Office de la Propriete Canadian CA 2389168 A1 2001/05/03

Intellectuell Intellectual P
du Canada Office o opery en 2 389 168
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2000/10/27 (51) Cl.Int.//Int.Cl.” GOBF 12/02

(87) Date publication PCT/PCT Publication Date: 2001/05/03| (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2002/04/26 APPEAL VIRTUAL MACHINES AB, S
(86) N° demande PCT/PCT Application No.: SE 2000/002096 (72) Inventeur/inventor:

DAHLSTEDT, JOAKIM, SE
(87) N° publication PCT/PCT Publication No.: 2001/031455 _
o o (74) Agent: GOWLING LAFLEUR HENDERSON LLP

(30) Priorité/Priority: 1999/10/28 (9903890-3) SE

(54) Titre : PROCEDE DE RECUPERATION DES PROCEDURES INUTILISEES
54) Title: A METHOD FOR GARBAGE COLLECTION OF UNUSED METHODS

(57) Abrége/Abstract:

A method for improving the effectiveness of a data processing application when using a virtual machine, wherein the program
Includes a large number of methods, I.e. program sections, that are stored in the memory of the computer used, and wherein the
program uses a garbage collecting procedure. The invention Is characterised by analysing in a first step all so called thread
stacks with respect to the procedures required thereby:; causing each of said requisite methods to be regenerated in a second
step, wherein occurring references to a method prior to the regeneration are replaced with references to regenerated methods;
and by erasing all non-regenerated methods In a third step and placing corresponding memory space at the disposal of the
program.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

01/31455 Al

=

CA 02389168 2002-04-26

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
3 May 2001 (03.05.2001)

(51) International Patent Classification’: GO6F 12/02
(21) International Application Number: PCT/SE00/02096
(22) International Filing Date: 27 October 2000 (27.10.2000)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
9903890-3 28 October 1999 (28.10.1999) SE

(71) Applicant (for all designated States except US): APPEAL
VIRTUAL MACHINES AB [SE/SE]; Box 2189, §-103
15 Stockholm (SE).

(72) Inventor; and

(75) Inventor/Applicant (for US only): DAHLSTEDT,
Joakim [SE/SE]; Flintbacken 10, S-118 42 Stockholm
(SE).

(74) Agents: ORTENBLAD, Bertil et al.; Noréns Patentbyra
AB, Box 10198, S-100 55 Stockholm (SE).

0 00 0 O

(10) International Publication Number

WO 01/31455 Al

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE., LS. MW, MZ. SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, T}, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— With international search report.
— Before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A METHOD FOR GARBAGE COLLECTION OF UNUSED METHODS

(57) Abstract: A method for improving the effectiveness of a data processing application when using a virtual machine, wherein
the program includes a large number of methods, i.e. program sections, that are stored in the memory of the computer used, and
wherein the program uses a garbage collecting procedure. The invention is characterised by analysing in a first step all so called
O thread stacks with respect to the procedures required thereby; causing each of said requisite methods to be regenerated 1n a second
step, wherein occurring references to a method prior to the regeneration are replaced with references to regenerated methods; and by
erasing all non-regenerated methods in a third step and placing corresponding memory space at the disposal of the program.

10

15

20

25

30

CA 02389168 2002-04-26

WO 01/31455 | 1 PCT/SE00/02096

A METHOD FOR GARBAGE COLLECTION OF UNUSED METHODS

The present invention relates to a method of improving the effectiveness of a data

processing application.

More specifically, the invention is concerned with increasing the data processing rate in

virtual machines, and then particularly with respect to the Java program language.

" The invention is not restricted to Java, but can be applied with many program languages,

although the invention is described below primarily with reference to Java.

The method is intended for use with adaptive optimisation of a program. In adaptive
optimisation, the program is restructured and different parts of the program are optimised
as the program is run. The general problem of increasing data processing capacity resides

in the rapid creation of new memory sites, since the longer the program i1s run, the more

memory space 1s required.

Java and other dynamic program languages include an automatic memory management.
This means that the programmer need not keep an account of those parts of the memory
that are used. The virtual machine carries out a so-called garbage collection from time to
time, meaning, in principle, that the virtual machine scans the entire memory and finds
which objects have been stored in the memory and which the program can no longer

address. These parts of the memory are returned for later use.

Java also includes methods for so called thread management methods. Thus, Java
incorporates a system for supporting or simulating the simultaneous processing of two or
more programs. The thread management can be divided into two parts. One part concerns
the manner in which different threads are structured in a controlled manner. Another part 1s

concerned with which threads shall be run and which threads shall be passive and wait to

be run.

10

15

20

235

30

CA 02389168 2002-04-26

WO 01/31455 g PCT/SE00/02096

In order to further increase effectiveness and place occupied memory space at the disposal
of the program, it is not sufficient to solely optimise the memory with respect to the

objects.

The present invention solves this problem.

The present invention thus relates to a method of improving the effectiveness of a data

processing application when using a virtual machine, where the program includes many

- methods, i.e. program sections, that are stored in the memory of the computer used, and

where garbage collecting is used by said program, wherein the inventive method is
characterised by a first step in which all so-called thread stacks are analysed with respect to
methods required thereby; a second step in which each of the methods required 1s caused to
be regenerated where occurrent references to a method are replaced with reterence to
regenerated methods prior to the regeneration of a method; and by a third step which all

non-regenerated methods are erased, wherein the corresponding memory space 1s placed at

the disposal of said program.

The present invention will now be described in more detail partly with reference to an
exemplifying. embodiment of the invention shown on to the accompanying drawing, 1n
which

- Figure 1 1s a block diagram,;

- Figure 2 illustrates old methods; and

- Figure 3 illustrates methods regenerated in accordance with the invention.

Figure 1 shows that a Java virtual machine, JVM, can be used to run different data
programs 1, 2, 3, regardless of whether the operative system is WinNT, LINUX, Solaris or
some other system. As mentioned above, although Java 1s a very popular program
language, the present invention is not restricted to this language but can be applied to all

object-orientated and platform-independent corresponding program languages.

The present invention thus relates to a method of improving the effectiveness of a data
processing application when using a virtual machine, wherein the program includes a large
number of methods, i.e. program sections, that are stored in the memory of the computer

used, and wherein a garbage collecting process is used by the program.

10

15

20

25

30

CA 02389168 2002-04-26

WO 01/31455 3 PCT/SE00/02096

It is previously known to garbage collect objects and therewith erase objects that are no

longer in current use thereby placing corresponding memory capacity at disposal.

In large systems, many methods, i.e. program sections, are used one or a few times, or

methods are applied for a short period of time and then left unused.

In the case of Java and corresponding programs, new methods are loaded and old methods

left unused.

Furthermore, adaptive optimisation results in the optimisation and re-optimisation of

methods placed in the memory, where old methods are left unused.

When optimising lock mechanism selection and garbage collection selection, it 1s

necessary to replace all used methods that use old mechanisms with new mechanisms.

According to the invention, all so called thread stacks are analysed with respect to the

methods required, in a first step of the inventive method. In a second step, each of the

methods required is regenerated, where occurrent references to a method are replaced with

references to regenerated methods prior to said regeneration. In a third step, all non-
regenerated methods are erased and the corresponding memory space placed at the disposal

of the program.

This procedure does not only clean-out unused methods, but also results in a reorganisation
between those methods that have been regenerated, so as to direct references of the
methods immediately to a regenerated method instead of proceeding via an old method that

is no longer used.

This is illustrated in Figures 2 and 3, of which Figure 2 illustrates old methods and Figure

3 illustrates used regenerated methods. Three methods foo, apa and bar are shown in

Figure 2. Foo starts on the memory address 4711. Apa starts on the address 4714 and bar
starts on the address 4720.

10

15

20

25

30

CA 02389168 2002-04-26

WO 01/31455 4 PCT/SE00/02096

Analysis of the thread stacks shows that only the methods foo and bar are used, and

consequently foo and bar have not been referenced to the method apa.

The method foo and bar are regenerated to those methods illustrated in Figure 3. In this
case, the methods foo and bar are recreated precisely, although with the difference that the

methods obtain new addresses and that then the foo reference to bar points to the new bar

address 4903.

~ All old methods, i.e. the methods in Figure 2, are erased and the memory spaces previously

occupied by these methods are vacated for further use.

When garbage collection of objects takes place, running of the program normally stops
while garbage collection takes place. Running of the program 1is restarted subsequent to the

garbage collection and to the erasure of objects that are not 1n use.
Such a method can be used when applying the present invention.

However, it is very much preferred to use the following method 1nstead.

When practicing the inventive method, one thread is stopped at a time whilst the program
is running, wherewith methods used for a stopped thread are transferred to a list and the
thread then restarted. The methods in the list are then regenerated and stored. All threads
are later caused to be stopped at the same time, subsequent to having treated all threads in
this way, namely so that all used methods relating to the threads concerned have been

regenerated. All methods that have not been regenerated are erased and all threads are

restarted with the regenerated methods.

This method obviates the need to stop running the program, since the regeneration takes

place intermittently.

As before mentioned, lock mechanisms are used in Java and corresponding languages.
Different lock mechanisms can be selected. The important thing 1s to select the lock
mechanism that is the most effective in preventing more than one thread having access to a

given object at the same time as another thread.

10

15

20

25

30

CA 02389168 2002-04-26

WO 01/31455 5 PCT/SE00/02096

A synchronisation problem exists when several threads desire access to one and the same
object or source. In order to solve this problem in Java, each thread endeavours to reach the
source lock. The source lock mechanism can be used in various ways. The effectiveness of
different lock mechanisms will depend on how threads endeavour to obtain access to

synchronised sources.

According to a preferred embodiment, when locking mechanisms are used the most

- effective locking mechanisms are identified in a step prior to said first step, and the

methods that use a thus identified locking mechanism are regenerated.

With respect to garbage collecting algorithms, these also need to be selected. Many object
orientated languages use garbage collection. This means that the programmer need not
instruct the system explicitly that a certain object is no longer required. The system is
responsible for this detection, and reclaims the part of the memory occupied by the object.
A number of different algorithms have been proposed for effective implementation of this
detection and reclaim. It has been found that different algorithms are best tor different
applications. The choice of the best garbage collecting algorithm for the program

application being run is highly significant in achieving maximum execution rate in respect

of the program concerned.

According to another preferred embodiment of the invention, when different garbage
collecting algorithms are used the allocation and length of life of the various objects are
determined in a step prior to said first method step, whereafter the most effective garbage
collecting algorithm is caused to be identified and the methods constituting the requisite

garbage collecting algorithms are regenerated and remaining garbage collecting algorithms

then erased.

Application of the preferred embodiments provides a highly effective method tor

- optimising codes, threads and memory management, where a generic feature resides 1n the

identification and regeneration of methods so as to not load the system with unused

methods.

10

15

20

235

CA 02389168 2002-04-26

WO 01/31455 6 PCT/SE00/02096
CLAIMS
1. A method for improving the effectiveness of a data processing application when

using a virtual machine, wherein the program includes a large number of methods, 1.e.
program sections, that are stored in the memory of the computer used, and wherein the
program uses a garbage collecting procedure, characterised by analysing 1n a first step all
so called thread stacks with respect to the methods required thereby; causing each of said

requisite methods to be regenerated in a second step, wherein occurring references to a

- method prior to regeneration are replaced with references to regenerated methods; and by

erasing all non-regenerated methods in a third step and placing corresponding memory

space at the disposal of the program.

2. A method according to Claim 1, characterised by causing one thread at a time to be
stopped as the program is run; transferring methods used for a stopped thread to a list, and
thereafter restarting the thread; regenerating and storing the methods 1n said list; causing
all threads to be stopped simultaneously subsequent to having treated all threads in said
fashion; erasing all methods that have not been regenerated and restarting all threads with

the regenerated methods.

3. A method according to Claim 1 or 2, characterised by, when locking mechanisms
are used, i1dentifying the most effective locking mechanism In a step prior to said first

method step; and regenerating those methods that use a thus identified locking mechanism.

4. A method according to Claim 1, 2 or 3, characterised by, when different garbage
collecting algorithms are used, determining the allocation and length of life of the various
objects in a step prior to said first method step, and then identifying the most effective
garbage collecting algorithm; regenerating the methods constituting the requisite garbage

collecting algorithms; and erasing remaining garbage collecting algorithms.

CA 02389168 2002-04-26

WO 01/31455 PCT/SE00/02096
1/1

Tiq 1

== e

foo () L£o0ny, ()

{ {
X} 4711: x X/ 41%800: x
bar () ; 4712; call 4720 bar(); 490]; call 4903
y;: 4713: y I 4902: y
} . }
apa () bhar()
{ {
4714: . . 4903: .
4715: .]
4716: .
4717: .
4718: .
} 4719: .
bar()
{

} 4720: .

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - claims
	Page 9 - drawings

