(54) 发明名称
二极管箱位型五电平双降压式半桥逆变器

(57) 摘要
本发明公开了一种二极管箱位型五电平双降压式半桥逆变器，包括第一五电平降压电路、第二五电平降压电路、直流电源输入电路、负载电路。采用电压电流双闭环 SPWM 控制，根据电感电流的方向和输出电压的大小，控制两个五电平降压电路半周期工作，通过不同的开关组合，分别在两个输出桥臂得到五电平的 PWM 调制波输出。本发明的优点是：保留了双降压电路无桥臂直流、无开关管体二极管反向恢复问题的优点；实现了五电平输出，输出电压谐波含量减小，有助于减小滤波器，同时可以降低 PWM 调制部分的开关频率，降低开关损耗，提高效率；同半桥型逆变器相比，功率器件电压应力降低，功率器件电压应力降低，使得中小功率的开关器件可适用于高压、大功率的场合；电路中只需 8 个功率二极管，与桥式五电平二极管箱位型逆变器相比，二极管数量减小了 1/3，电路得到了简化。
1. 一种二极管管位型五电平双极型半桥逆变器，包括第一五电平降压电路 (1)、第二五电平降压电路 (2)、直流电源输入电路 (3)、负载电路 (4)，及第一五电平降压电路 (1) 中，第一功率开关管 (S1) 的源极与第一电容 (C1) 的正极连接，第一功率开关管 (S2) 的源极与第二功率开关管 (S3) 的漏极连接，第二功率开关管 (S3) 的源极与第三功率二极管 (D1) 的阴极连接，第三功率二极管 (D1) 的阳极与第二功率二极管 (D2) 的阴极连接，第二功率二极管 (D2) 的阳极与第一功率二极管 (D3) 的阴极连接，第一功率二极管 (D3) 的阳极与第四电容 (C4) 的负极连接，第三功率二极管 (D4) 的阳极与第一电容 (C1) 的负极连接，第二功率二极管 (D4) 的阴极与第二功率二极管 (D5) 的源极连接，第二功率二极管 (D5) 的源极与第三功率开关管 (S4) 的源极连接，第三功率开关管 (S4) 的源极与第四功率二极管 (D6) 的阳极连接，第二功率二极管 (D6) 的阴极与第三功率二极管 (S5) 的源极连接，第四功率开关管 (S5) 的漏极与第四电容 (C4) 的正极连接，第四功率开关管 (S5) 的源极与第一功率二极管 (D1) 的阴极连接，第一电感 (L1) 的一端与第二功率开关管 (S1) 的源极连接，第一电感 (L1) 的另一端接入外部负载 (4)；第一五电平降压电路 (2) 中，第五功率开关管 (S6) 的源极与第四电容 (C4) 的负极连接，第五功率开关管 (S6) 的源极与第六功率开关管 (S7) 的漏极连接，第六功率开关管 (S7) 的源极与第五功率二极管 (D6) 的阳极连接，第一功率开关管 (S8) 的源极与第二功率二极管 (D7) 的阴极连接，第二功率二极管 (D7) 的阳极与第一电容 (C1) 的负极连接，第二功率二极管 (D7) 的阴极与第二功率二极管 (D8) 的阳极连接，第二功率二极管 (D8) 的阴极与第四电容 (C4) 的正极连接，第二功率二极管 (D8) 的阴极与第五功率开关管 (S9) 的漏极连接，第六功率开关管 (S9) 的源极与第六功率二极管 (D10) 的阳极连接，第六功率二极管 (D10) 的阴极与第五功率二极管 (D11) 的阳极连接，第一功率开关管 (S10) 的源极与第一电容 (C1) 的负极连接，第一功率开关管 (S10) 的源极与第四电容 (C4) 的正极连接，第一功率开关管 (S10) 的漏极与第七功率二极管 (D12) 的阳极连接，第七功率二极管 (D12) 的阳极与第六功率二极管 (D13) 的阴极连接，第八功率开关管 (S11) 的源极与第二电容 (C2) 的正极连接，第八功率开关管 (S11) 的漏极与第七功率二极管 (D12) 的阳极连接，第二电感 (L2) 的一端与第六功率开关管 (S9) 的漏极连接，第二电感 (L2) 的另一端与第一电容 (L1) 的另一端相连接接入外部负载 (4)；直流电源输入电路 (3) 连接方式为，直流电源 (U0) 的正极与第一电容 (C1) 的正极连接，直流电源 (U0) 的负极与第四电容 (C4) 的负极连接，第二电容 (C1) 的正极与第一电容 (C1) 的负极连接，第二电容 (C2) 的负极接地，第三电容 (C3) 的正极接地，第三电容 (C3) 的负极与第四电容 (C4) 的正极连接；负载电路 (4) 连接方式为，滤波电容 (C5) 的一端接入第一电感 (L1) 的另一端与第二电感 (L2) 的另一端之间，滤波电容 (C5) 的另一端接地，负载电阻 (R) 的一端与滤波电容 (C1) 的一端连接，负载电阻 (R) 的另一端接地。
二极管箝位型五电平双降压式半桥逆变器

一、技术领域
[0001] 本发明涉及一种逆变器，具体涉及一种二极管箝位型五电平双降压式半桥逆变器。

二、背景技术
[0002] 双降压式逆变器（Dual Buck Inverter——以下简称DBI）是近年来出现的一种新型的逆变器拓扑。相比传统的桥式逆变器，DBI 具有无桥臂直通的高可靠性和无开关管寄生二极管反向恢复问题的独特优点。工作于单周模式下的DBI无环流存在，为实现逆变器的高频化和高效率提供了一种简洁的途径，是一种具有研究价值和发展前景的新结构。DBI和半桥逆变器具有很多相似的地方，下文将两者通称为半桥型逆变器。半桥型逆变器需要外接正负直流母线电压，其幅值超过输出电压最大值的两倍，器件电压应力大，直流电压利用率低；桥臂只能输出±1和±1两态电平，工作于双极性调制方式，桥臂输出波形谐波含量大，需要高的开关频率和大的滤波器。以上两点也是半桥型逆变器的缺点。

[0003] 近年来，多电平技术得到人们的更多关注和研究。由于器件制造技术的限制，功率半导体器件的耐压是有限的。在高压变换器中，可将功率管串联使用，但其耐压参数的不一致和开关瞬态的不一致，很难实现稳态和瞬态过程的均压，导致个别功率管的过压，降低了电路的可靠性。多电平技术是解决功率管串联问题的一个好办法，它能保证功率管承受的电压应力在稳态和瞬态过程中均值低于母线电容的电压。引入多电平技术的五电平双降压式半桥逆变器同时可使桥臂输出变为五电平。

三、发明内容
[0004] 1、技术问题：本发明要解决的技术问题是在保留DBI高可靠性和高效率特点的同时，解决其器件电压应力高，桥臂输出谐波含量大等缺点。

[0005] 2、技术方案：为了解决上述的技术问题，本发明的二极管箝位型五电平双降压式半桥逆变器拓扑结构包括第一五电平降压小电路1，第二五电平降压电路2，直流电源输入电路3，负载电路4，其中，第一功率开关管S1的源极与第一续流管C1的正极连接，第一功率开关管S1的源极与第二功率开关管S2的漏极连接，第二功率开关管S2的源极与第一功率二极管D1的阴极连接，第二功率二极管D1的阳极与第一功率二极管D1的阴极连接，第二功率二极管D2的阳极与第二电容C2的负极连接，第三功率二极管D3的阳极与第一电容C1的负极连接，第三功率二极管D3的阴极与第一功率开关管S3的源极连接，第三功率开关管S3的漏极接地，第三功率开关管S3的源极与第四功率二极管D4的阳极连接，第四功率二极管D4的阴极与第二功率二极管S2的源极连接，第四功率开关管S4的漏极与第四电容C4的正极连接，第四功率开关管S4的源极与第一功率二极管D1的阴极连接，第一电感L1的一端与第二功率开关管S2的源极连接，第一电感L1的另一端接入外界负载电路4；第二五电平降压电路2中，第五功率开关管S5的源极与第四电容C4的负极连接，第五功率开关管S5的漏极与第六功率开关管S6的源极连接，第六功率开关管S6的漏极与第六功率
二极管 D0 的阳极连接，第六功率二极管 D6 的阴极与第五功率二极管 D5 的阳极连接，第五功率二极管 D5 的阴极与第一电容 C1 的正极连接，第八功率二极管 D8 的阴极与第四电容 C4 的正极连接，第八功率二极管 D8 的阳极与第五功率开关管 S5 的漏极连接，第七功率开关管 S7 的源极接地，第七功率开关管 S7 的漏极与第七功率二极管 D7 的阴极连接，第七功率二极管 D7 的阳极与第六功率二极管 D6 的阴极连接，第八功率开关管 S8 的源极与第二电容 C2 的正极连接，第八功率开关管 S8 的漏极与第五功率二极管 D5 的阳极连接，第二电感 L2 的另一端与第六功率开关管 S6 的漏极连接，第二电感 L2 的另一端与第一电感 L1 的另一端相连接入外界负载 4，直流电源输入电路 3 连接方式为，直流电源 U4 的正极与第一电容 C1 的正极连接，直流电源 U4 的负极与第四电容 C4 的负极连接，第二电容 C2 的正极与第一电容 C1 的负极连接，第二电容 C2 的负极接地，第三电容 C3 的正极接地，第三电容 C3 的负极与第四电容 C4 的正极连接，负载电阻 R 的连接方式为，滤波电容 C0 的一端接入第一电感 L1 的另一端与第二电感 L2 的另一端之间，滤波电容 C0 的另一端接地，负载电阻 R 的一端与滤波电容 C0 的一端连接，负载电阻 R 的另一端接地。

【0006】本发明的二极管并联型五电平双降压式半桥逆变器包含两个五电平降压电路，其输入侧接电源电路单元，其输出侧接输出滤波电容和负载电路。该电路保留了双降压式半桥逆变器的特点：电路没有桥式电路直接通的隐患；续流电流从功率二极管通过，无开关器件体二极管反向恢复问题。二极管并联型五电平双降压式半桥逆变器的源电输出电压为五电平 PWM 调制波，相对于双降压式半桥逆变器的两电平桥臂输出，谐波含量大为降低，所需滤波器大为减小。输出电流结构并不复杂，控制方案也较简单。采用电压电流双闭环 PWM 控制，保证逆变器电路在正常工作时不需任何偏置电流，根据电感电流的方向和输出电压的大小，控制两个五电平降压电路半周期工作，通过不同的开关组合，分别在两个输出桥臂得到五电平的 PWM 调制波输出。

【0007】有益效果：本发明具有如下优点：（1）保留了双降压电路无桥臂通的隐患，无开关器件体二极管反向恢复问题的优点；（2）实现了五电平输出，输出电压谐波含量减小，有助于减小滤波器，同时可以降低 PWM 调制部分的开关频率，降低开关损耗，提高效率；（3）同传统半桥型逆变器相比，功率器件电压应力降低，使得中小功率的开关器件可适用于高压、大功率的场合。 （4）电路中只需 8 个功率二极管，与桥式五电平双极管并联型逆变器相比，二极管数量减小了 1/3，滤波电路得到了简化。

四、附图说明

【0008】图 1 是本发明的二极管并联型五电平双降压式半桥逆变器拓扑结构示意图，图 1 中的标号名称：1. 第一五电平降压电路；2. 第二五电平降压电路；3. 直流电源输入电路；4. 负载电路。

【0009】图 2 是本发明的二极管并联型五电平双降压式半桥逆变器拓扑各开关模态示意图。

【0010】图 3 是本发明的二极管并联型五电平双降压式半桥逆变器拓扑的主要波形示意图。

【0011】图 4 是本发明的二极管并联型五电平双降压式半桥逆变器采用的控制箱图。

【0012】上述附图中的主要符号名称：C0——输出滤波电容；D0～D8——功率二极管；S0～
S₈——功率开关管；Vs₁～Vs₈——S₁～S₈的驱动信号；C₁～C₄——直流输入分压电容；
Uₒ——直流输入电压；U₁～U₂——滤波电感；R——输出负载；I₁——滤波电感L₁上的电流；
I₁₂——滤波电感L₂上的电流；I₅——输出电感电流；U₅——桥臂A点输出电压；U₆——桥臂
B点输出电压；Uₛ——输出电压；Uₐₒ₉₉——输出电压Uₒ的最大值。

五、具体实施方式

[0013] 如图1所示，本发明的二极管箱位型五电平双降压式半桥逆变器的特征在于：第
一五电平降压电路1中，第一功率开关管S₁的源级与第一电容C₁的正极连接，第一功率开
关管S₁的源级与第二功率开关管S₂的漏级连接，第二功率双极管D₁的源级与第一功率双极
管D₁的阴级连接，第一功率双极管D₁的阳级与第二功率双极管D₂的阴极连接，第二功率双
极管D₂的阳极与第四电容C₄的负极连接，第三功率双极管D₃的阳极与第一电容C₁的负极
连接，第三功率双极管D₃的阴级与第一功率开关管S₁的漏级连接，第三功率双极管D₃的
阴级与第四功率双极管D₄的阳极连接，第四功率双极管D₄的阴极与第四电容C₄的正极连接，
第四功率双极管D₅的正极与第一功率开关管S₁的源级连接，第一电感L₁的另一端与第二
功率开关管S₂的源级连接，第一电感L₁的另一端接入外界负载电路4；第二五电平降压电
路2中，第五功率开关管S₅的源级与第四电容C₄的负极连接，第五功率开关管S₅的源级与
第六功率开关管S₆的源级连接，第六功率开关管S₆的漏级与第六功率双极管D₆的阳极连
接，第六功率双极管D₆的阴级与第五功率双极管D₅的阳极连接，第五功率双极管D₅的
阴级与第一电容C₁的正极连接，第七功率开关管S₇的源级接地，第七功率开关管S₇的漏级
与第七功率双极管D₇的阴极连接，第七功率双极管D₇的阳极与第六功率双极管D₆的阳极连
接，第八功率双极管D₈的阴级与第四电容C₄的正极连接，第八功率双极管D₈的阳极与第五
功率开关管S₈的漏级连接，第八功率开关管S₈的源级与第二电容C₂的正极连接，第八功率开
关管S₈的漏级与第五功率双极管D₆的阳极连接，第二电感L₂的另一端与第六功率开关管S₆
的漏级连接，第二电感L₂的另一端与第一电感L₁的另一端相连接入外界负载4；直流电源
输入电路3连接方式为，直流电源Uₒ的正极与第一电容C₁的正极连接，直流电源Uₒ的负极
与第四电容C₄的负极连接，第二电容C₂的正极与第一电容C₁的负极连接，第二电容C₂的
负极接地，第三电容C₃的正极接地，第三电容C₃的负极与第四电容C₄的正极连接；负载电路
4连接方式为，滤波电容C₅的一端接入第一电感L₁的另一端与第二电感L₂的另一端之间，
滤波电容C₅的另一端接地，负载电阻R的一端与滤波电容C₅的一端连接，负载电阻R的另一
一端接地。

[0014] 本发明的二极管箱位型五电平双降压式半桥逆变器工作原理是：输出电感电流i₅
的正半周期时，第一五电平降压电路1工作，第二五电平降压电路2不工作，根据输出电压
Uₒ的大小，将电路分为4个工作区间，7个工作模态，通过合适的开关组合状态在桥臂A点输
出±Uₒ/2，±Uₒ/4，0五种电平；电感电流流过全周期时，第二五电平降压电路2工作，第一五电
平降压电路1不工作，电路也分4个工作区间，7个工作模态，选择恰当的开关组合在桥臂B
点输出五电平。

[0015] 下面以图1所示为主电路结构，结合图2叙述本发明的二极管箱位型五电平双降
压式半桥逆变器的工作原理和工作模态，对应的电路关键波形见附图3；
[0016] 1、在输出电感电流 i_L 大于零的半个周期内：
[0017] 第一五电平降压电路 1 工作，第二五电平降压电路 2 不工作，S₅、S₆、S₇、S₈ 断开，此时，根据输出电压的大小共有 4 个阶段，7 个工作模态：
[0018] (1) $t₀ \sim t₁$ 时
[0019] 输出电压 $u_o < -U_{max}/2$，此阶段，开关管 S₅ 高频调制，电路在以下两个工作模态之间切换：
[0020] 工作模态 1：如图 2(a) 所示，开关管 S₁、S₂、S₃ 都断开，电感电流 i_L 从二极管 D₁、D₂ 续流，线性下降，桥臂 A 点输出 $-U_o/2$ 电平。
[0021] 工作模态 2：如图 2(b) 所示，开关管 S₅ 断开，S₂、S₃、S₄ 断开，二极管 D₂ 反向偏置不导通，i_L 线性上升，桥臂 A 点输出 $-U_o/4$ 电平。
[0022] (2) $t₁ \sim t₂$ 时
[0023] 输出电压 $-U_{max}/2 < u_o < 0$，输出电流 $i_L > 0$，此阶段 S₅ 常闭，S₅ 高频调制，电路交替工作于以下两个工作模态：
[0024] 工作模态 3：如图 2(c) 所示，开关管 S₁、S₂、S₃ 断开，二极管 D₁ 反向偏置不导通，i_L 线性上升，桥臂 A 点输出 0 电平。
[0025] 工作模态 4：如图 2(d) 所示，开关管 S₁、S₂、S₃ 断开，i_L 通过 D₂ 续流，线性下降，桥臂 A 点输出 0 电平。
[0026] (3) $t₂ \sim t₃$ 时
[0027] 输出电压 $0 < u_o < U_{max}/2$，此阶段 S₅ 常闭，S₅ 高频调制，电路交替工作于模态 4 和 5。
[0028] 工作模态 5：如图 2(e) 所示，开关管 S₁、S₂、S₃ 断开，二极管 D₂ 反向偏置不导通，i_L 线性上升，桥臂 A 点输出 $U_o/4$ 电平。
[0029] 工作模态 6：如图 2(f) 所示，开关管 S₁、S₂ 断开，二极管 D₃ 反向偏置不导通，i_L 线性上升，桥臂 A 点输出 $U_o/4$ 电平。
[0030] (4) $t₃ \sim t₄$ 时
[0031] 输出电压 $u_o > U_{max}/2$，此阶段 S₅ 常闭，S₅ 高频调制，电路交替工作于模态 6 和 7。
[0032] 工作模态 7：如图 2(g) 所示，开关管 S₁、S₂ 断开，二极管 D₃ 反向偏置不导通，i_L 线性上升，桥臂 A 点输出 $U_o/2$ 电平。
[0033] 工作模态 8：如图 2(h) 所示，S₅、S₆、S₇、S₈ 都断开，电感电流 i_L 从二极管 D₅、D₆ 续流，线性下降，桥臂 B 点输出 $U_o/2$ 电平。
[0034] 工作模态 9：如图 2(i) 所示，S₅ 断开，S₆、S₇、S₈ 断开，电感电流 i_L 线性上升，桥臂 B 点输出 $U_o/4$ 电平。
[0040] (6) t₅ ~ t₆ 段

[0041] 输出电压 0 < u₀ < Uₘₐₓ/2，此阶段 S₅ 常闭，S₇ 高频调制，S₆ S₈ 断开，电路在以下两个工作模态之间切换。

[0042] 工作模态 9: 同上，但此时电感电流 i₁₂ 为续流模式，线性下降，在桥臂 B 点输出 U₀/4 电平。

[0043] 工作模态 10: 如图 2(j) 所示，S₇、S₈ 闭合，S₃、S₆ 断开，D₆ 反向偏置不导通，i₁₂ 线性上升，桥臂 B 点输出 0 电平。

[0044] (7) t₆ ~ t₇ 段

[0045] 输出电压 -Uₘₐₓ/2 < u₀ < 0，此阶段 S₇ 常闭，S₆ 高频调制，S₃、S₆ 断开，电路交替工作于以下两个工作模态。

[0046] 工作模态 11: 如图 2(k) 所示，S₇ 闭合，S₃、S₆、S₈ 断开，电感电流 i₁₂ 从二极管 D₇ 续流，线性下降，桥臂 B 点输出 0 电平。

[0047] 工作模态 12: 如图 2(l) 所示，S₃、S₇ 闭合，S₃、S₈ 断开，D₇ 反向偏置不导通，电感电流 i₁₂ 线性上升，二极管 D₇ 反向偏置不导通，桥臂 B 点输出 -U₀/4 电平。

[0048] (7) t₇ ~ t₈ 段

[0049] 输出电压 u₀ < -Uₘₐₓ/2，此阶段 S₆ 常闭，S₃ 高频调制，S₇、S₈ 断开，电路在以下两个模态之间切换。

[0050] 工作模态 13: 如图 2(m) 所示，S₆ 闭合，S₃、S₇、S₈ 断开，电感电流 i₁₂ 从二极管 D₈ 续流，线性下降，桥臂 B 点输出 -U₀/4 电平。

[0051] 工作模态 14: 如图 2(n) 所示，S₃、S₆ 闭合，S₇、S₈ 断开，电感电流 i₁₂ 线性上升，桥臂 B 点输出 -U₀/2 电平。

[0052] 为实现以上的工作原理，采用的控制方案如图 4: 图中，uᵣ 是电压基准，uᵣ 经过过零比较器后得到电压周期信号 uᵣ，iᵣ 为电压环输出，作为电感电流基准，iᵣ 是表示电感电流周期，uᵣ 为门限电压，通常取 uᵣ 最大值的 1/2，Vₛ₁ ~ Vₛ₈ 表示 8 路开关管驱动信号。整个系统采用电压电流双闭环控制，电压外环为 PI 调节，电流内环采用 P 调节，调制方式为 SPWM 调制。根据输出电感电流的方向，控制电路工作于半周期模式，同时，根据输出电压的大小将整个电路分为 8 个工作区间，通过逻辑电路选择合适的开关组合状态，在桥臂 A 点和 B 点输出五电平调制波，经过滤波后得到输出电压 u₀。
图 1