
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/025737.6 A1

LTTLE et al.

US 2010O25.7376A1

(43) Pub. Date: Oct. 7, 2010

(54)

(76)

(21)

(22)

(63)

SYSTEMAND METHOD FOR
MANAGEMENT OF PLAINTEXT DATA INA
MOBILE DATA PROCESSING DEVICE

Herbert A. LITTLE, Waterloo
(CA); Anthony Scian, Waterloo
(CA)

Inventors:

Correspondence Address:
Dimock Stratton LLP/Research InMotion Limited
20 Queen Street West, 32nd Floor, Box 102
Toronto, ON M5H3R3 (CA)

Appl. No.: 12/818,649

Filed: Jun. 18, 2010

Related U.S. Application Data

Continuation of application No. 1 1/221,196, filed on
Sep. 6, 2005, now Pat. No. 7,783,896.

250

252

Data released by
application?

identifier
262

Application Requests Data

JVM clears plaintext copy in
memory and alters plaintext

Publication Classification

(51) Int. Cl.
G06F 2/14 (2006.01)

(52) U.S. Cl. .. 713/189

(57) ABSTRACT

A handheld data processing device includes stored data that is
intended to be kept secure from unauthorized access. The
handheld data processing device includes applications that
store Such secure data and which make use of plaintext data
corresponding to the secure data. An identifier is defined to be
associated with defined plaintext data. When the handheld
data processing device is placed in a locked or secure state,
code executable on the device is able to search for plaintext
identifiers. Code executable on the device is consequently
able to display to the user whether plaintext data is stored on
the device or not.

JVM Decrypts and copies
data to memory as plaintext

JVM defines plaintext
identifier for plaintext copy

Patent Application Publication Oct. 7, 2010 Sheet 2 of 4 US 2010/0257376A1

Application

Application

Application

202

A.

204

206

Figure 2

Patent Application Publication Oct. 7, 2010 Sheet 3 of 4

Application Requests Data

Data provided to
application

258

Data released by
application?

260
Yes

JVM clears plaintext Copy in
memory and alters plaintext

identifier

Figure 3

No

US 2010/025.7376A1

JVM Decrypts and copies
data to memory as plaintext

JVM defines plaintext
identifier for plaintext copy

Patent Application Publication Oct. 7, 2010 Sheet 4 of 4 US 2010/0257376A1

Secure State Request

JVM checks plaintext
identifiers

282

280

Clear plaintext from memory

Notification Plaintext identifiers
found?

284

Enter Secure State

290

Figure 4

US 2010/025737.6 A1

SYSTEMAND METHOD FOR
MANAGEMENT OF PLAINTEXT DATAN A
MOBILE DATA PROCESSING DEVICE

REFERENCE TO PRIORAPPLICATIONS

0001. This application is a continuation of U.S. applica
tion Ser. No. 1 1/221,196, filed Sep. 6, 2005.

FIELD OF INVENTION

0002 This invention relates to mobile data processing sys
tems and devices. In particular, this invention relates to a
system and method for managing plaintext data in memory of
a mobile data processing device.

BACKGROUND OF THE INVENTION

0003. The use of mobile data processing devices has
increased significantly in recent years. In addition to so called
"laptop' and “tablet computers, there is a growing popular
ity in handheld mobile data processing devices, sometimes
called “personal digital assistants’ or “PDAs as well as
Smart phones. These mobile data processing devices are
capable of storing a significant amount of user data, including
calendar, address book, tasks and numerous other types of
data for business and personal use. Most handheld data pro
cessing devices have the ability to connect to a personal
computer for data exchange, and many are equipped for wire
less communications using, for example, conventional email
messaging systems. Depending upon the user's needs much
of this data can be highly sensitive in nature, for example,
where the device is used in government, the military or a
commercial enterprise.
0004 Because of their mobile nature, such devices may be
lost or stolen with the consequential risk that data on the
devices will be accessed by unauthorized individuals. For this
reason, mobile data processing systems are typically pass
word protected. However, such protection may be insuffi
ciently secure if the data stored on the device is not encrypted.
Accordingly, data stored in persistent memory on a handheld
device is typically encrypted using an encryption key. For the
data to be accessed by an application executing on the device,
a decrypted copy of the encrypted data, or plaintext data, is
made available for use by the application. The plaintext data
may be used in processing carried out by the application, may
be displayed on the device for viewing by the user, or may be
sent to other users through email or other delivery means.
Since the plaintext data is by definition not encrypted, an
unauthorized user of the device may be able to view, copy or
transmit an unencrypted copy of the data if such a user gains
access to the device.

BRIEF DESCRIPTION OF THE DRAWINGS

0005. In drawings which illustrate by way of example only
a preferred embodiment of the system,
0006 FIG. 1 is a block diagram of a system overview of a
conventional mobile data processing device.
0007 FIG. 2 is a block diagram showing an example rela
tionship between the Java virtual machine, applications and
plaintext data according to the preferred embodiment.
0008 FIG. 3 is a flowchart showing steps in marking
plaintext data and clearing plaintext data in accordance with
an implementation of the preferred embodiment.

Oct. 7, 2010

0009 FIG. 4 is a flowchart showing steps for placing a
device in a secure State in accordance with an implementation
of the preferred embodiment.

DETAILED DESCRIPTION OF THE INVENTION

0010. According to an aspect of the invention, when an
application executing on a mobile data processing device
decrypts secure data into plaintext, an identifier is created that
is associated with that plaintext data and its location in
memory. If an application creates copies of the plaintext data,
or generates new plaintext data, additional identifiers are
created to track the plaintext data in memory.
0011. According to another aspect of the invention, when
the mobile data processing device is “locked, or transferred
to a secure State, a process executes which accesses memory
in the device to identify any plaintext data in memory. A
display is provided to the user to indicate whether or not there
is plaintext data remaining in the device memory. Since there
are identifiers associated with each piece of sensitive plain
text data, the process operating to access the memory of the
device effectively evaluates the success of the device entering
a secure state. This provides feedback to the user intended to
prevent the user from considering the system to be secure
when, in reality, there are still plaintext objects remaining in
the device memory.
0012. According to one aspect of the invention, there is
provided a method of monitoring the use of decrypted plain
text data and ensuring that all plaintext data has been cleared
from memory when the device enters a secure state.
0013 An aspect of the present invention further provides a
system for evaluating the performance of applications and
ensuring that all plaintext data created by an application can
be cleared from the system.
0014. The present invention further provides a method of
securing a device to ensure no decrypted data remains in
memory after the device has entered the secure state.
0015. A preferred embodiment of the system of the inven
tion will be described in detail below, by way of example only,
in the context of a hand-held mobile data processing device
having wireless communications capabilities as illustrated in
FIG. 1. However, it will be appreciated that the principles
apply to other data processing devices and the system is not
intended to be limited thereby.
0016. The hand-held data processing devices 10 include a
housing, a keyboard 14 and an output device 16. The output
device shown is a display 16, which is preferably a full
graphic LCD. Other types of output devices may alternatively
be utilized. A processor 18, which is shown schematically in
FIG. 1, is contained within the housing and is coupled
between the keyboard 14 and the display 16. The processor 18
controls the operation of the display 16, as well as the overall
operation of the mobile device 10, in response to actuation of
keys on the keyboard 14 by the user.
0017. The housing may be elongated vertically, or may
take on other sizes and shapes (including clamshell housing
structures). The keyboard may include a mode selection key,
or other hardware or software for switching between text
entry and telephony entry.
0018. In addition to the processor 18, other parts of the
mobile device 10 are shown schematically in FIG. 1. These
include communications Subsystem 100; short-range com
munications subsystem 102; keyboard 14 and display 16,
along with other input/output devices 106, 108, 110 and 112:
as well as memory devices 116, 118 and various other device

US 2010/025737.6 A1

subsystems 120. Mobile device 10 is preferably a two-way
RF communication device having Voice and data communi
cation capabilities. In addition, mobile device 10 preferably
has the capability to communicate with other computer sys
tems via the Internet.
0019 Operating system software executed by the proces
sor 18 is preferably stored in a persistent store, such as a flash
memory 116, but may be stored in other types of memory
devices, such as a read only memory (ROM) or similar stor
age element. In addition, System software, specific device
applications, or parts thereof, may be temporarily loaded into
a volatile store, such as memory 118 which may be random
access memory (RAM). Communication signals received by
the mobile device may also be stored to memory 118.
0020. The processor 18, in addition to its operating system
functions, enables execution of software applications 130A
130N on the device 10. A predetermined set of applications
that control basic device operations, such as data and Voice
communications 130A and 130B, may be installed on the
device 10 during manufacture. In addition, a personal infor
mation manager (PIM) application may be installed during
manufacture. The PIM is preferably capable of organizing
and managing data items, such as e-mail, calendar events,
Voice mails, appointments, and task items. The PIM applica
tion is also preferably capable of sending and receiving data
items via a wireless network 140. Preferably, the PIM data
items are seamlessly integated, synchronized and updated via
the wireless network 140 with the device user's correspond
ing data items stored or associated with a host computer
system.
0021 Communication functions, including data and Voice
communications, are performed through the communication
Subsystem 100, and possibly through the short-range com
munications Subsystem. The communication Subsystem 100
includes a receiver 150, a transmitter 152, and one or more
antennas 154 and 156. In addition, the communication sub
system 100 also includes a processing module. Such as a
digital signal processor (DSP) 158, and local oscillators
(LOs) 160. The specific design and implementation of the
communication Subsystem 100 is dependent upon the com
munication network in which the mobile device 10 is
intended to operate. For example, a mobile device 10 may
include a communication Subsystem 100 designed to operate
with the MobitexTM, Data TACTM or General Packet Radio
Service (GPRS) mobile data communication networks and
also designed to operate with any of a variety of Voice com
munication networks, such as AMPS, TDMA, CDMA, PCS,
GSM, etc. Other types of data and voice networks, both
separate and integrated, may also be utilized with the mobile
device 10.
0022 Network access requirements vary depending upon
the type of communication system. For example, in the Mobi
tex and DataTAC networks, mobile devices are registered on
the network using a unique personal identification number or
PIN associated with each device. In GPRS networks, how
ever, network access is associated with a subscriber or user of
a device. A GPRS device therefore requires a subscriber
identity module, commonly referred to as a SIM card, in order
to operate on a GPRS network.
0023. When required network registration or activation
procedures have been completed, the mobile device 10 may
send and receive communication signals over the communi
cation network 140. Signals received from the communica
tion network 140 by the antenna 154 are routed to the receiver

Oct. 7, 2010

150, which provides for signal amplification, frequency down
conversion, filtering, channel selection, etc., and may also
provide analog to digital conversion. Analog-to-digital con
version of the received signal allows the DSP 158 to perform
more complex communication functions, such as demodula
tion and decoding. In a similar manner, signals to be trans
mitted to the network 140 are processed (e.g. modulated and
encoded) by the DSP 158 and are then provided to the trans
mitter 152 for digital to analog conversion, frequency up
conversion, filtering, amplification and transmission to the
communication network 140 (or networks) via the antenna
156.

0024. In addition to processing communication signals,
the DSP 158 provides for control of the receiver 150 and the
transmitter 152. For example, gains applied to communica
tion signals in the receiver 150 and transmitter 152 may be
adaptively controlled through automatic gain control algo
rithms implemented in the DSP 158.
0025. In a data communication mode, a received signal,
Such as a text message or web page download, is processed by
the communication Subsystem 100 and is input to the proces
sor 18. The received signal is then further processed by the
processor 18 for an output to the display 16, or alternatively to
some other auxiliary I/O device 106. A device user may also
compose data items, such as e-mail messages, using the key
board 14 and/or some other auxiliary I/O device 106, such as
a touchpad, a rocker Switch, a thumb-wheel, or some other
type of input device. The composed data items may then be
transmitted over the communication network 140 via the
communication subsystem 100.
0026. In a voice communication mode, overall operation
of the device is Substantially similar to the data communica
tion mode, except that received signals are output to a speaker
110, and signals for transmission are generated by a micro
phone 112. Alternative voice or audio I/O subsystems, such as
a voice message recording Subsystem, may also be imple
mented on the device 10. In addition, the display 16 may also
be utilized in Voice communication mode, for example to
display the identity of a calling party, the duration of a Voice
call, or other voice call related information.
0027. The short-range communications subsystem
enables communication between the mobile device 10 and
other proximate systems or devices, which need not neces
sarily be similar devices. For example, the short-range com
munications Subsystem may include an infrared device and
associated circuits and components, or a BluetoothTM com
munication module to provide for communication with simi
larly-enabled systems and devices.
0028. As will be appreciated by those skilled in the art, a
device such as that represented by device 10 in FIG.1 may be
a wireless handheld device on which confidential information
is stored and processed. In such a typical case, confidential
information will be maintained as data for which access will
be provided to authorized users, only. In the hand-held mobile
data processing device of the preferred embodiment, different
types of confidential information are stored on the device as
encrypted data in memory 116.
0029. As is set outschematically in FIG. 2, in the preferred
embodiment, one of the software modules 130A ... 130N is
Java Virtual Machine 200 (JVM 200). JVM 200 is a virtual
machine that operates to interpret Java code comprising
applications and to carry out related functions such as
memory management, all in a manner understood for virtual
machine function, and known to those skilled in the art. In the

US 2010/025737.6 A1

preferred embodiment, all applications executable on the
mobile device comprise code that is interpreted by JVM 200
and therefore device 10 may rely on the operation of JVM 200
to manage device memory 118. As will be appreciated, other
mobile processing devices may be implemented in which
memory management is carried out in other ways. Although
the description of the preferred embodiment relates to the use
of JVM 200, it will be appreciated that the memory manage
ment techniques set out will apply to other, non-Java imple
mentations or to implementations where a virtual machine
and other computing device code together carry out memory
management.
0030 FIG. 2 shows a block diagram illustrating the rela
tionship between an example JVM 200 and applications that
are interpreted by JVM 200 (shown as applications 202, 204,
206 in the example in the figure). Applications define objects
which are managed by JVM 200, shown by example in FIG.
2 as objects 208,210, 212. In typical operation, applications
202, 204, 206 will define and use objects 208, 210, 212, as
appropriate. JVM 200 will carry out memory management
tasks relating to those objects to ensure that JVM 200 makes
efficient use of the memory resources available on device 10.
This is particularly important for this mobile device environ
ment where there may be significant constraints on the
memory resources available in the device.
0031. In the preferred embodiment, JVM 200 supports
encryption of Java objects. If one of applications 202, 204,
206 requests an object that includes data stored in encrypted
memory, JVM 200 is responsible for copying the encrypted
data into its plaintext form and for then making the plaintext
data available to the application (passing the data to the appli
cation). In typical operation, after decryption of the data in the
requested object, the plaintext copy of the data is stored in
memory 118 on device 10 so as to be available to the request
ing application. In the preferred embodiment, applications
202, 204, 206, for example, are operative to request data
objects from JVM 200 and to release data objects using JVM
2OO.

0032. In a mobile data processing device, such as that on
which the preferred embodiment is implemented, it is desir
able for the memory management functionality of the device
to be carried out to assure a given level of security for infor
mation stored as data on the device. For example, it is desir
able to be able to place the device in a secure state. In a mobile
data processing device, the user will typically use applica
tions executing on the device to process data that is confiden
tial. During the time that the user is making use of such data
(using an email application to read and send email messages,
making appointments in a calendarapplication, and so on) the
device uses a plaintext copy of otherwise encrypted data.
0033. However, when the user has completed making use
of the device, it is advantageous to put the device in a secure
state in which data on the device is in an encrypted form, only
(and hence unavailable to unauthorized users). When a device
enters such a secure state, the plaintext copies of encrypted
data representing private information for the user that were
used by applications on the device, such as a task list or
calendar, are cleared from memory. In the preferred embodi
ment, a memory cleaner application is operative to send mes
sages to running applications on the device to invoke steps in
the application operation to remove copies of plaintext
objects used by the applications. In Such an arrangement each
application is relied upon to correctly act on receiving such a
message. If an application does not carry out these steps to

Oct. 7, 2010

cleanup plaintext objects correctly, the device may enter what
is intended to be a secure state with plaintext data in memory.
0034) Further, if such steps are not correctly taken, the
plaintext copies of data may be available to persons other than
the authorized user of the device. Being able to switch
between states where the plaintext data is available (for effi
cient device operation), and a state where it is not, is particu
larly important with a mobile data processing device where
the use is intermittent and unpredictable, and where the
potential for loss or theft of the device is relatively high.
0035. In the preferred embodiment, as a part of the
memory handling carried out by JVM 200, an identifier is
created and associated with the plaintext data to indicate that
the data is either derived from encrypted data or the data is
intended to be dealt with in a secure fashion on the device.
Plaintext data is typically obtained after a decryption step.
However, data which is intended to be encrypted at a future
stage in application operation, or data which is temporarily
used by an application but is intended to be kept secure, may
also be considered to be plaintext data.
0036) Different implementations of this aspect of the
memory handling in JVM 200 are possible. In FIG. 2 one
implementation is shown in which a predetermined bit within
a byte array is defined to act as a flag. This is shown by the bits
defined in objects 208, 210, 212, respectively. When the
appropriate bit is set, it identifies the associated byte array as
representing plaintext data.
0037. In another implementation of the preferred embodi
ment, the identifier is a short byte, or word, within a byte
array. The byte or word may take different values to indicate
not only that the associated data object is plaintext data but
also to indicate which one of a set of possible levels of
security is associated with the data. For instance, a word
identifier may specify one of a set of public, private and
secure data types for the associated object. In this implemen
tation of the preferred embodiment, JVM 200 is able to
invoke different memory management steps, depending on
the data type specified by the value of the word identifier.
0038. The JVM200 of the preferred embodiment includes
computing device code operative, by execution on the mobile
device, to define a plaintext identifier, as described above, and
to carry out memory management operations based on the
value of aparticular plaintext identifier. It should be noted that
in this description of the preferred embodiment, there are
several memory management steps and procedures that are
described relating to the marking of plaintext by the use of a
plaintext identifier. However, it will be appreciated that there
may also be implementations where the marking of plaintext
itself may be of use to applications themselves in their use of
Such data on the mobile data processing device. In Such a
case, the memory management component of JVM 200 relat
ing to the plaintext identifiers created may be relatively
restricted or minimal in its operation.
0039. In the preferred embodiment, it is desirable to per
mit different types of plaintext memory objects to be retained
as plaintext for different time periods. For example, the pri
vate information of the user Such as the plaintext data repre
senting the information in a task list, may be kept by the
device in a plaintext form until the user specifies that the
device should be placed in a secure (or locked) state. In
another example, the device 10 of the preferred embodiment
Supports pass codes. The system and method of the preferred
embodiment permits memory management of JVM 200 to
clear the plaintext copy of an encrypted pass code from

US 2010/025737.6 A1

memory as soon as the application that requested the decryp
tion of the pass code has released it. This may happen before
there is a request that the system enter a secure state.
0040. As referred to above, although applications 202,
204, 206 are intended to function such that plaintext objects
are not made available after release by the applications,
through poor design or errors in the applications or by delib
erate choice. Such plaintext copies may be left in memory by
an application. The approach of the preferred embodiment
permits JVM 200 to manage the memory objects 208, 210,
212 such that on entering a secure state the user of the device
will be notified as to whether there is plaintext data in
memory.
0041. In the preferred embodiment a ribbon application is
defined to manage a portion of the content shown on display
16. On display 16 a defined region contains a ribbon of
information that relates to system usage and availability. The
ribbon application is code executable on device 10 operable
to obtain device status information and to manage the display
of such information on display 16. In the preferred embodi
ment, when there is a request to place device 10 in a secure
state, the ribbon application makes use of JVM 200 to deter
mine if there are plaintext objects in memory. JVM 200 has
code executable to receive a request for the plaintext object
status from the ribbon application. JVM 200 carries out the
steps described below to determine if a plaintext object is in
memory. If such a plaintext object is found, the appropriate
message is returned to the ribbon application. The ribbon
application operates to display an icon in the ribbon region of
display 16 reflecting whether device 10 is in a secure state in
which there are no plaintext objects available in memory (a
closed padlock icon) or not (an open padlock icon).
0042. In this manner, the use of plaintext bits permits the
device user to be assured that the device in a secure state has
no data that may be placed at risk or, alternatively, that appli
cation error has resulted in the device containing plaintext
data in memory despite the attempt to make the device secure.
0043 FIG.3 shows a simple flowchart setting out the steps
of the method carried out by the code of JVM 200 operative to
ensure that plaintext copies of encrypted data are cleared
when an application releases objects including encrypted
data. At block 250, an application request for access to a data
object is made. In the preferred embodiment, applications are
described as requesting access to data objects. Such access
includes the step of the application defining a data object for
Subsequent use.
0044. At decision block 252, JVM 200 determines
whether the data requested is encrypted. If the data is deter
mined to be encrypted, at block 254 JVM 200 carries out the
decryption (either directly or by launching a decryption pro
cess). Block 256 represents the step of JVM 200 defining a
plaintext identifier for association with the plaintext copy of
the encrypted data. The plaintext identifier may be a bit or set
of bits (byte or word) associated with the byte array defining
the plaintext data or, as described below, it may be a table
entry associated with the plaintext copy of the data. JVM 200
saves a plaintext copy of the encrypted data to device memory
(block 254) for use by the requesting application. As is indi
cated in block 258 of FIG.3, JVM 200 provides the plaintext
to the requesting application (in the preferred embodiment by
specifying the availability of plaintext data in the device
memory).
0045 Decision block 260 shows JVM 200 executing to
carry out the step of determining whether the requesting

Oct. 7, 2010

application has released the object having plaintext data asso
ciated with it. Although FIG.3 shows a looping decision step,
implementations of the system and method of the preferred
embodiment will likely implement other methods for appli
cations to specify the release of data objects to JVM200. Such
methods are known to those skilled in the art and are not
described further here. The result of the release of the object
by the application is that, as shown in block 262, the code of
JVM 200 is operative to clear the plaintext data from device
memory 118 and is operative to alter the plaintext identifier to
reflect the removal of the plaintext data from device memory
118.

0046. As will be appreciated, where an implementation of
the preferred embodiment defines the plaintext identifier as a
specified bit or set of bits associated with a byte array in
memory, the step of clearing the plaintext data from memory
may include the step of similarly clearing the plaintext bit or
bits from memory. Alternatively, if the plaintext identifier is
defined in a table, as described below, JVM 200 may, as part
of the step shown in block 262 of FIG. 3, modify the value of
the plaintext identifier (to show that the plaintext data previ
ously in the device memory has been cleared) or may remove
the table entry entirely.
0047. As indicated above, a plaintext identifier mecha
nism that may be implemented as an alternative to a bit
associated with a bitsteam in memory is a table that records all
secure objects that have been decrypted. In the system of the
preferred embodiment, such a table will be defined and main
tained by JVM200. As will be appreciated by those skilled in
the art, although this description describes a table with table
entries, other similar data structures may be used to allow the
relevant plaintext information to be stored and accessed, as
described.

0048. With respect to the table of plaintext identifiers, each
entry in the table records the existence in the device memory
of plaintext data that is a copy of encrypted data in the device,
as well as the location in memory of the plaintext data.
Optionally, the table entry includes information about the
level of security for that object. An advantage of using a table
to record plaintext identifiers is that for Such an arrangement,
JVM 200 does not carry out a scan through the device 10
memory 118 to locate plaintext identifiers such as the bits in
objects 208, 210, 212 when determining whether to alter a
plaintext identifier or determining whether there are plaintext
data objects in device memory 118. Instead, JVM 200 man
ages the table and as applications release objects, JVM 200
clears the plaintext data from memory and updates the table
accordingly.
0049. For a high-security implementation, FIG. 4 presents
a simple flowchart for JVM 200 code operative to carry out
the steps of placing device 10 in a secure state. In the example
of FIG.4, device 10 is seeking to enter the secure state (block
280 shows receipt by JVM of a secure state request). As
shown in block 282, JVM 200 reviews the identifier table
(rather than device memory 118 itself) to determine whether
there are any plaintext identifier entries that correspond to
plaintext data in device memory 118. If there are such iden
tifiers present in the table (decision block 284) then JVM 200
will, in one embodiment of the preferred embodiment, notify
the user (block 286). This reporting mechanism may also
indicate whether objects were improperly used by an appli
cation so as to create a potential security breach. This permits
users to evaluate third party applications to ensure that they
are maintaining information in a secure state. Without this

US 2010/025737.6 A1

reporting mechanism, users may not know how applications
are treating their confidential data.
0050. Following, or in conjunction with, the notification
step of block 286, JVM 200 arranges to clear from memory
the plaintext data referenced by the located plaintext identifier
in the table (block 288). This process of checking for plaintext
identifiers, notifying the user and clearing the plaintext data is
repeated until there are no further plaintext identifiers in the
table. As will be appreciated, in one implementation it is
possible for plaintext identifier entries to remain in the table
even after the related plaintext data has been cleared. In such
a case the entry will include a field to specify whether the
entry is current or non-current. Non-current entries are poten
tially useful in assessing application or system performance
or for troubleshooting application behaviour.
0051. After all plaintext entries in the plaintext identifier
table have been processed, JVM 200 is able to display infor
mation to assure the user that all confidential plaintext data
has been released by the applications and cleared from
memory. As described above, JVM 200 permits the device to
display an icon or other message to report to the user that all
plaintext copies of secure confidential information have been
cleared from memory. The user can be assured that only
encrypted confidential data is left on the device.
0052. In the case where the JVM 200 determines that
plaintext data has not been properly cleared from memory by
application operation, various corrective measures are
employed depending upon the security level of the data and of
the device. Since applications use JVM 200 to store copies of
secure objects in device memory 118, JVM 200 acts as a gate
keeper. In the preferred embodiment, JVM 200 will, if plain
text data mishandling is identified for an application, refuse to
transfer a requested plaintext object to the application's data
base (potentially copied into device memory 118). JVM 200
may report the presence of objects that have not yet been
released by the application as is described above. If the appli
cation fails to clear the plaintext data for an object, JVM 200
is configurable to either clear the object itself or to report the
presence of the plaintext object to the user, or both.
0053 Depending upon the security level chosen for the
device, a user can require JVM 200 to overwrite any remain
ing sensitive plaintext objects with null characters, or force a
“reset of the device to clear all sensitive plaintext informa
tion from memory before the device can enter the secure state.
The advantage of this option is for high-security applications
where an administrator would rather risk the device being
unstable, through clearing memory without releasing objects,
than permit sensitive data to remain on the device in plaintext
form.
0054 The use of a plaintext identifier table is also advan
tageous as JVM 200 may permit the definition of objects with
defined security levels, as referred to above. Thus an entry in
the plaintext identifier table will be able to specify the security
level for the decrypted object data that is stored in plaintext
form in the device memory. In this way, different reporting
procedures and memory management steps may be carried
out by JVM 200, depending on the defined security level for
device 10 and on the specified security level in the table entry
for the data object. A simple example relating to different
timing of memory management steps for pass codes has been
given above.
0055. Further, plaintext bits or a plaintext identifier may be
used to prevent plaintext data from being written to flash
memory 116 in device 10. Because data which is tagged as

Oct. 7, 2010

plaintext by the plaintext identifier is intended to remain
secure (either through encryption or deletion) JVM 200 may
be defined to operate to preclude any application from writing
plaintext data to persistent memory where the data may
become available to unauthorized users. In one implementa
tion, JVM 200 will lock if an application seeks to write
plaintext data to persistent memory Such as flash memory
116. Where each data object has a plaintext bit associated
with it, JVM 200 operates to inspect the plaintext bit when an
application seeks to store the plaintext object in flash memory
116. The status of the plaintext bit will determine whether
JVM 200 writes the object to flash memory 116 or alterna
tively throws an exception or locks the device. In the preferred
embodiment, the response for JVM 200 may be determined
by policies set by the device administrator.
0056. A further use of the plaintext identifier is in a debug
ging mode on device 10, used by application developers. The
preferred embodiment provides that the debugger application
operates to provide information to application developers as
to the number and potentially identity of plaintext objects in
memory at different stages in application execution.
0057 Various embodiments of the system and method of
the invention having been thus described by way of example,
it will be apparent to those skilled in the art that variations and
modifications may be made without departing from the inven
tion. For example, code adapted to provide the systems and
methods described above may be provided on many different
types of computer-readable media including computer Stor
age mechanisms (e.g., CD-ROM, diskette, RAM, flash
memory, computer's hard drive, etc.) that contain instructions
for use in execution by a processor to perform the methods
operations and implement the systems described herein.
We claim:
1. A method that provides for a secure state on a mobile

device, the method comprising:
generating plain-text data from encrypted data when the

encrypted data is requested by an application on the
mobile device;

retrievably storing the decrypted plain-text data in memory
on the mobile device;

generating an identifier, the identifier associable with the
generated plain-text data and comprising an indicator
that the associated plain-text data is confidential;

detecting an indication that the mobile device is to enter a
Secure State;

retrieving and using the identifier to identify the associated
plain-text data as confidential and delete the associated
plain-text data from the mobile device memory; and

using a next identifier to identify and delete a next confi
dential plain-text data, if a next identifier comprising
confidential plain-text data exists, until no undeleted
confidential plain-text data is identified using identifiers.

2. The method of claim 1 further comprising, after retriev
ing the identifier, displaying an indication that confidential
plain-text data exists in the memory of the mobile device, and,
when there is no undeleted confidential plain-text data iden
tifiable using identifiers, one of undisplaying the indication,
displaying a next indicator there is no more confidential plain
text data in memory, or, both undisplaying the indication and
displaying the next indicator.

3. The method of claim 1 wherein storing the plaintext data
in association with the identifier comprises storing the plain
text data and the associated identifier in a data object in the
device memory.

US 2010/025737.6 A1

4. The method of claim 1, wherein the identifier comprises
at least one bit in a byte array associated with the plaintext
data.

5. The method of claim 1, further comprising clearing
plaintext data associated with a predetermined security level
in response to a request from an application to release the
plaintext content prior to receiving the request for the mobile
data processing device to enter the secure state.

6. The method of claim 1, further comprising, upon receipt
of a request from an application to write plaintext data stored
in the device memory to a persistent memory, writing the
requested plaintext data to the persistent memory upon deter
mining that the requested plaintext data is not associated with
an identifier indicating that the plaintext data is intended to be
treated in a secure fashion.

7. The method of claim 1 wherein identifies are table
entries.

8. A method that provides for a secure state on a mobile
device, the method comprising:

generating plain-text data from encrypted data if the
encrypted data is requested by an application on the
mobile device;

retrievably storing the decrypted plain-text data in memory
on the mobile device;

generating an identifier, the identifier associable with the
generated plain-text data and comprising an indicator
that the associated plain-text data is security related;

generating a next identifier associable with plain-text data
generated by the application, if and when there is any
plain-text data generated by the application to be classi
fied as security related, the next identifier comprising an
indicator that the associated plain-text data is security
related;

detecting an indication that the mobile device is to enter a
Secure State;

using the identifier and any next identifiers to determine if
there is any associated plain-text data that is security
related; and

resetting the mobile device if it was determined there is
security related plain-text data.

9. The method of claim 7 where indicators further comprise
a security level.

10. The method of claim 8 where the resetting of the mobile
device only occurs when at least one identifier comprises a
preselected security level.

11. A method that provides for a secure state on a mobile
device, the method comprising:

Oct. 7, 2010

generating plain-text data by an application running on the
mobile device, or, generating plaintext data from
encrypted data when the encrypted data is requested by
the application;

retrievably storing the plain-text data in memory on the
mobile device;

generating an identifier, the identifier associable with the
generated plain-text data and comprising an indicator
that the associated plain-text data is security related;

detecting an indication that the mobile device is to enter a
Secure State;

retrieving and using the identifier to identify the associated
plain-text data that is security related and delete the
security related plain-text data from the mobile device
memory; and

using a next identifier to identify and delete a next confi
dential plain-text data, if a next identifier comprising
security related plain-text data exists, until no undeleted
confidential plain-text data is identified using identifiers.

12. The method of claim 11 further comprising, after
retrieving the identifier, displaying an indication that confi
dential plain-text data exists in the memory of the mobile
device, and, when there is no undeleted confidential plain-text
data identifiable using identifiers, one of undisplaying the
indication, displaying a next indicator there is no more con
fidential plain-text data in memory, or, both undisplaying the
indication and displaying the next indicator.

13. The method of claim 11 wherein storing the plaintext
data in association with the identifier comprises storing the
plaintext data and the associated identifier in a data object in
the device memory.

14. The method of claim 11 wherein the identifier com
prises at least one bit in a byte array associated with the
plaintext data, or, the identifiers are table entries.

15. The method of claim 11 further comprising, upon
receipt of a request from an application to write plaintext data
stored in the device memory to a persistent memory, writing
the requested plaintext data to the persistent memory upon
determining that the requested plaintext data is not associated
with an identifier indicating that the plaintext data is intended
to be treated in a secure fashion.

16. The method of claim 11 where the security level of an
indicator further comprising a plurality of security levels, and
the clearing plaintext data associated with the indicator
depends on the security level of the indicator.

c c c c c

