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[57] ABSTRACT

A system and method for connecting computer workstations
in clusters to perform parallel-distributed processing with
respect to compute-intensive applications are provided.
Commodity computers/workstations and commodity net-
work hardware are arranged to form unique-architecture
building blocks (clusters) which may then act as supernodes
in larger scale cluster systems. An integrated ROCC+
(Reduced Overhead Cluster Communication) message pass-
ing software system provides unique communication logic
for efficient implementation of collective message passing
operations between each node and supernode. According to
a preferred embodiment, each building block comprises two
ethernet segments and four nodes (e.g., workstations), two
of which are connected by Network Interface Cards (NICs)
to both segments with the remaining nodes each connected
to a respective one of the segments. The ROCC+ software
establishes communication links within and between the
basic building blocks so as to eliminate collisions
(contention) on segments while allowing for parallel
(concurrent) message passing between nodes and supern-
odes.
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CLUSTER OF WORKSTATIONS FOR
SOLVING COMPUTE-INTENSIVE
APPLICATIONS BY EXCHANGING INTERIM
COMPUTATION RESULTS USING A TWO
PHASE COMMUNICATION PROTOCOL

MICROFICHE APPENDIX

This application includes one Microfiche Appendix com-
prising thirty-three frames.

COPYRIGHT NOTICE/AUTHORIZATION

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

The field of the present invention relates to computer
networks. More particularly, it relates to a system and
method for connecting computer workstations in clusters to
perform parallel-distributed processing with respect to
compute-intensive applications.

BACKGROUND OF THE INVENTION

Computer networks, e.g., local area (LAN’s), wide area
(WAN’s), and others, abound and are increasing in number
and variety. However, most installations are designed and
used mainly for client-server applications, i.e., wherein
multiple computers/workstations (clients) share the
resources (e.g., application programs, data files, etc.) of the
server, but otherwise operate independently. In such
installations, various software systems provide the necessary
message passing functions that allow the client stations and
the server station of a network to communicate with each
other.

Quite recently, a few networks have been organized into
clusters of nodes that cooperate with each other so as to
execute a single application problem in a parallel-distributed
mode with no client-server relation between nodes. Many
computing platforms have been designed to perform
parallel-distributed computation. The essential idea is to
distribute parts of an application problem to a group of
processor elements and to organize these individual proces-
sors to run in parallel, independently, except at certain
synchronization points where they must communicate their
partial results to each other before continuing their compu-
tation tasks. As well, various schemes for doing the com-
munication have been proposed. Some so-called supercom-
puters work this way, using special processor elements
connected by special network hardware. However, with the
advent of computer networking hardware-software systems,
an alternative to the traditional supercomputer is available
by using commodity computers (e.g. personal computers
with standard operating systems) and commodity network
hardware to connect the computers is in clusters. Cluster
networks of simple design have been tested by the instant
Applicant and others. Results indicate that, for many
compute-intensive applications, clusters have the potential
to provide a computing platform which greatly speeds up the
execution of the application, and that it does so at compara-
tively moderate cost compared to present alternatives for use
with such applications (e.g., supercomputers).
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The simplest cluster network architecture consists of a
single ethernet segment (e.g., a single cable or hub) and
many network nodes (e.g., personal computers) connected to
the segment through standard interface hardware. Commu-
nication is provided by a message-passing software system
interfacing with standard message passing protocols (e.g.
TCP/IP), and through them with software drivers for stan-
dard network interface cards (NICs). For many application
problems, this simple architecture and the available message
passing software system do not provide efficient speedup,
resulting in high-cost or insufficient speedup, or both. Pro-
gramming the mode of parallel-distributed execution noted
above requires an efficient message-passing software system
which provides a suite of commonly used message passing
operations, such as node-to-node send and receive, and
collective multi-node message passing operations, such as
broadcast and all-gather (a standard repertoire of message
passing operations for cluster programming is proposed in
the document known as MPI (Message Passing Interface
Forum. MPI: A Message Passing Interface Standard, Com-
puter Science Department, Technical Report CS-94-230,
University of Tennessee, Knoxville, Tenn. 1994) which is
hereby incorporated by reference as though fully set forth
herein. While several message passing software systems
exist that do provide a suite of message passing operations
which may be used in writing cluster application programs
(e.g., ROCC95 software developed by the instant inventor,
wherein “ROCC” stands for Reduced Overhead Cluster
Communication), these software systems are based on
standard, widely-used networking protocols (e.g., TCP/IP).
Since some standard networking protocol is available in
most computers/workstations as part of their operating
system, these message passing software systems use this
protocol layer as their interface with the network. Therefore,
their design and implementation (i.e., algorithms and pro-
gram code) are not part of any integrated hardware-software
network system for cluster computing and, thus, are ineffi-
cient at best, if not inoperable, for most compute-intensive
programming applications.

To obtain efficient speedup on a cluster, it must be
possible for the application programmer to easily match
his/her program to the cluster. Conversely, specific cluster
hardware-software should match many applications to pro-
vide for economy of scale. As well, cluster design should
allow the network architecture to be reconfigurable and
scalable in size so as to match new and ever larger appli-
cations. Heretofore, such flexibility in design and applica-
tion of cluster networks has not been realizable or practical.

The main hardware-software integration problem in
designing a cluster’s connectivity, i.e., network architecture,
and a matching message passing software system, is how to
reduce communication overhead to a point which allows
sufficient and efficient (i.e., cost-effective) speedup of many
applications by execution in a parallel mode. Since the
parallel-mode involves both calculation on many nodes and
communication of partial results between nodes, the reduc-
tion of communication overhead time relative to calculation
time has been the subject of much research and development
in the field of parallel computation. However, real cost-
effective reduction of communication overhead has
remained an open, unsolved problem—until now.

SUMMARY OF THE INVENTION

The present invention is an integrated hardware-software
system and method for connecting computer workstations in
clusters to perform parallel-distributed processing with
respect to compute-intensive applications. In a preferred
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embodiment, the network of processors are uniquely con-
figured in groups of four (each of which is designated herein
as a “2x4net”); is computation processing is coordinated by
unique message passing software (designated herein as
“ROCC+”). According to the instant invention, the proces-
sors may cooperate on a single application problem so as to
execute it in a parallel-distributed mode by passing mes-
sages to each other in order to communicate intermediate
partial results as the computation proceeds. In accordance
with this embodiment as well, multiple 2x4nets may be
utilized as building blocks and interconnected so as to
cooperate on application problems of larger scale and/or to
reduce calculation times. In such manner, each 2x4net,
which is itself a cluster, functions as a supernode which may
be scaled up to form larger clusters which, in turn, comprise
unique architectures.

The message passing software of the instant invention,
ROCCH+, includes most of the MPI repertoire of operations
and implements them in unique ways to match the 2x4net
cluster architectures so as to provide integrated cluster
computing platforms for the efficient performance of a large
class of parallel-distributed computations. The ROCC+ soft-
ware system employs novel message passing algorithms to
perform efficient message passing on the 2x4net clusters,
both independently within each 2x4net supernode, and inter-
dependently between 2x4net supernodes.

Accordingly, the present invention provides one or more
of the following objects and advantages:

to provide a real, cost-effective solution to reducing

communication overhead time relative to calculation
time in cluster-based, parallel-distributed mode calcu-
lations;

to achieve cost economy of scale by utilizing commodity

personal computers/workstations connected in a novel
network configuration by means of commodity net-
work hardware, as opposed to requiring dedicated,
special-purpose processor chips or specially designed
network hardware;

to provide an integrated software system in which an

application programmer may easily match such pro-
gram to the cluster system;

to provide a cluster design which is easily reconfigurable

and scalable in size so as to match new and ever larger
applications; and,

to provide the above at a cost low enough to be within the

range of affordability of many small organizations in
the business, education and industrial communities.

Other objects and advantages of the present invention will
become apparent from a review detailed description which
follows, the accompanying drawings, and the appended
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram depicting a basic 2x4net
building block of the instant invention;

FIG. 2 is a block diagram depicting a 2x4+net configu-
ration of the instant invention for use in interconnecting
2x4net building blocks;

FIG. 3 is a block diagram depicting a alternative, balanced
embodiment of a 2x4+net configuration of the instant inven-
tion for use in interconnecting 2x4net building blocks;

FIG. 4 is a block diagram depicting a 2x4+ Ring of the
instant invention in which m groups of 2x4+net building
blocks are interconnected for larger scale parallel-distributed
computation; and,
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FIG. 5 is a block diagram depicting a 2x4+ Ring of the
instant invention in which m groups of 2x4+net building
blocks, in accordance with the embodiment of FIG. 3, are
interconnected for larger scale parallel-distributed compu-
tation.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

With reference to the drawings, wherein numeric refer-
ences to like elements are preserved throughout the various
drawings, a preferred embodiment of the present invention
is described as follows:

Referring to FIG. 1, the basic 2x4net 10 of personal
computers/workstations of the instant invention is depicted.
In this embodiment, the 2x4net 10 comprises four nodes 20
which are identified for purposes of explanation herein as
N1 30, N2 40, N3 50, and N4 60. This embodiment further
comprises two ethernet segments 70, which are identified
herein as Sg1 80 and Sg2 90. This preferred embodiment of
the instant invention follows IEEE ethernet specifications
for a network, i.e., standard ethernet network interface cards
or NICs 100 are installed in commodity personal computers
(nodes 20) and standard ethernet cables 110 connect the
NICs 100. Applicant notes, however, that other standard
network hardware such as UTP hubs instead of coax cables
and Fastethernet (100 Mb/s) NICs with high-grade UTP
hubs can also be used to build a 2x4net, since the network
architecture and message passing software design of a
2x4net 10 is consistent with most standard networking
hardware and software. Such variations are intended to be
within the scope of the instant invention.

In all 2x4net 10, a message passing software system,
ROCCH, is used for message-passing between nodes 20. The
ROCC+ message passing software is capable of handling
multi-NIC nodes wherein two or more NICs are connected
to two or more distinct ethernet segments. The ability to
handle multi-NIC nodes in various message-passing opera-
tions is an essential feature of the ROCC+ message passing
system and is enabled through a ROCC__Environ subroutine
which sets up communication links between the various
nodes 20 of a 2x4net 10. The ROCC+ system uses the
Sockets paradigm, known to those skilled in the art, to
establish communication links between nodes.

The 2x4net 10 architecture is based on multi-NIC nodes
20 which can communicate with other nodes on different
ethernet segments 70. As noted above, the basic 2x4net 10
building block of the preferred embodiment has two cable
segments 70 (or hubs). This permits concurrent message-
passing for different pairs of nodes 20, as will be further
explained hereinbelow. The use of the Sockets paradigm
with respect to the preferred embodiment requires that the
nodes 20 run under an operating system which implements
this paradigm. There are, however, non-proprietary operat-
ing systems that include Sockets; for proprietary systems,
the usual licensing is available to a user of a 2x4net. As well,
Applicant envisions that other paradigms for establishing
communication links between nodes may be utilized without
departing from the spirit or scope of the instant invention.

The Sockets paradigm permits a communication link
CL(i,)) to be established between a client node j and a server
node 1 which are physically connected. The terms “client”
and “server” are here used in conformance with standard
Sockets specifications, but need not connote the usual client-
server relation. Indeed, as used herein, a communication link
CL is any two-way message passing communication path
between nodes (e.g., CL(i,j) indicates a message passing link
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between nodes i and j, such as from i to j, or from j to i). A
communication link comprises software as well as hard-
ware.

In accordance with the preferred embodiment, nodes N1
30 and N2 40 of the basic 2x4net 10 each have two NICs
100, one connected to segment Sgl 80 and the other to
segment Sg2 90; node N3 50 has one NIC 100 connected to
segment Sg1 80 and node N4 60 has one NIC 100 connected
to segment Sg2 90.

To permit each node 20 to communicate with all the other
nodes 20, which is the most critical case of connectivity that
may be encountered in an application, the ROCC+ message
passing software sets up communications links, using appro-
priate sockets, between node N1 30 and node N3 50 on
segment Sgl 80, between node N2 40 and node N3 50 on
segment Sgl 80, between node N1 30 and node N4 60 on
segment Sg2 90, and between node N2 40 and N4 60 on
segment Sg2 90. These communication links suffice for
passing messages between any pair of nodes 20 in the
2x4net 10, including between nodes N3 50 and N4 60, by
relaying messages. Furthermore, message passing for fully-
connected applications is efficient on the basic 2x4net, as
will be explained in further detail hereinbelow.

Application of a single 2x4net 10 of the instant invention
may be better understood from the following example which
is not intended to be, and is not, limiting of the scope of
application of the instant invention. Considering an appli-
cation problem of size n, that is, requiring updating n state
variables in each step of a sequence of calculation steps (this
is a typical format of large-scale, i.e., large n, compute-
intensive applications programs), the applications program-
mer would assign a load-balance of n/4 states per node
assuming, for illustrative purposes, that all nodes are of
equal speed and all states are of equal computational com-
plexity. The states on node N1 30 and node N3 50 may be
identified as “odd” and the states on node N2 40 and node
N4 60 may be identified as “even”. In each calculation step,
all four nodes 20 compute updated state values in parallel.
Each node 20 then sends its n/4 updated states as a single
message to the three other nodes. This message passing
procedure is done in two successive time “phases” which
can be described graphically—using semicolon notation for
sequential execution and braces notation { }|{ } for parallel
execution of the bracketed message passing procedures—as
follows:

Phase 1: {1—3; 3—1 on Sgl }||[{2—4; 4—2 on Sg2};

and,

Phase 2: {1—4; 4—1 on Sg2 }||{2—3; 3—2 on Sgl}.
Expanding this notation, in Phase 1, 1—3; 3—1 denotes that
node N1 30 sends to node N3 50 first and then node N3 50
sends to node N1 30, both on segment Sgl 80; and, in
parallel, 2—4; 4—2 denotes that node N2 40 sends to node
N4 60 first and then node N4 60 sends to node N2 40, both
on segment Sg2 90. Similarly, in Phase 2, node N1 30 sends
to node N4 60 first and then node N4 60 sends to node N1
30, both on segment Sg2 90; and, in parallel, node N2 40
sends to node N3 50 first and then node N3 50 sends to node
N2 40, both on segment Sgl 80. The existence of two
segments makes parallel (concurrent) message passing
possible, while the phasing eliminates collisions
(contention) on the two segments.

The synchronization of message passing is done by using
the Sockets blocking send/receive mode. Note that node N3
50 and node N4 60 do not need two NICs 100, as would be
the case in some other two-segment networks. If full-duplex
NICs 100 and software are available on nodes N1 30 and N4
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60, then these two send operations can be overlapped in
time, as is similarly the case for the other pairs of send
operations; thus, cutting the communication time nearly in
half.

In Phase 1, all odd states are united on odd nodes 20 via
segment Sg1 80, while all even states are united on even
nodes 20 via segment Sg2 90, in parallel. In Phase 2, the
union of odd and even states is done on all nodes 20, again
using segment Sg1 80 and segment Sg2 90 to send messages
in parallel. Further, in Phase 1, all message-lengths are
bxn/4, where there are b bytes per state. To simplify
notation, the b is suppressed so that message-lengths are just
n/4. In Phase 2, all message-lengths are n/2, since all odd
states are sent in one message, as are all even states, by the
respective odd and even nodes 20 shown. This novel mes-
sage passing logical algorithm is carried out by the ROCC+
message passing software of the preferred embodiment in a
unique implementation of the standard single collective
message passing operation in MPI which is designated
“all-gather” and is known to those skilled in the art of cluster
applications programming. In accordance with the instant
invention, the all-gather is programmed, in the application
program, so as to be executed concurrently by all the node
20 subprograms at the end of each calculation step. The
ROCC+ software implements the all-gather on a single
2x4net 10 as just described, taking advantage of the 2x4net
10 architecture.

In many applications, the all-gather operation is a critical
message passing operation to perform in a time-efficient,
cost-effective way. As further described hereinbelow, the
various embodiments of the instant invention accomplish
this for the all-gather, as well as for other related collective
multi-node message passing operations that are becoming
standard in programming cluster applications. The efficiency
of the integrated 2x4net hardware-software implementation
of the all-gather operation has been confirmed by actual
benchmark tests and by analysis done by Applicants. A
summary of the analysis of all-gather communication time
on a 2x4net 10 is provided immediately hereinbelow.

In any cluster of p nodes, the minimum number of bytes
that must be transmitted to implement all-gather depends
only on both the value of p and on the problem size, n, but,
in a fully-connected, balanced application, does not depend
on the network topology. Each node must send n/p states to
p-1 nodes, a total of p(n/p) (p-1)=n(p-1) bytes that need to
be sent per calculation step, assuming an iterative compu-
tation is being done. For p=4, this means 3n bytes per
iteration step if, as stated above, the factor of b bytes per
state is suppressed.

Considering next a 2x4net 10 in accordance with the
instant invention, there are 4(n/4)=n bytes passed in 4
messages in Phase 1. In Phase 2, there are 4(n/2)=2n bytes
passed in the 4 messages. Thus, total bytes=3n, which is the
minimum. Letting tr(n) be the transmission time for a
message of length n, where tr(n)=n/bandwidth, then trans-
mission time is 2tr(n/4) in Phase 1 and 2tr(n/2)=4tr(n/4) in
Phase 2. Thus, total Transmission Time for a 2x4net=6
tr(n/4). The time to send a message also includes message-
preparation time (i.e., time for loading buffers as well as
fixed TCP/IP protocol overhead time (latency) to prepare a
packet for a NIC); thus, for a message of length n, the
preparation time is pr(n)=buf(n)+tcp, where buf(n) is pro-
portional to n and tcp is a fixed system overhead time.
Accordingly, pr(n/2)=buf(n/2)+tcp=2buf(n/4)+tcp=2pr(n/
4)-tcp<2pr(n/4). For large n, we can approximate, taking
pr(n/2)=2pr(n/4). For a 2x4net, then, the preparation time is
2pr(n/4) in Phasel and 2pr(n/2)=4pr(n/4) in Phase 2. Thus,
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total message-preparation time for a 2x4net=6pr(n/4). This
reduces communication overhead compared to that of a
single-segment cluster of 4 nodes using the best message
passing procedure, the dance party algorithm, in which three
successive “rounds” are needed. In each round, 4 messages
are sent (i.e., 2 pairs of nodes exchange n/4 states). These
must be sequentially transmitted on the single segment for a
total transmission time 12tr(n/4), which is double the 2x4net
time, as expected. In each round, the message-preparation is
done in parallel on 2 nodes, 2 messages at a time, so that for
each round the preparation time is 2pr(n/4). For 3 rounds, the
total preparation time is 6pr(n/4), which is about the same as
the 2x4net for large n. If tap is taken into account, the 2x4net
preparation time is 6pr(n/4)-2tcp, so again the 2x4net 10 of
the instant invention does better.

As indicated previously, a 2x4net 10 provides a comput-
ing platform to carry out parallel-distributed computation to
execute compute-intensive programs. Further, the network
architecture of the 2x4net 10, in conjunction with the
integrated ROCC+ message passing software system
achieves both efficient (cost-effective) and scalable speedup
(as used herein, scalability refers to the important require-
ment that the size of a 2x4net-based cluster system can be
increased in proportion to the problem size to maintain
speedup without loss of efficiency). Scaling of 2x4nets in
accordance with the preferred embodiment is accomplished
by interconnection of modified 2x4nets. Such modified
2x4nets, designated herein as a 2x4+net 120, are illustrated
in FIGS. 2 and 3 (representing alternative embodiments to
effect scaling of 2x4net cluster systems in accordance with
the instant invention). As may be seen, the modification
comprises the addition of two NICs 100, one each to two
nodes 20 of a 2x4net 10, and associated ethernet cables 110.
When combined, such 2x4+nets 120 serve as supernodes in
the overall system architecture (which may, in turn, be
arranged in accordance with several known network archi-
tecture schemes, such as a ring or a torus, with the ROCC+
message passing software controlling communication links
accordingly to effect efficient computation). It should be
noted that the addition of NICs 100 in this manner should
not be problematic since most personal computers/
workstations have slots which may accommodate up to four
NICs 100.

In a first embodiment, illustrated in FIG. 2, the 2x4+net
120 is effected by the addition of a third NIC 100 in both
nodes N1 30 and N2 40. The communication links within the
2x4+4net 120 are the same as previously discussed with
respect to the 2x4net 10. In an alternative embodiment,
illustrated in FIG. 3, a balanced 2x4+net 120 can be built by
inserting a second NIC 100 in each one-NIC node 20, i.c.,
node N3 50 and N4 60. In cither embodiment, the new NICs
100 will be used to connect one 2x4+net 120 to another.

As an illustrative example (not shown), the case of two
2x4+nets 120 is considered first, assuming the 2x4+net 120
embodiment of FIG. 2. As before, the nodes 20 of the first
2x4+net 120 are identified as N1 30, N2 40, N3 50, and N4
60. The nodes 20 of a second 2x4+net 120 may be identified
as N5, N6, N7, and N8 (corresponding to nodes N1, N2, N3
and N4, respectively, of the first 2x4+net 120), with nodes
N5 and N6 each having three NICs 100, as do nodes N1 30
and N2 40 in the first 2x4+net 120. As before, the two
segments 70 in the first 2x4+net 120 are identified as Sg1 80
and Sg2 90; the two segments 70 in the second 2x4+net 120
may be identified as Sg3 and Sg4 (corresponding to Sg1 and
Sg2, respectively). Connection of the two 2x4+nets 120 in
this embodiment is effected by connecting the third NIC 100
of node N1 30 to segment Sg3, the third NIC 100 of node
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N5 to segment Sgl 80, the third NIC 100 of node N2 40 to
segment Sg4, and the third NIC 100 of node N6 to segment
Sg2 90. This physically connects the two 2x4+nets in a
daisy-chain of length 2, wherein the two “daisy’s” are the
2x4+nets 120, and wherein the daisy-chain may be viewed
as a ring of supernodes. Next, additional communication
links are set up by the ROCC+ message passing software as
follows: Sgl: CL(5,3); Sg2: CL(6,4); Sg3: CL(1,7); and,
Sg4: CL(2,8), which completes the hardware-software con-
nections for the chain network of two 2x4+nets in accor-
dance with this embodiment.

The ROCC+ message passing software implements the
all-gather for such a network as detailed hereinbelow, again
assuming a balanced load distribution of an application of
size n (Applicants note that if a balanced loading is not
possible, a variation of the algorithm will do a close approxi-
mation to the following procedure). There are now n/8 states
updated on each node. Each node sends its updated states to
all other nodes by the concurrent execution of all-gather. The
ROCC+ software implements all-gather as follows: Phases
1 and 2 in each 2x4+net 120 are as previously described with
respect to the standard 2x4net 10 above. Thus, the state sets
on each 2x4+net 120 are combined in parallel, forming the
unions of the four subsets updated on each node 20 of each
2x4+net 120. The n/2 states in each union are stored in
buffers on each node, as will be explained later. The times
for these phases are computed to be:

Transmission time=6tr(n/8)=3tr(n/4), Phases 1+2; and,

Preparation time=6pr(n/8)=3pr(n/4), Phases 1+2. There

is, however, an additional phase, Phase 3, performed
next in order to combine the states on the 2x4+nets 120.
Using like nomenclature as defined above, Phase 3 may
be graphically represented as

{Sgl: 3—5;5—=3}|[{Sg2: 4—6;6—4}||{Sg3:

1—-7;7—1}||{Sg4: 2—8;8—2}.

As before, it may be readily determined that the message
length in Phase 3 is n/2, the Transmission time for Phase 3
=2tr(n/2)=4tr(n/4), and the Preparation time for Phase 3=2pr
(n/2)=4pr(n/4). Thus, Total Transmission time for two con-
nected 2x4+nets=7tr(n/4) and Total Preparation time for two
connected 2x4+nets=7pr(n/4). This compares favorably to
6tr(n/4) and 6pr(n/4) for one 2x4net. Since the number of
nodes has been doubled, the parallel calculation time is cut
by about one-half (in balanced problems), whereas the
communication time is only increased in the ratio 7/6. Thus,
the 2x4+net 120 design does markedly reduce communica-
tion overhead. In similar manner, it may be readily deter-
mined that larger clusters may be accommodated through
scaling with corresponding results.

A variety of alternative embodiments may be envisioned
to provide scaling in accordance with the instant invention.
In all cases, scaling involves increasing the number of
nodes, p. For example, one alternative is to effect the scaling
of 2x4+nets 120 by this design to extend to any number, m,
of 2x4+nets 120 through a daisy-chain of m 2x4+nets 120.
Another alternative would be to effect scaling by adding a
fourth NIC to the multi-NIC nodes to permit torus nets. A
third alternative, though not preferred for reasons noted
below, would be to utilize standard scaling methods and,
thus, to increase the number of 1-NIC nodes on each
segment.

In this latter regard, for example, the number of nodes
may be increased to provide a 2x8 network by adding nodes
N5 and N7 to Sgl and nodes N6 and N8 to Sg2. Additional
communication links, i.e., CL(1,5), CL(1,7), CL(2,5), CL(2,
7) on Sg1l and similarly for Sg2 would then be set up. In such
embodiment, in order to pass all states to all nodes, there
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would be 3 rounds in Phase 1 to use both segments. In each
round, the preparation is done in parallel on different nodes
but the transmission is sequential, as enforced by the eth-
ernet CSMA/CD protocol. Thus, with respect to segment
Sgl, Phase 1 would be graphically represented as: {1—3;
3—1} || {5—7; 75} in Round 1, {1-=5; 5—=1} || {3—7;
7—3} in Round 2, and {1—7; 7—1} || {3—5; 5—3) in
Round 3; and similarly with respect to segment Sg2 using
even nodes in Rounds 1-3. As in the 2x4net, Phase 1 unions
all odd states on all odd nodes and even states on even nodes.
But now two more Phases are needed to perform the
odd-even unions, i.e., Phase 2: {1—4; 4—1 on Sg2} ||{2—3;
3—2 on Sgl} and Phase 3: {1—6; 4—8 on Sg2} |[{2—5;
3—7 on Sgl}. In accordance with this embodiment, mes-
sage lengths are n/8 in Phase 1 and n/2 in Phases 2, 3,
transmission time is 12tr(n/8) in Phase 1 and 2tr(n/2) in each
of Phases 2 and 3, and Total transmission time on a 2x8=
14tr(n/4). Further, message preparation time in Phase 1=3x
2pr(n/8)=3pr(n/4) (approx) and in Phases 2 and 3=2pr(n/2)
=4pr(n/4) each; thus, total message preparation time on such
a 2x8=11pr(n/4). Accordingly, communication time
approximately doubles for the 2x8. As well, there is no gain
in having two NICs on nodes 3-8. If communication time
increases approximately linearly with p and calculation time
decreases linearly, there will be a low optimum value of p
beyond which speedup decreases. Thus, this method of
scaling is relatively ineffective, particularly in comparison to
the other alternative embodiments described in further detail
hereinbelow.

A daisy-chain is of the generic network type called a ring
in the literature on parallel architectures (see, ¢.g., Parallel
Algorithms and Architectures by M. Cosnard & D.
Trystram, International Computer Press 1995, which is
incorporated by reference as though fully set forth herein).
The ring, as well as the torus network, are two generic
multi-processor architectures. The ring is a 1-dimensional
regular closed loop of nodes, whereas the torus net is a
regular 2-dimensional grid of nodes like the well-known
mesh architecture, but laid out on a torus (donut) surface
rather than a plane. Prior implementations that have been
based on these architectures have been built as single
super-computers using special processor nodes and special
communication hardware-software. The corresponding
theoretical message passing algorithms have been framed in
an abstract setting that does not fully take into account
real-world constraints. However, the instant invention is
directed to specific implementations of clusters built from
commodity personal computers/workstations as the nodes of
various multi-segment ethernet networks with matching
message passing software. In this regard, the 2x4net daisy-
chain embodiment comprises a specific ring-type architec-
ture with 2x4+net building blocks as “supernodes” of a ring.
Likewise, scaled systems utilizing torus-type networks, des-
ignated herein as 2x4torusnets, are envisioned using a
further modified 2x4+net, designated herein as a 2x4++net,
as supernodes. All communication is by message-passing
over multiple ethernet segments (standard cables or hubs).

The various computing platforms represented by these
latter 2x4net clusters differ essentially from the supercom-
puters that have logical ring or torus type architectures. The
2x4net clusters of the instant invention are assemblages of
commodity personal computers/workstations which are
interconnected by commodity networking hardware. The
basic interconnection unit is the 2x4+net or 2x4++net build-
ing block, functioning as a supernode. These supernodes
allow interconnections, as further explained below, to form
daisy-chain and super-torus networks. In other computer
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networks, the nodes are usually single processors, or some
possibly have a special switching processor as well. In
textbook rings, the nodes are usually of a simple kind.
Various algorithms for all-gather on such simple rings are
based on assumptions about the send/receive capabilities of
a node. A simple node usually cannot send and receive
simultaneously. All-gather on such a simple ring of length N
for a problem having n states would proceed in N/2 phases.
In phase 1, nodes 2i-1 and 2i (i=1, . . . ,N/2) combine their
n/N states in parallel. In phase 2, nodes 2i and 2i+1 combine
their 2n/N states. In phase 3, nodes 2i-1 and 2i again
exchange messages but only passing the 2n/N states that the
other does not already have. This alternating pattern of
message passing continues for N/2 phases until all nodes
have all states. Assuming that the time to pass a message of
length q is L+rq, where L is a latency, the time for a phase
is L+2nr/N. The total time for N/2 phases is NL/2+rn(1-1/
N). As will be described in further detail below, the
2x4daisy-chain reduces the latency term by %. For many
applications and commodity hardware-software
components, this results in significant increases in efficiency.

The case of a daisy-chain of two 2x4+nets was previously
described in detail hereinabove. The general case of any
number, e.g., m, of 2x4+nets connected in a daisy-chain can
best be described with reference to FIG. 4, which illustrates
a larger scaling application of a 2x4+net embodiment as
illustrated in FIG. 2. As well, another 2x4+net daisy chain
embodiment may be realized utilizing the 2x4+net embodi-
ment illustrated in FIG. 3; such daisy chain embodiment is
illustrated in FIG. 5.

In general, and with reference to FIG. 4, with respect to
the ith 2x4+net in the chain (where i=1 to m), the third NIC
100 of each corresponding node N1 30 is connected to the
corresponding segment Sgl 80 of the i+1th 2x4+net; thus,
e.g., the third NIC 100 of node N1 30 of the first 2x4+net
120 is connected to segment Sg1 80 of the second 2x4+net
130. As well, the third NIC 100 of each corresponding node
N2 40 is connected to the corresponding segment Sg2 90 of
the i+1th 2x4+net; thus, e.g., the third NIC 100 of node N2
40 of the first 2x4+net 120 is connected to segment Sg2 90
of the second 2x4+net 130. In this embodiment, connections
between each of the m 2x4+nets are made in like manner.
With respect to connection of the final (m) 2x4+net 140, the
chain loop is closed by considering the first 2x4+net 120 to
be the i+1th cluster, thus, the third NIC 100 of node N1 30
of the final 2x4+net 140 is connected to segment Sgl 80 of
the first 2x4+net 120, and the third NIC 100 of node N2 40
of the final 2x4+net 140 is connected to segment Sg2 90 of
the first 2x4+net 120. Similarly, for the first 2x4+net 120, the
“previous” 2x4+net is considered to be the final (m) 2x4+net
140. As the remainder of the hardware connections are
identical to those previously detailed with respect to the
single 2x4net 10, the physical network architecture of this
scaling embodiment is completed. As before, the physical
hardware connections can be standard coax cable or UTP
wires connected through small hubs by is standard RJ45 jack
connections.

Communication links are set up by the ROCC+ message
passing software in a pattern which generalizes the links in
the chain of two 2x4+nets. For the ith 2x4+net, this means
that there is a communication link joining nodes N1(i) and
N3(i+1) and a communication link joining N2(i) and N4(i+
1); addition is modulo m, to close the chain loop. The
ROCC+ software establishes these communication links
using the IP addresses of the appropriate NICs 100. The
Sockets paradigm still works for these node pairs, as does
the TCP/IP protocol. This completes the software-hardware
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communication links of the nodes of a 2x4+net daisy chain
of arbitrary length m.

FIG. 5 illustrates the connections to be made if the
balanced 2x4+nets of FIG. 3 are used as supernodes. In this
regard, connections between supernodes would be from
node N3(i) to segment Sgl(i+1) and from node N4(i) to
segment Sg2(i+1), both using the second NIC 100 in these
respective nodes N3 and N4. Applicants note, further, that
variations of the above connection architecture which still
yield a ring of supernodes are possible, such as connecting
node N4(i) backward to segment Sg2(i-1). Such variations
do not depart from the spirit of the instant invention and are
intended to be within its scope.

Implementation of all-gather on a 2x4+net daisy chain of
length m, in accordance with the instant invention, is accom-
plished as follows. Each 2x4+net node 20 has a buffer, buf,
of length nb bytes to store the n states. As before, the factor
b will be suppressed to simplify notation. Each node updates
n/4m=q states in each calculation step, assuming perfect
load balancing. Its buffer is divided into m contiguous
sections buf(1), . . . ,buf(m), each of length 4q. At the end
of a calculation step, each node, N1(i), N2(i), N3(i), N4(i) of
the ith 2x4+net (where i=1, . . . ,m) will have placed its q
updated states in the appropriate quarter of section buf(i) of
its own buffer; e.g. node N1(i) in the first quarter, N3(i) in
the second quarter, N2(i) in the third quarter and N4(i) in the
fourth quarter. It is noted that this ordering of quarters is
arbitrary; any permutation can be specified by the user. The
other parts of the buffer still have the previous values of the
other states. At this point, each node 20 calls the all-gather
function, which will then distribute its updated states to all
other node buffers and cause their updated states to be
received in its appropriate buffer sections. The ROCC+
software executes the all-gather by doing send/receive
operations in a partly synchronized concurrent mode on all
nodes. The necessary synchronization is done by using
blocking send and receive operations provided by the Sock-
ets paradigm. The essential features of the ROCC+ all-
gather function are described here using a pseudo program-
ming notation. The actual program is written in the C
language; source code is provided herewith in the microfiche
appendix. It will be obvious that minor variations in the
following program are possible and are deemed within the
scope of the instant invention since they are inherent in the
integrated software-hardware design of a 2x4+net daisy
chain. While it is possible that there are other implementa-
tions of the all-gather operation on clusters, or other com-
puter platforms employing a ring-type architecture, that is, a
connectivity of processor elements that forms some sort of
a closed loop, the unique 2x4+net daisy chain embodiment
detailed herein may be characterized as having a generic
ring-type architecture, but which differs in essential connec-
tivity details from other ring networks. Likewise, the imple-
mentation of the all-gather operation, described below, dif-
fers essentially from other implementations of all-gather on
ring-type computing models.

With respect to a 2x4+net daisy chain of length M,
all-gather is executed in M+1 successive phases. Except for
Phases 1 and 2, the odd and even number phases 3,4,5,6, . . .,
M+1 alternate between a message “shift” phase and a
message “merge” phase. A shift phase passes messages
between 2x4+net (i) and 2x4+net (i+1), for i=1, . . . ,M, in
parallel on distinct network segments. A merge phase passes
messages between nodes within each 2x4+net (i), i=1, . . .,
M, again in parallel on distinct segments. These messages
are the updated states required to fill all buffer sections in all
node buffers prior to the next calculation step. Messages are
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passed between pairs of nodes by means of the ROCC+
software’s send/receive function calls issued and executed in
parallel on the multiple segments. The ROCC+ software’s
send/receive function calls have a conventional format in
which the call parameters are a buffer address, length of
message and remote node address (to be sent-to or received-
from). The buffer address is varied in a logical order as the
successive phases are executed. Each phase is executed by
each 2x4+net (i) concurrently, as detailed below. In this
example, as in the Microfiche Appendix, node N1 is referred
to as “u” for “up” node, node N2 is referred to as “d” for
“down” node, node N3 is referred to as “1” for “left” node,
node N4 is referred to as “r” for “right” node, segment Sgl
is referred to as “Sgl” for left segment, segment Sg2 is
referred to as “SgR” for right segment. Further, “send”
denotes the send function call and “recv” denotes the receive
function call. The notation buf (i,jq) denotes the jth quarter
of section buf(i),j=0,1,2,3.

Phase 1 program on 2x4+net(i):

u(i): send(buf(i,0), q, 1(i)); recv(buf(i,q), g, 1());

1(1): recv(buf(i,0), q, u(i)); send(buf(i,q), q, u(i));

d(i): send(buf(i,2q),q,1(i)); recv(buf(i,3q), q, r(i)); and,

r(i): reev(buf(i,2q),q,d(i)); send(buf(i,3q), q, d(i)).

Using the message passing notation identified earlier, Phase
1 can be described as {u(i)—1(1); l(i)—u(i) on SgL () }||{d
()—r1(i); r())—d() on SgR (i)}, without showing buffers.
These message passing operations are done in parallel for all
i=1,...,M, since they are done on separate segments by the
different nodes executing concurrently.

Phase 2 program:

u(i): send(buf(i,0), 2q, 1(i)); recv(buf(i,2q), 2q, r(i));

r(i): recv(buf(i,0), 2q, u(i)); send(buf(i,2q),2q, u(i));

d(i): send(buf(i,2q), 2q, 1(1)); recv(buf(i,0), 2q, 1(i)); and,

1(3): recv(buf(i,2q), 2q, d(i)); send(buf(i,0), 2q, d(i)).

Phases 1 and 2 have the same message passing pattern as
the basic 2x4net 10, which was detailed hereinabove. At the
end of Phase 2, section buf(i) of the buffer on each node of
2x4+net (i) contains all 4q states updated by the four nodes
of 2x4+(i). In the phases which follow, entire buffer sections
will be shifted between one 2x4+net and the next, in
messages passed between nodes on one 2x4+net and the
next, and then merged with other sections by passing mes-
sages between nodes on the same 2x4+net. By a sequence of
alternating shift and merge phases each buffer on each node
is completely updated and the next calculation step of the
application program begins.

The following ROCC+ message passing software pro-
gram is executed on the nodes of each 2x4+net (i) in parallel
within a phase and sequentially for the phases 3+k, k=0, . . .,
M-2. The shift phases are for k even and the merge phases
are for k odd.

For k=0, . . . , M-2 \*phases™\

If k is even then \*shift*\

u(i): send(buf(i-k/2), 4q, 1(i+1));
recv(buf(i+1+k/2), 4q, 1(i+1))

d(i): send(buf(i-k/2), 4q, r(i+1));
recv(buf(i+1+k/2), 4q, r(i+1))

1(i): recv(buf(i-1-k/2), 4q, u(i-1));
send(buf(i+k/2), 4q, u(i-1))

1(i): recv(buf(i-1-k/2), 4q, d(i-1));
send(buf(i+k/2), 4q, d(i-1))

else \* k is odd, do merge*\

u(i): send(buf(i+1+(k-1)/2),4q, 1());
recv(buf(i-1-(k-1)/2),4q, 1(i))
d(i): send(buf(i+1+(k-1)/2),4q, r(i));
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recv(buf(1-1-(k-1)/2),4q, r(i))

1(i): recv(buf(i+1+(k-1)/2),4q,u(i));

send(buf(i-1-(k-1)/2),4q,u(i))

1(i): recv(buf(i+1+(k-1)/2),4q,d(i));

send(buf(i-1-(k-1)/2),4q,d(i))
The previously identified notation may be used to show the
segments involved in executing this unique parallel message
passing procedure made possible by the 2x4+net daisy chain
architecture and software communication links. Thus, in a
shift phase:

{u(D)—I13i+1); 1(i+1)—u(i): SgL(1+1)}||{d(1)er(1+1) r(i+1)
—d(i):SgR(i+1)} for i=1 , M in parallel. (Note
M+1=1 modulo M.)

In a merge phase:

(U =10 ~u(x SSLONHID=r(: 1)-~d(i:SeR
(1)} fori=1, ... M in parallel. Note that both the merge
and the shlft phases make parallel use of all 2M
available network segments in the M 2x4+net blocks.
As noted earlier, if full-duplex NICs and driver soft-
ware are available, communication time will be
approximately halved in executing a shift and a merge
phase. This is also a special feature of the 2x4+net
daisy chain logical mode of internode communication
for all-gather and other collective message passing
operations.

A further variation of the 2x4+net daisy chain presented
above comprises one in which node d(i) is physically
connected backward in the chain to segment Sg2(i-1),
instead of forward to segment Sg2(i+1). A shift phase then
passes messages accordingly, and buffer addresses must be
changed accordingly. Merges are similar to the above
merges. Again, M+1 phases are needed to execute all-gather.
Such variation is also intended to be within the scope of the
instant invention,

Consider an application of size 1,000xn states. If there are
b bytes per state, then N=bn kilobytes are required to store
all states. There are 4M processors in a 2x4+net daisy chain
of M supernodes. Each processor updates N/4bMx1000
states or N/4M kilobytes. In phase 1, these bytes are
exchanged between pairs of nodes in each supernode. This
requires time 2(L+rN/4M). In phase 2, the merge of states in
each supernode requires time 2(L+rN/2M). Then in phases
3, . . . M alternate shifts and merges each take time
2(L+rN/M). The total communication time for all-gather is
therefore TIN,M)=2[(M+1)L+rN(1-%M)]. To compare this
with the all-gather on a simple ring of single-processor
nodes, the simple ring must have length 4M. All-gather is
done in 2M-1 shift phases passing messages of length N/2M
and one initial merge phase passing messages of length
N/4M . The latter takes time 2(L+rN/4M). The shifts take
time (2M-1)2(L+rN/2M). The total time for all-gather is
therefore Ts(N,4M)=2[2ML+rN(1-%M)]. Comparing T(N,
M) and Ts(N,4M), as noted above, the 2x4+net daisy chain
reduces latency time by about %2 compared to the simple ring
architecture.

A variation of all-gather that is useful in application
problems is the neighbor-gather operation. This operation
passes messages locally between nodes in a small neighbor-
hood of each node. For example, each 2x4+net(i) may only
need the updated states of 2x4+net(i+1) and 2x4+net(i-1),
its nearest neighbors in the chain. One shift and merge will
accomplish this. Two shift and merge phases will combine
states of next-nearest neighbors as well, and so on. Again,
the parallel message-passing provided by a 2x4+net daisy
chain allows a unique parallel implementation of these
operations. As well, other message passing operations are
easily performed by modifying the all-gather procedure. For
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example, MPI standards include such operations as “group-
all-gather” in which all-gather is restricted to a programmer-
specified subset of nodes. The 2x4+net daisy chain as
provided herein is especially effective for certain groupings
of nodes that occur in application problems. For example,
2x4+net(i) may only need the updated states on its two
nearest neighbors, 2x4+net(i-1) and 2x4+net(i+1). This can
be accomplished by a restriction of all-gather, neighbor-
gather(k), where k specifies the extent of the neighborhood.
For nearest neighbors, k=1 and neighbor-gather(1) consists
of one shift and one merge phase. For k=2, two shifts and
merges will do, and so on.

For more general groupings of nodes to match the appli-
cation state dependencies, other 2x4net architectures are
indicated. In another series of embodiments of the instant
invention, such networks may make use of a further modi-
fied 2x4net building block (i.e., a modified 2x4+net) des-
ignated herein as a 2x4++net. A 2x4++net consists of a
2x4+net in which an additional NIC 100 is added to each of
two nodes 20. In one embodiment, corresponding to a
modification of the 2x4+net illustrated in FIG. 2, these two
additional NICs 100 may be added as fourth NICs to nodes
N1 30 and N2 40 (as noted previously, the motherboards of
most personal computers/workstations provide four slots for
NICs; there are also newly developed cards which have four
network interfaces on one card—accordingly, the 2x4++net
modules can be built easily from commodity hardware). The
balanced 2x4+net illustrated in FIG. 3 may also be modified
by adding a third NIC 100 to each of nodes N1 30 and N2
40. These additional NICs 100 may be connected to other
2x4++net segments in different ways to produce many
architectures without departing from the scope of the instant
invention. As with all the 2x4nets, the hardware-software
communication links with respect to either embodiment are
easy to set up using the well-tested standard Sockets inter-
face with TCP/IP. No special modifications of commodity
operating system kernels is needed.

A first embodiment for scaling 2x4net-based clusters
utilizing 2x4++nets is designated herein as a 2x4twin-
daisynet. The 2x4twin-daisynet comprises two 2x4+net
daisy chains, each of length M/2, coupled together by
pairing 2x4++net modules in each chain, e.g., by using the
fourth NICs 100 of the 2x4++net embodiment wherein a
fourth NIC is added to each of nodes N1 30 and N2 40. In
this 2x4twin-daisynet embodiment, the pairing connection is
the same as that for connecting two 2x4+nets, as previously
detailed. The all-gather operation can be performed with
respect to a 2x4twin-daisynet in about half the time needed
for a single 2x4+net daisy chain of length M, i.e., M/2+1
phases done in parallel on each chain plus two final phases
to merge all states on all paired 2x4++net’s. The 2x4twin-
daisynet can also be used for group-gather in applications
where there are two major groups of dependent states and
only a few dependencies between the states in each group.
The instant ROCC+ message passing software provides
high-level programming tools for partitioning the state sets
into two subsets to be loaded on each 2x4+net daisy chain,
and for doing a new type of collective message passing,
designated herein as bridged-group-gather, which updates
states as required on the nodes of the 2x4twin-daisynet.

A natural extension of the 2x4twin-daisynet is a further
embodiment designated herein as the 2x4torusnet. The
2x4torusnet has the architecture of a two-dimensional (2-d)
toroidal (doughnut) surface. The nodes are arranged in a
stack of horizontal 2x4+net daisy chains of equal length M.
The stack layers are connected by vertical 2x4+net daisy
chains connecting vertically aligned nodes in the layers. It is
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noted that the physical geometry need not be horizontal-
vertical, but any arrangement which implements the same
toroidal connectivity. As indicated previously, generic torus
architecture is a generalization of the generic 2-d mesh,
which is the architecture used in some supercomputers. As
well, there already exist small 3-dimensional toroidal net-
works marketed as single computing platforms. As with the
2x4+net daisy chains, however, the instant invention derives
from use of 2x4++ supernodes as building blocks to con-
struct the physical 2x4torusnet network from commodity
hardware, and in the use of the ROCC+ integrated message-
passing software system to provide unique communication
logic for efficient implementation of collective message
passing operations. For example, all-gather is done in 2M+2
phases for a torusnet of MxM nodes. The M layers of
2x4+net daisy chains do their message-passing in M+1
parallel phases and then the M “vertical” 2x4+net daisy
chains do their M+1 phases in parallel. Applicants note that
other 2-d analogues of 1-d daisy chain message passing
operations are available, such as the nearest-neighbor-
gather.

The 2x4torusnets are scalable to very large networks and
are easily reconfigurable to do group-gather operations for a
variety of common application problems. One possible
configuration that would be easily scalable is a stack of
2x4++net daisy chains of length 6; i.e., each 2x4++net daisy
chain has 24 processors. The layers are connected into a
torusnet as described. It is a simple matter to add new layers
by simply disconnecting the old top and bottom layers. Also
note that individual layers can be used to run several
different applications concurrently, since there are no colli-
sions of messages sent on different layers.

In a final aspect of the instant invention, a user interface
is provided with any 2x4net-based cluster system. For this
purpose an extra NIC 100 is added to each processor. These
extra NICs 100 are all connected to a single segment bus
which is used to load initial files on all processor nodes 20.
This also allows the individual processors to be used
independently, e.g., in the usual client-server LAN mode
when the 2x4net applications are not running. The bus can
also be used for node-to-node send/receive operations,
although this will entail the usual bus contention.

Having described the invention in detail and by reference
to preferred embodiments thereof, it will be apparent that
other modifications and variations are possible without
departing from the spirit and scope of the invention defined
in the appended claims.

What is claimed is:

1. A computer network architecture system comprising:

a first segment;

a second segment;

a first computer having two network interface cards
associated therewith; said first computer being con-
nected to said first network segment through a first of
said two network interface cards, and said first com-
puter being connected to said second segment through
a second of said two network interface cards;

a second computer having two network interface cards
associated therewith; said second computer being con-
nected to said first network segment through a first of
said two network interface cards, and said second
computer being connected to said second segment
through a second of said two network interface cards;

a third computer having one network interface card asso-
ciated therewith, said third computer only being con-
nected to said first segment through said one network
interface cards; and
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a fourth computer having one network interface card
associated therewith, said fourth computer only being
connected to said second segment through said one
network interface cards;
wherein said first, second, third, and fourth computers
cooperate to solve an application problem by each
calculating interim results and then exchanging mes-
sages including the interim results using a two phase
message passing protocol in which:
during a first phase of said two-phase message passing
protocol, said first computer and said third computer
exchange messages on said first network segment
and said second and said fourth computer exchange
messages on said second network segment;

during a second phase of said two-phase message
passing protocol, said first computer and said fourth
computer exchange messages on said second net-
work segment and said second computer and said
third computer exchange messages on said first net-
work segment.

2. The system of claim 1 wherein said first, second, third
and fourth computers, respectively, comprise personal com-
puters.

3. The system of claim 1 wherein said first, second, third
and fourth computers, respectively, comprise workstations.

4. The system of claim 1 wherein said first and second
segments, respectively, comprise ethernet cable.

5. The system of claim 1 wherein said first and second
segments, respectively, comprise hubs.

6. A computer network architecture system comprising m
supernodes, wherein m is an integer greater than one, each
of said m supernodes further comprising:

a first segment;
a second segment;

a first computer having at least two network interface
cards associated therewith, said first computer being
connected to said first segment through a first of said at
least two network interface cards, and said first com-
puter being connected to said second segment through
a second of said at least two network interface cards;

a second computer having at least two network interface
cards associated therewith, said second computer being
connected to said first segment through a first of said at
least two network interface cards, and said second
computer being connected to said second segment
through a second of said at least two network interface
cards;

a third computer having at least one network interface
card associated therewith, said third computer being
connected to said first segment through a first of said at
least one network interface card; and,

a fourth computer having at least one network interface
card associated therewith, said fourth computer being
connected to said second segment through a first of said
at least one network interface card;

means for interconnecting said m supernodes; and
wherein said means for interconnecting comprise a
third network interface card associated with each of
said first and second computers of each of said m
supernodes for use in connecting said m supernodes in
a daisy-chain.

7. The system of claim 6 wherein said third network
interface card of said first computer of the ith supernode,
wherein i=1 to m, is connected to said first segment of the
i+1th supernode, said third network interface card of said
second computer of said ith supernode is connected to said
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second segment of said i+1th supernode, and the first
supernode is the i+1th supernode for i=m.

8. The system of claim 7 further comprising means for
establishing communication links and passing messages
between said first, second, third and fourth computers of
each of said m supernodes, respectively, and further between
each of said m supernodes so as to effect parallel-distributed
processing.

9. The system of claim 6 wherein said third network
interface card of said first computer of the ith supernode,
wherein i=1 to m, is connected to said first segment of the
i+1th supernode, said third network interface card of said
second computer of said ith supernode is connected to said
second segment of the i—-1th supernode, and the first super-
node is the i+1th supernode for i=m, and the mth supernode
is the i—1th supernode for i=1.

10. The system of claim 6 further comprising means for
establishing communication links and passing messages
between said first, second, third and fourth computers of
each of said m supernodes, respectively, and further between
each of said m supernodes so as to effect parallel-distributed
processing.

11. The system of claim 6 wherein said means for
interconnecting comprise a second network interface card
associated with each of said third and fourth computers of
said m supernodes for use in connecting said m supernodes
in a daisy-chain.

12. The system of claim 11 wherein said second network
interface card of said third computer of the ith supernode,
wherein i=1 to m, is connected to said first segment of the
i+1th supernode, said second network interface card of said
fourth computer of said ith supernode is connected to said
second segment of said i+1th supernode, and the first
supernode is the i+1th supernode for i=m.

13. The system of claim 12 further comprising means for
establishing communication links and passing messages
between said first, second, third and fourth computers of
each of said m supernodes, respectively, and further between
each of said m supernodes so as to effect parallel-distributed
processing.

14. The system of claim 11 wherein said second network
interface card of said third computer of the ith supernode,
wherein i=1 to m, is connected to said first segment of the
i+1th supernode, said second network interface card of said
fourth computer of said ith supernode is connected to said
second segment of the i—-1th supernode, and the first super-
node is the i+1th supernode for i=m, and the mth supernode
is the i—1th supernode for i=1.

15. The system of claim 14 further comprising means for
establishing communication links and passing messages
between said first, second, third and fourth computers of
each of said m supernodes, respectively, and further between
each of said m supernodes so as to effect parallel-distributed
processing.

16. The system of claim 6 wherein said means for
interconnecting comprise a third and fourth network inter-
face card associated with each of said first and second
computers of each of said m supernodes for use in connect-
ing said m supernodes in a torus architecture.

17. The system of claim 6 wherein said means for
interconnecting comprise a third network interface card
associated with each of said first and second computers of
each of said m supernodes, and a second network interface
card associated with each of said third and fourth computers
of each of said m supernodes, for use in connecting said m
supernodes in a torus architecture.

18. In a computer network architecture system comprising
at least one supernode comprising first and second segments,
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first and second nodes each connected to said first and
second segments, a third node connected to said first
segment, and a fourth node connected to said second
segment, a method for parallel-distributed processing com-
prising the steps of:
simultaneously processing data in each of said first,
second, third and fourth nodes, respectively;
in a first phase, passing data on said first segment from
said first node to said third node and then from said
third node to said first node while simultaneously
passing data on said second segment from said second
node to said fourth node and then from said fourth node
to said second node; and,
in a second phase; passing data on said second segment
from said first node to said fourth node and then from
said fourth node to said first node while simultaneously
passing data on said first segment from said second
node to said third node and then from said third node
to said second node.
19. The method of claim 18 further comprising the step of:

systematically passing data between pairs of nodes
wherein each node of a respective pair of nodes is
associated with a different supernode.

20. The method of claim 19 wherein the step of system-
atically passing data further comprises the steps of:

passing data between successive supernodes in parallel

and on distinct segments in a shift phase; and,
passing data between nodes within each supernode in
parallel and on distinct segments in a merge phase.

21. The method of claim 20 further comprising the step of:

alternately repeating said shift phase and said merge

phase until all data is passed between all nodes and all
supernodes.

22.In a computer network architecture system comprising
at least one supermode consisting essentially of: first and
second segments, first and second nodes each connected to
said first and second segments, a third node connected to
said first segment, and a fourth node connected to said
second segment, a method for parallel-distributed process-
ing comprising the steps of:

processing data within each of said first, second, third and

fourth nodes in parallel; and,

systematically passing messages comprising intermediate

results of calculations between pairs of nodes in such
manner as to provide all messages to all nodes.

23. A system for parallel-distributed processing made up
of plurality of supernodes, each consisting essentially of:

first and second segments;

first and second nodes each connected to said first and

second segments,

a third node connected to said first segment;

a fourth node connected to said second segment; and,

means for establishing communication links and passing

messages between each of said first, second, third and
fourth nodes, said means providing for concurrent
message passing between pairs of said nodes while
avoiding contention on said first and second segments
during message passing, and said means resulting in
communication of processing results of each of said
first, second, third and fourth nodes with the other three
of said nodes, respectively.

24. The system of claim 23 wherein said means for
establishing communication links and passing messages
comprises interconnected hardware components and asso-
ciated software.
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25. A computer network architecture system made up of
a plurality of computers arranged in supernodes, wherein
each supernode consists essentially of:

a first segment;

a second segment;

a first computer having two network interface cards
associated therewith, said first computer being con-
nected to said first segment through a first of said two
network interface cards, and said first computer being

connected to said second segment through a second of

said two network interface cards;

a second computer having two network interface cards
associated therewith, said second computer being con-
nected to said first segment through a first of said two
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network interface cards, and said second computer
being connected to said second segment through a
second of said network interface cards;

a third computer having one network interface card asso-
ciated therewith, said third computer only being con-
nected to said first segment through a first of said
network interface cards; and,

a fourth computer having one network interface card
associated therewith, said fourth computer only being
connected to said second segment through a first of said
one network interface cards.



