, if the rules are not always
formatted or otherwise ready to be directly inserted in the policy engine, as determined in
block 5903, the driver configures the rules for the node as illustrated by block 5904. The
driver then communicates with the database initialization and management interface, block
2011 of Fig. 20, of the policy engine of the processor. This is illustrated by block 5905.
Then the driver sends a rule to the policy engine which updates it in the engine data
structures, like that in Fig. 30, which comprises of a ternary or binary CAM, associated
memory, ALU, database description and other elements in the classification/policy engine of
Fig. 20. This is illustrated by block 5906. This process continues until all the rules have
been entered in the policy engine through the decision process illustrated by 5907, 5908 and
5906. Once all rules have been entered, the policy engine activates the new rules working
with the driver as illustrated by block 5909. The driver then updates/sends the rules to a
persistent storage for future reference and/or retrieval as illustrated by block 5910. The
driver then communicates to the central manager/policy server of the update completion and
new rules activation in the node as illustrated by block 5911. The policy driver may then
enter a mode of communicating the management information, events, reports to the central
manager. This part of the driver is not illustrated in the figure. The management
functionality may be taken up by a secure process on the host or the control plane processor
of the node. The mechanisms described above allow a secure operating environment to be
created for the protocol stack processing, where even if the host system gets compromised
either through a virus or malicious attack, it allows the network security and integrity to be
maintained since a control plane processor based policy driver does not allow the host

10

15

20

25

30

35

WO 2005/081855 PCT/US2005/005159
64

system to influence the policies or the rules. The rules that are active in the policy engine
would prevent a virus or intruder to use this system or node to be used for further virus
proliferation or attacking other systems in the network. The rules may also prevent the
attacker from extracting any valuable information from the system like credit card numbers,
social security numbers, medical records or the like. This mechanism significantly adds to
the trusted computing environment needs of the next generation computing systems.

Fig. 60 illustrates rules that may be deployed in a distributed security system using this
patent. The IT manager(s) may decide the policies that need to be deployed for different
types of accesses. These policies are converted into rules at the central management
system, 5512 or 5412, for distribution to each node in the network that implements one or
more security capabilities. The rules are then provided to the processor on the related node.
A control plane processor, 1711 of Fig. 17, working with classification and policy engine,
1703, and the DB Initialization/management control interface, 2011 of Fig. 20, of the
processor configure the rule in the processor. Each node implementing the distributed
security system may have unique rules that need to be applied on the network traffic passing
through, originating or terminating at the node. The central management system interacts
with all the appropriate nodes and provides each node with its relevant rules. The central
management system also interacts with the control plane processor which works with the
classification/policy engine of the node to retrieve rule enforcement information and other
management information from the node for distributed security system.

Fig. 60 illustrates rules that‘may be applicable to one or more nodes in the network. The
rules may contain more or fewer fields than indicated in the figure. In this illustration, the
rules comprise the direction of the network traffic to which the rule is applicable, either In or
Out; the source and destination addresses, which may belong to an internal network node
address or address belonging to a node external to the network; protocol type of the packet,
e.g TCP, UDP, ICMP and the like as well as source port and destination ports and any other
deep packet fields comprising URL information, sensitive information like credit card
numbers or social security numbers, or any other protected information like user names,
passwords and the like. The rule then contains an action field that indicates the action that
needs to be taken when a certain rule is matched. The action may comprise of various types
like permit the access, deny the access, drop the packet, close the connection, log the
request, send an alert or combination of these or more actions as may be appropriate to the
rule matched. The rules may be applied in a priority fashion from top to bottom or any other
order as may be implemented in the system. The last rule indicates a condition when none

of the other rules match and, as illustrated in this example, access is denied.

10

WO 2005/081855 PCT/US2005/005159
65

The IP processor of this invention may be manufactured into hardware products in the
chosen embodiment of various possible embodiments using a manufacturing process,
without limitation, broadly outlined below. The processor may be designed and verified at
various levels of chip design abstractions like RTL level, circuit/schematic/gate level, layout
level etc. for functionality, timing and other design and manufacturability constraints for
specific target manufacturing process technology. The processor design at the appropriate
physical/layout level may be used to create mask sets to be used for manufacturing the chip
in the target process technology. The mask sets are then used to build the processor chip
through the steps used for the selected process technology. The processor chip then may
go through testing/packaging process as appropriate to assure the quality of the
manufactured processor product.

While the foregoing has been with reference to particular embodiments of the invention, it will
be appreciated by those skilled in the art that changes in these embodiments may be made
without departing from the principles and spirit of the invention.

10

15

20

25

WO 2005/081855 PCT/US2005/005159

| claim:

66

A security system comprising a network,

said network comprising one or more networked systems of one or more
types,

a plurality of said one or more networked systems comprising a hardware

processor providing transport layer protocol processing,
said hardware processor comprising
a protocol processiﬁg engine to do transport layer protocol processing; or

a programmable rule processing engine to analyze network traffic for rule

matching or taking actions on matched rules or a combination thereof: or

a security processing engine to do encryption, decryption, authorization or
authentication or a combination thereof using standard or proprietary security

protocols; or
a packet classification engine to classify the network traffic; or

a packet processing engine to perform packet processing tasks; or a

combination of any of the foregoing,
said security system providing muitiple protocol layer security in said network.
A security system for a storage area network,

said storage area network comprising one or more networked systems of one
or more types,

said security system comprising a set of systems from said one or more
networked systems,

a plurality of said set of systems comprising a hardware processor providing

transport layer protocol processing,
said hardware processor comprising

a storage protocol processing engine to do protocol processing; or

10

15

20

25

WO 2005/081855 PCT/US2005/005159
67

a protocol processing engine fo do transport layer protocol processing; or

a programmable rule processing engine to analyze storage area network
traffic for rule matching or taking actions on matched rules or a combination

thereof; or

a security processing engine to do encryption, decryption, authorization or
authentication or a combination thereof using standard or proprietary security
protocols; or

a packet classification engine to classify the storage area network traffic; or

a packet processing engine to perform packet processing tasks like header
processing or deep packet processing or a combination thereof; or

a combination of any or the foregoing,

said security system providing multiple protocol layer security in said storage
area network.

3. The security system of claim 1 further comprising:
a. at least one central manager for compiling and distributing security
rules; and
b. at least one security policy driver to communicate with the central

manager and to set up rules in said hardware processor on at least one of said plurality of
said one or more networked systems to analyze and enforce security based on said rules.

4, The security system of claim 3 wherein the central manager comprises at least
one of;
a. A Security Policy Developer Interface for entering security policy;
b. A Security Rules Compiler for compiling security policies into rules;
C. A Rules Distribution Engine to distributed rules to said plurality of said

one or more networked systems;

d. A Security Policy Manager Interface to manage said plurality of said
one or more networked systems;

10

15

20

25

WO 2005/081855 PCT/US2005/005159

68
e. A Security Monitoring Engine to monitor said network;
f. An event collection/management engine to manage said network and

collect events or reports from at least one of said plurality of said one or more networked

systems; or
g. a combination of any of the foregoing.

5. The security system of claim 3 wherein at least one of said networked systems

provides security based on rules for

a. OSl protocol layer two to provide layer two or MAC layer filtering; or

b. OSi| protocol layer three to provide layer three or network layer filtering;
or

C. O8I protocol layer four to provide layer four or transport layer filtering;
or

d. O8I protocol layers five through seven to provide upper layer or

application layer filtering; or
e. a combination of any of the foregoing.

6. The security system of claim 1 including security protocols comprising at least
one of IPSEC, OPSEC, SSL, TLS, AES, DES, 3DES, SHA1, MD4, MD5, RSA, CHAP,
Kerberos, a proprietary protocol, or a combination of any of the foregoing.

7. The security system of claim 3 wherein at least one of the at least one policy
drivers executes on a processor of said hardware processor or on a host processor of at least

one of said networked systems.

8. The security system of claim 1 including multiple protocol layer security that
includes security functions performed at one or more protocol layers of the OSI stack to
provide packet filtering, intrusion detection, denial of service attack detection, port scanning
detection, virus scan, spam filtering, unauthorized access, or a combination of any of the

foregoing.
9. A security system comprising a network,

said network comprising one or more networked systems of one or more

10

15

20

25

WO 2005/081855 PCT/US2005/005159
69

types,

a plurality of said one or more networked systems comprising a hardware
processor providing remote direct memory access capability,

said hardware processor comprising
an RDMA mechanism for performing RDMA data transfer or
a protocol processing engine to do transport layer protocol processing; or

a programmable rule processing engine to analyze network traffic for rule
matching or taking actions on matched rules or a combination thereof; or

a security processing engine to do encryption, decryption, authorization or
authentication or a combination thereof using standard or proprietary security

protocols; or
a packet classification engine to classify the network traffic; or

a packet processing engine to perform packet processing tasks like header

processing or deep packet processing or a combination thereof; or
a combination of any of the foregoing,
said security system providing multiple protocol layer security in said network.

10. The security system of claim 9 where said hardware processor provides a
transport layer remote direct memory access capability.

11. The security system of claim 9 further comprising:

a. at least one central manager for compiling and distributing security

rules; and

b. at least one security policy driver to communicate with the central
manager to set up rules in said hardware processor on at least one of said plurality of said

one or more networked systems to analyze and enforce security based on said rules.

12. The security system of claim 11 wherein the central manager comprises at

least one of:

10

15

20

25

WO 2005/081855 PCT/US2005/005159

70

a. A Security Policy Developer Interface for entering security policy;

b. A Security Rules Compiler for compiling security policies into rules;

C. A Rules Distribution Engine to distribute rules to said plurality of said
one or more networked systems

d. A Security Policy Manager Interface to manage said plurality of said
one or more networked systems;

e. A Security Monitoring Engine to monitor said network;

f. An event collection/management engine to manage said network and

collect events or reports from said plurality of said one or more networked systems; or
g. a combination of any of the foregoing.

13. The security system of claim 11 wherein at least one of said networked

systems provides security based on rules for

a. OSI protocol layer two to provide layer two or MAC layer filtering; or

b. OSI protocol layer three to provide layer three or network layer
filtering; or

C. OSI protocol layer four to provide layer four or transport layer filtering;
or

d. O8I protocol layers five through seven to provide upper layer or

application layer filtering; or
e. a combination of any of the foregoing.

14. The security system of claim 9 including security protocols comprising at least
one of IPSEC, OPSEC, SSL, TLS, AES, DES, 3DES, SHA1, MD4, MD5, RSA, CHAP,

Kerberos, a proprietary protocol or a combination of any of the foregoing.

15. The security system of claim 11 wherein at least one of the at least one policy
driver that executes on a processor of said hardware processor or on a host processor of at
least one of said networked systems.

16. The security system of claim 9 including multiple protocol layer security that

10

15

20

25

30

WO 2005/081855 PCT/US2005/005159
71

includes security functions performed at one or more protocol layers of the OS| stack to
provide packet filtering, intrusion detection, denial of service attack detection, port scanning
detection, virus scan, spam filtering, unauthorized access, or a combination of any of the
foregoing.

17. The combination of claim 1 wherein said one or more networked systems
comprises a blade server, thin server, media server, streaming media server, appliance
server, Unix server, Linux server, Windows or Windows derivative server, AlX server,
clustered server, database server, grid computing server, VOIP server, wireless gateway
server, security server, file server, network attached storage server, game server, router,
switch, wireless access point, workstation, desktop computer, notebook computer, laptop
computer, utility computing system or gateway device or a combination of any of the
foregoing.

18. The combination of claim 9 wherein said one or more networked systems
comprises a blade server, thin server, media server, streaming media server, appliance
server, Unix server, Linux server, Windows or Windows derivative server, AlX server,
clustered server, database server, grid computing server, VOIP server, wireless gateway
server, security server, file server, network attached storage server, game server, router,
switch, wireless access point, workstation, desktop computer, notebook computer, laptop
computer, utility computing system or gateway device or a combination of any of the
foregoing.

19. The security system of claim 1 wherein said packet processing steps include

header processing or deep packet processing or a combination thereof.
20. The security system of claim 2 further comprising:

a. at least one central manager for compiling and distributing storage
area network security rules; and

b. at least one security policy driver to communicate with the central
manager to set up rules in said hardware processor on at least one of said plurality of said
one or more networked systems to analyze and enforce storage area network security based

on said rules.

21. The security system of claim 20 wherein the central manager comprises at

least one of:

a. A Security Policy Developer Interface for entering security policy;

10

15

20

25

WO 2005/081855 PCT/US2005/005159

72

b. A Security Rules Compiler for compiling security policies into rules;

C. A Rules Distribution Engine to distribute rules to the said plurality of
said one or more networked systems

d. A Security Policy Manager Interface to manage said plurality of said
one or more networked systems;

e. A Security Monitoring Engine to monitor said network;

f. An event collection/management engine to manage said network and

collect events or reports from said plurality of said one or more networked systems; or
g. a combination of any of the foregoing.

22. The security system of claim 20 wherein at least one of said networked
systems provides security based on rules for

a. OSlI protocol layer two to provide layer two or MAC layer filtering; or

b. OSI protocol layer three to provide layer three or network layer
filtering; or

c. OSiI protocol layer four to provide layer four or transport layer filtering;
or

d. O8I protocol layers five through seven to provide upper layer or

application layer filtering; or
e. Storage protocol layer to provide storage protocol layer filtering; or
f. a combination of any of the foregoing.

23. The security system of claim 2 including security protocols comprising at least
one of IPSEC, OPSEC, SSL, TLS, AES, DES, 3DES, SHA1, MD4, MD5, RSA, CHAP,
Kerberos, a proprietary protocol or a combination of any of the foregoing.

24. The security system of claim 20 including a policy driver that executes on a
processor of said hardware processor or on a host processor of at least one of said
networked systems.

25. The security system of claim 2 including multiple protocol layer security that

10

15

20

25

WO 2005/081855 PCT/US2005/005159

73

includes security functions performed at one or more protocol layers of the OS| stack to

provide packet filtering, intrusion detection, denial of service attack detection, port scanning

detection, virus scan, spam filtering, unauthorized access, or a combination of any of the

foregoing.

26.

27.

A security system for a network,

said network comprising one or more networked systems of one or more
types,

said security system comprising a set of systems from said one or more
networked systems,

a plurality of said set of systems comprising a hardware processor providing
transport layer protocol processing,

said hardware processor comprising a protocol processing engine to do
transport layer protocol processing; or

a programmable rule processing engine to analyze network traffic for rule

matching or taking actions on matched rules or a combination thereof: or

a security processing engine to do encryption, decryption, authorization or
authentication or a combination thereof using standard or proprietary security
protocols; or

a packet classification engine to classify the network traffic; or

a packet processing engine to perform packet processing tasks like header
processing or deep packet processing or a combination thereof; or

a combination of the foregoing,
said security system providing multiple protocol layer security in said network.

A security system for a network comprising one or more networked systems,

at least one of said networked systems having a hardware processor providing a protocol

processing stack, said security system providing a secure operating environment for said

protocol processing stack for trusted computing needs of one or more of said networked

systems by providing a policy driver for setting up the hardware processor for security policy

rules to be enforced by said hardware processor, and a central manager for compiling and

WO 2005/081855 PCT/US2005/005159
74

distributing said rules and monitoring the enforcement of said rules by said hardware
processor.

PCT/US2005/005159

WO 2005/081855

1/60

NG

189S

Jo9UU02I9lU] [edISAyd

—3

|[020301d A.

IllIlllllIIIIIIllIIIIIIIIIIIIIIIIIII,I.Y

1020}04d [SOS

Jabeuey yselL

JoAJas 991AaQ

yun [eatbo

uones||ddy |SOS

s

lIllIIllIIIIIIIIIIIIIIIIIIIIIII-v

|oo0j0.d uoneadijddy [SOS

| soepe soke S0t
1o qeotshyd s
H | |19AeT [edisAud
—35eLey] Vol
j02030.d 1 (Jodsuel] [SOS)
L ._mon lakeT jooojoid
€0L
{pJepuels puewiwo)
jusl|o [9POIN Y24V 1SOS)
uopeoyddy | |
JpAe uoneolddy

uoneoijddy [SOS

(1on198):

- weysAsqns: O/ 3ebiel

-z

oL

~ (ueno) ~ 0L
weyshsang Qji 403eiy]

sleAeT aunjoelyoly |SOS | bl

PCT/US2005/005159

WO 2005/081855

2/60

8;8 IS9S

| joo0301d 1SS!

'93IA3(Q ISTS-

90¢

9080}
- x_w‘o*_m%v

di/dOL

e

SO2JIAISS

198UU02J3U] [eoIsAyd

g o |

| JoAe [ea1sAyd

“reaiskud

S sovpguy

9 — oS

dl/doL o ,..n____Eo_v.__.,_,_ |

HOdSUEI] 1SS!

1090j04d |SOS!

aoeuaU|

Jabeuep yse]

FETNEIE-CITETs)

Hun [eajboT

| uoneanddy I1$0s

99IAI9G]090301d

AIIIIIIIIIIIIIIIIIIIIIIIlll-llllll-

|[020j0id uopesliddy [SOS

(18A158) .

202

‘wioysAsqns O/l JobIe].

y0cT

SERITVETS (Isosy)
jooojold |SOS! Jahe] 0003044

6 : 0z

%Lmn:m«w puewiwion g
[8POIN Yody [SOS)
JuUslld

uonedlddy | | j5£e uonyesrjddy/

- luogeoyddy 1508

“wieysAsqng Oyl JojenIy|

(queo) 1oz

ISOS! Uo sJeAe a1njos)yoly |SOS Z O

PCT/US2005/005159

WO 2005/081855

3/60

€0 ——1

coe

Moe1s |SO ¢ b4

0I18MIJOS bOg |
. >mn._” Awﬁ:mﬁwﬁmv O Um : [eatsAyd ~N————60¢
OVIN_ _8@\%8@ ﬁ u H
ﬂobqoo U<§ 1L o) 2 Qm AUrTEled | | goe
! »moo:Com uoEEoO y ;
10 :
M .SGOU MQH\H m U ,...H
dI Amoogom ﬁommﬂu&v PHOMION | ~——10¢
D1 | dan 7o HodsuRL | ~—soe
cowmmom UOISSOg
- — onejusseig | T—90¢
suoneolddy ISOS dI 'IA uoneolddy
- di/ddl [suueyy aaql4 ___1og

PCT/US2005/005159

WO 2005/081855

4/60

QIBMIJOS

14804 J

| me | .L_ Awm:mcwﬂmv o Om, [esdisAud | ~J___gop
042 , Aoo@\oﬁooqov ﬁ U H
M, ﬁobﬂoO U<§ A:onéo& éé N Om wur eled | ~——sop
{SEOTAISS IO,
BESO MSA o1 |
B nﬁ, (soo1A9g podsuery) | HIOMION | ~— L0V
Bl N 7-0d
cov Il.\\ QOH\HWOWH tOQmCNL._. ~S—90v%
Goﬁmmmm uoissas
: ~——s0p
oljejuasald
mqeao:&« I1SOS “dI ‘IA T—r
2oy ~ di/dOLNSOS! fouueyd auqi g +o?

I/dDL MH /M) 32els [SO 7 b

PCT/US2005/005159

WO 2005/081855

5/60

€0s \

209 \

105\

yis

DIN/VEH

J

1

-

€ls
l‘l\

/
ISOS

B

ISOS!

/’I

Jouraylq

—0LS

| s1g

190G ~—]

rToAlI(Mod

JoNQ HO

§0S —-—

10§ ~——

sofe PIN 1IS9S—

19ALIQ tom,ﬂﬁ\

IOALI(I NV 608

%05 —~ Joke PUBWIWIOD 1SS

: T T T Mo\mwngw% SO ~—_1— 809
TomesAS ey o | :

[RUIY

cls
_l

1981}

suoneorddy

— LLG

(1SDS!) Moels a1emyos 1soH G “Bi-

PCT/US2005/005159

WO 2005/081855

6/60

moo/

T~
| JajsueJ; ejeq
OIN/VEH L DIN/VEH
809 A
709 — f< oD 19
jJoutayly #nd JIN } yig L L
[PuIa3y [PUIS]
2 JOALIQ c09 | sioung JBALIQ | g9
NV == NV
909 — 3= -
, 218 M T oe | |eve
T L E——— T
B — 188 119
6= © Seoelisjuj sjexo0s o J © Casepisjul spoyoos — 1 |
g _ 019
— 1 siaung |||suopgeanddy 109 —— ssoyng suoneoljddy ~—+
1980) IS}
) J9AI9S Jualo
Jajsuel] ejeq 3oe1s 4oL M/S 9 bl

PCT/US2005/005159

WO 2005/081855

7/60

bLL
1) I~
| (e3p/peoYy) J8ysuely ejeq >
DIN/VEH = _ DIN/VEH
. sSioln eo
ovz | Segnaom ||| © ey sor — =0 O I ot susouns T 144
60 2 jsulislps v0. } W3
80 AL~ / VNG 210wy €0L - VINQ SjolYy
§ N & [PWIdY]
/ Q QUID y=
5 ﬁv it 2oL /.L\m \| &
O J9ALIQ HOd JoALQ 4 18| Z | 4eA1a Hod J9ALIQ 0w
S| 2| |8 NV1 T
e ———— 2 |8 —
o rAWA Iaﬁmrv\‘ m .
b paug | %9EIS MN. T8l | 5| ¥°na .xumﬂw.g/z Em
L] |8 SIN00S | B SO i Nﬂmv_oom 8 SO
/A) o 60.L 2)
Q : 5 a vLL
O | [ooepiaju] s39)908 : ©| \/ 9deualu|s}eqdog ~—| I
90. J G . 1
—_ < 8S9ippy uoibay waN odXs
siolng WCO.E.NU:QQH<, : ﬁﬁ< O-)3y _‘.OMS_ “_L,. : \M_ siayng \‘_ m:o_u.ﬂo__ﬂﬂ< /I\\mvh
_ REN] 198()

mmmuo«. AIOWS|N 10841(] d10way J HBi4

PCT/US2005/005159

WO 2005/081855

8/60

118\ 048
DIN/VHH J |
| / joulayig -608
dl ~— 1808
ISOS od doL 1o
YIW@¥/ISOSI— 400
19ALIQ HOd | 19AlQ 0d | J9ALQ HOd T~ 508
J8Ae pIN 1SOS T~——108
Jake puewwo9 |SOS €08
[OUIOY] N Neo P m {iLE - fTyees
suoneorddy "
helg]

(1ISOS) Moels auemyos 1soH g *Hi-

PCT/US2005/005159

WO 2005/081855

9/60

~__-806
J9heT d| 19k d

~—206
. Joke1 doL Iake 4ol

mvmv
suojjound Yyoleas suopounyg

Li6 816 L sev-unusen || vwawiaa SIOIPUEHIOMS 908

19he |SOS!

\ (- syupypEDY)

"IM/PY ‘osip ‘InojuiBo

(" XL ‘xy ‘sseg ‘pw))

(- AoJysa(g uoissag ‘JIuj UolIsSsag)

~——-2906

~——1¥06

JaAe JaAlQg

™ €06

puewwos ananyd suoyoung |§9S! Jwbp enenpd suo3oung uojosuuo)
\ \
vi6\ 916° EI6 G167
e umopIN 1 ("3s0y 'snq ‘edineq ‘Hoqy)
PInys nl slsjpueH Jolig
\ (- epuppERY)
) ases|ay 30039 slajaweied suondQo
puewwo) anany \ N v
L1167 0167 606

JaAe pIN ISOS

~____¢06

Jofe pI

Jake1 Joddn |S0OS

~——1}06

J9Ae Jaddn

¥0e]S |SOS! 6 DI

PCT/US2005/005159

WO 2005/081855

10/60

juswbely-aqg suojjoung [Lo._._/ 8001
\ AuswbBely \ €14 B 930y IPUBH Joli3g soke i
£ CEQ —stonouny=—
4 by snand : NIRETNE ST) ~——8001
9AI999 ue : d :
" Y g pues PAlOSYAlLISUEL | Imsﬂhﬁ%.ﬁ ||| \wnsxoeuo wcoﬁ 03997398
_\mo—.v 0col 6¢0L 820 0l
suonoun suopoung ~
Hound yoless suonound UON98UUO0Y Afepuooe =400
jysey-un/yseH d uoiIBuuU0Y) : \mmmunw g _u_“o:o s
9201 v B0 -
UORAUNI MOPUIN (~ OLY 454 AoupUS)| |, DS pus) /7\“%“
9 9ouanbag %m_ucmx Joilg v suooUNJ UORSeUUOY 1d01
€201 (A4 VT 20k
! 91D >
suonouny owj nsyoaU mchms_ ajels eAleday Jpues——=00t
020l = 1 gL 0
JWbBp snand ~——¥001
BAI999Y B puUag || |oneooumusueiy uom::oobammod. mwo_ow_:_ To_io 1997308
Ivor 9101~ 51017 ¥10}” -
To_ao jJeofe 00}
JoheT 194008
9A1298Y @ puss umopinyg/uslsi || 30suuoopndeooy || esesjey/puig || Aosysag/eealn
\ \ \ \ ~—2001
eLoL” z1oL” T 010"
ZCO_Q.NO__QQ< NN NN SN NN NN N NN N AN SR NN NN vCO_uNO__QQ< /(\fOOF

1oe1s di/dol1 0L b

PCT/US2005/005159

WO 2005/081855

11/60

Jousay}g ~—{ g0l
di/dOl1 L $0LL
e] ey = = — .
sauibug puewwion X
ssoung XL | == —20bb | s1eyng xy
T 1501l
et pealyl X1
K lj.
_—90LL
T 0V i
| 7 N puBWwWwo)
@eu:w anany puewoy 19INPaYoS =
: puewwon . ~-20LL
b b—— . . | puewiwio)
ﬁ g ananp puewwio] 7S anenp puewwon paubisseun
4 . 5[|2
T = 8
£ n
o ‘
19ALIJ [SOS! B 19he puewwo) SIS ~—L40LL

Mol eyeq |SOS! L1 b

PCT/US2005/005159

WO 2005/081855

12/60

N puewwo) - |

~— | puewwo?)

. Juolsses «.

N uoijosuuo)Vi.,,
..cnco-o m Aoo-o "
) cooooc-lcoco‘cncc-o Nco_mmow f

“%e.l..z uonoOUUOY - —

Z puewiwon | uoisseg 102}
va

[uoijosuuo)

\ ~—202Z} lgjulod JakeT _mqoM

€0ch

spuewwo) |SOS!

suonoduUu0) dol suoIssag [SOS!

saJnjonJs ejeqd ISOS! g1 b

PCT/US2005/005159

WO 2005/081855

13/60

PIfeAU[/plIEA

M1d Yyolell H LXN

Ao yseH

splold sweld JaYi0

dld 18plo jo Ing

Aax owel4

spisld 43430

SSI 1oA1809Y

ysauylss

MOpUIpA uolisabuo

JUN0H s19jorRd

(" jjwisueyal ‘Jels Mojs)
sisjauleled 4oL

awlL ™ IMd IseT

awll | HeIS J9)oed

(fenuesb) 83Aq)
¥ld puss }18%2ed

YHld uswbely

#0335 ADY dOL #MOV doL #9035 doL #O3S ANS dolL 91818 dol
NOS Pejoadxg | NLW/SSI Jopuss | 8ZIS"MOPUIM [¥Lld MOPUIM dOL| di uopdsuuod
josolold Hod uopeunssg Hod 92inog dl uoneunsag di @oinosg

Aipug gq uoissss dI/dD1L €1 bl

PCT/US2005/005159

WO 2005/081855

14/60

PUEAUI/PIEA N1d YOIBN H LX Aoy yseH
— (pa,A24 10 pajiwix}) — —
slajuiod d1n 20| 40 “ON 9zZIs }o0|g Jojdiosag Wepy | J93uiod 31sIT7 1an
weled YINQY 190 sAey YINGY pelqeus YINQY dl puewiwio) @i uogdsuuoy
spal} 184310 uonoali Joysued] | Bel dnoug) jeuod aislL aisi

" Ndd xew 3sing 3siy
siojaweled jabie]

{30U 10 PS}IOIIoS)

JAOW L3DYVL

#03S QWO dx3

#O3JS snieis dx3I

#0038 snjeis

#03S 129

OVl jseL

#03S pueWWOY

#03S ejed

8je1s 1SOs!

Aiu3g gq uoisses |SOS! 71 b1

WO 2005/081855

PCT/US2005/005159

15/60

K Z Au3z ga Stk
: : N uoIBe T
* p Tig 8/qe. Uossa5
B . A Aljug uojssag | be
“| XAnuz ga : :
. . Aiug uolssag | be
A Z Aiu3z ga “vm 19998 -
20s)
| Aiug ga
\
90SG1L

gq uoissss [SOS!

si9julod 9|qe] uoissas

ayoen uoissag

L0St

AIOWB|\ U0ISSeS [SOS! Gl OI4

PCT/US2005/005159

WO 2005/081855

16/60

g09L

Vo9l

J

sorI03U| J0SSa204d0)

P
ooBI0lU] 19]|0JIU0D WBlsAS

9091

EEDN

1091

L~

\}”

aoeLIaU|
ouged
ASOH
poadg
ubiH

n

8109 lossaoold uonesljddy
HIOMISN dli

c091

4+

aoeyla}U] Jajjosuo) Alowsy

(NVM ‘NVYIN ‘NVYT ‘NVS)
sooeMalU| Juspuadapul eIPa

10SS990.1d uonesijddy y1omiaN di 91 bid

PCT/US2005/005159
17/60

WO 2005/081855

10s$820.d uoneaiddy E/F 1T T
HomiaN di L) Bl 10SS9201d auejd [0J3u0) N:rv
0bLY 60.1
)
ananp |,
ndino
}SOH
80. 3 N
PHVM.._.V_MLH\M“M“_“% ._mcn_u\,._;n_:mn_uo ml V 08S890.d 10SS9901d 058982014 10SS990id oulBu
H MO \— | |||1en9ed | |18%0Rd 19yoed | |318ded thus
ouded | /MO[d 11 | - . Ajunoag
@ /ISOH /_In.. abe.ols c NVS [NVS NVS NVS
JOLL
\AﬂA A\ :
vm:m:ﬂ | L} %wot Aﬂ
—N jnduj
—V| 1soH 8
- L0LL
POLL | \/ &)
\)
18]j013u09 Aiowdi LN suBug 181NpaYSS AH anany
3 N—/ uoI3eolISSED Moed induj
ayoe) uojssag abeloisg/dl “

1T 11 1E —J

PCT/US2005/005159

WO 2005/081855

18/60

€igi

GoLL .wc_mcm >um._30mw ol

1

G0/ ‘euibuzg Ajunoseg wou4

@ L8l

N

pi8l 3 L)
> 9oeLI9)U] }9)okd 81N29S aoeLIalU] }9)oRd 189D
i
<> 58 <F zheb |
pueliWo) c
nevoed 1 Jejjoluon snanb-a(joxoed %ﬁ
y081 (u)zosi Loslt
6081 | ﬂ 0181 | i \
J
(' pod ‘aunoss ‘|Ie} 'peay) a S % _
Jobeuep aynquUNY) R ; ‘INHod E]
-~ O -
= X =
m (1] 1 d
\ < @ m 1 e
7 ananp jaeyoed jnduj ® T |(zost I -~
Rely Bey =2 m,
s9)NqLIY 19)o8 e
QLY 19308d = =
o N O
- LHodl o
\.ow_‘/ i mom_./ owvbv
" N
= ' 18]j0JIu0H ¥ 91018 G
" a B R Y]
<—> T a T——>|jex0ed pojuswbel]
puBWIWIO) =
RENELE g

19]joa3u09 g ananp nduj gL “bi4

PCT/US2005/005159

WO 2005/081855

19/60

[4A-" \

j

@M_eaoo DUEWLI0D 7 dNojooT] S1EIS B U914 19HOBd—

MW\mNmr

WeW PEAUT] waav. pud juagy Hes|li BeL.

o|qe) dn-j007 }3%3ed

"
|4

J0109}9g Ajiold
\

Jsjjopuod /i
sng puewiwo)

J
5261 T A C "
. aerin W Eesoreeren B V26l T T
wo PR PURA. Y -beLe Bk T _m T
.va_‘p aneny siNpayos 1eNoed b} as_o..m._.v QWD [-PeL awo m.w.—.mv
@ 061 ﬁ 6161 o o @ @
0JJuU0
OWo “ﬂmor ssedAg — /V } dd mEm_n_i_ JU0D
auog AWo
i uorRees | EeL AN g QiR 1S jdisey Jeousnbag B ~ < /\gmv)
mwm_‘p Al SiqeL. uoneaolly 80INosed L_V josuo9 9jelS IBINP3YIS ouIBug
€161, | Nrmrv ﬂj i Juswiaey
) e
6121 N) Ayige|ieAy ; 19]]013u09
Am“m_._n“um.e_._w._“,_ T : yoyoed |[sejonuonl|| €06} \
1o%oRd algel SRR I R umu:mEmmE Kiows = .
co_umoﬂ_ sse) SHNS9Y - ke > v 3 ‘
ﬁ 1ox2Ed ﬁ L06L 2061 3nenD 19%oed
016} 16, 806k || pautsseio o6 | €08%y
uf sepssely = J9[Npayas /18]|03u0d
h 6061 UONEILISSEID
QO Jaliisse(d ,wzmzo memmm_o

V

Joouanbag g 19|npayds 19)oed 61 ‘B

14

PCT/US2005/005159

WO 2005/081855

20/60

1102C
) aoeLIS}U| |0JJUOD JSOH ()
(3nQ) aorpBIU| Jo¥OE swabeuep eoRLIeII 1830
\/ juonezijeniul gg v
oioz - - 1] 0102 T 17 Il sooz
ananp \thw«:_om 151”0914 “S}SI7 9pPON) ﬂ._ (sweauys-N)
\JuswieIeY Jolyisseld uondiiosag gad K== Jayng
gLoc 7 H__v =5 T 3 19%oed Induj
A S S — JT 1T vooz
Jajidwoq ynsay Aeuse
Keny anep [T \ Ao sdisyu) ooy | (Wvo 1) oo 00:1)
Pt J =i 19ouanba
1wy vioz 17 6002 (alqejiear) ﬂ | s
“ soLug gd Ll f uojjesiysseln
Hb j (Anuz gq 49d (uotesul A1jue auyjul) v
(uoyoe/nsul)) elep pajeoosse) ped yojesos 1l | @ €002
Am«.mv EE& yu— Reiry Aioueiy NEMNEET)
nv AN | 1030B43XT ploid \ﬁ A. >ommvmwm~mo
Y gloz J[|] so0z A HEM AR
Lioz Buius Bu (N) siog Jojdioseqg 2002
2102 > IYyajej sbuey 00 Iv pIdid [eqo|o |L/ JoPeuely
ﬂ_‘l\ jood Aijug
josuo aujjadig i '? 9PON 9914
CRIATEI G ol i)
3 d9gjIop] aseqelR(] [BUlgIXd \ Loz
9002

auiBug Aoljod/uoneayisse|) Jexoed 0z "Bid

PCT/US2005/005159

WO 2005/081855

21/60

€ole

\L~

aulbuy
abelo3s di

auibug
dol

\

pd
[A1} 74

10SS920.14 19984 NVS |z Hbi4

aulbug
joxoed

loie

PCT/US2005/005159

WO 2005/081855

22/60

JIEPEMSEN
\ 18ouanbag
: 602z | ® ©9P0I98(J
sulbu3 uonoNSU|
abel03s d] nIv
)
\ 4/1 Aowsy | | 4/1 Atowapy
Lize 202 44
WVY eleg NVY Isuj
auibug \
dol 907z 20zz
. YING . [01JU09 Shq

olee

g0ce

P
Loee

10SS800.d }oyoed NVS zZ b4

PCT/US2005/005159

WO 2005/081855

23/60

jun Jsuwity /aoedIU] |SOS!
7 Y P

i 905z

o : i

m e < be

aujyoe — =] ABIN Jepi0 40 In0 wnsyoayy Kl laouanbeg

BSM n_”_._. . WW [8]joJju0D swel . uoponJsuy|
22z ||8vee U 1L viee T JL sose

J1aBeuely oulBUT YSEH ' —/](~ 10e1x8 'dod ‘ysnd) U ap09ag §

uolssos mo._.v - Hv)) dn-y007 }oord 40324 UOIONLISU]

L 10]l oiez T T wvoez

MH @ 12ee

ayoen
g uoissag
di/doL

)

0 1rotee

aubug dnyjoo
€ uojsseg n_o._.b

—N sejeyg ‘UaH 'YdD)
1 end te3siBey
]

91€2
N sdO MOpuUiM
‘=] /edusnbeg

B nv

L

aseLIsu)
B:o:cooéosms

A
gzee

L=

{*** 1xa3u0) *s1ejujod

/

Jajaldieyu] Bel
UOHBIIISSE[D

(ap
<y
ooy
1O

(stoyng Joxoed)
WvY eled

7T 7T oose

aulbul YING

WYY uotansuy

)

JL 1T e0ge

(—

108$8201d dl/dD1 £ bi-

L I*

: L_y 2089}

Inpayds (| y5ez

=
—

\
/
@ & 20¢e?

0B
1a]|03u0D JSOH

auibuz VING

/
10¢€¢

PCT/US2005/005159

WO 2005/081855

24/60

mN.vN/ vZye \
7 =
1038819 1spooagbuewiwog| [seuibug uonosxg
nad I1sos! lojeniul [SOS! pUBWIWOY |SOS! 9IBHSUI dI/dOL #
: : PN P
@ . ﬂl‘ 4 > \/ movw

=1 11 ffeire

Ty e o

LI

aujyoBp = ﬂv PEIE)
23818 I1SIS! HV Nndd 1SS!
zevz | |8/
’ meMMm_so = ouibu3 YINQY
ols SOSN [
/
JT Jlvere tqmﬂ ”
*** IX83U0Y ‘sivjuiod 7 2
) 'SSIelS NOH ‘Hdo)
a|id Joysibey Vil
/
84o= 91y
gQ uoissog 4
1SoS! ﬂnvhmmmcms_ aosusnbag

)
1L irozwe

auibug dnyjoom
gq uoisseg _wowf

._w__obcooéoEms_
/
1 4AZ4

/

A

[Fe)
i
~

niv

{

ﬁvvv

<2§ E

J9jjouo9
uojpjejuswbag

\f

8oBalU| -

.. o,

_Elve

02-10)

1T Il vive

= 7(~ yoenxe ‘dod ‘ysnd)

dn-4007 }a30ed

It 1L oive

(steyng ysoH)
WvY Bieg

it 9T 60+

sulbulg YING

I

Jaoudnbag
uononJysu|

1T IL sove

apooaQg 9
yo3o4 uoiInsu|

17 J1 vove

WYY uononiisul

R

(—=

[T

EEEIE

1211043U0D ISOHL | np7

su1BuUz VNG
\
/
HH M\ 20ve
9oBI81U|

18]joju0) }SOH .

love

(4ossed0id [SOS!) dulbug ebelois d| vz "Bi

WO 2005/081855 PCT/US2005/005159

25/60
~
SR TRES]| 2
,g sng jaoed /N
a
E ﬂ
2 -
O© (funoog ‘sov) | B
§ N dmjoo Bej | XN
t
Q |£
o
Q 3|8 o
g |z 2
- | A |
I EEmES 2
= n :D 10)99195 AJuollg «
(o8 £ 1oxed —
vid o —
=) g
3
o :
[} o
» ¥
O xXneq Hod -
N
R=) u o u
: - T : o~
- H o
- - w0
N

Port 1
—

Port N|'-
—.

aoepIa)u] Hod inding

\2501

PCT/US2005/005159

WO 2005/081855

26/60

mommv mowmv 09z
ﬂHﬁ_y 41) dn-}00- uoljo930.id “ “\ , “
UIPLa v 30K oNH 130 1SOH “1aW ‘puewiwion neng ejeq nduj
Z 8092
£092
\ . 2092 @ h 2092+)
J 7 i
mc_mcm (*** uuoy *20ssY pWo i
Q:xoo.._ “oud ‘Bay uoibay) — T -
P L) B e s o pUBLILIOY ouiBuz YINQY [y piunico] o | o
so|qEL dNn-4007 S)lM 2 PedY 6092 ajge) dn-¥0o YINQY
019¢,)
_ 1092
VARV
.. Hod. ={uopeeuuog) © -dl ar

laosusnbeg B
lsjjojuog 93els
‘Is[npayog puewwo)

05z, 11

—

uj pue

cio 1By yojey-aid
co_ﬁ:., < eleq 1soH
€197 _ atezy [
<= < fojonuon |

sysanbay MaN ananp ndinQ

V19 Aﬁ $192. It
— / phod
aulbuz YING ISOH om 130 1SOH HV sieyng ndinQ

ajqeL Jojepiulpebie]

wwoo

INO puBLILIOD

19]j03U0D YINQY B Mo|d abeiols 92 “Bid

nenp ejeq indino

WO 2005/081855 PCT/US2005/005159
27/60

2709

ﬂ ﬁ [

JojjouO) ddeLBIU| SNy }SOH

o
-— (o]
N~ o
[e
(= |
) J8jlonuog ydnuiadjul
= = Jajjoyu o9 uonoesuel] }SoOH
55 (3
T @ S
gD 2
£ o
£
G @ e '
o= £
5 (— =
o g LLi
T3 <
= =
0

m—
-
2704
&
.
2705
m—
ot
2706

vy

4/ enanp dfenanp dfienenp |-
puewwo) jsoy nduj }soy ndinE jsoy

2701
2702

Fig. 27 Host Interface Controller

2703

PCT/US2005/005159

WO 2005/081855

28/60

T Ir

S08¢C
f

JeBeueyy snanp/eoepaju| Jossasoldo)

9082
.

1L 17

08¢
=

jovoe 183D

s‘anént) indui

1082
-

10

(sav)
auibug

uondAlosqg
JuondAioug

1L 10

1082
N

08¢
Y

—

(=

1906 183|D

s,ananp indinp

T 1T

(L-VHS)
auibug

uojesRUBYINY

—

s @nanp IndinQ

joyord 24N03g

1L 1T

08¢

B
I

s ananp nduy
}»joed 9IN29g

808¢
-

19ousnbag

1L

JL

608¢
]

Kiowaly 1X83u09 Aj1inosg

auibug Ajinoag gz *bHi4

PCT/US2005/005159
29/60

WO 2005/081855

cL67 1162 L062
62 — = 5062
)S3 1 9§ siojyng @ syod 1ng Be]| [si8ynqg @ wto},\
/Bngaq |. ~Indino/induj ejeq ssalppy| | Induj sseappy
0162 9062
N_‘MN = - . v062
. . sulbug Jowlll R
'0}0 ‘slayng ojUAN/PEDY |013u09 yueyg n-y0o UoISSag
=) 5
= 6062 @
®
2] %3 788 |E8| |88 || % se|npeyog €082
5 -
> © 0| |g%| |98]|] 3 uonoesuelL
Q a% e w.% Wmu emw oo Aloway
=2 =3 =k =]
¢ | |58 HEEHEEIE R
o Z 3 w3 N S -3 Q
A 5 2062
0 8067 o sleyng eyeq |~
g > 5 5 = il W [eulelxy
a 3 3 3 3 o)
5 53 =3 58] [§S|| ¢
® e e o I S B s A N G B
o] 2 o l8]|043u09

xa|dwo9 J9jjosuo) Auows|y
9 ayoe) uoissag abe.olg d| 62 "Hid

PCT/US2005/005159

WO 2005/081855

30/60

§00€ /,w_o&towmu pIeY [eqolD) -

oiLog \
=
pijea 100¢
‘opoues| /(

‘id ejep {
isuononuisu| lo jo)oed J0 ME)S” WO J8slo
/pue spouTixau _f("039 s}(‘sa3Aq Jo #) 9zIsp|al

(suspises YD) anjeA ‘al s sweupialy
} }
Aiuz ga Anug 1oidiioseq pietd

- aseq oz|s” Aljug .
Aese"nd™isi @8]
oju] 1eqO[D

00

plleA
‘diyoyo/diyosuo
‘salljua Jo oN

\r«al\cucmmo pus

jo0y. mnocntaz H

w, “ ‘13d epouTjualed

\.,;Ql\c“cm gq Hels

az|s” Aujua
‘Josyo pioy

pI_play
) pioid

}

pajeus}esuod

9q ued sp|glf VO -
Ajuo ynejep ale
IMOUS sanjeA saly/sspou

pue spou/ssliug «

S}g-IN = PIsId AVO UIN
saLjud 7 = 92Is gQ

Z = spou Jad saiijug

A = @a.} 1ad sopoN

X = S99} JOo JaqunpN

slojoweled
suibug uoneoyisse|d

21njonJ}s 9poN |

u opoN

Z ©poON 4

— . y
L "opPON

:;:>m.tm‘

._wu:-ﬂoo

(uonoy/epoN)AloWs\ \

Aesrle NVD 9008

>m.:mlm_omz

\

rNoom

o {
Adeal 1 60¢
o de”’

¥z 13d @8}

v ad o9

}

jsiqoeall

-600¢

00¢

2JN1oNIS B1E(dUl

~€00¢

Bug uoneoyisse|d o¢ bid

PCT/US2005/005159

WO 2005/081855

31/60

20

34

asuodsay |1S9S

asuag g snjels _u:mw“p* Ni ejeq ISOS
puss \L NI ejeq |ISOS
puss Nieleglsdos [~
pues e
ele(aJedaid -kwo_‘m Z0Le
/ 7

uonesadp jebue]

(av3y)

puewWo) |SOS

adAl nad

/

60L¢

L/

dwon puewiwo)
w\o_‘m\% 19] oP 2
el 9A[999Y

\ Bje(] 9Al1999Y

90Le

“«4 Ble 9A1999Y -
- 601¢e

(avay)

3sanbay puewWo)’

10LE

uoneltadQ Jojeniuj

uoneledQ peay L¢ ‘Ol

PCT/US2005/005159

WO 2005/081855

32/60

60¢¢

Ziee Liee olce 80¢e 102¢
190k 2439y
nad ensnp
1A 3oBXT peojAed e
UOREI}IIURP|
S lopesH Be
LoleladQ 1S0S! PESH BEL
Bupiey mo
aepdn PNl MOj
[euBis %1938 1SOs! ("o3e ssedAg
uope|dwon s anand | “oaleu) uoyoy
jepdn ananp
CO_HNLQQO ISOS ale1s dol o3ROy [SOS! BN ansny
Aloway 90JN0SdY uopdAloaq JonEDie
woysAs o} uins398u2 dol paseq mold doL Men BeplieA 271
' ' ajeonusyIny
BlR(Jojsued] 18jsuely Ajus Kouspusdeg spiotd 41 1o)ord JoBNXT
anand 8d dOL/1S0s! uoneossy .
e ol Ajnoe
paseq Ajiold Jojsuel 19%oRd yseH spigid €1])
A “uopeousssely | Awmoss | eneosy.
9022 “s0z¢ “poze “g0zg 202¢ 10Zg

MO|4 }9Y0ed ele(pesy z¢ "0id

PCT/US2005/005159

WO 2005/081855

33/60

asusg % SNJe}S puag|

el 9A1999Y

bee

oige -/
\\1“ asuodsay [SOS

uonesadQ jobie]

BlR(9A1999Y 0} %mwm\v
BjR(g 9AI909Y 4/

\ ‘
WD JLINM Joj Apes _\4

mvcmEEoo Plo ysiul4 ~

ananp QW9 eAlRvey+—

NN

1NoO ejeq I1sOs

12y

60¢¢C

—

1NO eeq ISOs

goee

BRA-|

yoee
€0¢ce

[41]%>

(3L1¥M)
puewiwod [SOS

iy

adA] nad

\womm

\momm

™~

919|dwoy ucmEEooKNrmm
eleq puss
|\nomm
ejeq pues
_‘omm

(3Lrdm) -
}senbay puewiwon

uoneladQp Jojeniu|

uonesadQ 8} €€ Ol

PCT/US2005/005159

WO 2005/081855

34/60

Jajsuri] eleq 93lIM

osuodsay pesy 1ZY

yive

jwsuel]
snany-

slapeaH Z1

8|quiassy

14543 cive Live 0Lve 60v¢ 9lve GSive
) 1oxord all19y
VWA SJM HEIS
Ndd ensnp
193084 anand
1AW 10BLXd
lajsued) 3@y)oed peojAed Bel
uoijeaiinuapj
ajepdn uonesadQ |SOS! JapeaH el
ole1s |SO8!
ajepdn Bupjie|N mojd
oyepdn 9je3s [SOS!
21e1s dot ananp (030 ssedAg
ajepdn “09fal) uonoy
snanp | Jessueny Anug 9jels doL uonedo(|y
gd dOL/iSOs! 23.Inossy 1ISOSi BN snanp
hsaBiq oBessap) wns®o8yo 4oL paseq mo[4
) 1906 aledald Alowsy do1 el || uonepteA Z1
uondAioug wia)shs wody Ja)suesy Aiug Aouspuadag
. wns®osyo ejeq Jajsuel] aa d0.1/1SOSs! SpIatd v fiexord 10B4X3
uolRO0SSY dnyjoon
fjunoag §49pesH aledald | enenp Aouy | |1eisued; 3oyoed Aay] useH spleld €1 109190
VN « - spnpatiog” ,”””momwmu._h_mmm_u.pw : A,zmomm ,
. . -
L0vE “gove so0ve “pove -cove 20vE Love

MO| 1930ed Byed 8l v¢ "Did

PCT/US2005/005159

WO 2005/081855

35/60

60S¢
L/
a19[dwon puBLIWO?) —
806¢
— (dajsuel] ejeq 10241)
2088 9sU0dsey 1SOS SHIM VNN ON89Y
(iejsuel] EB1RQ 100.1Q)
SSUSS 8 STHEIS PUS SHIM VNG SIM VINGY 9AIS08Y
(Faystel] B1eq 108410) .; 90s¢
Nad sidM YINGY \. ./

SIM VYINCY SIM YN QY aAneoey
Nad sim YINGY SYlIM YINGY |\momm
Nad siM YINGY
SIIM VNG e | ¥0se

9 gleq aledsid LLSe
XaU0) / (Q1Jeyng vway ‘avay)
YA Lmum_mom / PELIIOO 1898 (Jahng YWNQY WM Qv3Y 1SOS) \o_‘mm
£0s¢ EmmEmw_tm>n< 4/ 1senbay puewiwo) |
2056 — lang YAQY / ST 1088
YINGY JoisiBay
uonesadQ jebie] adAL nad uoneladQ Jojeniu|

S}IM YINCY Buisn peay |SOS! g “Oi

PCT/US2005/005159

WO 2005/081855

36/60

219¢ l19e olgoc 609¢ 809¢ 109¢
19)0Ed 84l}ay
nad snenp
AN 3oERXS peojAed Be|
uonjesiIua
(VNG 3581 41) o;smwo.wfow_ sepeay Bey
uosidwon | -
uoijesadQ |SOS! o1epdn aje3g Bupieiy moj4
jeubig YINQY/ISOS! (‘030 ssedAg
uonajdwon wns snend | “joefel) uonoy
49942 401
uopelad YINGY ananpd
ozepdn uogedolly | ISOS! el °neno
Aiowsy 92.1nosay uondAisag uonepile
weysAs o] 91e1S dO.1 paseq Mol 4oL Men yepiieA 21
ajespuayln
eje(Jajsuedj Joysuesy Aug fouspuadag SPII 71 jedpusyiny JoxoRd J0BAIXT
ananp 8d doL/isos! uopeIooSSY 108390]
paseq Ajiolid 19)SUEI} 8% 9B yseH spIsld €1 Aunoeg
R-TNER)Y
‘ £ - /1 ,
909¢ /(momm €09¢ 109¢€

(VINGY) Mol 19X0ed eleq pesy 9¢ Ol

PCT/US2005/005159

WO 2005/081855

37/60

asueg % Snje)g puss |

(4eysuel ERRQ J00.Q)
Ble(eAIg08Y

ElB(] 9AlI908Y 0} Apeay

(doysuel] BYRQ J08IIQ) _

\ /

uonesadQ j9bie]

/

bsuodsay peay <_>_Qﬂ

1senbay peay YINAY

(ApY J3Yng YINGY UM 3LIYM T

adAl nad

fium_qeoo pugwwWo | GFae
asuodsay |SOS .

\monm
Bjeq 9AI90SY / 80.8
bsuodsay peoy YINGE—
90.¢
lwmm lisenbay pesy <_>_Dml\
QND FLRAM 04 %mmm\q
spuewwog pjo ysiui4| YOLE
£0.¢
snend gQIND enleoey -
\NONM

puewwoy IS0 i/

uoneladQ l1ojeniu]

1senbay puswwo

EleQ peay
_ \\.o\.m
e1eg pesy
10LE
ETTT) +

peay YINAY Buisn sl [SOS! L€ Bl

PCT/US2005/005159

38/60

WO 2005/081855

(9114M) 18084 Bsuodsay pesy YA jsenbay pesy YIWQY
v18¢ £18¢ r4%:13 L18¢ oL8¢ 608¢ 918¢ glLse
oed aijjoy
YAQYH
9jM Hels
jooRd 9nand ¥98YD SS90y
aiy joedixg
B
Jajsuedy Jaxoed peoifed Bel
uoneoiijuap|
ajepdn ajelS do vinay topeaH bel
YINQY/ISOS!
Wa/ ajepdn 9je38 Bupiie mold
ajepdn YINQY/ISOS! anany (030 ssedAg
ajels dol oyepdn “oelai) uonoy
uopeso
enenp | Jeysuen Anug SIS ol wow:omum 1SS! Ep anend
jJwsuel] g4 d2.1/1S0S!
wnsyoeys 4oy | PoSEd Mold
18961 abessapy dO.L jIey | uonepliea z7]
ananp jo)ord sJiedaiyg Aloway Aouspusdeg
uopdAsoug weysAs woyy | Jojsuen Agug spjeld ¥ fexoed 1orixg
sJopesH 21 wnsyosyy | eyeqJeysuedy | €0 JOLASIOSE dny0oT ’
uojjeloossy a1 LEE)
s|quiassy funoag plopesH aledaid |ananp Aoty (J94SUBL 39AIEd fiox tiseH Pl e s
3 (| empayos - .:oum,oc_wm«_o | aneod
208¢ 908¢ “gog¢ 08¢g ‘-g08¢ z08¢g 108

(VINGY) MOl 1ox0ed ereq 81l 8¢ "Oid

PCT/US2005/005159

WO 2005/081855

39/60

(I0UFQ)/PIIM /PERY) MOT]
pugUrUO)) I0JBIIU] 6¢ "SI

49|jo3uo

}SOH

JT aln

10Ss920.1d aue|d [043U0)

aoelau|

ananpd
Indino
1SOH

~—3 19]]043u0)
YINQA
/Mold

9fel0}s

anand
—N 3ndu|
—/| 1soH

B

- | Josseooud Jossaooid

1908d
NVS

}oxoed
= NVS

. |enend
i H—JQH:O T
] 8
-4l
10S59904d 10SS290.d 5
1ooed | |1939ed >m:_ u3
NVS | | NVS Hno9s

Jajjoqyuon Alows |y

k'

ayoen uolssog abeloyg/di

/A

aulbug
uoneolisse|d

10

la|npeyss
1o)oed

1]

(= S

PCT/US2005/005159

WO 2005/081855

40/60

mold _ JT

1T

e1e(peay O ‘31

10S$9920.d auejd |0LU0D

anenp
= 1ndinQ
}soH

18]]0J3u09
YINQY

/mold
obeiolg

10SS390.d
4 | 1@)0ed

NVS [

snanpd
ndino MWMW
1055900l 0SS3201d 10SS300.d
Joqoed |« .g }oqoed | |19oed >om_w%%
NVS NVS NVS }Inoeg

ananpP It

1l

—N 3nduj ;
—| 1soH ?

Iajjosuo) Alowsy

'}
ayoen uoissag abelois/dl

i

]

uibu3z la|npayos

uopeolyisse| Joxord

i S R B A

—® 1T

PCT/US2005/005159

WO 2005/081855

41/60

4

WOT:] BIB(T 9MIM

% 124 1¥ 3

ananpP aﬁ%

ndino
}SOH

J9jjoJju
VINGY
JMo1d
abeloig

It 1T

10SS9201d sue|d |0IIU0D

anand
induj
1SOH

0SS9901d JOSS920.1d

1)Jed | | JoxJed
NvS [E NVS

L. | @Nenod
g 1NAINO s
1L
JO0SS930.d JOSSII0.1d wc_mc
jooed | yoroed || 0
NVS | | NVS HiN9es
,,,,, «;-v

Jajjos3uon Alowa

ayoed uoissag mmmgon_.w\n__

?

‘G) 5
/A—N eulBug Is[npaysg
| uonesisse|n 19¥%ed

1L

T 1=

L]

ananpd
induj AU

PCT/US2005/005159

WO 2005/081855

42/60

“(emoag) MOTq T T

BI1R(] PBSY 7V .wﬁm 10SS820.1d aue|d |0J3u0)d
| enenp | 2
i +7C1I10 | \
e 3SOH
\ Ja[|o43u0)
10SS900.1d 10§S990.d J0SS830.d 10SS900.d
VNG 1008d | |10M08d 4| 30%ORd | |39¥ORd euibus
/Mmoid - Ajunoeg
abeioig © : NVS [NVS NVS NVS
ananp Aﬂ
HBQC—
}SOH |
Jojjosu0) Aowsiy LN ouug. |, =¥ 18npayos @ anand
3 NV 19)08d —— nduj

uoneolyisse|d

ayoen uoissag abelolg/dl

T T & 7

PCT/US2005/005159

WO 2005/081855

43/60

(2In09s) MO[,T BB QILIM JC 1T
2% 12d € 814 10SS920.d aue|d |0J3u0)
« .| enend
- . 03&030 Uy “—.:Qu.:o T
inadino
%) =
seper: T Jefjonu KO
V viNay : JEaossasold Jossooold J0SS900.1d JOSSad0ld
/Mol 19 LB 3o0ed | |30340Bd | 4| 10¥0Ed | |1930Ed >mm__w%
abe.o)g NVS [E NVS NVS NVS 993
anonP 1 I8 i % AH
= indu| £ — N
S
hm__obcowum?_oEwE /—N eujbug 1a|npeyssg ananyP ﬁ
NV ayoe ndu
aysen uoisseg abelio}g/d| UOREILISSEID 19398d nal

1t 11 1=

PCT/US2005/005159

WO 2005/081855

44/60

APV Iojng JC

1T

VINQY 7 St

10SS820.d aue|d [043u0)

.‘ . |@nend
enanp | (. i =2 1nd1N0 g
Jandino |) £ 0 @ 8
1soH B ||
do WS4 !
I8[|oJjuo ﬁ
@:0.5.:0 GEH.DM 2 . 105599014 10S5890id 10SS8201d J0SS900.d QC_mcm
aoeLIaju| /Mol4 “||3edord | | 309Rd |rik }93oed | |193oed y h.:omw
}SOH Gmmhou.w B0 3 ,H NVS 4] NVS NVS NVS ’
ananp . \q
—N ndu R,
—| 1soH
Js]jonuog Atowsly /—N\ eulbug J8|npayos AH aneno A,U
®? N—| uoesyisse|d Joyoed — ndup N—
ayoen uoisseg abeloig/dl AH

=i

1L

T 1=

PCT/US2005/005159

WO 2005/081855

45/60

MOT T 9IIM T

1r

VINAY St 81

10$s9920.1d aue]d [0J3U0D

_| ananpP
y indino
| 1SOH

YINQS
/Mol
abelolg

anenp

19[]0J3u09D uuv

Ky adiin,
B

il

1J0Ss9201d 108S990.(
joyoed | | I9)oed

—

NVS | NVS

induj

}soH

shenpP
Tl indino FE
JOSS900U J0SS9204
sv_omn_& onm% ouibuz
NVS | | NVS Ayinoss

1l

Jajjoluon Alows

k;
ayoen uoissog abeloig/dl

/—N esulbug
\—| uoyeoiisseln

Ja|npayss

}oded

1T 11 1=

=i

PCT/US2005/005159

WO 2005/081855

46/60

MOT] PBIY . 1T

T

VINTY 9% ‘814 10550001 aue|d [043U0D
.| enenp
ananp® A ndino i
indino N 9
}JSOH &)
TJ\ l1a[joJ3u S ‘ oo
— M 0ss890id Jossaoold [i| 10SS920id Joss8d0l
w\,_“,,_on__w__ Joxord | |10%9Bd | {100 | |IOM0Rd Mm__W_Mm
abelo}g NVS [E NVS | NVS NVS :
g P PY .v .
ananp i R D Aﬂ
indu| : V
JSOH il
G G
sejjouog Aiowai /—N euiBug la|npayoss anand AH_
ayoed :o_mwwm abe101g/dl UOREILISSEID }9%98d ndul \
. -
JIr 1L g

PCT/US2005/005159

WO 2005/081855

47/60

MO[,] UOT}BID TT

uoIssas Ly "SI

T

10SS$920.1d auejd [0JJU0D

snanpd
yndino
1SOH

J9j|oJiuo)
9]jojuo viNay
2oellaju] /Mol 19)4%ed
ISOH . mmNLOum Z<w

anand
—N 3nduj
—| 1soH

$59201d J0sS920.d

joxoed
7 NVS

=

T

il

NVS

J0SS9201d 10s$300.d
1oMoed | |19)oed

NVS

aulbug
Ajinoeg

\VAER

k'

Js[joqjuon Atows

ayoeo uoisssg obe101g/dl|

1L

auibug

uoleolISSe|D

=

ls[npayss
j9)o8d

(—

T

PCT/US2005/005159

WO 2005/081855

48/60

UMOD 183,

UoISsAS 8% 814

J9[j013U0
aoelIv}U|
}SOH

ananp |,
indino

}ISOH =

Jsjjoq3uo)
VIAQd

/Mmojd
abelolg

It

1r

10ss920.1d aueld |01jU0)

|

ananpd

jooed
NVS

$S9901d 10ssad0.4d

}o3oed
7 NS

Q

T T n QH—._O = -

enenD | &

: ki
J0SS8301d J10SS300.1d
joxord | |1esoed. M:_mﬁ
NVS | | NVS HIN3ss

induyj

}soH

.

k'

Jajjoyuog Atoway

" ayoen uolssag abelog/dl

-

auibugy

uopeolIsse|

1s|npayos
1o¥o8d

i

7T I —

ananp AU

PCT/US2005/005159

WO 2005/081855

49/60

1T

Boﬁ q G\Sow .H.morﬁ\ﬁow.mo.ﬁo HH

1088920.d aue|d |ouoh

UOISSaS 19818, 61 "1

1SOH abelioig

anend

ananpd
ndino
JSOH
&
_Hv [N Jejloquo) K
3]]041u07 w
YINQY e
aoeLI9)U| 1Mo} AH

0980901
}gqoed
:)

ananpd
D ndino /
d lossaoold 10SS900.d 10SS920.d B
yoxjord | Jo|s| 1930ed | |30308d >mmr%mm
T NVS NVS | | NvS 1N29S

—N 3nduy

—| 1soH

19][joJj3uon Alowd\
- 8
ayoe9 uoissag abelo)g/dl

e .—Q-BUQC—OW

6) | snenp

ndu

1r Il

L

PCT/US2005/005159

WO 2005/081855

50/60

{L7¥ pues) Mo[]
SIIA 10818T, 0G"31]
anany |«
Y ndino |
JSOH
o 19]]0J3u0D
9]|0JIUOY—
vINGY
moMﬁmE_ /MOl
1SOH obeIolS
anand
nduy)

}SOH

1T 1T

10SS990.1d duejd |[043uod

Jajjosuon Aiowa

k't

ayoen uolssag abeloig/dl

| enenp
ga 1Nd1NO i
L :
JHE I D 4| .
105592044 10SS9904d JOSS9301d 10SS820.d QC_QCN
1 3@voed | |1939Rd | {sls| 39408 | |I0%OBd, Ajnoe
H NVS E NVS NVS NVS " s

it

1L

igs

(g
/—N euibug 19[npayos
7| uongeoiysseld Joxoed
- 1T

PCT/US2005/005159

WO 2005/081855

51/60

(91117, QAI09Y) MO]] 1T

1T

SILIM 308re], 16 319

10SS820.1d auejd j0J3uo09

ananpd
indino
wWO—l_ (<€

Bl o

61)

Jajjonuon

NVS

abeiolg

YINGY . 1| 108890014 10S$3201d
/Mmojd | [7]]¥eoed

JexoRd
T NVS

NVS

snand

=N nduyj

—| 1soH

10SS800.d
19¥oed

ananp
indino 2

0Ss320.1d
19)o8d
NVS

aulbug
Ajunoeg

JajjoJ3uon Alowsy L\

?
ayoen uoissag abe1oig/dl

T

auibug
uonedyisse|d

is|npayos
}o)qoed

ananyYd ﬁ

T I T

)

PCT/US2005/005159
52/60

WO 2005/081855

mopipesy 1T 1T

10818], 76 "1 10Ss9901d aue|d [013u0)

* ;mr | ananyd
mamno i]
. ﬂ ,ww.
Isjjonud R
YINGY : [10550201d 10SS9001(| J0SS90Id 10SS8D0Ig sulbu
/MOl d 1008 | |30p0ed |4 30008d | |ddoed | | ¢ :.Sm
obeliolg NvS [E] NvsS NV'S NV'S Hinoss

E:oh:ou Atowsy /N auibug

K
ayoeH uoisssg mwm._ou.w\n:

]

la|npayss AH ananp AU
19)08d -

uoljediylsse|d

PCT/US2005/005159
53/60

WO 2005/081855

abe.0l1g w.ed JoAIag Ja1]-N SYN NV SSeadIM

SI19AI9S

AjAosuuo)
I |- O e] NVM/NVIN NV
AlInoeg Jejswiliad Yim dlomiaN osudieius £ Bid

PCT/US2005/005159

WO 2005/081855

54/60

mmm._oﬂw

waed IaAlas Jal]-

(120t
SJI9AJ8S

N

SVN

90¥s -

AJIAOBUUOY)

NVM/NVIN

NV Ssejadim

Ajunosg peinguisiq Yum yomaN estidieiug g bi4

PCT/US2005/005159

WO 2005/081855

55/60

abelols

wed JoAIaS J911-N

wil

P (1)°L0SS

sloAlag

¥ ESHEE W oo e gme oy 2 g

AJAlO9UUOD
NVM/NVIN

NV SSa[aJIM

|ed

1) oss

jus9

Aunoag peInguisia Uiim ylomieN esudieius 65 Bl

WO 2005/081855

56/60

PCT/US2005/005159

L2/1.3/1L4
Layer rules
560X tocol/Port /\ 5609 /\ 5612
Level rules \ Security Policy Pscurity Policy
. Developer I/F Manager UF
369 Appin/Upper P - g
Layer rules
5603
Content /5\610
based rules
5604 Policy Update
Engine

Network
Connectivity
Database
5605 .
Nodes
Capability/
Char. DB

5606 Toformation Event
Report DB Storage
5614
5615
Rules Event/Report
Distribution / | Collection/
5609 Engine 5616 | Mamt Engine

o

/\5611
y

Security Rules

Security
Monitoring
Engine

Cormnpiler

Fig. 56 Central Manager/Policy Server & Monitoring Station

WO 2005/081855 PCT/US2005/005159

57/60 —— 5701
< Create Security Policies

<

; 5702

Compile Security Policies into
Rules and create a Rules
Database using network

connectivity information and
capabilities/characteristics of
nodes

] /T 5103
/ -

Identify nodes with security
capabilities that are enabled to
perform distributed security

i ' /7 s704

Select a Node from these nodes /

N
y /5708

Retrieve security rules from the /|
Rules database and select rules

ﬂ - corresponding to selected node /1\ 7110

Select next node C New Poli
/\ 5706 reate New Policy

A

L 4

Communicate Rulés to the Node

5707
No

All Nodes
Done?

A< 5708

Monitor Network for Policy /
Enforcement/Violations

o
2 Policy Updates? Yes

Fig. 57 Central Mapager Flow

WO 2005/081855

58/60

* Retrieve Node’s Rule Set
to be communicated

PCT/US2005/005159

5801

¥ T ss;

Initiate Communication with the
Node

/7 5803

Authenticate the node 4
(May be secure or clear mode)

! /7 804

Establish communication with the/
contro] plane processor/ host
based policy driver

v

/\ 5805

Send the Rule Set (or Rule
update) to the Node

7

LI

Fig. S8

Rule Setup done
in the node?

(Node Setup Done

5806

5807

Rule Distribution Flow

WO 2005/081855 PCT/US2005/005159
59/60

Establish 5901
Communication with
Central Policy Server

/—‘ 5902

Receive Rule Set or updates to Rules

Rules Format Ready
for Node?

/\ 5904

Configure rules fér the node

Yes

Communicate with DB Initialization/ (\ 5905
Management Interface in the processor/ <«

Send a rule and update it in 5906
the Policy Engine
Select Next Rule
P 5907
/ Are Rules
Done?
5908
5909
Activate New Rule Set /
! /5910
Update Rules in persistent Storage /|
y - 5911
Communicate rules update completion to/]
Central Server

- l 5912
C Node Setup Done

Fig. 59 Control Plane Processor/Policy Driver Flow

PCT/US2005/005159

WO 2005/081855

60/60

AusQ Auy Auy Auy Auy | Auy Auy layyg
AueQ SI8qWINN 988 [0S Ruy 08| d4an| 3. | mno
AusQ Auy | €z0l<| $00S| dan| w3 Wi no
Jwed Auy | €20l<| bOOS| dan| i Mo
Aue(peolfed ul 79N BuoT 08 Ruy | 401! i X3 U
AuaQ Auy Ruy Auy [dNOI| i X3 ut
nusd Auy Auy 08| dOL W | no
Jwsd wdg 0} weg wou 08 fuy | 4oLl | i i uj
yuied fuy | €z0l < Sz| dol| ¥X3 i no
Nuied Auy GC| €20 <| dOL W X3 uj
(018 Joid 4N ‘Bweu Hod Hod
uonay | 49sn “Joke ddy ‘6-9) RYIO 1873 IS Jodd 188 | |0IN0g uonoallg

o|dwexd se|ny buuieyji4 1ex0ed 09 B4

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

