(54) Title: PROCESSES FOR THE PREPARATION OF IPIDACRINE OR IPIDACRINE HYDROCHLORIDE HYDRATE

(57) Abstract: A process for the preparation of ipidacrine (I) (9-amino-2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]quinoline), which comprises reacting diphosphorus pentaoxide with a trialkyl phosphate and a hydroxy compound in a hydrocarbon solvent to thereby prepare a polyphosphoric ester having one or more free hydroxyl groups and serving as a dehydrocondensing agent and using this ester without isolation in the condensation of 2-amino-1-cyclopentene-1-carbonitrile with cyclohexanone through dehydration.
炭化水素系溶媒中で五酸化ニリンをリン酸トリアルキル及び水酸基を有する化合物と反応させることにより、脱水総合剤である部分的に水酸基を有するポリリン酸エステルを製造し、次に得られた該ポリリン酸エステルを単離することなく、2-アミノ-1-シクロペンテン-1-カルボニトリルとシクロヘキサノンとの脱水総合反応に用いる式（I）：

![化合物の構造式](image)

で表されるイビダクリン（9-アミノ-2，3，5，6，7，8-ヘキサヒドロ-1H-シクロペンタ[b]キノリン）の製造方法。
明細書

イビダクリン及び塩酸イビダクリン水和物の製造方法

技術分野

本発明は、イビダクリン（9－アミノ－2, 3, 5, 6, 7, 8－ヘキサヒドロ－1H－シクロペンタ[b]キノリン）及び塩酸イビダクリン水和物（9－アミノ－2, 3, 5, 6, 7, 8－ヘキサヒドロ－1H－シクロペンタ[b]キノリン－塩酸塩－水和物）の製造方法に関する。

背景技術

塩酸イビダクリン水和物は前述神経系における興奮伝達の刺激効果がある化合物として報告されている（例えば特公昭63－35611号公報参照）。また、学習促進・記憶増強効果がある化合物としても報告されている（例えば特公平3－5492号公報参照）。

塩酸イビダクリン水和物の製造方法としては、まず2－アミノ－1－シクロペンテン－1－カルボニトリル（1－アミノ－2－シアノシクロペンテン－1）とシクロペンタノンをポリリン酸と乾燥ベンゼン中加熱還流を行い、イビダクリン（9－アミノ－2, 3, 5, 6, 7, 8－ヘキサヒドロ－1H－シクロペンタ[b]キノリン）を得て、これをエタノール中塩酸水素ガスを通じて塩酸イビダクリン水和物（9－アミノ－2, 3, 5, 6, 7, 8－ヘキサヒドロ－1H－シクロペンタ[b]キノリン－塩酸塩－水和物）を得る方法が報告されている（例えば特公昭63－35611号公報参照）。また、上記反応中、副生成物として得られる5, 5－ベンタメチ
レニン－7－オキソ－1，2，3，4，6，7－ヘキサヒドロシクロベンタ [d] ビリミジンをトルエン中、オキシ塩化リンと作用させて、イピダクリンが得られることが記載されている（例えば特公平3－54922号公報参照）。

また、特許第2510586号明細書によれば、2－アミノ－1－シクロペンテン－1－カルボニトリルとシクロヘキサノンとをクロロホルム等の溶媒中でポリリン酸エチルの存在下20～100℃で反応させる方法が記載されている。

この特許明細書の記載によれば、ポリリン酸エチルは、ジエチルエーテルと五酸化ニリンをクロロホルム中で反応させることにより製造されている。

上記特公昭63－35611号公報や特公平3－54922号公報に記載の方法を利用して塩酸イピダクリン水和物を合成するには、途中で不純物として得られる5, 5－ペンタメチレン－7－オキソ－1，2，3，4，6，7－ヘキサヒドロシクロベンタ [d] ビリミジンを除去しなければならず、収率が低下する。また、不純物である5, 5－ペンタメチレン－7－オキソ－1，2，3，4，6，7－ヘキサヒドロシクロベンタ [d] ビリミジンは、特公平3－54922によれば、オキシ塩化リンと反応させることによって塩酸イピダクリン水和物に誘導することは可能であるが、この様な処理を行うことは、反応工程が増加する等の理由で大量合成には不向きである。

また、特許第2510586号公報に記載の方法はポリリン酸エチルの製造に可燃性の高い危険なジエチルエーテルを用いているため操作方法が非常に煩雑になる上、調製に長時間（3日間）かかるため工業的な大量合成には適さない。また、調製されたポリリン酸エチルは、高粘性で取扱が不便である上、経時変化し易い化合物で
あるため、常に一定品質のものを使用することが極めて困難になるという欠点がある。また、反応溶媒としてクロロホルムを用いているが、工業化において大量のハロメタンの一種であるクロロホルムを用いることは、作業上もとより環境面からも問題であり、好ましい方法とは言い難い。

更に、クロロホルム中で脱水縮合反応を行った場合反応液中に生成したイピダクリンは、水を加えて塩にして水相に移行させめた後、水相をアルカリ性にして結晶を析出する方法で分離精製している。
しかしながら、クロロホルムはイピダクリンの塩がかなりの量溶存するため、この方法で収率を上げるためにはクロロホルム相を複数回（4回以上）洗浄する必要があり、作業行程が多くなる欠点がある。

さらに、上記3件の公報によれば、イピダクリンを塩酸塩化させ、塩酸イピダクリン水和物に誘導する際、溶媒としてエタノールを、塩酸塩化剤として塩化水素ガスを用いている。溶媒としてエタノールの様なアルコール系の溶媒を用いた場合、生成した塩酸イピダクリン水和物には相当量の残留溶媒が結晶水の代わりに部分的に取り込まれており、結晶水の不足した塩酸イピダクリン水和物が得られる。この結晶は赤外吸収スペクトルが標準品の標準スペクトルチャートと一致せず、X線構造解析による結晶形の変化等も認められる（例えば医薬品研究28, 9, 643-657 (1997) 参照）などの欠点がある。

また、塩酸塩化剤として猛毒で取り扱いの煩雑な塩酸水素ガスを用いることなどから、決して扱い易いとはいえず、好ましい方法とは言い難い。

発明の開示
従って、本発明の目的は、上記の如き欠点がなく、しかも収率の良いイビダクリン又は塩酸イビダクリン水和物の製造方法を提供することにある。

本発明者は、イビダクリン製造方法において収率が良く、しかも危険性が少なく、操作方法が容易で環境面からも問題の少ない方法を見いだすべく鋭意検討した結果、五酸化ニリンを炭化水素系溶媒中でリン酸トリエチル及びエタノールと反応させることにより得られるポリリン酸エステルを単離することなく、脱水縮合剤として用いければこれらの問題が解決することを見いだし、更に研究を行うことにより本発明を完成した。

また、イビダクリンの塩酸塩化工程では、アセトン溶媒中で濃塩酸を用いて塩酸塩化すれば赤外吸収スペクトルやX線構造解析による結晶形の変化が認められない塩酸イビダクリン水和物が得られることを見いだし、更に研究を行うことにより本発明を完成した。

本発明に従えば、炭化水素系溶媒中で五酸化ニリンをリン酸トリアルキル及び水酸基を有する化合物と反応させることにより脱水縮合剤である部分的に水酸基を有するポリリン酸エステルを製造し、次に得られた該ポリリン酸エステルを単離することなく、2-アミノー-1-シクロペンテン-1-カルボニトリルとシクロヘキサンとの脱水縮合反応に用いる式（I）:

\[
\text{NH}_2
\]

で表されるイビダクリン（9-アミノー-2, 3, 5, 6, 7, 8-ヘキサヒドロ-1H-シクロペンタ[b]キノリン）の製造方法
が提供される。

本発明に従えば、また、イビダクリンをアセトン中又はアセトンと少量の水からなる混合溶媒中で濃塩酸を作用させて塩酸塩化を行なうことによる塩酸イビダクリン水和物の製造方法が提供される。

本発明に従えば、更に、製造される塩酸イビダクリン水和物が残留溶媒が含まれない標準品の赤外吸収スペクトル（A型）を示すものである塩酸イビダクリン水和物の製造方法が提供される。

図面の簡単な説明

以下図面を参照して本発明を証明する。

図1は塩酸イビダクリン水和物のA型の赤外吸収スペクトルを示す図である。

図2は塩酸イビダクリン水和物のB型の赤外吸収スペクトルを示す図である。

発明を実施するための最良の形態

以下、本発明を更に詳細に説明する。

本発明で用いるイビダクリン（9-アミノ-2, 3, 5, 6, 7, 8-ヘキサヒドロ-1H-シクロペンタ[b]キノリン）とは、通常無水物のことを示すが、本明細書ではイビダクリン一水和物（理論水和物量）又は水分量が一水和物以下のものも包含するものとする。これは、イビダクリン（無水物-無定型結晶）を空気中で室温下に放置すると自然に空気中の水分を吸収して、安定な一水和物になることによる。また、例えばイビダクリンをメタノール-水混合溶媒あるいは、アセトン-水混合溶媒の様々な含水有機溶媒中で再結晶を行うと、イビダクリン一水和物（针状結晶等）が得られることからも挙げられ。これらイビダクリン一水和物あるいは理論水
和物量以下の結晶は、通常減圧下で加熱乾燥させると容易に結晶水を失い無水物となる。

本発明で用いられる部分的に水酸基を有するポリリン酸エステルは、構造の一部がP－OH残基を有することを特徴としている。五酸化ニリンと理論量のリン酸トリアルキルとの反応で得られるポリリン酸エステルは、構造の中にP－OH残基を有さないポリマーである。しかしながら、このポリリン酸エステルを縮合剤として用いると反応において副生成物の生成や原料の分解等が起こり、得られるイピダクリンの収率の低下を招くばかりでなく、純度の悪い着色したイピダクリンが得られる。

本発明では、構造の一部にP－OH残基を有するポリリン酸エステルを用いるため、上記の様な副生成物の生成や原料の分解等が発生せず、高収率で高純度なイピダクリンが得られる。

本発明で用いられる部分的に水酸基を有するポリリン酸エステルは、以下的方法によって製造することができる。即ち、五酸化ニリンと反応しない有機溶媒中、例えばトルエン、ベンゼン等の炭素系有機溶媒中、五酸化ニリンを懸濁させ、適当な温度に加熱しながらリン酸トリアルキルを滴下する。反応は速やかに進行するため滴下後すぐにあるいはしばらく時間をかけた後、水酸基を有する化合物（分子内に－OH残基を有する化合物）、例えばエタノール、水等を加える。この反応は通常発熱を伴って進行するため、必要なら適当な温度まで冷却する。この反応も速やかに進行するため滴下を終えた時点でポリリン酸エステルの調製は完了する。

本発明で用いられるリン酸トリアルキルとしては、リン酸トリエチル、リン酸トリメチル等が挙げられる。本発明では、多くの場合リン酸トリエチルが使用される。

水酸基を有する化合物としては、アルコール、水、ポリリン酸、
ビロリン酸、リン酸等が挙げられ、好ましくはアルコールが挙げられる。また、これらは、単一化合物であっても混合物であってもよい。

アルコールとしては、メタノール、エタノール、プロパノール等の一価アルコールが好ましい。この他に、エチレングリコール、グリセリンの様な多価アルコールも使用することができる。

炭化水素系溶媒としては、五酸化ニリンと反応しない溶媒であればよく、具体的には、ベンゼン、トルエン、キシレン等あるいはそれらの混合物があげられるが、毒性及びコストの面からトルエンが好ましい。

五酸化ニリンは、2-アミノ-1-シクロヘキセン-1-カルボニトリルに対して、通常、モル比で3～10等量が用いられるが、反応収率、コストの面からモル比で3～8等量用いるのが好ましい。

リン酸トリアルキルは、五酸化ニリンに対して、通常、モル比で0.3～1.2等量が用いられるが、反応収率、操作手順、コスト面からモル比で0.4～1等量用いるのが好ましい。

水酸基を有する化合物としてアルコールを使用する場合、アルコールは、五酸化ニリンに対して、通常、モル比で0.05～1等量、好ましくは、0.1～0.6等量用いられる。

また、アルコールの代わりに水、ポリリン酸、ビロリン酸あるいはリン酸を使用することもできるが、この場合、生成するポリリン酸エステルのP-OH基の数がエタノール等のアルコールを用いた場合と同様になるようにモル数を調整する。つまり、水であれば、アルコールに対して2分の1等量、リン酸であれば3分の1等量が好ましい。

五酸化ニリンを炭化水素系溶媒中でリン酸トリアルキル及びアル
コール（あるいは分子内に＝OＨ残基を有する化合物）と反応させる工程では、通常0℃〜100℃、好ましくは30℃〜80℃の範囲で反応を行うことができ、通常、6時間以内で反応は終了する。

2－アミノ－1－シクロペンテン－1－カルボニトリルとシクロヘキサンの脱水総合応応工程では、通常0℃〜110℃、好ましくは30℃〜80℃の範囲で反応を行うことができ、通常1時間から6時間で反応は終了する。

反応終了後、生成物を反応液から分離精製するには、例えば溶媒抽出、結晶化、活性炭処理、カラムクロマトグラフィー等の方法を適宜選択し、場合により組み合わせて用いることにより容易に精製物を得ることができる。

従来、ポリ乳酸あるいはポリ乳酸エステル系の脱水剤を五酸化ニリンから調製する際、水、アルコール等、五酸化ニリンと反応しやすい化合物を用いた場合は、滴下途中でアメ状物質が生成するため、攪拌が非常に困難となる欠点を有していた。一方、ジアセチルエーテル等の五酸化ニリンと反応しにくい化合物では、アメ状物質は生成しないため、逆に調製時間が非常に長くなる欠点を有していた。

本発明によれば、ポリ乳酸エステルの調製工程において、五酸化ニリンにリン酸トリアルキル及びアルコール（あるいは分子内に－OＨ残基を有する化合物）を作用させている。また、この工程で使用する溶媒に炭化水素系溶媒、特に好ましい溶媒としてトルエンを用いている。ポリ乳酸エステルの調製に用いる五酸化ニリンとリン酸トリアルキル及びアルコール（あるいは分子内に－OＨ残基を有する化合物）の反応は、発熱反応であるが、緩和な条件で反応が進行するため、工業化に適した反応である。また、この反応は、短時間、多くの場合1時間以内に終了するため、製造コストの面
からも有利である。

本発明では、合成されたポリリン酸エステルは、単離することなくそのまま2-アミノ-1-シクロペンテン-1-カルボニトリルとシクロヘキサノンの脱水縮合反応に用いられる利点がある。このため、経時変化に伴うポリリン酸エステルの品質の劣化を避けることができる。また、合成されたイビダクリンは、水を加えてポリリン酸エステルを分解し、イビダクリンのリン酸塩として水相に移行せしめたとき、該塩がトルエン等の炭化水素系溶媒に殆ど溶けないため、生成物の分離精製が容易であるという利点がある。

上記のように水相に移行せしめたイビダクリンリン酸塩に、水酸化ナトリウム水溶液を加え、析出結晶を濾取することによってイビダクリンを得ることができる。この析出結晶は、例えば溶媒抽出、結晶化、カラムクロマトグラフィー等の方法を適宜選択し、場にとより組み合わせて用いることにより容易にイビダクリンの精製物を得ることができる。本発明では、通常はメタノール-水の混合溶媒中で再結晶することによって精製されたイビダクリンを得ることができる。

本発明のイビダクリンの塩酸塩化工程では、溶媒としてアセトン又はアセトンと少量の水からなる混合溶媒中で塩酸塩を作用させ塩酸塩化すれば赤外吸収スペクトルやX線構造解析による結晶形の変化が認められない塩酸イビダクリン水和物が得られる。この場合、完全に無水のイビダクリンに溶媒としてアセトンのみを用い塩酸塩化を行った場合においても塩酸中に含まれる水の影響で、一塩酸塩一水和物である塩酸イビダクリン水和物が得られる。

アセトンと少量の水からなる混合溶媒中の水の量は、アセトンに対して容積比で、通常1/5倍量以下、好ましくは1/10倍量以下である。混合溶媒中の水の量が多くなると、塩酸イビダクリン水
和物が水に溶けやすい為、収率の低下を招き好ましくない。
塩酸塩を濾過後、得られた塩酸塩に付着している過剰のアセトンを乾燥させれば、理論量である一分子の結晶水がついた塩酸イピダクリン水和物が得られる。この結晶の赤外吸収スペクトルは標準スペクトルと一致しており、X線構造解析による結晶形も標準品と同一である。
尚、本発明で得られる塩酸イピダクリン水和物には少量（通常、300 ppm 以下）のアセトンが残留している場合もあるが、この場合は、結晶を高温・高湿下に放置するか、結晶に少量の水を加えて混合後乾燥することにより、容易にアセトンを完全に除去することができる。

実施例

以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらに限定されるものではない。

実施例1

9,2,3,5,6,7,8-ヘキサヒドロ-1H-シクロヘプタ[b]キノリンの合成

五酸化ニリリン（P₂O₅）78.8 g（555 mmol）をトルエン100 mL中に懸濁させ、55℃に昇温させた。同温度にてリン酸トリエチル78.6 mL（462 mmol）を滴下し、更にエタノール8.0 mL（139 mmol）を滴下し30分攪拌した。この溶液を20℃に冷却し、2,3,5,6,7,8-ヘキサヒドロ-1H-シクロヘプタン-1-カルボニトリル10.0 g（92.5 mmol）とシクロヘキサン10.1 mL（97.1 mmol）を加え、55℃にて3.5時間攪拌した。冷却し、水200 mLを40℃以下で滴下し、55℃にて30分攪拌した。水相を分離し、トルエン相を水100 mL
で洗浄し得られた水相を先に分離した水相と合わせた。

この水相を濃アンモニア水溶液 4000 mL 中に滴下し、クロホルム-メタノール（10:1）混合溶媒で抽出した。抽出溶媒を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られた残渣をシリカゲルクロマトグラフィー（シリカゲル 300 g；クロホルム：メタノール：濃アンモニア水 = 100:9:1）で精製し、得られた結晶を 60 ℃で減圧乾燥することにより目的化合物を 15.8 g（収率 90.7%）得た。

\[^1H-\text{NMR} (400 \text{ MHz}, \text{CDCl}_3): \delta \]

\[1.80-1.91 (4 \text{ H, m}), 2.11 (2 \text{ H, d, } J=7.3,7.6 \text{ Hz}), 2.40-2.46 (2 \text{ H, m}), 2.70 (2 \text{ H, t, } J=7.3 \text{ Hz}), 2.80-2.86 (2 \text{ H, m}), 2.92 (2 \text{ H, t, } J=7.6 \text{ Hz}), 3.91 (2 \text{ H, br}) \]

実施例 2

イピダクリン（9-アミノ-2,3,5,6,7,8-ヘキサヒドロ-1H-シクロベンタ[b]キノリン）の合成

五酸化ニリン（P₂O₅）394 g（2774 mmol）をトルエン 5000 mL 中に懸濁させ、55 ℃に昇温させた。同温度にてリン酸トリエチル 283 mL（1665 mmol）を滴下し、更にエタノール 75 mL（1295 mmol）を滴下し 30 分攪拌した。この溶液を 30 ℃に冷却し、2-アミノ-1-シクロペンテン-1-カルボニトリル 50 g（462 mmol）とシクロヘキサノン 50 mL（485 mmol）を加え、55 ℃にて 3.5 時間攪拌した。加熱を止め、水 5000 mL を 55 ℃以下で滴下し、55 ℃にて 30 分攪拌した。水相を分離し、トルエン相を水 2500 mL で洗浄し得られた水相を先に分離した水相と合わせた。

この水相を 18% 水酸化ナトリウム水溶液 2000 mL 中に滴下
し、析出した結晶を濾過し、良く水洗した。得られた含水結晶をメタノール750mL－水1500mLの混合溶媒に熱時溶解し、冷却することによって再結晶を行った。析出結晶を濾取後水洗し、60℃で減圧乾燥を行うことによって目的化合物を無水物として79g（420mmol）得た。収率91%。

実施例3

塩酸イビダクリン水和物（9－アミノ－2，3，5，6，7，8－ヘキサヒドロ－1H－シクロベンタ[b]キノリン－塩酸塩－水和物）の合成

イビダクリン（9－アミノ－2，3，5，6，7，8－ヘキサヒドロ－1H－シクロベンタ[b]キノリン）40g（212mmol）をアセトン720mLと水40mLの混合溶媒に加熱溶解させ、濃塩酸19mL（212mmol）を10分かけて滴下した。さらに30分加熱還流を行った後、室温にて一晩放置した。析出結晶を濾過し、アセトンで洗浄後空気中に放置し付着アセトンを蒸発させ目的化合物を49g（202mmol）得た。収率95%。融点274℃（分解）。

実施例4

イビダクリン、アセトン及び水の量以外は、実施例2とほぼ同様の条件で塩酸イビダクリン水和物を製造した。得られた塩酸イビダクリン水和物の収率、水分量及び赤外吸収スペクトルを表Iに示す。
表 I

<table>
<thead>
<tr>
<th>イビダクリん (g)</th>
<th>アセトン (mL)</th>
<th>水 (mL)</th>
<th>収率 (%)</th>
<th>水分量 (%)</th>
<th>I R</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2 0 0</td>
<td>0</td>
<td>9 8</td>
<td>7. 4 0</td>
<td>A 型</td>
</tr>
<tr>
<td>1 0</td>
<td>1 4 0</td>
<td>1 0</td>
<td>8 9</td>
<td>7. 4 0</td>
<td>A 型</td>
</tr>
<tr>
<td>2 0 0</td>
<td>3 0 0 0</td>
<td>2 0 0</td>
<td>9 5</td>
<td>7. 4 5</td>
<td>A 型</td>
</tr>
<tr>
<td>1 0</td>
<td>1 8 0</td>
<td>1 0</td>
<td>9 2</td>
<td>－</td>
<td>A 型</td>
</tr>
<tr>
<td>2 0 0</td>
<td>3 6 0 0</td>
<td>2 0 0</td>
<td>9 5</td>
<td>7. 5 1</td>
<td>A 型</td>
</tr>
<tr>
<td>6 0 0</td>
<td>8 5 0 0</td>
<td>6 0 0</td>
<td>9 4</td>
<td>7. 3 5</td>
<td>A 型</td>
</tr>
<tr>
<td>3 0 0</td>
<td>4 1 0 0</td>
<td>3 0 0</td>
<td>9 5</td>
<td>7. 3 3</td>
<td>A 型</td>
</tr>
</tbody>
</table>

（注）水分量の－については未測定を示す。

I R スペクトルの A 型は標準品の赤外吸収スペクトルと一致していることを示す。

参考例 1

塩酸イビダクリンの部分水和物を 2 一プロパノールから再結晶し、溶媒を留去した後、6 0 ℃で減圧にて 3 日間乾燥して再結晶品を得た（水分量：3. 0 1 %）。ついて、この再結晶品 1 5 g を加温条件下（4 0 ℃、7 5 %）で 2 日間放置することにより塩酸イビダクリン水和物を得た。

この化合物の赤外吸収スペクトルは、標準品の赤外吸収スペクトルと一致せず、残留溶媒のある B 型の赤外吸収スペクトルを示した。

産業上の利用可能性

本発明は、五酸化ニリンを炭水素系溶媒、好ましくはトルエン中でリン酸トリアルキル及びアルコール等の水酸基を有する化合物
と反応することにより得られるポリリン酸エステルを単離すること
なくそのまま、イビダクリンの合成用の縮合剤として使用すること
ができ、縮合反応によりイビダクリンを極めて高収率で得ることが
できる。このため、本発明は、予め調製されたポリリン酸エステル
を使用する場合に比べて、収率の向上はもとより、危険性、作業性
及び環境面からも極めて好ましい方法である。

また、イビダクリンは、アセトン中又はアセトンと少量の水から
なる混合溶媒中で濃塩酸を作用させ塩酸塩化を行うことにより容易
に塩酸イビダクリン水和物にすることができ、しかも、この結晶は
残留溶媒の含まれない標準品の赤外吸収スペクトル（A型）を示す
ものであるため、そのまま医薬品原料として使用できる利点がある。
請求の範囲

1. 炭化水素系溶媒中で五酸化ニリンをリン酸トリアルキル及び水酸基を有する化合物と反応させることにより、脱水縮合剤である部分的に水酸基を有するポリリン酸エステルを製造し、次に得られた該ポリリン酸エステルを単離することなく、2-アミノ-1-シクロペンテン-1-カルボニトリルとシクロヘキサノンとの脱水縮合反応に用いる式（I）:

![Chemical Structure](image)

で表されるイビダクリン（9-アミノ-2, 3, 5, 6, 7, 8-ヘキサヒドロ-1H-シクロペンタ[b]キノリン）の製造方法。

2. 炭化水素系溶媒がベンゼン、トルエン又はキシレンである請求項1に記載のイビダクリンの製造方法。

3. リン酸トリアルキルがリン酸トリエチル又はリン酸トリメチルである請求項1に記載のイビダクリンの製造方法。

4. 水酸基を有する化合物がアルコール、水、ポリリン酸、ピロリン酸又はリン酸である請求項1に記載のイビダクリンの製造方法。

5. 水酸基を有する化合物がメタノール、エタノール又はプロパノールから選ばれるアルコールである請求項1に記載のイビダクリンの製造方法。

6. 五酸化ニリンをトルエン中でリン酸トリエチル及びエタノール
ルと反応させることにより部分的に水酸基を有するポリリン酸エステルを製造する請求項1に記載のイビダクリンの製造方法。

7. 請求項1〜請求項6のいずれか1項で得られたイビダクリンにアセトン中又はアセトンと少量の水からなる混合溶媒中で更に濃塩酸を作用させて塩酸塩化する塩酸イビダクリン水和物（9-アミノ-2, 3, 5, 6, 7, 8-ヘキサヒドロ-1H-シクロペンタ[b]キノリン-塩酸塩-水和物）の製造方法。

8. 請求項7で製造される塩酸イビダクリン水和物が残留溶媒が含まれない標準品の赤外吸収スペクトル（A型）を示す塩酸イビダクリン水和物の製造方法。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 Int.Cl C07D221/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 Int.Cl C07D221/16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 CAPLUS (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, 4550113, A (Scientific-Research Institute of Biological Testing of Chemical Compounds, USSR), 29 October, 1985 (29.10.85), Full text & GB, 2125696, A1 & FR, 2532547, A1</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>JP, 63-297367, A (NIKKEN CHEMICALS CO., LTD.), 05 December, 1988 (05.12.88), Full text (Family: none)</td>
<td>1-8</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* "A" Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
29 September, 2000 (29.09.00)

Date of mailing of the international search report
10 October, 2000 (10.10.00)

Name and mailing address of the ISA/
Japanese Patent Office
Authorized officer

Facsimile No.
Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
国際調査報告

国際出願番号 PCT/JP00/04525

A. 発明の属する分野の分類（国際特許分類（IPC））
Int. Cl’ C 07 D 22 1/16

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int. Cl’ C 07 D 22 1/16

最小限資料以外の資料で調査を行った分野に含めるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
CAPLUS（STN）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ※</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, 4 5 5 0 1 1 3, A (Scientific-Research Institute of Biological Testing of Chemical Compounds, USSR) 29.10月. 1985 (29.10.85) 全文 & GB, 21 2 5 6 9 6, A1 & FR, 25 3 2 5 4 7, A1</td>
<td>1–8</td>
</tr>
<tr>
<td>A</td>
<td>JP, 63–2 9 7 3 6 7, A (日研化学株式会社) 5.12月. 1988 (05.12.88) 全文（ファミリーなし）</td>
<td>1–8</td>
</tr>
</tbody>
</table>

□ C欄の続きにも文献が挙例されている。
□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリ
「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」国際出願前の出願または特許であるが、国際出願日以後に公表されたもの
「L」優先権主張の許可により供出された文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日前で、かつ優先権の主張の基礎となる出願

国際調査を完了した日 29.09.00
国際調査報告の発送日 10.10.00

特許庁審査官（権限のある職員）
森井 隆信
郵便番号100–8915
東京都千代田区霞が関三丁目4番3号
電話番号 03–3581–1101 内線 6460

様式PCT/ISA/210（第2ページ）（1998年7月）