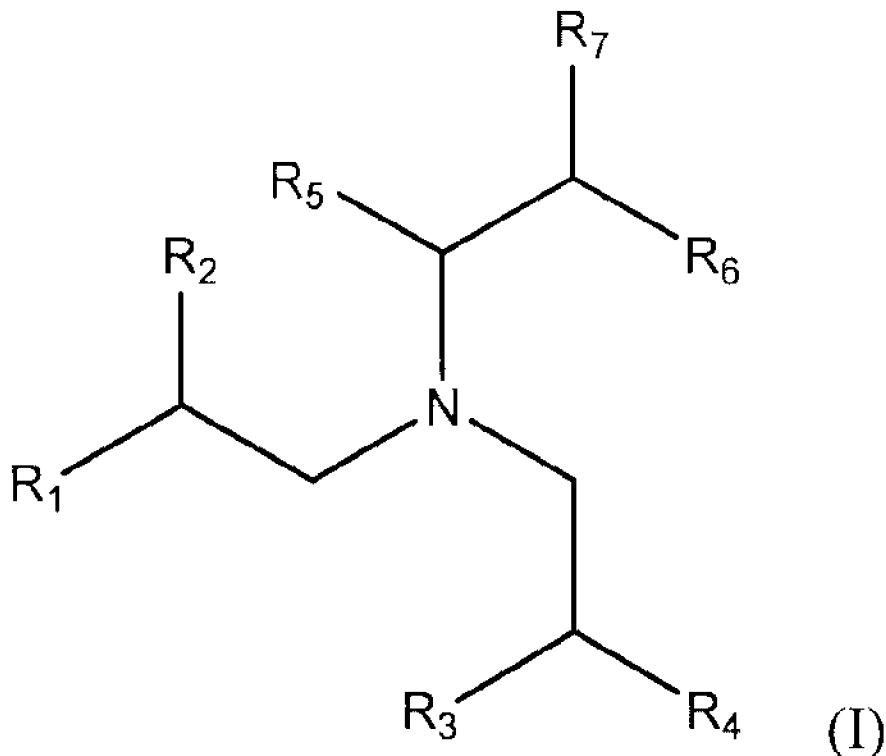


(22) Date de dépôt/Filing Date: 2013/07/17
(41) Mise à la disp. pub./Open to Public Insp.: 2014/01/17
(45) Date de délivrance/Issue Date: 2018/09/25
(30) Priorité/Priority: 2012/07/17 (US13/550,646)

(51) Cl.Int./Int.Cl. C10M 133/06 (2006.01)

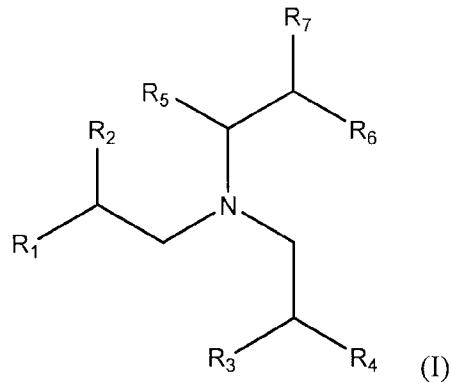

(72) Inventeurs/Inventors:
BERA, TUSHAR K., US;
HARTLEY, JOSEPH P., GB;
LI, GUIFENG, US;
CANDIDO, GABRIELE, GB;
GULACSY, CHRISTINA E., US

(73) Propriétaire/Owner:
INFINEUM INTERNATIONAL LIMITED, GB

(74) Agent: BORDEN LADNER GERVAIS LLP

(54) Titre : COMPOSITIONS D'HUILE LUBRIFIANTE CONTENANT DES AMINES A EMPECHEMENT STERIQUE EN TANT QUE SOURCES D'ACIDE DE BASICITE TOTALE SANS CENDRES

(54) Title: LUBRICATING OIL COMPOSITIONS CONTAINING STERICALLY HINDERED AMINES AS ASHLESS TBN SOURCES



(57) Abrégé/Abstract:

Hindered amines useful as ashless TBN sources for lubricating oil compositions that are compatible with fluoroelastomeric engine seal materials, and lubricating oil compositions containing such compounds are described. Such hindered amines are one or more compounds of Formula (I): (see formula I).

ABSTRACT

Hindered amines useful as ashless TBN sources for lubricating oil compositions that are compatible with fluoroelastomeric engine seal materials, and lubricating oil compositions containing such compounds are described. Such hindered amines are one or more compounds of Formula (I):

LUBRICATING OIL COMPOSITIONS CONTAINING STERICALLY HINDERED AMINES AS ASHLESS TBN SOURCES

5 FIELD OF THE INVENTION

This invention relates to a novel class of sterically hindered amines useful as ashless TBN (Total Base Number) boosters lubricating oil compositions, particularly crankcase lubricating oil compositions having reduced levels of sulfated ash (SASH), containing sterically hindered amine ashless TBN (Total Base Number) boosters.

10

BACKGROUND OF THE INVENTION

Environmental concerns have led to continued efforts to reduce the CO, hydrocarbon and nitrogen oxide (NO_x) emissions of compression ignited (diesel-fueled) and spark ignited (gasoline-fueled) light duty internal combustion engines. Further, there 15 have been continued efforts to reduce the particulate emissions of compression ignited internal combustion engines. To meet the upcoming emission standards for heavy duty diesel vehicles, original equipment manufacturers (OEMs) will rely on the use of additional exhaust gas after-treatment devices. Such exhaust gas after-treatment devices may include catalytic converters, which can contain one or more oxidation catalysts, NO_x 20 storage catalysts, and/or NH_3 reduction catalysts; and/or a particulate trap.

Oxidation catalysts can become poisoned and rendered less effective by exposure to certain elements/compounds present in engine exhaust gasses, particularly by exposure to phosphorus and phosphorus compounds introduced into the exhaust gas by the degradation of phosphorus-containing lubricating oil additives. Reduction catalysts are 25 sensitive to sulfur and sulfur compounds in the engine exhaust gas introduced by the degradation of both the base oil used to blend the lubricant, and sulfur-containing lubricating oil additives. Particulate traps can become blocked by metallic ash, which is a product of degraded metal-containing lubricating oil additives.

To insure a long service life, lubricating oil additives that exert a minimum 30 negative impact on such after-treatment devices must be identified, and OEM specifications for “new service fill” and “first fill” heavy duty diesel (HDD) lubricants require maximum sulfur levels of 0.4 mass %; maximum phosphorus levels of 0.12 mass %, and sulfated ash contents below 1.1 mass %, which lubricants are referred to as “mid-

"SAPS" lubricants (where "SAPS" is an acronym for "Sulfated Ash, Phosphorus, Sulfur"). In the future, OEMs may further restrict these levels maximum levels to 0.08 mass % phosphorus, 0.2 mass % sulfur and 0.8 mass % sulfated ash, with such lubricants being referred to as "low-SAPS" lubricating oil compositions.

5 As the amounts of phosphorus, sulfur and ash-containing lubricant additives are being reduced to provide mid- and low-SAPS lubricants that are compatible with exhaust gas after-treatment devices, the lubricating oil composition must continue to provide the high levels of lubricant performance, including adequate detergency, dictated by the "new service", and "first fill" specifications of the OEM's, such as the ACEA E6 and MB 10 p228.51 (European) and API CI-4+ and API CJ-4 (U.S.) specifications for heavy duty engine lubricants. Criteria for being classified as a lubricating oil composition meeting the above listed industry standards is known to those skilled in the art.

The ability of a lubricant to neutralized acidic byproducts of combustion, which increases in engines provided with exhaust gas recirculation (EGR) systems, particularly 15 condensed EGR systems in which exhaust gasses are cooled prior to recirculation, can be improved, and the drain interval of the lubricant can be extended, by increasing the total base number (TBN) of the composition. Historically, TBN has been provided by overbased detergents that introduce sulfated ash into the composition. It would be advantageous to provide a lubricating oil composition with a high level of TBN using a 20 TBN boosting component that does not contribute sulfated ash. As highly basic components are known to induce corrosion and, in some cases reduce the compatibility between lubricating oil compositions and the fluoroelastomeric seal materials used in engines, it would be preferable to provide such a component that does not induce corrosion and, preferably, does not adversely affect seals compatibility. Due to demands 25 for improved fuel economy, less viscous lubricants, such as 0W and 5W 20 and 30 grade lubricants have become more prevalent. To allow for easier formulation of such lubricants, the amount of polymer introduced by additives is preferably minimized. Therefore, it would be further preferable to provide a non-polymeric ashless TBN source.

US Patent Nos. 5,525,247; 5,672,570; and 6,569,818 are directed to "low ash" 30 lubricating oil compositions in which sulfated ash content is reduced by replacing overbased detergents with neutral detergents. These patents describe such lubricants as providing sufficient detergency, but make no claim that such lubricants will provide

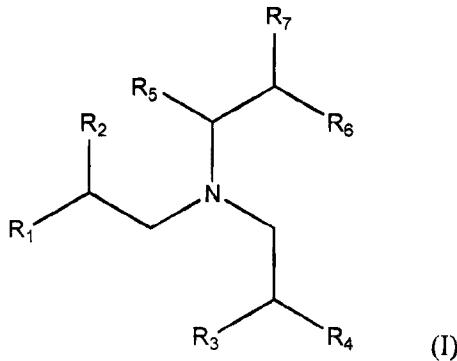
sufficient TBN for use, for example, in HDD engines. US Patent Application 2007/0203031 describes the use of a high TBN nitrogen-containing dispersants as ashless TBN sources.

5 SUMMARY OF THE INVENTION

In accordance with a first aspect of the invention, there are provided lubricating oil compositions, preferably crankcase lubricating oil compositions for heavy duty diesel (HDD) engines, containing one or more hindered amines useful as additives for increasing the TBN of lubricating oil compositions without introducing sulfated ash.

10 In accordance with a second aspect of the invention, there are provided lubricating oil compositions, as in the first aspect, having a TBN of from about 6 to about 15 and a sulfated ash (SASH) content of less than 1.1 mass %, preferably less than 0.8 mass %.

15 In accordance with a third aspect of the invention, there are provided lubricating oil compositions, as in the first and second aspects, meeting the performance criteria of one or more of the ACEA E6, MB p228.51, API CI-4+ and API CJ-4 specifications for heavy duty engine lubricants.


20 In accordance with a fourth aspect of the invention, there is provided a heavy duty diesel engine equipped with an exhaust gas recirculation (EGR) system, preferably a condensed EGR system and a particulate trap, the crankcase of which engine is lubricated with a lubricating oil composition of the first, second or third aspect.

In accordance with a fifth aspect of the invention, there is provided a method for forming a high TBN lubricant having a reduced SASH content comprising incorporating into said lubricating oil composition one or more hindered amines useful as additives for increasing the TBN of lubricating oil compositions without introducing sulfated ash.

25 In accordance with a sixth aspect of the invention, there is provided a use of one or more hindered amines as an ashless lubricating oil composition TBN source.

DETAILED DESCRIPTION OF THE INVENTION

30 Hindered amines in accordance with the present invention, useful as ashless TBN sources for lubricating oil compositions are defined by Formula (I):

wherein R₁, R₂, R₃ and R₄ are each independently an alkyl group having 1 to about 12 carbon atoms; R₅ and R₆ are each independently H or an alkyl group having 1 to about 12 carbon atoms, and R₇ is an alkyl group having 1 to about 12 carbon atoms or an aryl

5 group; with the proviso that, when R₅ is H and R₇ is an alkyl group, R₆ is an alkyl group, and with the further proviso that no more than 3 of R₁, R₂, R₃, and R₄ are methyl, simultaneously. Alternatively, hindered amines in accordance with the present invention can be described as amines bearing 2 β -branched alkyl groups (branched on the second carbon atom of the alkyl chain) and one alkyl group that is β -branched, 2-aryl substituted 10 or α -branched (branched on the first carbon atom of the alkyl chain). This combination of substituent groups has been found to provide a level of steric hindrance that prevents the amine compound from having adverse effects on corrosion and compatibility with fluoroelastomer engine seal materials, when used in lubricating oil compositions.

Preferred hindered amines are compounds of Formula (I) wherein R₅ is H, R₁, R₂, R₃, R₄, and R₆ are each alkyl groups having 1 to about 6 carbon atoms, and R₇ is either C₁ to C₆ alkyl or 2-aryl, with the proviso that no more than 3 of R₁, R₂, R₃, and R₄ are methyl, simultaneously. Preferably, the hindered amine compounds of Formula (I) have a molecular weight of at least about 175 daltons, such as at least about 225 daltons, more preferably at least about 275 daltons, and a maximum molecular weight of about 690 15 daltons, such as about 600 daltons, more preferably about 400 daltons. Preferably, the hindered amine compounds of Formula (I) have a molecular weight of from about 175 to about 690 daltons, such as from about 225 to about 600 daltons, preferably from about 275 to about 400 daltons.

Hindered amines suitable for use in the lubricating oil compositions of the present 20 invention preferably have a TBN (neat) of at least about 50 mg KOH/g, such as at least

about 100 mg KOH/g, more preferably at least about 150 mg KOH/g, as measured in accordance with ASTM D-4739. Hindered amines suitable for use in the lubricating oil compositions of the present invention preferably have a TBN (neat) of no greater than about 300 mg KOH/g, such as no greater than about 250 mg KOH/g, more preferably no greater than about 200 mg KOH/g, as measured in accordance with ASTM D-4739.

Lubricating oil compositions of the present invention comprise a major amount of oil of lubricating viscosity and a minor amount of an amine of Formula I.

Oils of lubricating viscosity useful in the context of the present invention may be selected from natural lubricating oils, synthetic lubricating oils and mixtures thereof. The lubricating oil may range in viscosity from light distillate mineral oils to heavy lubricating oils such as gasoline engine oils, mineral lubricating oils and heavy duty diesel oils. Generally, the viscosity of the oil ranges from about 2 centistokes to about 40 centistokes, especially from about 4 centistokes to about 20 centistokes, as measured at 100°C.

Natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil); liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale also serve as useful base oils.

Synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkylbenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulfides and derivative, analogs and homologs thereof. Also useful are synthetic oils derived from a gas to liquid process from Fischer-Tropsch synthesized hydrocarbons, which are commonly referred to as gas to liquid, or "GTL" base oils.

Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc., constitute another class of known synthetic lubricating oils. These are exemplified by polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, and the alkyl and aryl ethers of polyoxyalkylene polymers (e.g., methyl-polyisopropylene glycol ether having a molecular weight of 1000 daltons or diphenyl ether of

poly-ethylene glycol having a molecular weight of 1000 to 1500 daltons); and mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C₃-C₈ fatty acid esters and C₁₃ oxo acid diester of tetraethylene glycol.

Another suitable class of synthetic lubricating oils comprises the esters of 5 dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol). Specific 10 examples of such esters includes dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.

15 Esters useful as synthetic oils also include those made from C₅ to C₁₂ monocarboxylic acids and polyols and polyol esters such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.

20 Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy- or polyaryloxysilicone oils and silicate oils comprise another useful class of synthetic lubricants; such oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl) silicate, tetra-(4-methyl-2-ethylhexyl) silicate, tetra-(p-tert-butyl-phenyl) silicate, hexa-(4-methyl-2-ethylhexyl) disiloxane, poly(methyl)siloxanes and poly(methylphenyl)siloxanes. Other synthetic lubricating oils include liquid esters of phosphorous-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of 25 decylphosphonic acid) and polymeric tetrahydrofurans.

25 The oil of lubricating viscosity may comprise a Group I, Group II or Group III, base stock or base oil blends of the aforementioned base stocks. Preferably, the oil of lubricating viscosity is a Group II or Group III base stock, or a mixture thereof, or a mixture of a Group I base stock and one or more a Group II and Group III. Preferably, a major amount of the oil of lubricating viscosity is a Group II, Group III, Group IV or 30 Group V base stock, or a mixture thereof. The base stock, or base stock blend preferably has a saturate content of at least 65%, more preferably at least 75%, such as at least 85%.

Most preferably, the base stock, or base stock blend, has a saturate content of greater than 90%. Preferably, the oil or oil blend will have a sulfur content of less than 1%, preferably less than 0.6%, more preferably less than 0.4%, by weight.

Preferably the volatility of the oil or oil blend, as measured by the Noack volatility test (ASTM D5880), is less than or equal to 30%, preferably less than or equal to 25%, more preferably less than or equal to 20%, most preferably less than or equal 16%. Preferably, the viscosity index (VI) of the oil or oil blend is at least 85, preferably at least 100, most preferably from about 105 to 140.

Definitions for the base stocks and base oils in this invention are the same as those found in the American Petroleum Institute (API) publication "Engine Oil Licensing and Certification System", Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998. Said publication categorizes base stocks as follows:

- a) Group I base stocks contain less than 90 percent saturates and/or greater than 0.03 percent sulfur and have a viscosity index greater than or equal to 80 and less than 120 using the test methods specified in Table 1.
- b) Group II base stocks contain greater than or equal to 90 percent saturates and less than or equal to 0.03 percent sulfur and have a viscosity index greater than or equal to 80 and less than 120 using the test methods specified in Table 1.
- c) Group III base stocks contain greater than or equal to 90 percent saturates and less than or equal to 0.03 percent sulfur and have a viscosity index greater than or equal to 120 using the test methods specified in Table 1.
- d) Group IV base stocks are polyalphaolefins (PAO).
- e) Group V base stocks include all other base stocks not included in Group I, II, III, or IV.

Table I - Analytical Methods for Base Stock

Property	Test Method
Saturates	ASTM D 2007
Viscosity Index	ASTM D 2270
Sulfur	ASTM D 2622
	ASTM D 4294
	ASTM D 4927
	ASTM D 3120

Metal-containing or ash-forming detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life. Detergents generally comprise a polar head with a long hydrophobic tail, with the polar head comprising a metal salt of an acidic organic compound. The salts may contain a substantially stoichiometric amount of the metal in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as can be measured by ASTM D2896) of from 0 to 80. A large amount of a metal base may be incorporated by reacting excess metal compound (e.g., an oxide or hydroxide) with an acidic gas (e.g., carbon dioxide). The resulting overbased detergent comprises neutralized detergent as the outer layer of a metal base (e.g. carbonate) micelle. Such overbased detergents may have a TBN of 150 or greater, and typically will have a TBN of from 250 to 450 or more. In the presence of the compounds of Formula I, the amount of overbased detergent can be reduced, or detergents having reduced levels of overbasing (e.g., detergents having a TBN of 100 to 200), or neutral detergents can be employed, resulting in a corresponding reduction in the SASH content of the lubricating oil composition without a reduction in the performance thereof.

Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium. The most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium. Particularly convenient metal detergents are neutral and overbased calcium sulfonates having TBN of from 20 to 450 TBN, and neutral and overbased calcium phenates and sulfurized phenates having TBN of from 50 to 450. Combinations of detergents, whether overbased or neutral or both, may be used.

Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples included those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene. The alkylation may be carried out in the presence of a catalyst with alkylating agents

having from about 3 to more than 70 carbon atoms. The alkaryl sulfonates usually contain from about 9 to about 80 or more carbon atoms, preferably from about 16 to about 60 carbon atoms per alkyl substituted aromatic moiety.

The oil soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, 5 hydroxides, alkoxides, carbonates, carboxylate, sulfides, hydrosulfides, nitrates, borates and ethers of the metal. The amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from about 100 to 220 mass % (preferably at least 125 mass %) of that that is stoichiometrically required.

Metal salts of phenols and sulfurized phenols are prepared by reaction with an 10 appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art. Sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulfur 15 containing bridges.

Lubricating oil compositions of the present invention may further contain one or 20 more ashless dispersants, which effectively reduce formation of deposits upon use in gasoline and diesel engines, when added to lubricating oils. Ashless dispersants useful in the compositions of the present invention comprises an oil soluble polymeric long chain backbone having functional groups capable of associating with particles to be dispersed. Typically, such dispersants comprise amine, alcohol, amide or ester polar moieties attached to the polymer backbone, often via a bridging group. The ashless dispersant may be, for example, selected from oil soluble salts, esters, amino-esters, amides, imides and oxazolines of long chain hydrocarbon-substituted mono- and polycarboxylic acids or 25 anhydrides thereof; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having polyamine moieties attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and polyalkylene polyamine. The most common dispersant in use is the succinimide dispersant, which is a condensation product of a hydrocarbyl-substituted 30 succinic anhydride and a poly(alkyleneamine). Both mono- and bis-succinimide dispersants (and mixtures thereof) are well known.

Preferably, the ashless dispersant is a "high molecular weight" dispersant having a number average molecular weight (\bar{M}_n) greater than or equal to 4,000 daltons, such as between 4,000 and 20,000 daltons. The precise molecular weight ranges will depend on the type of polymer used to form the dispersant, the number of functional groups present, 5 and the type of polar functional group employed. For example, for a polyisobutylene derivatized dispersant, a high molecular weight dispersant is one formed with a polymer backbone having a number average molecular weight of from about 1680 daltons to about 5600 daltons. Typical commercially available polyisobutylene-based dispersants contain polyisobutylene polymers having a number average molecular weight ranging from about 10 900 to about 2300 daltons, functionalized by maleic anhydride (MW = 98), and derivatized with polyamines having a molecular weight of from about 100 to about 350 daltons. Polymers of lower molecular weight may also be used to form high molecular weight dispersants by incorporating multiple polymer chains into the dispersant, which can be accomplished using methods that are known in the art.

15 Preferred groups of dispersant include polyamine-derivatized poly α -olefin, dispersants, particularly ethylene/butene alpha-olefin and polyisobutylene-based dispersants. Particularly preferred are ashless dispersants derived from polyisobutylene substituted with succinic anhydride groups and reacted with polyethylene amines, e.g., polyethylene diamine, tetraethylene pentamine; or a polyoxyalkylene polyamine, e.g., 20 polyoxypropylene diamine, trimethylolaminomethane; a hydroxy compound, e.g., pentaerythritol; and combinations thereof. One particularly preferred dispersant combination is a combination of (A) polyisobutylene substituted with succinic anhydride groups and reacted with (B) a hydroxy compound, e.g., pentaerythritol; (C) a polyoxyalkylene polyamine, e.g., polyoxypropylene diamine, or (D) a polyalkylene 25 diamine, e.g., polyethylene diamine and tetraethylene pentamine using about 0.3 to about 2 moles of (B), (C) and/or (D) per mole of (A). Another preferred dispersant combination comprises a combination of (A) polyisobutylene succinic anhydride with (B) a polyalkylene polyamine, e.g., tetraethylene pentamine, and (C) a polyhydric alcohol or polyhydroxy- 30 substituted aliphatic primary amine, e.g., pentaerythritol or trimethylolaminomethane, as described in U.S. Patent No. 3,632,511.

Another class of ashless dispersants comprises Mannich base condensation products. Generally, these products are prepared by condensing about one mole of an

alkyl-substituted mono- or polyhydroxy benzene with about 1 to 2.5 moles of carbonyl compound(s) (e.g., formaldehyde and paraformaldehyde) and about 0.5 to 2 moles of polyalkylene polyamine, as disclosed, for example, in U.S. Patent No. 3,442,808. Such Mannich base condensation products may include a polymer product of a metallocene

5 catalyzed polymerization as a substituent on the benzene group, or may be reacted with a compound containing such a polymer substituted on a succinic anhydride in a manner similar to that described in U.S. Patent No. 3,442,808. Examples of functionalized and/or derivatized olefin polymers synthesized using metallocene catalyst systems are described in the publications identified *supra*.

10 The dispersant can be further post treated by a variety of conventional post treatments such as boration, as generally taught in U.S. Patent Nos. 3,087,936 and 3,254,025. Boration of the dispersant is readily accomplished by treating an acyl nitrogen-containing dispersant with a boron compound such as boron oxide, boron halide boron acids, and esters of boron acids, in an amount sufficient to provide from about 0.1 to about 15 20 atomic proportions of boron for each mole of acylated nitrogen composition. Useful dispersants contain from about 0.05 to about 2.0 mass %, e.g., from about 0.05 to about 0.7 mass % boron. The boron, which appears in the product as dehydrated boric acid polymers (primarily $(\text{HBO}_2)_3$), is believed to attach to the dispersant imides and diimides as amine salts, e.g., the metaborate salt of the diimide. Boration can be carried out by 20 adding from about 0.5 to 4 mass %, e.g., from about 1 to about 3 mass % (based on the mass of acyl nitrogen compound) of a boron compound, preferably boric acid, usually as a slurry, to the acyl nitrogen compound and heating with stirring at from about 135°C to about 190°C, e.g., 140°C to 170°C, for from about 1 to about 5 hours, followed by nitrogen stripping. Alternatively, the boron treatment can be conducted by adding boric 25 acid to a hot reaction mixture of the dicarboxylic acid material and amine, while removing water. Other post reaction processes commonly known in the art can also be applied.

The dispersant may also be further post treated by reaction with a so-called "capping agent". Conventionally, nitrogen-containing dispersants have been "capped" to reduce the adverse effect such dispersants have on the fluoroelastomer engine seals.

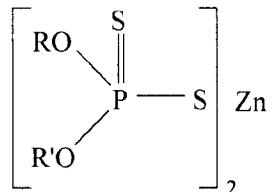
30 Numerous capping agents and methods are known. Of the known "capping agents", those that convert basic dispersant amino groups to non-basic moieties (e.g., amido or imido groups) are most suitable. The reaction of a nitrogen-containing dispersant and alkyl

acetoacetate (e.g., ethyl acetoacetate (EAA)) is described, for example, in U.S. Patent Nos. 4,839,071; 4,839,072 and 4,579,675. The reaction of a nitrogen-containing dispersant and formic acid is described, for example, in U.S. Patent No. 3,185,704. The reaction product of a nitrogen-containing dispersant and other suitable capping agents are described in U.S. 5 Patent Nos. 4,663,064 (glycolic acid); 4,612,132; 5,334,321; 5,356,552; 5,716,912; 5,849,676; 5,861,363 (alkyl and alkylene carbonates, e.g., ethylene carbonate); 5,328,622 (mono-epoxide); 5,026,495; 5,085,788; 5,259,906; 5,407,591 (poly (e.g., bis)-epoxides) and 4,686,054 (maleic anhydride or succinic anhydride). The foregoing list is not exhaustive; other methods of capping nitrogen-containing dispersants are known to those 10 skilled in the art.

For adequate piston deposit control, a nitrogen-containing dispersant can be added in an amount providing the lubricating oil composition with from about 0.03 mass % to about 0.15 mass %, preferably about 0.07 to about 0.12 mass %, nitrogen.

Ashless dispersants are basic in nature and therefore have a TBN which, depending 15 on the nature of the polar group and whether or not the dispersant is borated or treated with a capping agent, may be from about 5 to about 200 mg KOH/g. However, high levels of basic dispersant nitrogen are known to have a deleterious effect on the fluoroelastomeric materials conventionally used to form engine seals and, therefore, it is preferable to use the minimum amount of dispersant necessary to provide piston deposit 20 control, and to use substantially no dispersant, or preferably no dispersant, having a TBN of greater than 5. Preferably, the amount of dispersant employed will contribute no more than 4, preferably no more than 3 mg KOH/g of TBN to the lubricating oil composition. It is further preferable that dispersant provides no greater than 30, preferably no greater than 25% of the TBN of the lubricating oil composition.

25 Additional additives may be incorporated in the compositions of the invention to enable them to meet particular requirements. Examples of additives which may be included in the lubricating oil compositions are metal rust inhibitors, viscosity index improvers, corrosion inhibitors, oxidation inhibitors, friction modifiers, other dispersants, anti-foaming agents, anti-wear agents and pour point depressants. Some are discussed in 30 further detail below.


Dihydrocarbyl dithiophosphate metal salts are frequently used as antiwear and antioxidant agents. The metal may be an alkali or alkaline earth metal, or aluminum, lead,

tin, molybdenum, manganese, nickel or copper. The zinc salts are most commonly used in lubricating oil in amounts of 0.1 to 10, preferably 0.2 to 2 wt. %, based upon the total weight of the lubricating oil composition. They may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually

5 by reaction of one or more alcohol or a phenol with P_2S_5 and then neutralizing the formed DDPA with a zinc compound. For example, a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols. Alternatively, multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in

10 character. To make the zinc salt, any basic or neutral zinc compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of zinc due to the use of an excess of the basic zinc compound in the neutralization reaction.

15 The preferred zinc dihydrocarbyl dithiophosphates are oil soluble salts of dihydrocarbyl dithiophosphoric acids and may be represented by the formula:

wherein R and R' may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R and R' groups

20 are alkyl groups of 2 to 8 carbon atoms. Thus, the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl. In order to obtain oil solubility, the total number of carbon atoms (i.e. R and R') in the dithiophosphoric acid will generally be about 5 or greater. The zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates. The present

25 invention may be particularly useful when used with lubricant compositions containing phosphorus levels of from about 0.02 to about 0.12 mass %, such as from about 0.03 to about 0.10 mass %, or from about 0.05 to about 0.08 mass %, based on the total mass of the composition. In one preferred embodiment, lubricating oil compositions of the present

invention contain zinc dialkyl dithiophosphate derived predominantly (e.g., over 50 mol. %, such as over 60 mol. %) from secondary alcohols.

Oxidation inhibitors or antioxidants reduce the tendency of mineral oils to deteriorate in service. Oxidative deterioration can be evidenced by sludge in the lubricant, 5 varnish-like deposits on the metal surfaces, and by viscosity growth. Such oxidation inhibitors include hindered phenols, alkaline earth metal salts of alkylphenolthioesters having preferably C₅ to C₁₂ alkyl side chains, calcium nonylphenol sulfide, oil soluble phenates and sulfurized phenates, phosphosulfurized or sulfurized hydrocarbons, phosphorous esters, metal thiocarbamates, oil soluble copper compounds as described in 10 U.S. Patent No. 4,867,890, and molybdenum-containing compounds.

Typical oil soluble aromatic amines having at least two aromatic groups attached directly to one amine nitrogen contain from 6 to 16 carbon atoms. The amines may contain more than two aromatic groups. Compounds having a total of at least three aromatic groups in which two aromatic groups are linked by a covalent bond or by an 15 atom or group (e.g., an oxygen or sulfur atom, or a -CO-, -SO₂- or alkylene group) and two are directly attached to one amine nitrogen also considered aromatic amines having at least two aromatic groups attached directly to the nitrogen. The aromatic rings are typically substituted by one or more substituents selected from alkyl, cycloalkyl, alkoxy, aryloxy, acyl, acylamino, hydroxy, and nitro groups.

20 Multiple antioxidants are commonly employed in combination. In one preferred embodiment, lubricating oil compositions of the present invention contain from about 0.1 to about 1.2 mass % of aminic antioxidant and from about 0.1 to about 3 mass % of phenolic antioxidant. In another preferred embodiment, lubricating oil compositions of the present invention contain from about 0.1 to about 1.2 mass % of aminic antioxidant, 25 from about 0.1 to about 3 mass % of phenolic antioxidant and a molybdenum compound in an amount providing the lubricating oil composition from about 10 to about 1000 ppm of molybdenum.

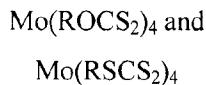
Representative examples of suitable viscosity modifiers are polyisobutylene, copolymers of ethylene and propylene, polymethacrylates, methacrylate copolymers, 30 copolymers of an unsaturated dicarboxylic acid and a vinyl compound, interpolymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/ isoprene,

styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene.

Friction modifiers and fuel economy agents that are compatible with the other ingredients of the final oil may also be included. Examples of such materials include

5 glyceryl monoesters of higher fatty acids, for example, glyceryl mono-oleate; esters of long chain polycarboxylic acids with diols, for example, the butane diol ester of a dimerized unsaturated fatty acid; oxazoline compounds; and alkoxylated alkyl-substituted mono-amines, diamines and alkyl ether amines, for example, ethoxylated tallow amine and ethoxylated tallow ether amine.

10 Other known friction modifiers comprise oil-soluble organo-molybdenum compounds. Such organo-molybdenum friction modifiers also provide antioxidant and antiwear credits to a lubricating oil composition. Examples of such oil soluble organo-molybdenum compounds include dithiocarbamates, dithiophosphates, dithiophosphinates, xanthates, thioxanthates, sulfides, and the like, and mixtures thereof. Particularly preferred


15 are molybdenum dithiocarbamates, dialkyldithiophosphates, alkyl xanthates and alkylthioxanthates.

Additionally, the molybdenum compound may be an acidic molybdenum compound. These compounds will react with a basic nitrogen compound as measured by ASTM test D-664 or D-2896 titration procedure and are typically hexavalent. Included

20 are molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate, and other alkaline metal molybdates and other molybdenum salts, e.g., hydrogen sodium molybdate, MoOCl_4 , MoO_2Br_2 , $\text{Mo}_2\text{O}_3\text{Cl}_6$, molybdenum trioxide or similar acidic molybdenum compounds.

Among the molybdenum compounds useful in the compositions of this invention are

25 organo-molybdenum compounds of the formulae:

wherein R is an organo group selected from the group consisting of alkyl, aryl, aralkyl and alkoxyalkyl, generally of from 1 to 30 carbon atoms, and preferably 2 to 12 carbon atoms and

30 most preferably alkyl of 2 to 12 carbon atoms. Especially preferred are the dialkyldithiocarbamates of molybdenum.

Another group of organo-molybdenum compounds useful in the lubricating compositions of this invention are trinuclear molybdenum compounds, especially those of the formula $Mo_3S_kL_nQ_z$ and mixtures thereof wherein the L are independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compound

5 soluble or dispersible in the oil, n is from 1 to 4, k varies from 4 through 7, Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers, and z ranges from 0 to 5 and includes non-stoichiometric values. At least 21 total carbon atoms should be present among all the ligand organo groups, such as at least 25, at least 30, or at least 35 carbon atoms.

10 A dispersant - viscosity index improver functions as both a viscosity index improver and as a dispersant. Examples of dispersant - viscosity index improvers include reaction products of amines, for example polyamines, with a hydrocarbyl-substituted mono- or di-carboxylic acid in which the hydrocarbyl substituent comprises a chain of sufficient length to impart viscosity index improving properties to the compounds. In

15 general, the viscosity index improver dispersant may be, for example, a polymer of a C_4 to C_{24} unsaturated ester of vinyl alcohol or a C_3 to C_{10} unsaturated mono-carboxylic acid or a C_4 to C_{10} di-carboxylic acid with an unsaturated nitrogen-containing monomer having 4 to 20 carbon atoms; a polymer of a C_2 to C_{20} olefin with an unsaturated C_3 to C_{10} mono- or di-carboxylic acid neutralized with an amine, hydroxyl amine or an alcohol; or a polymer

20 of ethylene with a C_3 to C_{20} olefin further reacted either by grafting a C_4 to C_{20} unsaturated nitrogen-containing monomer thereon or by grafting an unsaturated acid onto the polymer backbone and then reacting carboxylic acid groups of the grafted acid with an amine, hydroxy amine or alcohol.

Pour point depressants, otherwise known as lube oil flow improvers (LOFI), lower

25 the minimum temperature at which the fluid will flow or can be poured. Such additives are well known. Typical of those additives that improve the low temperature fluidity of the fluid are C_8 to C_{18} dialkyl fumarate/vinyl acetate copolymers, and polymethacrylates. Foam control can be provided by an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.

30 Some of the above-mentioned additives can provide a multiplicity of effects; thus for example, a single additive may act as a dispersant-oxidation inhibitor. This approach is well known and need not be further elaborated herein.

In the present invention it may also be preferable to include an additive which maintains the stability of the viscosity of the blend. Thus, although polar group-containing additives achieve a suitably low viscosity in the pre-blending stage it has been observed that some compositions increase in viscosity when stored for prolonged periods.

5 Additives which are effective in controlling this viscosity increase include the long chain hydrocarbons functionalized by reaction with mono- or dicarboxylic acids or anhydrides which are used in the preparation of the ashless dispersants as hereinbefore disclosed.

When lubricating compositions contain one or more of the above-mentioned additives, each additive is typically blended into the base oil in an amount that enables the 10 additive to provide its desired function.

When lubricating compositions contain one or more of the above-mentioned additives, each additive is typically blended into the base oil in an amount that enables the additive to provide its desired function. Representative effect amounts of such additives, when used in crankcase lubricants, are listed below. All the values listed are stated as 15 mass percent active ingredient.

Table II

ADDITIVE	MASS % (Broad)	MASS % (Preferred)
Metal Detergents	0.1 - 15	0.2 - 9
Corrosion Inhibitor	0 - 5	0 - 1.5
Metal Dihydrocarbyl Dithiophosphate	0.1 - 6	0.1 - 4
Antioxidant	0 - 5	0.01 - 3
Pour Point Depressant	0.01 - 5	0.01 - 1.5
Antifoaming Agent	0 - 5	0.001 - 0.15
Supplemental Antiwear Agents	0 - 1.0	0 - 0.5
Friction Modifier	0 - 5	0 - 1.5
Viscosity Modifier	0.01 - 10	0.25 - 3
Basestock	Balance	Balance

Fully formulated lubricating oil compositions of the present invention preferably have a TBN of at least 6 mg KOH/g, such as from about 6 to about 18 mg KOH/g (ASTM 20 D2896). More preferably, compositions of the present invention have a TBN of at least 8.5 mg KOH/g, such as from about 8.5 or 9 to about 18 mg KOH/g.

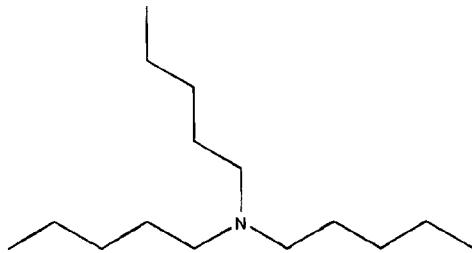
Fully formulated lubricating oil compositions of the present invention preferably have a sulfated ash (SASH) content (ASTM D-874) of about 1.1 mass % or less,

preferably about 1.0 mass % or less, more preferably about 0.8 mass % or less, such as 0.5 mass % or less.

Preferably, fully formulated lubricating oil compositions of the present invention derive at least 5 %, preferably at least 10 %, more preferably at least 20 % of the 5 compositional TBN (as measured in accordance with ASTM D4739) from ashless TBN sources including at least one amine of Formula I. More preferably, fully formulated lubricating oil compositions of the present invention derive at least 5 %, preferably at least 10 %, more preferably at least 20 % of the compositional TBN from at least one amine of Formula I. Preferably, fully formulated lubricating oil compositions of the present 10 invention contains an amount of an amine of Formula I that contributes from about 0.5 to about 4 mg KOH/g, preferably from about 1 to about 3 mg KOH/g of TBN (ASTM D4739) to the composition.

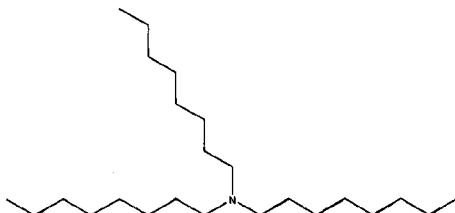
Fully formulated lubricating oil compositions of the present invention further 15 preferably have a sulfur content of less than about 0.4 mass %, more less than about 0.35 mass % more preferably less than about 0.03 mass %, such as less than about 0.20 mass %. Preferably, the Noack volatility (ASTM D5880) of the fully formulated lubricating oil composition (oil of lubricating viscosity plus all additives and additive diluent) will be no greater than 13, such as no greater than 12, preferably no greater than 10. Fully 20 formulated lubricating oil compositions of the present invention preferably have no greater than 1200 ppm of phosphorus, such as no greater than 1000 ppm of phosphorus, or no greater than 800 ppm of phosphorus, such as no greater than 600 ppm of phosphorus, or no greater than 500 or 400 ppm of phosphorus.

It may be desirable, although not essential to prepare one or more additive 25 concentrates comprising additives (concentrates sometimes being referred to as additive packages) whereby several additives can be added simultaneously to the oil to form the lubricating oil composition. A concentration for the preparation of a lubricating oil composition of the present invention may, for example, contain from about 5 to about 30 mass % of one or more compounds of Formula (I); about 10 to about 40 mass % of a nitrogen-containing dispersant; about 2 to about 20 mass % of an aminic antioxidant, a 30 phenolic antioxidant, a molybdenum compound, or a mixture thereof; about 5 to 40 mass % of a detergent; and from about 2 to about 20 mass % of a metal dihydrocarbyl dithiophosphate.

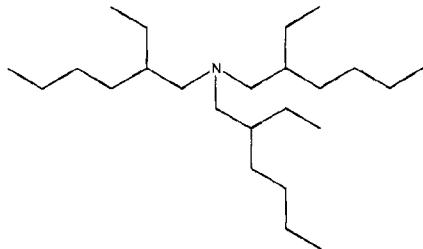

The final composition may employ from 5 to 25 mass %, preferably 5 to 18 mass %, typically 10 to 15 mass % of the concentrate, the remainder being oil of lubricating viscosity and viscosity modifier.

All weight (and mass) percents expressed herein (unless otherwise indicated) are 5 based on active ingredient (A.I.) content of the additive, and/or additive-package, exclusive of any associated diluent. However, detergents are conventionally formed in diluent oil, which is not removed from the product, and the TBN of a detergent is conventionally provided for the active detergent in the associated diluent oil. Therefore, weight (and mass) percentages, when referring to detergents are (unless otherwise 10 indicated) total weight (or mass) percent of active ingredient and associated diluent oil.

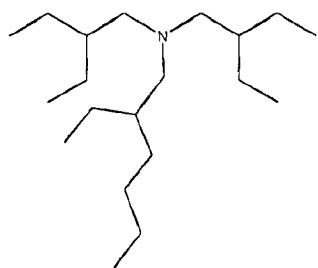
This invention will be further understood by reference to the following examples, wherein all parts are parts by weight (or mass), unless otherwise noted.


SYNTHESIS EXAMPLES

15 Amine 1: Linear Amine – Tri-n-pentylamine (Comparative)



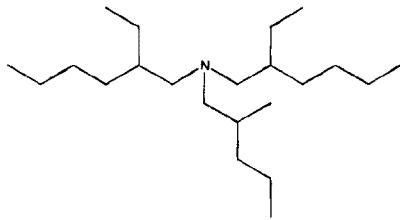
20 Commercially available material; available from Tokyo Chemical Industry, Tokyo, Japan and TCI America, Portland Oregon, USA at 98% purity.


Amine 2: Linear Amine – Tri-n-octylamine (Comparative)

25 Commercially available material; available from Alfa Aesar, A Johnson Matthey Company, Ward Hill, Massachusetts, USA at 95% purity.

Synthesis Example 1Amine 3: Tris(2-ethylhexylamine)

5 Bis(2-ethylhexyl)amine (30 g, 124 mmol), 2-ethylhexanal (23.9 g, 186 mmol), and dichloromethane (DCM, 50 g) were stirred at room temperature in a 250 mL 4-neck round bottom flask equipped with a reflux condenser, thermocouple, overhead stirrer, and nitrogen blanket for 5.5 hours. Sodium triacetoxyborohydride (STAB, 31.6 g, 149 mmol) was slowly added portion-wise to the flask (caution: exotherm). An ice bath was used to
 10 reduce the temperature and control the exotherm, as needed. The reaction mixture was left to stir 48 hours. ^1H NMR showed the reaction reached completion and was quenched with saturated aqueous sodium bicarbonate solution (caution: effervescence). The organic layer was washed with saturated aqueous sodium bicarbonate and brine. This layer was then dried over magnesium sulphate, filtered, and concentrated yielding clear oil. Product was
 15 purified by column chromatography [heptane/ethyl acetate 90/10] (31.8 g, 72.4% yield). GC-MS confirmed the product purity to be 94.50%. ^1H NMR (300 MHz, CDCl_3) δ 0.87 (m, 18H), 1.27 (m, 27H), 2.04 (d, 6H).

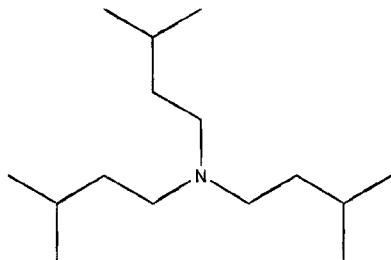

Synthesis Example 2Amine 4: 2-Ethyl-N, N-bis(2-ethylbutyl)hexan-1-amine

2-ethylhexan-1-amine (15 g, 116 mmol), 2-ethylbutanal (25.6 g, 255 mmol), and DCM (50 g) were stirred at room temperature in a 250 mL 4-neck round bottom flask equipped with a reflux condenser, thermocouple, overhead stirrer, and nitrogen blanket for 6 hours. Sodium triacetoxyborohydride (STAB, 54.1 g, 255 mmol) was slowly added portion wise to the flask (caution: exotherm). An ice bath was used to reduce the temperature and control the exotherm, as needed. The reaction mixture was left to stir for 12 hours. ^1H NMR showed the reaction reached completion and was quenched with saturated aqueous sodium bicarbonate solution (caution: effervescence). The organic layer was washed with saturated aqueous sodium bicarbonate and brine. This layer was then dried over magnesium sulphate, filtered, and concentrated yielding a clear oil. Product was purified by column chromatography [hexanes/ethyl acetate 90/10] yielding an 88% pure product. Product was repurified using hexanes as the mobile phase, yielding clear oil (20.45 g, 58.6% yield). GC-MS confirmed the product purity to be 99.35%. ^1H NMR (300 MHz, CDCl_3) δ 0.87 (m, 18H), 1.21-1.54 (m, 19H), 2.03 (d, 6H).

15

Synthesis Example 3

Amine 5: 2-Ethyl-N-(2-ethylhexyl)-N-(2-methylpentyl)hexan-1-amine

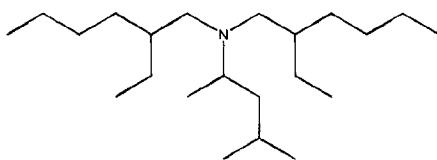

20 Bis(2-ethylhexanyl)amine (25 g, 104 mmol), 2-methylpentanal (12.4 g, 124 mmol), and DCM (50 g) were stirred at room temperature in a 250 mL 4-neck round bottom flask equipped with a reflux condenser, thermocouple, overhead stirrer, and nitrogen blanket for 4 hours. Sodium triacetoxyborohydride (STAB, 26.3 g, 124 mmol) was slowly added portion-wise to the flask (caution: exotherm). An ice bath was used to reduce the temperature and control the exotherm, as needed. The reaction mixture was left to stir for 12 hours. ^1H NMR indicated the reaction reached completion and was quenched with saturated aqueous sodium bicarbonate solution (caution: effervescence). The organic layer was washed with saturated aqueous sodium bicarbonate and brine. This layer was

then dried over magnesium sulphate, filtered, and concentrated yielding a clear oil.

Product was purified by column chromatography [hexanes/ethyl acetate 90/10] yielding an 88% pure product. Product was repurified using hexanes as the mobile phase, yielding clear oil (20.45 g, 58.6% yield). GC-MS confirmed the product purity to be 99.62%. ¹H

5 NMR (300 MHz, CDCl₃) δ 0.81-0.91 (m, 18H), 1.19-1.44 (m, 23 H), 1.92-2.08 (m, 6H).

Amine 6: Triisopentylamine (Comparative)



10 Commercially available material; available from Tokyo Chemical Industry, Tokyo, Japan and TCI America, Portland Oregon, USA at 95% purity.

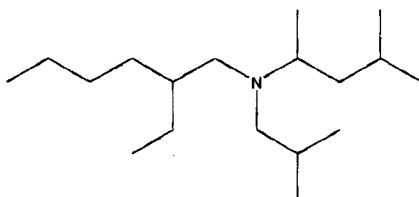
Synthesis Example 4

Amine 7: 2-Ethyl-N-(2-ethylhexyl)-N-(4-methylpentan-2-yl)hexan-1-amine

15

2-ethylhexylamine (20 g, 155 mmol), 4-methylpentan-2-one (18.6 g, 186 mmol), and DCM (50 g) were stirred at room temperature in a 250 mL 4-neck round bottom flask equipped with a reflux condenser, thermocouple, overhead stirrer, and nitrogen blanket for 20 3.5 hours. Sodium triacetoxyborohydride (STAB, 39.4 g, 186 mmol) was slowly added portion-wise to the flask (caution: exotherm). An ice bath was used to reduce the temperature and control the exotherm, as needed. The reaction was left to stir 12 hours.

1 ¹H NMR showed the reaction reached completion and was quenched with saturated aqueous sodium bicarbonate solution (caution: effervescence). The organic layer was 25 washed with saturated aqueous sodium bicarbonate and brine. This layer was then dried

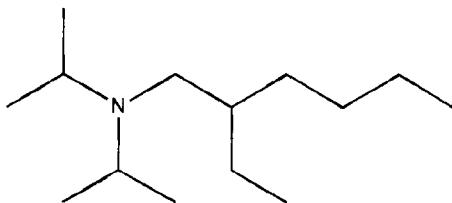

over magnesium sulphate, filtered, and concentrated yielding 2-ethyl-N-(4-methylpentan-2-yl)hexan-1-amine as clear oil.

The resulting 2-ethyl-N-(4-methylpentan-2-yl)hexan-1-amine (16.5 g, 77 mmol) (used without further purification), together with 2-ethylhexanal (10.5 g, 85 mmol), and 5 DCM (50 g) were stirred at room temperature in a 250 mL 4-neck round bottom flask equipped with a reflux condenser, thermocouple, overhead stirrer, and nitrogen blanket for 3 hours. Sodium triacetoxyborohydride (STAB, 19.7 g, 93 mmol) was slowly added portion-wise to the flask (caution: exotherm). An ice bath was used to reduce the temperature and control the exotherm, as needed. The reaction mixture was left to stir for 10 5 hours. ^1H NMR showed the reaction reached completion and was quenched with saturated aqueous sodium bicarbonate solution (caution: effervescence). The organic layer was washed with saturated aqueous sodium bicarbonate and brine. This layer was then dried over magnesium sulphate, filtered, and concentrated yielding clear oil. Product was purified by column chromatography [heptane/ethyl acetate 84/16] (16.5 g, 65.5% yield). 15 GC-MS confirmed the product purity to be 98.56%. ^1H NMR (300 MHz, CDCl_3) δ 0.86 (m, 21H), 1.12-1.77 (m, 21 H), 2.09 (d, 4H), 2.70 (m, 1H).

Synthesis Example 5

Amine 8: 2-Ethyl-N-isobutyl-N-(4-methylpentan-2-yl)hexan-1-amine

20

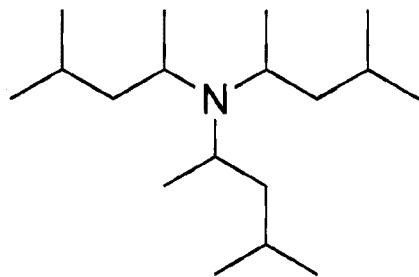

2-Ethylhexylamine (20 g, 155 mmol), 4-methylpentan-2-one (18.6 g, 186 mmol), and DCM (50 g) were stirred at room temperature in a 250 mL 4-neck round bottom flask equipped with a reflux condenser, thermocouple, overhead stirrer, and nitrogen blanket for 25 3.5 hours. Sodium triacetoxyborohydride (STAB, 39.4 g, 186 mmol) was slowly added portion-wise to the flask (caution: exotherm). An ice bath was used to reduce the temperature and control the exotherm, as needed. The reaction mixture was left to stir 12 hours. ^1H NMR showed the reaction reached completion and was quenched with saturated aqueous sodium bicarbonate solution (caution: effervescence). The organic layer was

washed with saturated aqueous sodium bicarbonate and brine. This layer was then dried over magnesium sulphate, filtered, and concentrated yielding 2-ethyl-N-(4-methylpentan-2-yl)hexan-1-amine as clear oil.

The resulting 2-ethyl-N-(4-methylpentan-2-yl)hexan-1-amine (16.5 g, 77 mmol) 5 (used without further purification), together with isobutyraldehyde (7.81 g, 108 mmol), and DCM (40 g) were stirred at room temperature in a 250 mL 4-neck round bottom flask equipped with a reflux condenser, thermocouple, overhead stirrer, and nitrogen blanket for 2.75 hours. Sodium triacetoxyborohydride (STAB, 19.58 g, 92.4 mmol) was slowly added portion-wise to the flask (caution: exotherm). An ice bath was used to reduce the 10 temperature and control the exotherm, as needed. The reaction was left to stir for 24 hours. ^1H NMR showed the reaction reached completion and was quenched with saturated aqueous sodium bicarbonate solution (caution: effervescence). The organic layer was washed with saturated aqueous sodium bicarbonate and brine. This layer was then dried over magnesium sulphate, filtered, and concentrated yielding clear oil. Product was 15 purified by column chromatography [heptane/ethyl acetate 75/25] (17.5 g, 84.0% yield). GC-MS confirmed the product purity to be 97.80%. ^1H NMR (300 MHz, CDCl_3) δ 0.78-0.95 (m, 21H). 1.00-1.80 (m, 13H), 1.92-2.16 (m, 4H), 2.70 (m, 1H).

Synthesis Example 6

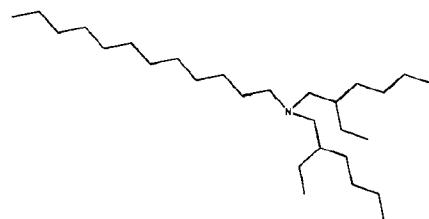
20 Amine 9: 2-Ethyl-N, N-diisopropylhexan-1-amine (Comparative)


Diisopropylamine (22.5 g, 222 mmol), 2-ethylhexanal (19 g, 148 mmol), and DCM (50 g) were stirred at room temperature in a 250 mL 4-neck round bottom flask equipped 25 with a reflux condenser, thermocouple, overhead stirrer, and nitrogen blanket. The mixture was left to stir 12 hours. Sodium triacetoxyborohydride (STAB, 37.7 g, 178 mmol) was slowly added portion-wise to the flask (caution: exotherm). An ice bath was used to reduce the temperature and control the exotherm, as needed. ^1H NMR showed the reaction reached completion and was quenched with saturated aqueous sodium

bicarbonate solution (caution: effervescence). The organic layer was washed with saturated aqueous sodium bicarbonate and brine. This layer was then dried over magnesium sulphate, filtered, and concentrated yielding a clear oil. Product was purified by column chromatography [heptane/ethyl acetate 90/10] (20.0 g, 63.3% yield). GC-MS 5 confirmed the product purity to be 92.47%. ^1H NMR (300 MHz, CDCl_3) δ 0.86 (dd, 6H), 0.96 (d, 12H), 1.27 (m, 9H), 2.22 (d, 2H), 2.97 (m, 2H).

Synthesis Example 7

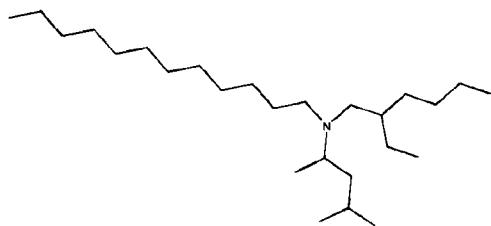
Amine 10: Tris(4-methylpentan-2-yl)amine (Comparative)


10

Compound could not be synthesized.

Synthesis Example 8

15 Amine 11: N, N-bis(2-ethylhexyl)dodecan-1-amine (Comparative)


A 1L metal reactor was charged with dodecan-1-amine (50 g, 270 mmol), 2-ethylhexanal (78 g, 582 mmol), Palladium on carbon (3 g, 1% of the amine), and ethanol 20 (500 mL). While stirring at 600rpm, the flow of hydrogen was set to 5.0 bars at room temperature (hydrogen was charged four times; a total of 16.8 bars of hydrogen were consumed by the reaction). The solution was then filtered over Celite and concentrated. The reaction yielded 102 g of yellow oil containing mono- and di-alkylated product. The

di-alkylated product was purified and isolated by column chromatography [heptane/ethyl acetate 99.8/0.2]. GC-MS analysis showed presence of mono-alkylated product (4%). The product was purified once again by column chromatography [heptane/ethyl acetate 99.8/0.2], which resulted in a pale yellow oil (47g, 43.4% yield). GC-MS confirmed the 5 product purity to be 100.00%. ^1H NMR (300 MHz, CDCl_3) δ 0.86 (m, 15H), 1.26 (m, 38H), 2.08 (d, 4H), 2.26 (t, 2H).

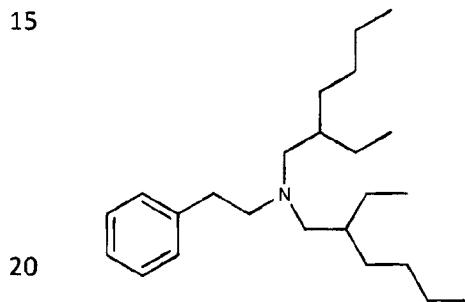
Synthesis Example 9

Amine 12: N-(2-ethylhexyl)-N-(4-methylpentan-2-yl)dodecan-1-amine (Comparative)

10

Dodecylamine (50.0 g, 264mmol), sodium triacetoxyborohydride (STAB, 77 g, 344 mmol), and DCM (625 mL) were charged to a 2L 3-neck round bottomed flask equipped with condenser, addition funnel, and mechanical stirrer. The addition funnel was 15 charged with 4-methyl-2-pentanone (29.6 g, 291 mmol) and DCM (50 mL). The ketone was added slowly to control the exotherm. The reaction was left to sit for 12 hours without stirring. The reaction was then heated to reflux for 7h. Glacial acetic acid (16 g) was added to catalyze the reaction which was then left to sit 12 hours without stirring. The reaction was complete, as indicated by TLC, and was quenched with saturated 20 aqueous sodium bicarbonate solution (caution: effervescence). The organic layer was washed with saturated aqueous sodium bicarbonate and brine. This layer was then dried over magnesium sulphate, filtered, and concentrated to yield N-(4-methylpentan-2-yl)dodecan-1-amine as yellow oil.

The resulting N-(4-methylpentan-2-yl)dodecan-1-amine (72.7 g, 270 mmol) (used 25 without further purification), together with sodium triacetoxyborohydride (STAB, 78 g, 351 mmol), and THF (650 mL) were charged to a 2L 3-neck round bottomed flask equipped with condenser, addition funnel, and mechanical stirrer. The addition funnel was charged with 2-ethylhexanal (39.6 g, 297 mmol) and THF (50 mL). The aldehyde was

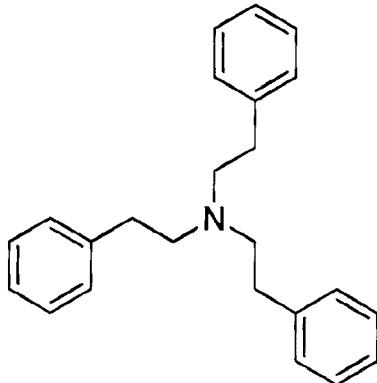

added slowly to control the exotherm. The reaction was carried out at reflux for 6 hours before adding glacial acetic acid (16.2 g) to catalyze. The reaction mixture was then left to sit 12 hours without stirring. Starting material was no longer converting, as indicated by TLC, and the reaction was quenched with saturated aqueous sodium bicarbonate

5 solution (caution: effervescence). The organic layer was washed with saturated aqueous sodium bicarbonate and brine. This layer was then dried over magnesium sulphate, filtered, and concentrated to yield N-(2-ethylhexyl)-N-(4-methylpentan-2-yl)dodecan-1-amine as yellow oil. Product was purified by column chromatography [heptane/ethyl acetate 98/2] (80.6 g, 78% yield). GC-MS confirmed the product purity to be 90.04%. ¹H

10 NMR (300 MHz, CDCl₃) δ 0.86 (m, 18H), 1.26 (m, 31H), 1.72 (sep, 1H), 2.22 (m, 4H), 2.71 (sex, 1H).

Synthesis Example 10

Amine 13: 2-Ethyl-N-(2-ethylhexyl)-N-phenylethylhexan-1-amine


2-Phenylethylamine (12.69 g, 105 mmol), 2-ethylhexanal (29.5 g, 230 mmol), and DCM (50 g) were stirred at room temperature in a 250 mL 4-neck, round-bottom flask equipped with a reflux condenser, thermocouple, overhead stirrer and nitrogen blanket.

25 Sodium triacetoxyborohydride (48.8 g, 230 mmol) was slowly added portionwise to the flask over a 7 minute period. Additional DCM (26 g) was added to rinse sodium triacetoxyborohydride into the flask. The reaction was left to stir at room temperature until complete (approximately 72 hours). The reaction was then quenched with saturated aqueous sodium bicarbonate solution. The organic layer was washed with saturated aqueous sodium bicarbonate and brine. This layer was then dried over magnesium sulfate, filtered and concentrated, yielding a dark yellow oil. The product was purified by column chromatography (hexanes 100) (20.5 g, 56% yield) resulting in clear oil. GC-MS

confirmed the product purity to be 99%. ^1H NMR (300 MHz, CDCl_3) δ 0.82-0.91 (m, 12H), 1.23-1.54 (m, 18H), 2.21 (d, 4H), 2.56-2.72 (m, 4H), 7.14-7.28 (m, 5H).

Synthesis Example 11

5 **Amine 14:** Tris-(2-phenylethyl)-amine

A 2L three-necked round-bottom flask equipped with a condenser, additional funnel, mechanical stirrer and temperature probe was charged with 2-phenylethanamine (33.1 g, 273 mmol) and sodium triacetoxyborohydride (143 g, 656 mmol) in DCM (1000mL). 2-phenylacetaldehyde (80.0 g, 601 mmol) in DCM (50 mL) was added drop-wise. The reaction was stirred at room temperature for 5 hours. Acetic acid (16.4 g, 273 mmol) was added and stirred for 24 hours. The reaction was quenched by careful addition of aqueous Na_2CO_3 . The organic layer was washed successively with aqueous NaHCO_3 and water, dried over MgSO_4 and filtered. The solvent was evaporated under reduced pressure and the residue was distilled pressure (84-88°C, 1 mbar) to yield an orange/brown liquid (87.7 g, 94% purity by GC-MS). This was then purified using silica gel chromatography (toluene) to yield a bright orange liquid (16.8 g, 49.4 mmol, 18% yield). GC-MS confirmed the product purity to be 97%. ^1H NMR (300 MHz, CDCl_3) δ 7.12-7.33 (15H, m), 1.72-2.81 (6H, m), 1.72-2.81 (6H, m), 2.81-2.89 (6H, m).

20

EXAMPLES

A reference composition representative of a commercial Heavy Duty Diesel (HDD) engine lubricating oil meeting the performance requirements of API CJ-4 was prepared using a commercially available Detergent/Inhibitor (DI) package (Infineum 25 D3474, available from Infineum USA L.P., Linden NJ, USA and Infineum UK Ltd.,

Abingdon Oxfordshire, UK), containing a combination of detergent, antioxidant, antiwear, and friction modifying additives. To this reference oil, various amine compounds were added in amounts that increased the TBN of the reference oil from 2 to 3 mg KOH/g, as measured by ASTM D4739. The resulting lubricating oil compositions were subjected to 5 an industry standard MB AK6 Seals Test, designed to quantify the adverse effect a lubricating oil composition has on fluoroelastomeric materials commonly used to form engine seals, and which must be passed to qualify as a MB p228.51 lubricant. The results are shown in the following table:

10 Table III

Ex. Inv./Comp.	Amine	R ¹	R ²	R ³	Amine TBN ¹	TBN Boost ²	MB AK6 Test Parameter (limit)			
							TS ^a (-50)	EAB ^b (-55)	VC ^c (0 to +5)	H ^d (-5 to +5)
1 (Ref.)	----	--	--	--	---	---	-34.9	-29.6	0.74	0.0
2 (Comp.)	1	n	n	n	241	2	-65	-81.1	0.82	9.0
3 (Comp.)	2	n	n	n	157	2	-71.4	-68.7	3.00	1.2
4 (Inv.)	3	β	β	β	155	2	-46.5	-36.5	0.54	2.0
5 (Inv.)	3	β	β	β	155	3	-44.9	-36.1	0.91	1.0
6 (Inv.)	4	β	β	β	182	2	-40.3	-40.5	0.26	3.0
7 (Inv.)	5	β	β	β	165	2	-43.1	-43.0	0.20	3.0
8 (Comp.)	6	γ	γ	γ	253	2	-67.2	-81.7	0.75	10.0
9 (Inv.)	7	α	β	β	164	2	-47.6	-44.1	0.95	2.0
10 (Inv.)	8	α	β	β	209	2	-43.3	-45.0	0.89	2.0
11 (Comp.)	9	α	α	β	261	2	-48.4	-68.7	1.05	6.0
12 (Comp.)	10	α	α	α	---	---	---	---	---	---
13 (Comp.)	11	n	β	β	135	2	-57.0	-55.0	0.90	0.0
14 (Comp.)	12	n	α	β	91	2	-59.0	-75.0	1.20	5.0
15 (Inv.)	13	2-aryl alkyl	β	β	162	2	-44.6	-45.4	0.90	1.0
16 (Comp.)	14	2-aryl alkyl	2-aryl alkyl	2-aryl alkyl	154	2	-53.0	-70.0	5.00	1.5

¹tTBN of the amine compound (ASTM D4739) in units of mg KOH/g²increase in TBN of the lubricating oil composition (ASTM D4739) due to addition of amine (mg KOH/g)

^a change in Tensile Strength (%)

^c change in volume (%)

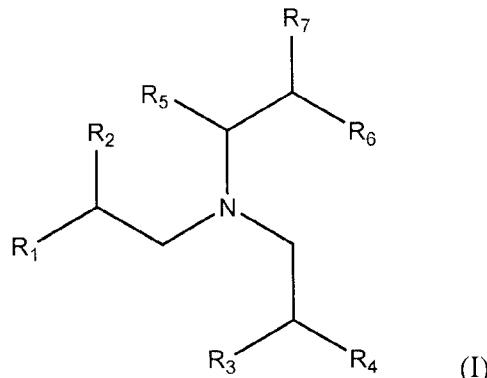
^b change in elongation at break (%)

^d Shore A Hardness

As shown by the data of Table III, the addition of a linear alkyl amine to a
5 lubricant as an ashless TBN source results in a failure of the MB AK-6 test, indicating
that such lubricants would have an adverse effect on engine seals (see Examples 1 and 2).
The addition of amines having two branched groups and one linear group also result in
the failure of the MB AK-6 test (see Examples 13 and 14).

In contrast, with amines bearing only β -branched alkyl groups, the nitrogen is
10 hindered to an extent sufficient to achieve fluoroelastomer seal compatibility (see
Examples 4, 5, 6 and 7). Similarly, seal compatibility is achieved using amines having
one α -branched, and two β -branched alkyl groups (see Examples 9 and 10). An amine
bearing all γ -branching fails the MB AK-6 test (see Example 6).

It is difficult to synthesize an amine bearing more than one α -branched group. An
15 amine with two α -branched groups can be synthesized if the α -branched groups are small
(e.g. C₁ to C₃), however, the use of such an amine leads to the failure of the MB AK-6
test (see Example 11). It was not possible to synthesize an amine with three α -branched
groups (see Example 12).


The MB AK-6 test can also be passed using an amine bearing two β -branched
20 alkyl groups and one alkyl chain bearing an aromatic group in the 2-position; a 2-
arylalkyl group (see Example 15). However, the use of an amine bearing three 2-
arylalkyl groups leads to the failure of the MB AK-6 test (see Example 16).

A description of a composition comprising, consisting of, or consisting
essentially of multiple specified components, as presented herein and in the
25 appended claims, should be construed to also encompass compositions made by
admixing said multiple specified components. The principles, preferred embodiments
and modes of operation of the present invention have been described in the foregoing
specification. What applicants submit is their invention, however, is not to be
construed as limited to the particular embodiments disclosed, since the disclosed
30 embodiments are regarded as illustrative rather than limiting. Changes may be made
by those skilled in the art. The scope of the claims should not be limited by

particular embodiments set forth herein, but should be construed in a manner consistent with the specification as a whole.

CLAIMS:

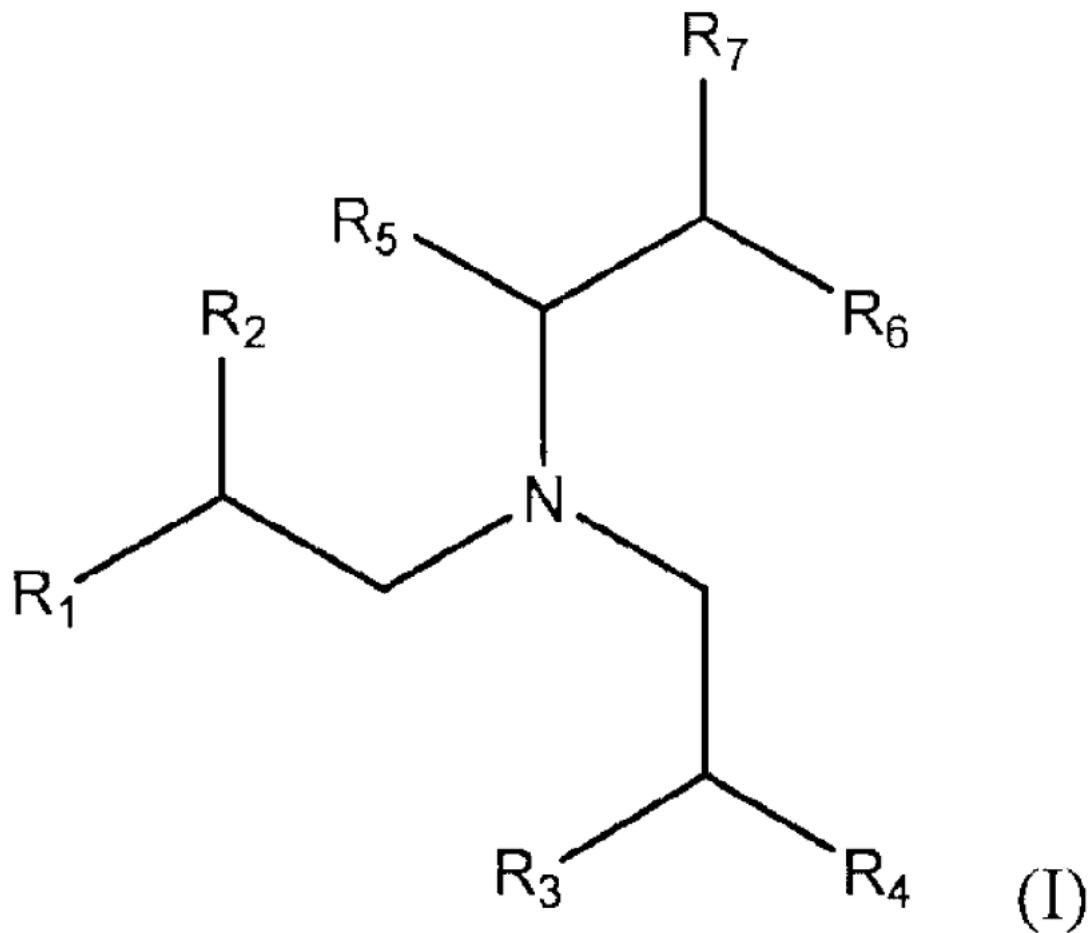
1. A lubricating oil composition comprising a major amount of oil of lubricating viscosity and a minor amount of one or more compounds of Formula (I):

wherein R₁, R₂, R₃ and R₄ are each independently an alkyl group having 1 to 12 carbon atoms; R₅ and R₆ are each independently H or an alkyl group having 1 to 12 carbon atoms, and R₇ is an alkyl group having 1 to 12 carbon atoms or an aryl group; wherein at least 5 % of the compositional TBN as measured in accordance with ASTM D4739 of the lubricating oil composition is derived from the one or more compounds of Formula I and with the proviso that, when R₅ is H and R₇ is an alkyl group, R₆ is an alkyl group, and with the further proviso that no more than 3 of R₁, R₂, R₃, and R₄ are methyl, simultaneously.

2. A lubricating oil composition, as claimed in claim 1, having a TBN of at least 6 mg KOH/g, as measured in accordance with ASTM D-2896.

3. A lubricating oil composition, as claimed in claim 2, having a TBN of from 6 to 18 mg KOH/g, as measured in accordance with ASTM D-2896.

4. A lubricating oil composition, as claimed in any one of claims 1 to 3, having a SASH content of no greater than 1.1 mass %.


5. A lubricating oil composition, as claimed in claim 4, having a SASH content of no greater than 1.0 mass %.

6. A lubricating oil composition, as claimed in claim 5, having a SASH content of no greater than 0.8 mass %.
7. A lubricating oil composition, as claimed in any one of claims 1 to 6, wherein at least 10 % of the compositional TBN, as measured in accordance with ASTM D4739, is derived from ashless TBN sources including at least one compound of Formula (I).
8. A lubricating oil composition, as claimed in claim 7, wherein at least 20 % of the compositional TBN, as measured in accordance with ASTM D4739, is derived from at least one compound of Formula (I).
9. A lubricating oil composition, as claimed in any one of claims 1 to 8, wherein from 0.5 to 4 mg KOH/g of the TBN of the composition, as measured in accordance with ASTM D4739, is derived from a compound of Formula (I).
10. A lubricating oil composition, as claimed in any one of claims 1 to 9, having a sulfur content of less than 0.4 mass, and no greater than 1200 ppm of phosphorus.
11. A lubricating oil composition, as claimed in any one of claims 1 to 10, comprising a compound of Formula (I) wherein R₅ is H, R₁, R₂, R₃, R₄, and R₆ are each alkyl groups having 1 to 6 carbon atoms, and R₇ is either C₁ to C₆ alkyl or 2-aryl, with the proviso that no more than 3 of R₁, R₂, R₃, and R₄ are methyl, simultaneously.
12. A lubricating oil composition, as claimed in any one of claims 1 to 11, comprising a compound of Formula (I) having a TBN of at least 50 mg KOH/g, as measured in accordance with ASTM D-4739.

13. A lubricating oil composition, as claimed in claim 12, comprising a compound of Formula (I) having a TBN of no greater than 300 mg KOH/g, as measured in accordance with ASTM D-4739.

14. A concentrate for the preparation of a lubricating oil composition, as claimed in any one of claims 1 to 13, said concentrate comprising from 2.5 to 30 mass % of one or more compounds of Formula (I); 10 to 40 mass % of a nitrogen-containing dispersant; 2 to 20 mass % of an aminic antioxidant, a phenolic antioxidant, a molybdenum compound, or a mixture thereof; 5 to 40 mass % of a detergent; and from 2 to 20 mass % of a metal dihydrocarbyl dithiophosphate.

15. The use of one or more compounds of Formula (I), as defined in claim 1, as an additive in a lubricating oil composition to increase the TBN of the lubricating oil composition without concurrently increasing the SASH content.

