

(11) EP 1 162 976 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:05.05.2010 Bulletin 2010/18

(21) Application number: 00916331.2

(22) Date of filing: 14.03.2000

(51) Int Cl.: A61K 31/557 (2006.01) A61P 29/00 (2006.01)

(86) International application number: **PCT/US2000/006669**

(87) International publication number: WO 2000/054761 (21.09.2000 Gazette 2000/38)

(54) 16-PHENOXY-LIPOXIN ANALOGS FOR MEDICAL USE

16-PHENOXY-LIPOXIN ANALOGE ZUR MEDIZINISCHEN VERWENDUNG ANALOGUES DE 16-PHENOXY LIPOXINE POUR L'UTILISATION MEDICALE

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

(30) Priority: 18.03.1999 US 125194 P

(43) Date of publication of application: 19.12.2001 Bulletin 2001/51

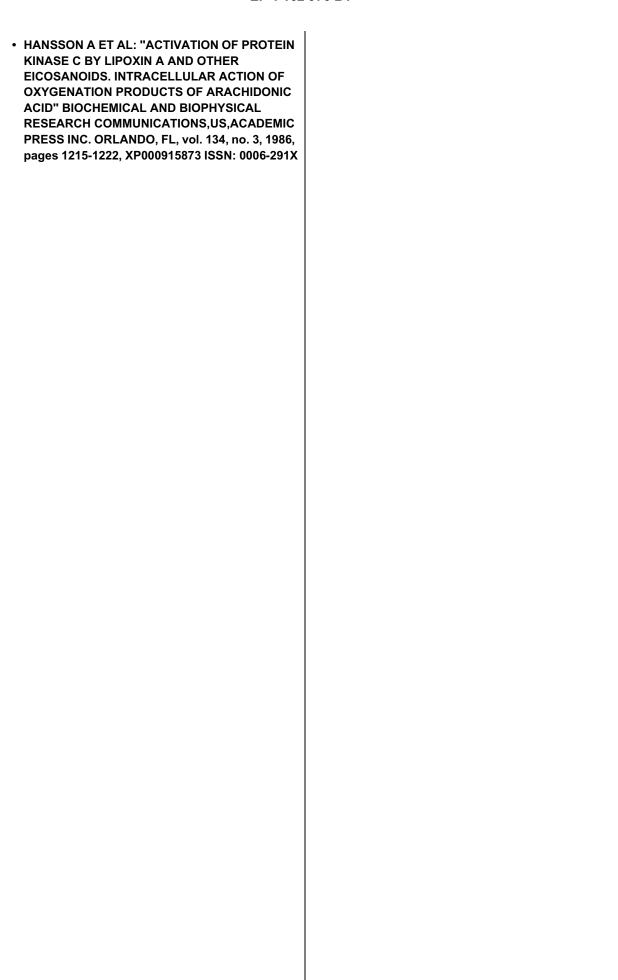
(60) Divisional application: **10003005.5**

(73) Proprietor: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
Boston, MA 02115 (US)

(72) Inventor: SERHAN, Charles, N. Wellesley, MA 02481 (US)

(74) Representative: Strehl Schübel-Hopf & Partner Maximilianstrasse 54 80538 München (DE)

(56) References cited:


WO-A-00/54767 WO-A-94/29262 WO-A-95/01179 US-A- 5 441 951 US-A- 5 648 512

- T TAKANO ET AL: "Aspirin-triggered 15-Epi-Lipoxin (LXA4) and LXA4 Stable Analogues Are Potent Inhibitors of Acute Inflammation: Evidence for Anti-inflammatory Receptors" JOURNAL OF EXPERIMENTAL MEDICINE, JP, TOKYO, vol. 185, no. 9, 5 May 1997 (1997-05-05), pages 1693-1704, XP002141526 ISSN: 0022-1007
- SERHAN C N ET AL: "ASPIRIN-TRIGGERED 15-EPI-LIPOXIN A4 AND NOVEL LIPOXIN B4 STABLE ANALOGS INHIBIT NEUTROPHIL-MEDIATED CHANGES IN VASCULAR PERMEABILITY" ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, SPRING ST., NY,US, vol. 469, 1999, pages 287-293, XP000925756 ISSN: 0065-2598
- TAKANO T ET AL: "NEUTROPHIL-MEDIATED CHANGES IN VASCULAR PERMEABILITY ARE INHIBITED BY TOPICAL APPLICATION OF ASPIRIN-TRIGGERED 15-EPI-LIPOXIN A4 AND NOVEL LIPOXIN B4 STABLE ANALOGUES"

 JOURNAL OF CLINICAL INVESTIGATION, US, NEW YORK, NY, vol. 101, no. 4, 1998, pages 819-826, XP000923075 ISSN: 0021-9738
- A T GEWIRZT ET AL: "Pathogen-induced Chemokine Secretion from Model Intestinal Epithelium is Inhibited by Lipoxin A4 Analogs" JOURNAL OF CLINICAL INVESTIGATION,US, NEW YORK, NY, vol. 101, no. 9, May 1998 (1998-05), pages 1860-1869, XP002141528 ISSN: 0021-9738

EP 1 162 976 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

20

25

30

35

BACKGROUND OF THE INVENTION

[0001] Neutrophil (PMN) activation plays a central role in diverse host responses, such as host defense, inflammation and reperfusion injury (Weissmann, G., Smolen, J. E., and Korchak, H. M. (1980) Release of inflammatory mediators from stimulated neutrophils. N. Engl. J. Med. 303, 27-34). In response to inflammatory stimuli, PMN phospholipases are activated to remodel cell membranes and generate bioactive lipids that serve as intra- or extracellular mediators in the transduction of functional responses (Serhan, C.N., Haeggstrom, J. Z., and Leslie, C. C. (1996) Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J. 10, 1147-1158). Important components of microbicidal and acute inflammatory responses include reactive oxygen species and granule enzymes that are targeted to phagocytic vacuoles, but aberrant release of these ' potentially toxic agents can lead to amplification of inflammation as well as tissue injury and are implicated in a wide range of diseases (Weiss, S. J. (1989) Tissue destruction by neutrophils. N. Engl. J. Med. 320, 365-376). To prevent an over-exuberant inflammatory response and limit damage to the host, these PMN programs are tightly regulated. The host mediators serving as endogenous anti-inflammatory or protective signals are only recently being appreciated (Serhan, C. N. (1994) Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim. Biophys. Acta 1212, 1-25).

SUMMARY OF THE INVENTION

[0002] The present invention provides the following.

(1) The use of a lipoxin analog having the formula

 R_4 R_5 R_6 OH R_6 OH

- 40 wherein X is R_1 , OR_1 , or SR_1 ; wherein R_1 is
 - (i) a hydrogen atom;
 - (ii) an alkyl of 1 to 8 carbon atoms, inclusive, which may be straight chain or branched;
 - (iii) a cycloalkyl of 3 to 10 carbon atoms;
 - (iv) an aralkyl of 7 to 12 carbon atoms;
 - (v) phenyl;
 - (vi) substituted phenyl

50

45

$$Z_{i}$$
 Z_{i}
 Z_{i}
 Z_{i}

10

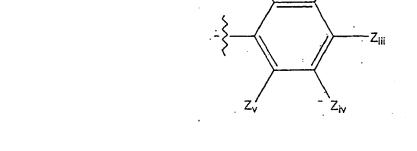
15

20

5

wherein Z_i , Z_{ij} , Z_{iji} , Z_{iji} , Z_{iv} and Z_v are each independently selected from -NO₂, -CN, -C(=O)-R₁, -SO₃H, a hydrogen atom, halogen, methyl, -OR_x, wherein R_x is 1 to 8 carbon atoms, inclusive, which may be a straight chain or branched, and hydroxyl;

- (vii) a detectable label molecule; or
- (viii) a straight or branched chain alkenyl of 2 to 8 carbon atoms, inclusive;


wherein Q, is (C=O), SO_2 or (CN), provided when Q_1 is CN, then X is absent; wherein R_4 is:

- (a) H;
- (b) an alkyl of 1 to 6 carbon atoms, inclusive, which may be a straight chain or branched;
- 25 wherein R₅ is

35

40

50

wherein Z_i , Z_{ii} , Z_{ii} , Z_{iv} and Z_v are each independently selected from -NO₂, -CN, -C(=0)-R₁, -SO₃H, a hydrogen atom, halogen, methyl, -OR_X, wherein R_x is 1 to 8 carbon atoms, inclusive, which may be a straight chain or branched, and hydroxyl or a substituted or unsubstituted branched or unbranched alkyl group; wherein R₆ is

45

- (a) H;
- (b) an alkyl from 1 to 4 carbon atoms, inclusive, straight chain or branched;

and pharmaceutically acceptable salts thereof,

with the proviso that 16-phenoxy-LXA $_4$, 15-epi-16-(parafluoro)-phenoxy-LXA $_4$, 16-(para-fluoro)-phenoxy-LXA $_4$ and 15-epi-16-phenoxy-LXA $_4$ are excluded, for the preparation of a medicament for treating inflammation, vasoconstriction, or myeloid suppression.

- (2) The use according to (1), wherein the medicament is to be used in vitro.
- 55 (3) The use according to (1), wherein the medicament is to be used in vivo.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

30

35

40

45

50

55

[0003] The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

Figure 1 shows that LTB4 rapidly remodels PSDP in human PMN: biosynthetic switch by an aspirin-triggered LXA₄ analog. Panel A: Scheme for aspirin-triggered 15-epi-LXA₄ biosynthesis and structure of the stable analog, 15-epi-16-*para*-fluoro-phenoxy-LXA₄-methyl ester (15-epi-LXa) (left), and hypothetical scheme for PIPP signaling (right). PMN were labeled with [γ -32P]-ATP and incubated (12.5 x 10⁶ml⁻¹, 37°C) with LTB₄ (\blacksquare , 100 nM), 15-epi-LXa (\blacksquare , 100 nM), vehicle (\square , 0.1% ethanol) or 15-epi-LXa (100 nM, 5 min) followed by LTB₄ (\blacksquare , 100 nM). Non-saponifiable lipids were extracted and separated by TLC, and [32 P]-incorporation was quantitated by phosphoimaging (see *Methods*). Values are densitometric measurements. Panel B reports a representative time course (n=5), and Panel C shows the change (mean \pm S.E.) at 60 seconds. * P < 0.05 by Student's t-test.

Figure 2 demonstrates 15-epi-LXA $_4$ analog inhibits LTB $_4$ -stimulated PLD activity and superoxide anion generation. Cell lysates (2-5 x 10⁶ cells, 90-130 μ g protein) were prepared from the same aliquots of PMN used to determine PSDP (see Fig. 1 & *Methods*), warmed to 37°C and exposed to PC (2 mM in 50 mM Tris-HCl, pH 7.5, plus 30 mM CaCl $_2$). Reactions were terminated at 30 sec intervals and choline release was quantitated (26). Values in Panel A are representative (n=5, d=4) of the impact of 15-epi-LXa on choline release, and Panel B shows the change at 60 seconds (mean \pm S.E.). Superoxide anion generation by freshly isolated human PMN was determined (10 min, 37°C) for LTB $_4$ (100 nM), 15-epi-LXa (100 nM), and increasing concentrations of 15-epi-LXa (1-100 nM, 5 min, 37°C) followed by LTB $_4$ (100 nM, 10 min, 37°C). Values reported in Panel C are the mean \pm S.E. for n=3 separate PMN donors. *P < 0.05 by Student's t-test.

Figure 3 demonstrates PSDP inhibits phospholipase D. Purified PLD (3 units EC $3.1.4.4./125 \mu$ l) was warmed (3 min, 30°C) and exposed to PSDP (10-1000 nM, 5 min, 30°C) or vehicle (0.04% ethanol final conc.) followed by PC (0.5-5 mM) in 50 mM Tris-HCL (pH 7.5) plus 30 mM CaCl₂. Reactions were terminated at 30 sec intervals and choline release quantitated as in Fig. 2 legend. Values represent the mean for n≥4 for reactions in the absence of PSDP (\spadesuit , $r^2 = 0.963$) and the mean for n≥3 with PSDP (Δ , $r^2 = 0.995$, 0.971 and 0.953 for 10, 100 and 1000 nM, respectively). CS Chem3D Pro software (CambridgeSoft Corp., Cambridge, MA) was used to calculate an energy minimized model of PSDP (inset).

DETAILED DESCRIPTION OF THE INVENTION

[0004] The features and other details of the invention will now be more particularly described and pointed out in the claims.

[0005] It is of wide interest to understand how opposing extracellular signals (positive or negative) are translated into intracellular signaling events. Receptor-ligand interactions initiate the generation of bioactive lipids by human neutrophils (PMN) that serve as signals to orchestrate cellular responses important in host defense and inflammation. A novel polyisoprenyl phosphate (PIPP) signaling pathway was identified and it was found that one of its components, presqualene diphosphate (PSDP), is a potent negative intracellular signal in PMN that regulates superoxide anion generation by several stimuli including phosphatidic acid (Levy et al. (1998) Nature. 389, 985-990). It was determined intracellular PIPP signaling by autacoids with opposing actions on PMN - leukotriene B_4 (LTB $_4$), a potent chemoattractant, and lipoxin A_4 (LXA $_4$), a "stop signal" for recruitment. LTB $_4$ receptor activation initiated a rapid decrease in PSDP levels concurrent with activation of PLD and cellular responses. In sharp contrast, activation of the LXA $_4$ receptor reversed LTB $_4$ -initiated PSDP remodeling leading to an accumulation of PSDP and potent inhibition of both PLD and superoxide anion generation. Thus, an inverse relationship was established for PSDP levels and PLD activity with two PMN ligands that evoke opposing responses. In addition, PSDP directly inhibited both isolated human recombinant (Ki = 6 nM) and plant (Ki = 20 nM) PLD. Together, these findings link PIPP remodeling to intracellular regulation of PMN function and suggest a role for PIPPs as lipid repressors in signal transduction, a novel mechanism that may also explain aspirin's suppressive *actions in vivo* in cell signaling.

[0006] Bioactive lipids are rapidly generated by activation of cell surface receptors that carry either specific positive or negative signals to modulate cellular responses. This is exemplified by the related eicosanoids, leukotriene B₄ (LTB₄), a potent chemoattractant (Borgeat, P., and Naccache, P. H. (1990) Biosynthesis and biological activity of leukotriene B4. Clin. Biochem. 23, 459-468), and lipoxin A₄ (LXA₄), an endogenous "stop signal" for PMN recruitment (Serhan, C. N. (1994) Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim. Biophys. Acta 1212, 1-25). LTB₄ and LXA₄ interact with highly specific and distinct G protein-coupled membrane receptors (Yokomizo, T., Izumi, T., Chang, K., Takuwa, T., and Shimizu, T. (1997) A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620-624; Fiore, S., Romano, M., Reardon, E. M., and Serhan, C. N. (1993) Induction of functional lipoxin A4 receptors in HL-60 cells. Blood 81, 3395-3403). They each evoke opposing PMN responses, including LXA₄

inhibition of LTB₄-initiated chemotaxis, adhesion and transmigration (Serhan, C. N. (1994) Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim. Biophys. Acta 1212, 1-25).

[0007] Abbreviations used throughout this application include: COX, cyclooxygenase; 15-epi-LX, 15-epimer lipoxin; 15-epi-LXa, 15-epi-16-*para*-fluoro-phenoxy LXA₄-methyl ester; FDP, farnesyl diphosphate; GST, glutathione-S-transferase; LTB₄, leukotriene B₄; LO, lipoxygenase; PA, phosphatidic acid; PC, phosphatidychloine; cPLD, cabbage phospholipase D; PIPP, polyisoprenyl phosphate; PMN, polymorphonuclear leukocytes; PSDP, presqualene diphosphate; PSMP, presqualene monophosphate; Sf9, Spodoptera frugiperda; TLC, thin-layer chromatography.

10

20

30

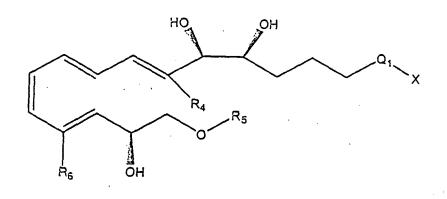
35

40

45

50

55


[0008] Aspirin is known to affect biosynthesis of lipid mediators and is widely used clinically for its anti-inflammatory properties. Mechanisms responsible for aspirin's anti-inflammatory actions remain of considerable interest. In particular, new "super-aspirins" are sought that spare the gastrointestinal tract and do not possess the deleterious side effects of steroids (Isakson, P., Seibert, K., Masferrer, J., Salvemini, D., Lee, L., and Needleman, P. (1995) Discovery of a better aspirin. Advances in Prostaglandin, Thromboxane & Leukotriene Research 23, 49-54). In one aspect it has been that, in addition to inhibiting prostanoid formation, aspirin triggers the endogenous generation of novel carbon 15 epimers of LX by transcellular routes (see Figure 1A) during inflammation in vivo (e.g., between tissue resident cells and infiltrating leukocytes) (Chiang, N., Takano, T., Clish, C. B., Petasis, N. A., Tai, H.-H., and Serhan, C. N. (1998) Aspirin-triggered 15-epi-lipoxin A4 (ATL) generation by human leukocytes and murine peritonitis exudates: development of a specific 15epi-LXA4 ELISA. J. Pharmacol Exper. Ther. 287, 779-790). These aspirin-triggered lipoxins (15-epi-LX) are even more potent than the native LX as inhibitors of PMN responses, in part because they are active longer (Serhan, C. N., Maddox, J. F., Petasis, N. A., Akritopoulou-Zanze, I., Papayianni, A., Brady, H. R., Colgan, S. P., and Madara, J. L. (1995) Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry 34, 14609-14615). PMN inhibition by LX and 15-epi-LX is evoked by specific receptor-activation of "inhibitory" signals and not via direct receptor level antagonism at LTB₄ receptors (Takano, T., Fiore, S., Maddox, J. F., Brady, H. R., Petasis, N. A., and Serhan, C. N. (1997) Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 Stable analogues are potent inhibitors of acute inflammation: Evidence for anti-inflammatory receptors. J. Exp. Med. 185, 1693-1704). Moreover, interest in the regulation of the LTB₄ receptor is heightened by the recent finding that LTB₄ receptors also serve as novel HIV-1 coreceptors (Owman, C., Garzino-Demo, A., Cocchi, F., Popovic, M., Sabirsh, A., and Gallo, R. (1998) The leukotriene B4 receptor functions as a novel type of coreceptor mediating entry of primary HIV-1 isolates into CD4-positive cells. Proc. Natl. Acad. Sci. 95, 9530-9534).

[0009] Despite ~100 years of use, complete knowledge of aspirin's therapeutic impact is still evolving with many newly discovered clinical utilities (Marcus, A. J. (1995) Aspirin as prophylaxis against colorectal cancer. N. Engl. J. Med. 333, 656-658). Regular ingestion of aspirin decreases the incidence of myocardial infarction, colorectal carcinoma and Alzheimer's disease (Vainio, H., and Morgan, G. (1997) Aspirin for the second hundred years: new uses for an old drug. Pharmacol Toxicol 81, 151-152), but side effects from aspirin, such as gastrointestinal ulceration, can limit its use. The recent discovery of a second isoform of cyclooxygenase (COX) that is induced during inflammation has led to a search for "super-aspirins" that can selectively inhibit COX-2 without disrupting the protective constitutive functions of COX-1 (Isakson, P., Seibert, K., Masferrer, J., Salvemini, D., Lee, L., and Needleman, P. (1995) Discovery of a better aspirin. Advances in Prostaglandin, Thromboxane & Leukotriene Research 23, 49-54; Herschman, H. R. (1998) Recent progress in the cellular and molecular biology of prostaglandin synthesis. Trends in Cardiovasc. Med. 8, 145-150). Of particular interest in this regard, 15-epi-LX, which inhibit PMN migration, are endogenous products of aspirin's acetylating ability that may underly some of the salutary benefits of aspirin. Both LX and 1 S-epi-LX stable analogs were prepared, which like 15-epi-LXA₄, act via the LXA₄ receptor (Serhan, C. N., Maddox, J. F., Petasis, N. A., Akritopoulou-Zanze, I., Papayianni, A., Brady, H. R., Colgan, S. P., and Madara, J. L. (1995) Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry 34, 14609-14615; Takano, T., Fiore, S., Maddox, J. F., Brady, H. R., Petasis, N. A., and Serhan, C. N. (1997) Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 Stable analogues are potent inhibitors of acute inflammation: Evidence for anti-inflammatory receptors. J. Exp. Med. 185, 1693-1704). Suitable methods of preparation of lipoxin compounds can also be found, for example, in U.S. Patent Nos. 5,411,951, 5,648,512, 5,650,435 and 5,750,354. For example, 15-epi-16-para-fluoro-phenoxy-lipoxin A_4 -methyl ester (15-epi-LXa) is a synthetic analog of 15-epi-LXA₄ (Figure 1A, bottom left) that not only resists rapid inactivation but acts topically to inhibit PMN infiltration and vascular permeability in mouse ear skin inflammation (Takano, T., Clish, C. B., Gronert, K., Petasis, N., and Serhan, C. N. (1998) Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. J. Clin. Invest. 101, 819-826). [0010] Elucidation of signaling pathway(s) responsible for receptor-operated blockage of PMN responses is of interest. Signaling via phospholipase D (PLD) plays a pivotal role in mounting cellular responses. Within seconds of exposure to ligands, PLD hydrolyzes membrane phosphatidylcholine (PC) to generate phosphatidic acid (PA)(Billah, M. M., Eckel, S., Mullmann, T. J., Egan, R. W., and Siegel, M. 1. (1989) Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phsophatidate phosphohydrolase in signal transduction. J. Biol. Chem. 264, 17069-17077). Formation of PA temporally antecedes functional responses, including vesicle secretion and assembly of the NADPH oxidase (Wakelam, M. J. O., Martin, A.,

Hodgkin, M. N., Brown, F., Pettit, T. R., Cross, M. J., De Takats, P. G., and Reynolds, J. L. (1997) Role and regulation of phospholipase D activity in normal and cancer cells. Advances in Enzyme Regulation 37, 29-34; Olson, S. C., and Lambeth, J. D. (1996) Biochemistry and cell biology of phospholipase D in human neutrophils. Chem. Phys. Lipids 80, 3-19). Several isozymes of PLD1 and PLD2 were cloned and characterized (Steed, P. M., Clark, K. L., Boyar, W. C., and Lasala, D. J. (1998) Characterization of human PLD2 and the analysis of PLD isoform splice variants. FASEB J. 12, 1309-1317), with PLD1b identified as a prominent isoform in human granulocytes (Martin, A., Saqib, K. M., Hodgkin, M. N., Brown, F. D., Pettit, T. R., Armstrong, S., and Wakelam, M. J. O. (1997) Role and regulation of phospholipase D signalling. Biochem. Soc. Trans. 25, 1157-1160). The complete DNA and amino acid sequences for human PLD is disclosed in Hammond et al. (1995) J. Biol. Chem. 270: 29640-29643, and Hammond et al. (1997) J. Biol. Chem. 272: 3 860-3 868, and can also be found at GenBank Accession Nos. NM 002662 and U38545.

[0011] Recently, a novel polyisoprenyl phosphate (PIPP) signaling pathway was identified (Figure 1A) and found that, in PMN, presqualene diphosphate (PSDP) carries biological activity and serves as a negative intracellular signal that prevents superoxide anion generation by several stimuli including PA (Levy, B. D., Petasis, N. A., and Serhan, C. N. (1997) Polyisoprenyl phosphates in intracellular signalling. Nature 389, 985-989). Because PLD activation is linked to superoxide anion generation (Agwu, D. E., McPhail, L. C., Sozzani, S., Bass, D. A., and McCall, C. E. (1991) Phosphatidic acid as a second messenger in human polymorphonuclear leukocytes. Effects on activation of NADPH oxidase. J. Clin. Invest. 88, 531-539), it was determined that PIPP signaling also modulates phospholipase activity critical to global cellular activation. It was found that (i) that LTB₄ receptor activation rapidly degrades PSDP, a key component of PIPP signaling, that is reversed by a LXA₄ receptor agonist, (ii) that an aspirin-triggered 15-epi-LXA₄ stable analog patently inhibits LTB₄-initiated PLD activation and Superoxide anion generation, and (iii) that PSDP directly inhibits both human recombinant and plant PLD. These findings provide evidence for receptor-initiated PIPP remodeling as a regulatory signaling pathway.

[0012] The invention is directed to the use of lipoxin compounds having the formula (V)

wherein X is R_1 , OR_1 , or SR_1 ; wherein R_1 is

- (i) a hydrogen atom;
- (ii) an alkyl of to 8 carbons atoms, inclusive, which may be straight chain or branched;
- (iii) a cycloalkyl of 3 to 10 carbon atoms;
- (iv) an aralkyl of 7 to 12 carbon atoms;
- (v) phenyl;
- (vi) substituted phenyl

55

10

20

25

30

35

40

45

$$Z_{i}$$
 Z_{ii}
 Z_{ii}
 Z_{ii}

15

5

10

wherein Z_i , Z_{ii} , Z_{iii} , Z_{iv} and Z_v are each independently selected from -NO₂, -CN, -C(=O)-R₁, -SO₃H, a hydrogen atom, halogen, methyl, -OR_x, wherein

R_v is 1 to 8 carbon atoms, inclusive, which may be a straight chain or branched, and hydroxyl;

(vii) a detectable label molecule; or

(viii) a straight or branched chain alkenyl of 2 to 8 carbon atoms, inclusive;

20

25

wherein Q₁ is (C=O), SO₂ or (CN), provided when Q₁ is CN, then X is absent; wherein R4 is

(a) H;

(b) an alkyl of 1 to 6 carbon atoms, inclusive, which may be a straight chain or branched;

wherein R₅ is

30

40

45

35

wherein Z_i , Z_{ii} , Z_{iii} , Z_{iv} and Z_v are each independently selected from -NO₂, -CN, -C(=O)-R₁, -SO₃H, a hydrogen atom, halogen, methyl, -OR_x wherein R_x is 1 to 8 carbon atoms, inclusive, which may be a straight chain or branched, and hydroxyl or a substituted or unsubstituted, branched or unbranched alkyl group; wherein R₆ is

(a) H;

(b) an alkyl from 1 to 4 carbon atoms, inclusive, straight chain or branched; and

50

pharmaceutically acceptable salts thereof, for the preparation of a medicament for treating inflammation, vasoconstriction, or myeloid suppression, with the proviso that the following compounds are excluded: 15-epi-16-(para-fluoro)-phenoxy-LXA₄, 16-(para-fluoro)-phenoxy-LXA₄, 15-epi-16-phenoxy-LXA₄ or 16-phenoxy-LXA₄.

[0013] The compounds useful in the present invention can be prepared by the following synthetic scheme:

wherein X, Q_1 , Q_3 , Q_4 , R_2 , R_3 , R_4 , R_5 , R_6 , Y_1 and T are as defined above. Suitable methods known in the art to can be used to produce each fragment. For example, the acetylenic fragment can be prepared by the methods discussed in Nicolaou, K.C. et al. (1991) Angew. Chem. Int. Ed. Engl. 30:1100; Nicolaou, K.C. et al. (1989) J. Org. Chem. 54:5527; Webber, S.E. et al. (1988) Adv. Exp. Med. Biol. 229:61; and U.S. Patent 5,441,951. The second fragment can be prepared by the methods of Raduchel, B. and Vorbruggen, H. (1985) Ady. Prostaglandin Thromboxane Leukotriene Res. 14:263. **[0014]** A "lipoxin analog" shall mean a compound which has an "active region" that functions like the active region of a "natural lipoxin", but which has a "metabolic transformation region" that differs from natural lipoxin. Lipoxin analogs include compounds which are structurally similar to a natural lipoxin, compounds which share the same receptor recognition site, compounds which share the same or similar lipoxin metabolic transformation region as lipoxin, and compounds which are art-recognized as being analogs of lipoxin. Lipoxin analogs include lipoxin analog metabolites. The compounds disclosed herein may contain one or more centers of asymmetry. Where asymmetric carbon atoms are present, more than one stereoisomer is possible, and all possible isomeric forms are intended to be included within the structural representations shown. Optically active (R) and (S) isomers may be resolved using conventional techniques known to the ordinarily skilled artisan. The present invention is intended to include the possible diastereiomers as well as the racemic and optically resolved isomers.

[0015] The terms "corresponding lipoxin" and "natural lipoxin" refer to a naturally-occurring lipoxin or lipoxin metabolite. Where an analog has activity for a lipoxin-specific receptor, the corresponding or natural lipoxin is the normal ligand for that receptor. For example, where an analog is a LXA_4 specific receptor on differentiated HL-60 cells, the corresponding lipoxin is LXA_4 . Where an analog has activity as an antagonist to another compound (such as a leukotriene), which is antagonized by a naturally-occurring lipoxin, that natural lipoxin is the corresponding lipoxin.

[0016] "Active region" shall mean the region of a natural lipoxin or lipoxin analog, which is associated with in vivo cellular interactions. The active region may bind the "recognition site" of a cellular lipoxin receptor or a macromolecule or complex of macromolecules, including an enzyme and its cofactor. Preferred lipoxin A_4 analogs have an active region comprising C_5 - C_{15} of natural lipoxin A_4 . Preferred lipoxin B_4 analogs have an active region comprising C_5 - C_{15} of natural lipoxin C_5 - C_{15} of natural lipoxin

[0017] The term "recognition site" or receptor is art-recognized and is intended to refer generally to a functional macromolecule or complex of macromolecules with which certain groups of cellular messengers, such as hormones, leukotrienes, and lipoxins, must first interact before the biochemical and physiological responses to those messengers are initiated. As used in this application, a receptor may be isolated, on an intact or permeabilized cell, or in tissue, including an organ. A receptor may be from or in a living subject, or it may be cloned. A receptor may normally exist or it may be induced by a disease state, by an injury, or by artificial means. A compound of this invention may bind reversibly, irreversibly, competitively, noncompetitively, or uncompetitively with respect to the natural substrate of a recognition site. [0018] The term "metabolic transformation region" is intended to refer generally to that portion of a lipoxin, a lipoxin metabolite, or lipoxin analog including a lipoxin analog metabolite, upon which an enzyme or an enzyme and its cofactor attempts to perform one or more metabolic transformations which that enzyme or enzyme and cofactor normally transform on lipoxins. The metabolic transformation region may or may not be susceptible to the transformation. A nonlimiting example of a metabolic transformation region of a lipoxin is a portion of LXA4 that includes the C-13,14 double bond or the C-15 hydroxyl group, or both.

10

20

30

35

40

45

50

55

[0019] The term "detectable label molecule" is meant to include fluorescent, phosphorescent, and radiolabeled molecules used to trace, track, or identify the compound or receptor recognition site to which the detectable label molecule is bound. The label molecule may be detected by any of the several methods known in the art.

[0020] The term "labeled lipoxin analog" is further understood to encompass compounds which are labeled with radioactive isotopes, such as but not limited to tritium (³H), deuterium (²H), carbon (¹⁴C), or otherwise labeled (e.g. fluorescently). The compounds of this invention may be labeled or derivatized, for example, for kinetic binding experiments, for further elucidating metabolic pathways and enzymatic mechanisms, or for characterization by methods known in the art of analytical chemistry.

[0021] The term "inhibits metabolism" means the blocking or reduction of activity of an enzyme which metabolizes a native lipoxin. The blockage or reduction may occur by covalent bonding, by irreversible binding, by reversible binding which has a practical effect of irreversible binding, or by any other means which prevents the enzyme from operating in its usual manner on another lipoxin analog, including a lipoxin analog metabolite, a lipoxin, or a lipoxin metabolite.

[0022] The term "resists metabolism" is meant to include failing to undergo one or more of the metabolic degradative transformations by at least one of the enzymes which metabolize lipoxins. Two nonlimiting examples of LXA₄ analog that resists metabolism are 1) a structure which can not be oxidized to the 15-oxo form, and 2) a structure which may be oxidized to the 15-oxo form, but is not susceptible to enzymatic reduction to the 13,14-dihydro form.

[0023] The term "more slowly undergoes metabolism" means having slower reaction kinetics, or requiring more time for the completion of the series or metabolic transformations by one or more of the enzymes which metabolize lipoxin. A nonlimiting example of a LXA₄ analog which more slowly undergoes metabolism is a structure which has a higher transition state energy for C-15 dehydrogenation than does LXA₄ because the analog is sterically hindered at the C-16. [0024] The term "tissue" is intended to include intact cells, blood, blood preparations such as plasma and serum, bones, joints, muscles, smooth muscles, and organs.

[0025] The term "halogen" is meant to include fluorine, chlorine, bromine and iodine, or fluoro, chloro, bromo, and iodo. In certain aspects, the compounds of the invention do not include halogenated compounds, e.g., fluorinated compounds.

[0026] The term "subject" is intended to include living organisms susceptible to conditions or diseases caused or contributed to by inflammation, inflammatory responses, vasoconstriction, and myeloid suppression. Examples of subjects include humans, dogs, cats, cows, goats, and mice. The term subject is further intended to include transgenic species.

[0027] When the compounds used in the present invention are administered as pharmaceuticals, to humans and mammals, they can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.

[0028] The phrase "pharmaceutically acceptable carrier" as used herein means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting a compound(s) used in the present invention within or to the subject such that it can perform its intended function. Typically, such compounds are carried or transported from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyois, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol; phosphate buffer solutions; and other non-toxic compatible substances employed

in pharmaceutical formulations.

20

30

35

40

45

50

55

[0029] In certain embodiment, the compounds used in the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable bases. The term "pharmaceutically acceptable salts" in these instances refers to the relatively non-toxic, inorganic and organic base addition salts of compound used in the present invention. These salts can likewise be prepared *in situ* during the final isolation and purification of the compounds, or by separately reacting the purified compound in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like. Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like.

[0030] The term "pharmaceutically acceptable esters" refers to the relatively non-toxic, esterified products of compounds. These esters can be prepared *in situ* during the final isolation and purification of the compounds, or by separately reacting the purified compound in its free acid form or hydroxyl with a suitable esterifying agent. Carboxylic acids can be converted into esters *via* treatment with an alcohol in the presence of a catalyst. The term is further intended to include lower hydrocarbon groups capable of being solvated under physiological conditions, e.g., alkyl esters, methyl, ethyl and propyl esters. In a preferred embodiment, the ester is not a methyl ester (See, for example, Berge et al., *supra*.).

[0031] Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.

[0032] Examples of pharmaceutically acceptable antioxidants include: water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.

[0033] Formulations used in the present invention include those suitable for intravenous, oral, nasal, topical, transdermal, buccal, sublingual, rectal, vaginal and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred per cent, this amount will range from about 1 per cent to about ninety-nine percent of active ingredient, preferably from about 5 per cent to about 70 per cent, most preferably from about 10 per cent to about 30 per cent.

[0034] Methods of preparing these formulations or compositions include the step of bringing into association a compound used in the present invention with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a compound used in the present invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.

[0035] Formulations used in the invention suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound used in the present invention as an active ingredient. A compound used in the present invention may also be administered as a bolus, electuary or paste. [0036] In solid dosage forms for oral administration (capsules, tablets, pills, dragees, powders, granules and the like), the active ingredient is mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; humectants, such as glycerol; disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; solution retarding agents, such as paraffin; absorption accelerators, such as quaternary ammonium compounds; wetting agents, such as, for example, cetyl alcohol and glycerol monostearate; absorbents, such as kaolin and bentonite clay; lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.

[0037] A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the

powdered compound moistened with an inert liquid diluent.

20

30

35

40

55

[0038] The tablets, and other solid dosage forms of the pharmaceutical compositions used in the present invention, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.

[0039] Liquid dosage forms for oral administration of the compounds used in the invention include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.

[0040] Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.

[0041] Suspensions, in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.

[0042] Formulations of the pharmaceutical compositions used in the invention for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more compounds used in the invention with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active compound.

[0043] Formulations used in the present invention which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.

[0044] Dosage forms for the topical or transdermal administration of a compound used in this invention include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required.

[0045] The ointments, pastes, creams and gels may contain, in addition to an active compound used in this invention, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.

[0046] Powders and sprays can contain, in addition to a compound used in this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.

[0047] Transdermal patches have the added advantage of providing controlled delivery of a compound used in the present invention to the body. Such dosage forms can be made by dissolving or dispersing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the active compound in a polymer matrix or gel.

50 [0048] Ophthalmic formulations, eye ointments, powders, solutions and the like, can also be used,

[0049] Pharmaceutical compositions used in this invention suitable for parenteral administration comprise one or more compounds used in the invention in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.

[0050] Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions used in the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl

oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.

[0051] These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.

[0052] In some cases, in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally-administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.

[0053] Injectable depot forms are made by forming microencapsule matrices of the subject compounds in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly (orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissue.

[0054] The preparations used in the present invention may be given orally, parenterally, topically, or rectally. They are of course given by forms suitable for each administration route. For example, they are administered in tablets or capsule form, by injection, inhalation, eye lotion, ointment suppository, etc. administration by injection, infusion or inhalation; topical by lotion or ointment; and rectal by suppositories. Intravenous injection administration is preferred.

20

30

35

40

45

50

55

[0055] The phrases "parenteral administration" and "administered parenterally" as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.

[0056] The phrases "systemic administration," "administered systematically," "peripheral administration" and "administered peripherally" as used herein mean the administration of a compound, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration.

[0057] These compounds may be administered to humans and other animals for therapy by any suitable route of administration, including orally, nasally, as by, for example, a spray, rectally, intravaginally, parenterally, intracisternally and topically, as by powders, ointments or drops, including buccally and sublingually.

[0058] Regardless of the route of administration selected, the compounds used in the present invention, which may be used in a suitable hydrated form, and/or the pharmaceutical compositions used in the present invention, are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of ordinary skill in the art.

[0059] Actual dosage levels of the active ingredients in the pharmaceutical compositions used in this invention may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.

[0060] The selected dosage level will depend upon a variety of factors including the activity of the particular compound used in present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion of the particular compound being employed, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compound employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.

[0061] A physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount of the pharmaceutical composition required. For example, the physician or veterinarian could start doses of the compounds used in the invention employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.

[0062] In general, a suitable daily dose of a compound used in the invention will be that amount of the compound which is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above. Generally, intravenous and subcutaneous doses of the compounds used in this invention for a patient, when used for the indicated analgesic effects, will range from about 0.0001 to about 100 mg per kilogram of body weight per day, more preferably from about 0.01 to about 50 mg per kg per day, and still more preferably from about 0.1 to about 40 mg per kg per day. For example, between about 0.01 microgram and 20 micrograms, between about 20 micrograms and 100 micrograms and between about 10 micrograms and 200 micrograms of the compounds used in the invention are administered per 20 grams of subject weight.

[0063] If desired, the effective daily dose of the active compound may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms.

[0064] While it is possible for a compound used in the present invention to be administered alone, it is preferable to administer the compound as a pharmaceutical composition.

Methods

5

10

20

30

35

40

45

50

55

Materials.

[0065] 15-epi-LXa, PSDP and PSMP were prepared by total organic synthesis and characterized by their physical chemical and biological properties (Takano, T., Clish, C. B., Gronert, K., Petasis, N., and Serhan, C. N. (1998) Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. J. Clin. Invest. 101, 819-826; Levy, B. D., Petasis, N. A., and Serhan, C. N. (1997) Polyisoprenyl phosphates in intracellular signaling. Nature 389, 985-989). LTB4 was purchased from Cayman Chemical (Ann Arbor, MI), cabbage PLD (cPLD), FDP, squalene, lysis buffer reagents and cytochrome c were from Sigma Chemical Co. (St. Louis, MO), and PC and PA were from Avanti Polar Lipids (Alabaster, AL). The integrity and concentration of each bioactive lipid was assessed just prior to each series of experiments by UV analysis (eicosanoids and analogs) and phosphorus determinations (polyisoprenyl phosphates) (Takano, T., Clish, C. B., Gronert, K., Petasis, N., and Serhan, C. N. (1998) Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirintriggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. J. Clin. Invest. 101, 819-826; Levy, B. D., Petasis, N. A., and Serhan, C. N. (1997) Polyisoprenyl phosphates in intracellular signaling. Nature 389, 985-989).

Human PMN

[0066] Peripheral venous blood (~180 ml) was obtained by venipuncture from healthy volunteers who denied taking any medication for at least two weeks and had given written informed consent to a protocol approved by Brigham and Women's Hospital's Human Research Committee. PMN were isolated from whole blood and steady state labeled with $[\gamma^{32}P]ATP$ (40 μ Ciml⁻¹, 90 min, 37°C) as in (Levy, B. D., Petasis, N. A., and Serhan, C. N. (1997) Polyisoprenyl phosphates in intracellular signalling. Nature 389, 985-989). Labeled PMN were resuspended (20 x 10⁶ml⁻¹ PBS with 1 mM CaCl₂, pH 7.40) and exposed to LTB₄ (100 nM), 15-epi-Lxa (100 nM) or vehicle (0.1 % EtOH) for 0 to 300 seconds (37°C). From each incubation, aliquots were removed at indicated intervals to determine the radiolabeling of nonsaponifiable lipids (10 - 12 x 10⁶ PMN) and PLD activity (1- 1.25 x 10⁶ PMN). Materials present in each incubation were saponified, extracted and separated by TLC with phosphoimaging (model 425E and integration software; Molecular Dynamics), which was used for PSDP mass determination as in ref 22.

Preparation of recombinant human PLD1b.

[0067] Spodoptera frugiperda (Sf9) cells were cultured in suspension at 2 x 10⁵ to 2 x 10⁶ cells/ml TC 100 medium supplemented with 10% fetal calf serum (Gibco). A cDNA encoding human PLD1b (cloned from placental tissue) was inserted into the transfer vector pACGHLT (Pharmingen) downstream of, and in frame with, vector sequences encoding glutathione-S-transferase (GST), hexahistidine, a protein kinase A phosphorylation site and a thrombin cleavage site. The GST-hPLD1b construct was cotransfected into Sf9 cells with linearized, polyhedrin-minus (PH-), AcMNPV DNA, Bac-N-Blue, according to the supplier's instructions (Invitrogen). Homologous recombination between linearized virus and the transfer vector restored the function of essential viral gene ORF 1629 to yield infectious, recombinant virus. After two rounds of plaque-purification, recombinant virus was amplified by large scale infections of Sf9 cells until a titer of 8 x 10⁷ pfu/ml was obtained. To generate GST-hPLD1b, 500 ml of Sf9 cells at 2 x10⁶ cells/ml were infected with virus at a multiplicity of infection of 10:1. Cells were harvested 72 hours post-infection, lysed and the expressed GST-hPLD1b purified on glutathione agarose beads, according to supplier's instructions (Pharmingen). The purified recombinant protein was identified by immunoreactivity with goat anti-GST pAb (Amersham Pharmacia Biotech) and rabbit pAb raised against the PLD consensus peptide sequence GSANIN (gift of P. Parker, ICRF, London, UK), and by activity in an in vitro PLD assay (24).

PLD activity and superoxide anion generation.

[0068] Lysates were generated from cells at rest or after exposure to agonist using a lysis buffer comprised of 0.1 M Hepes (pH 7.4), 0.7 mM sodium orthovanadate, 10 μ M p-nitrophenylphosphate, 10 mM EGTA, 5.5% triton X-100, 0.5 M β-glycerophosphate, 10 mM phenylmethylsulfonylfluoride, 0.1 mM ammonium molybdate, 12 mM DFP, 5 μ gml⁻¹ leupeptin, 2 μ gml⁻¹ aprotinin and 7 μ gml⁻¹ pepstatin A (as in ref 25) and utilized for bioassay.

[0069] PMN lysates (90-130 μg protein), purified phospholipase D (3 - 30 units) (EC 3.1.4.4., Sigma Chemical Co.) or recombinant hPLD1b were warmed (37°C for mammalian enzyme and 30°C for cabbage, 3 min) and exposed to

PSDP, PSMP or FDP (10 - 1000 nM, 5 min, 37°C or 30°C) followed by PC (0.5 to 5 mM) in Tris-HCl (50 mM, pH 7.5) with CaCl₂ (30 mM). Reactions were terminated at 30 second intervals (0-90 seconds) with Tris-HCl (1M) plus EDTA (50 mM). Choline release was quantitated as in ref 26.

[0070] Freshly isolated human PMN (1-3 x10 6 PMN/ml HBSS + 1.6 mM CaCl₂) were incubated (5 min, 37 $^\circ$ C) in the presence of 15-epi-LXa (1-100 nM) or vehicle (0.1% ethanol), and then exposed (10 min) to LTB₄ (100 nM) in the presence of cytochrome c (7 mg/ml). Superoxide anion generation was determined as in ref 22.

Statistical Analysis.

[0071] Results are expressed as the mean ± S.E. and statistical significance was evaluated using the Student's t test.

Results

10

15

20

30

40

45

50

Leukotriene B₄ stimulates rapid remodeling of PIPP: Degradation of PSDP.

[0072] Leukotriene B₄ interacts with its receptor to rapidly activate phospholipases and signal cellular responses (Yokomizo, T., Izumi, T., Chang, K., Takuwa, T., and Shimizu, T. (1997) A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620-624). To determine if LTB₄ receptor activation lead to remodeling of PIPP and specifically PSDP, cellular phosphate pools were steady state labeled with [y-32P]-ATP (see Methods) and exposed to either LTB₄ (100 nM) or vehicle (0.1% ethanol) alone. Aliquots were removed at timed intervals from 0 to 300 sec (37°C) and non-saponifiable phosphorylated lipids were isolated and quantitated by phosphoimager for [32P] incorporation. PSDP levels in unstimulated PMN are ~1.7 nmoles/10⁷ PMN (-50 nM) (Levy, B. D., Petasis, N. A., and Serhan, C. N. (1997) Polyisoprenyl phosphates in intracellular signalling. Nature 389, 985-989). PSDP and presqualene monophosphate (PSMP), but not farnesyl diphosphate (FDP), incorporated [32P] from ATP, consistent with recent evidence (Levy, B. D., Petasis, N. A., and Serhan, C. N. (1997) Polyisoprenyl phosphates in intracellular signalling. Nature 389, 985-989). LTB₄ initiated a rapid (evident within 30 sec) (Figure 1B) and statistically significant decrease in [³²P]-PSDP (28%) within 60 sec (Figure 1C). Within the ensuing 270 sec, [32P]-PSDP levels returned to baseline amounts (t=0). Changes in [32P]-PSDP after LTB₁ receptor activation reflected changes in PSDP mass. These results confirmed that PSDP was present in PMN (Levy, B. D., Petasis, N. A., and Serhan, C. N. (1997) Polyisoprenyl phosphates in intracellular signalling. Nature 389, 985-989) and indicated that LTB₄ initiated a marked decrement in PSDP (Figure 1) with a time course of PIPP remodeling concurrent with LTB₄ kinetics of cellular activation (Borgeat, P., and Naccache, P. H. (1990) Biosynthesis and biological activity of leukotriene B4. Clin. Biochem. 23, 459-468; Levy, B. D., Petasis, N. A., and Serhan, C. N. (1997) Polyisoprenyl phosphates in intracellular signalling. Nature 389, 985-989).

35 15-epimer LX analog switches the LTB₄ program to enhance PSDP.

[0073] Both LXA₄ and some 15-epi-LXA₄ stable analogs act at the LXA₄ receptor on PMN, inhibiting infiltration *in vivo*. To determine if LX and 15-epi-LX mediate inhibitory actions via PIPP signaling, the impact of a 15-epi-LXA₄ analog (15-epi-LXa) (100 nM, 5 min, 37°C) on LTB₄ (100 nM) -stimulated changes in PSDP was examined using [³²P] labeling of PMN lipids (*vide supra*, in parallel incubations). Alone, 15-epi-LXa did not affect the rate of PIPP remodeling (Figure 1B). Of interest, exposure to LTB₄ in the presence of equimolar 15-epi-LXa not only prevented the LTB₄ initiated decrease in PSDP, but additionally stimulated a significant increase (~72%) in [³²P]-PSDP at 60 sec (Figure 1C). PSDP levels continued to rise for at least 300 sec after exposure to LTB₄ (Figure 1B). Native LXA₄ and its related LXA₄ receptor agonist, 16-phenoxy-LXA₄-methyl ester, gave qualitatively similar responses as 15-epi-LXa with a rank order of potency of 15-epi-LXa > 16-phenoxy-LXA₄ > LXA₄ with 15-epi-LXa 1-2 orders of magnitude more potent. These results indicate that 15-epi-LXa, which inhibits LTB₄ responses *in vivo* (Takano, T., Fiore, S., Maddox, J. F., Brady, H. R., Petasis, N. A., and Serhan, C. N. (1997) Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 Stable analogues are potent inhibitors of acute inflammation: Evidence for anti-inflammatory receptors. J. Exp. Med. 185, 1693-1704), dramatically switches LTB₄-initiated PIPP signaling. Moreover, increases in PSDP levels evoked by coactivation of the LXA₄ and LTB₄ receptors indicate that the time course of PSDP accumulation correlated with regulation of LTB₄'s actions by LX and 15-epi-LXa (*vide infra*).

15-epi-LXa inhibits LTB₄-stimulated PLD activity and O₂- generation.

[0074] LTB₄-stimulated PLD activity is associated with morphologic change, degranulation and O₂- production in PMN (Olson, S. C., and Lambeth, J. D. (1996) Biochemistry and cell biology of phospholipase D in human neutrophils. Chem. Phys. Lipids 80, 3-19; Zhou, H.-L., Chabot-Fletcher, M., Foley, J. J., Sarau, H. M., Tzimas, M. N., Winkler, J. D., and Torphy, T. J. (1993) Association between leukotriene B4-induced phospholipase D activation and degranulation of human

neutrophils. Biochem. Pharmacol. 46, 139-148). To determine whether LT and LX-mediated remodeling of PIPP correlates with specific cell signaling events, PLD activity was monitored in cell lysates from the same incubations used in Figure 1. LTB₄ gave increases in PLD activity that were maximal by 60 sec (Figure 2A). These values for LTB₄ and PLD are consistent with those of earlier reports (Gomez-Cambronero, J. (1995) Immunoprecipitation of a phospholipase D activity with antiphosphotyrosine antibodies. J. Interferon Cytokine Res. 15, 877-885; Zhou, H.-L., Chabot-Fletcher, M., Foley, J. J., Sarau, H. M., Tzimas, M. N., Winkler, J. D., and Torphy, T. J. (1993) Association between leukotriene B4-induced phospholipase D activation and degranulation of human neutrophils. Biochem. Pharmacol. 46, 139-148). In the presence of 15-epi-LXa, LTB₄-stimulated PLD activity was inhibited (~81%) at 60 sec (Figure 2A&B). 15-epi-LXa also potently inhibited LTB₄-stimulated O_2 - generation (Figure 2C). Together, these findings indicate that ligand-receptor interaction that signals opposing cellular responses gave an inverse relationship between [32 P]-PSDP levels and PLD activity, demonstrating that PSDP could regulate PLD.

Direct inhibition of both plant and mammalian PLD.

25

40

45

50

55

[0075] To determine whether polyisoprenyl phosphates act directly on PLD, PSDP and closely related lipids were incubated with purified plant enzyme (EC 3.1.4.4; Vm = 0.29 nmoles/sec, Km = 1.4 mM). As seen in Figure 3, PSDP inhibited cPLD in a concentration-dependent fashion (10 to 1000 nM) with a Ki of 20 nM ((PSDP) = 10 nM). Lineweaver-burk analyses (Figure 3) were consistent with a competitive inhibition model. Closely related lipids, such as PSMP (minus only one phosphate), showed a greater than 100-fold loss in inhibitory potency compared to PSDP (Table I). Comparable inhibition was not evident with other polyisoprenoids (i.e., FDP and squalene) or a PLD product (PA). It was determined whether PSDP could also inhibit mammalian PLD by determining recombinant human PLD1b kinetics *in vitro* with PSDP. The recombinant enzyme (Vm = 0.36 nmoles/sec, Km = 13.8 mM) was also dramatically inhibited by PSDP with a Ki of 6 nM (Table I).

TABLE 1. PSDP selectively inhibits phospholipase D: structure activity relationship with related endogenous lipids^a

	Lipid	Enzyme	K _m (mM)	V_{m}	
		cPLD	1.4	0.29	
30		rhPLD1b	13.8	0.36	
			$K_{m app}(mM)$	$V_{m app}$	K _i (nM)
	Presqualene diphosphate	cPLD	2.1	0.25	20
		rhPLD1b	3.1	0.03	6
35	Presqualene monophosphate	cPLD	3.1	0.36	3210
	Squalene	cPLD	4.0	0.46	0
	Farnesyl diphosphate	cPLD	0.9	0.25	0
	Phosphatidic acid	cPLD	3.6	0.43	0

^aEnzyme kinetics for PLD were determined in the presence of PSDP or related lipids. Purified or isolated PLD (3u cPLD or 0.3u rhPLD1b/reaction) activity in the presence of the test compounds was determined as described in Fig. 3 legend ($n \ge 3$). K, was calculated using the formula: Slope = $K_m/V_m(1+[I]/K_i)$. Absence of inhibition is reported as K, =0.

[0076] Because PLD activation occurs *in vivo* in the presence of many cofactors which modulate its activity, it was also determined the impact of PSDP on PLD activity in PMN lysates. Sixty seconds following LTB₄, PSDP levels decreased (28%, Figure 1) and PLD activity was maximal (Figure 2). Addition of PSDP (100 nM) to PMN lysates at this time (60 sec, LTB₄ 100 nM) gave 89.5 +/- 9.7% inhibition of PLD activity. Collectively, these results indicated that PSDP was a potent inhibitor of both plant and mammalian PLD's and establish a critical role for both the terminal phosphate and the isoprenoid chain length in PSDP's action with PLD activity.

[0077] The present results characterize PIPP remodeling as a rapid switch for "stop" signaling used by an extracellular regulator of PMN responses. LTB₄ receptor activation initiated a rapid and transient decrease in PSDP (Figure 1) that coincided temporally with increased PLD activity (Figure 2). As PSDP remodeling returned toward baseline values, PLD activity decreased, revealing an inverse relationship and suggesting a role for PSDP in the regulation of this pivotal lipid-modifying enzyme. Cells exposed to LTB₄ and an LXA₄ receptor agonist (15-epi-LXa) showed a dramatic switch in PSDP remodeling to give increased [32P]-PSDP and marked inhibition of both PLD activity and superoxide anion generation (Figures 1 & 2). In addition, synthetic PSDP was a selective and potent inhibitor of isolated PLD (Figure 3, Table I), a property not shared by other closely related lipids. Taken together, the reciprocal relationship between PSDP levels and PLD activity as well as direct inhibition of recombinant human PLD1b, purified cPLD and PLD activity in PMN lysates support a role for PSDP as an endogenous lipid regulator of PMN PLD activity. The different temporal profiles of PIPP

remodeling initiated upon receptor activation by PMN ligands with opposing actions (i.e., stimulation and inhibition) suggest that PIPP remodeling and PSDP itself may serve as important components in intracellular signaling, in particular as "stop" signals.

[0078] Cholesterol is not a biosynthetic product in PMN, as they lack a mixed function oxidase and cyclase necessary for its endogenous formation from acetate (Shechter, I., Fogelman, A. M., and Popjak, G. (1980) A deficiency of mixed function oxidase activities in the cholesterol biosynthetic pathway of human granulocytes. J. Lipid Res. 21, 277-283). In view of the present findings, the resultant biosynthetic termination at squalene in PMN suggests that products such as squalene's direct precursor, PSDP, carries functions distinct from cholesterol biosynthesis. Hence, it is likely that the PIPP signaling pathway uncovered in human PMN may extend to other cell types. In addition to dietary influences known to impact mevalonate and polyisoprenyl phosphate biosynthesis, PSDP formation is also actively regulated by soluble immune stimuli and growth factors (Figure 1B,C). Granulocyte/macrophage-colony stimulating factor, for example, increases PSDP remodeling in PMN whereas the chemotactic peptide, fMLP, triggers (within seconds) rapid decrements in PSDP and reciprocal increments in PSMP that return to baseline within 5-10 minutes (Levy, B. D., Petasis, N. A., and Serhan, C. N. (1997) Polyisoprenyl phosphates in intracellular signalling. Nature 389, 985-989). This time course of PIPP remodeling is similar in magnitude and extent to LTB₄-initiated decrements in PSDP (Figure 1B & C) and correlates well with the time course of activating neutrophil responses such as O2- generation, which is inhibited by PSDP. The presence of PSDP in peripheral blood PMN despite their inability to generate cholesterol from endogenous sources, its rapid remodeling in response to receptor-mediated inflammatory stimuli of diverse classes of receptor agonist, and its ability to inhibit PLD activity and NADPH oxidase at nanomolar levels are supportive evidence for a role for PSDP as a novel negative intracellular signal. Thus, this newly uncovered PIPP signaling might function to decrease negative signal levels, in contrast to the well-appreciated phosphotidylinositol signaling pathways (reviewed in Pettit, T. R., Martin, A., Horton, T., Liossis, C., Lord, J. M., and Wakelam, M. J. O. (1997) Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. J. Biol. Chem. 272, 17354-17359) that, when activated, rapidly generate positive intracellular stimuli (e.g., inositol trisphosphate, diacylglycerol & Ca2+).

20

30

35

40

45

50

55

[0079] Aspirin, the lead non-steroidal anti-inflammatory drug, also effects cholesterol biosynthesis by mechanisms that remain to be completely elucidated (Rabinowitz, J. L., Baker, D. G., Villanueva, T. G., Asanza, A. P., and Capuzzi, D. M. (1992) Liver lipid profiles of adults taking therapeutic doses of aspirin. Lipids 27, 311-314). Beyond its wellappreciated inhibition of cyclooxygenase (COX), aspirin can pirate this system to set in place an anti-inflammatory circuit generating 15-epi-LX, carbon 15-R-epimers of the natural 15-S-containing-LX, during cell-cell interactions by aspirinacetylated COX-2 and 5-lipoxygenase (Figure 1A and Chiang, N., Takano, T., Clish, C. B., Petasis, N. A., Tai, H.-H., and Serhan, C. N. (1998) Aspirin-triggered 15-epi-lipoxin A4 (ATL) generation by human leukocytes and murine peritonitis exudates: development of a specific 15-epi-LXA4 ELISA. J. Pharmacol Exper. Ther. 287, 779-790). These aspirintriggered LX carry anti-inflammatory and anti-proliferative properties (Claria, J., and Serhan, C. N. (1995) Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc. Natl. Acad. Sci. 92, 9475-9479; Serhan, C. N. (1997) Lipoxins and Novel Aspirin-Triggered 15-epi-Lipoxins: A Jungle of Cell-Cell Interactions or a Therapeutic Opportunity? Prostaglandins 53, 107-137) and may mediate a component of aspirin's beneficial therapeutic actions. As observed in the present experiments, LXA₄ receptor activation by a 15-epi-LX mimetic reversed PSDP remodeling initiated by LTB₄ receptors, leading to increases in PSDP levels (Figure 1). Since the 15-epi-LXa inhibited both PLD activity and superoxide anion generation (Figure 2), these results implicate PIPP remodeling as a component of the cellular basis for aspirin's inhibition of excessive inflammatory responses. In addition to regulating LTB₄'s stimulatory actions, this novel mechanism of inhibition of LTB₄ receptor signaling may also play broader roles in host defense, as this receptor was recently identified as a co-receptor for HIV-1 (Owman, C., Garzino-Demo, A., Cocchi, F., Popovic, M., Sabirsh, A., and Gallo, R. (1998) The leukotriene B4 receptor functions as a novel type of coreceptor mediating entry of primary HIV-1 isolates into CD4-positive cells. Proc. Natl. Acad. Sci. 95, 9530-9534).

[0080] Hydrolysis of PC to PA by PLD appears crucial in transmembrane signaling by a wide range of receptor classes during PMN activation (Olson, S. C., and Lambeth, J. D. (1996) Biochemistry and cell biology of phospholipase D in human neutrophils. Chem. Phys. Lipids 80, 3-19). Both G-protein linked receptors and receptor tyrosine kinases activate PLD. In leukocytes, several factors including PKCα (in a kinase-independent manner) and increased intracellular calcium can activate PLD1 (Exton, J. H. (1997) New developments in phospholipase D. J. Biol. Chem. 272, 15579-15582). FMLP-stimulated PLD activity in PMN is increased by membrane association of the ADP-ribosylation factor (ARF) and small GTPase RhoA (Fensome, A., Whatmore, J., Morgan, C., Jones, D., and Cockcroft, S. (1998) ADP-ribosylation factor and Rho proteins mediate fMLP-dependent activation of phospholipase D in human neutrophils. J. Biol. Chem. 273, 13157-13164). Of considerable interest here, PSDP directly inhibited recombinant hPLD1b in the absence of regulatory proteins (see Table I). These results suggest that PSDP may inhibit PLD at its catalytic center and is likely to act at other PLD isoforms, such as PLD1a and PLD2 isoforms where the catalytic centers are conserved. PSDP's ability to serve as an endogenous inhibitor of PLD likely results from PSDP's unique three-dimensional and physical chemical properties which might now serve as a template for the preparation of more potent PLD inhibitors by design

to fulfill the structure activity relationship uncovered here.

[0081] Regulation of PMN activation in complex host responses is controlled in part by soluble mediators and, in particular, by autacoids with opposing actions (Serhan, C. N., Haeggstrom, J. Z., and Leslie, C. C. (1996) Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J. 10, 1147-1158), such as LT and LX, that here gave markedly different profiles for PIPP remodeling (Figure 1). In most cell types, PSDP is appreciated as a biosynthetic intermediate in cholesterol production by microsomal squalene synthase, which catalyzes head-to-head condensation of two FDP (Jarstfer, M. B., Blagg, B. S. J., Rogers, D. H., and Poulter, C. D. (1996) Biosynthesis of squalene. Evidence for a tertiary cyclopropylcarbinyl cationic intermediate in the rearrangement of presqualene diphosphate to squalene. J. Amer. Chem. Soc. 118, 13089-13090). Ligand-operated rapid remodeling of PSDP in PMN is likely to occur in membranes in proximity to LTB₄ and LXA₄ receptors and suggests a non-microsomal pool of PSDP that may result from 1) novel biosynthetic and/or metabolic pathways or 2) intracellular trafficking of PIPP with proteins from endoplasmic reticulum to membrane domains. Incorporation of [32P] from ATP into PSDP but not FDP (see Results) is further evidence in support of a novel route for PSDP formation in PMN. The present results suggest that PIPP remodeling is linked to cell surface receptor activation and is involved in the intracellular transmission of extracellular ligands with opposing biological actions. In the present working model, a "negative lipid signal" (i.e., PSDP) is held at a set point, like a ratchet, in "resting" cells. Incoming positive signals (LTB₄, fMLP, etc.) initiate the degradation and inactivation of this inhibitory lipid (e.g., remodeling PSDP to the inactive monophosphate species, PSMP) (Figure 1A and ref 22). Thus, PIPP remodeling enables mounting of intracellular positive signals that threshold for activation of select cellular processes. This type of signaling may explain the selectivity and tight coupling required by agonists such as LTB₄ that stimulate highly specialized functional responses of PMN such as chemotaxis, granule mobilization and superoxide anion generation. The extent to which this model of cell signaling, namely receptor-initiated degradation of negative lipid signals, occurs with other receptors and cell types remains for further studies.

[0082] In summary, ligand-operated rapid remodeling of PIPPs in human PMN and direct inhibition of PLD activity at nanomolar levels support a role for PSDP as an intracellular signal and provide novel intracellular targets by which PSDP can regulate cellular responses (Levy, B. D., Petasis, N. A., and Serhan, C. N. (1997) Polyisoprenyl phosphates in intracellular signalling. Nature 389, 985-989). Given the wide occurrence of PIPP and critical role of PLD in the plant and animal kingdoms, PIPP remodeling and direct inhibition of PLD first established here in human PMN may have wider implications in cell signaling in other cell types and species (Martin, A., Saqib, K. M., Hodgkin, M. N., Brown, F. D., Pettit, T. R., Armstrong, S., and Wakelam, M. J. O. (1997) Role and regulation of phospholipase D signalling. Biochem. Soc. Trans. 25, 1157-1160; Bach, T. J. (1995) Some new aspects of isoprenoid biosynthesis in plants --a review. Lipids 30, 191-202). The present results are the first to show direct inhibition of a phospholipase involved in signal transduction by an endogenous intracellular lipid and set forth a new paradigm for lipid-protein interactions in the control of cellular responses, namely receptor-initiated degradation of a repressor lipid, that is also subject to regulation by aspirin ingestion via the actions of aspirin-triggered 15-epimer LX. Together, these results suggest that PIPP signaling pathways might also be of interest in pharmacologic interventions and specifically that the conformation of PSDP can serve as a template for design of novel inhibitors.

References

40 [0083]

10

20

30

35

45

- 1. Weissmann, G., Smolen, J. E., and Korchak, H. M. (1980) Release of inflammatory mediators from stimulated neutrophils. N. Engl. J. Med. 303, 27-34
- 2. Serhan, C. N., Haeggstrom, J. Z., and Leslie, C. C. (1996) Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J. 10, 1147-1158
- 3. Weiss, S. J. (1989) Tissue destruction by neutrophils. N. Engl. J. Med. 320, 365-376
- 4. Serhan, C. N. (1994) Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim. Biophys. Acta 1212, 1-25
- 5. Borgeat, P., and Naccache, P. H. (1990) Biosynthesis and biological activity of leukotriene B4. Clin. Biochem. 23, 459-468
- 6. Yokomizo, T., Izumi, T., Chang, K., Takuwa, T., and Shimizu, T. (1997) A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620-624
- 7. Fiore, S., Romano, M., Reardon, E. M., and Serhan, C. N. (1993) Induction of functional lipoxin A4 receptors in HL-60 cells. Blood 81, 3395-3403
- 8. Isakson, P., Seibert, K., Masferrer, J., Salvemini, D., Lee, L., and Needleman, P. (1995) Discovery of a better aspirin. Advances in Prostaglandin, Thromboxane & Leukotriene Research 23, 49-54
 - 9. Chiang, N., Takano, T., Clish, C. B., Petasis, N. A., Tai, H.-H., and Serhan, C. N. (1998) Aspirin-triggered 15-epilipoxin A4 (ATL) generation by human leukocytes and murine peritonitis exudates: development of a specific 15-

epi-LXA4 ELISA. J. Pharmacol Exper. Ther. 287, 779-790

10

15

30

35

40

- 10. Serhan, C. N., Maddox, J. F., Petasis, N. A., Akritopoulou-Zanze, I., Papayianni, A., Brady, H. R., Colgan, S. P., and Madara, J. L. (1995) Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry 34, 14609-14615
- 5 11. Takano, T., Fiore, S., Maddox, J. F., Brady, H. R., Petasis, N. A., and Serhan, C. N. (1997) Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 Stable analogues are potent inhibitors of acute inflammation: Evidence for anti-inflammatory receptors. J. Exp. Med. 185, 1693-1704
 - 12. Owman, C., Garzino-Demo, A., Cocchi, F., Popovic, M., Sabirsh, A., and Gallo, R. (1998) The leukotriene B4 receptor functions as a novel type of coreceptor mediating entry of primary HIV-1 isolates into CD4-positive cells. Proc. Natl. Acad. Sci. 95, 9530-9534
 - 13. Marcus, A. J. (1995) Aspirin as prophylaxis against colorectal cancer. N. Engl. J. Med. 333, 656-658
 - 14. Vainio, H., and Morgan, G. (1997) Aspirin for the second hundred years: new uses for an old drug. Pharmacol Toxicol 81, 151-152
 - 15. Herschman, H. R. (1998) Recent progress in the cellular and molecular biology of prostaglandin synthesis. Trends in Cardiovasc. Med. 8, 145-150
 - 16. Takano, T., Clish, C. B., Gronert, K., Petasis, N., and Serhan, C. N. (1998) Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. J. Clin. Invest. 101, 819-826
- 17. Billah, M. M., Eckel, S., Mullmann, T. J., Egan, R. W., and Siegel, M. I. (1989) Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phosphatidate phosphohydrolase in signal transduction. J. Biol. Chem. 264, 17069-17077 18. Wakelam, M. J. O., Martin, A., Hodgkin, M. N., Brown, F., Pettit, T. R., Cross, M. J., De Takats, P. G., and Reynolds, J. L. (1997) Role and regulation of phospholipase D activity in normal and cancer cells. Advances in Enzyme Regulation 37, 29-34
- 19. Olson, S. C., and Lambeth, J. D. (1996) Biochemistry and cell biology of phospholipase D in human neutrophils. Chem. Phys. Lipids 80, 3-19
 - 20. Steed, P. M., Clark, K. L., Boyar, W. C., and Lasala, D. J. (1998) Characterization of human PLD2 and the analysis of PLD isoform splice variants. FASEB J. 12, 1309-1317
 - 21. Martin, A., Saqib, K. M., Hodgkin, M. N., Brown, F. D., Pettit, T. R., Armstrong, S., and Wakelam, M. J. O. (1997) Role and regulation of phospholipase D signalling. Biochem. Soc. Trans. 25, 1157-1160
 - 22. Levy, B. D., Petasis, N. A., and Serhan, C. N. (1997) Polyisoprenyl phosphates in intracellular signalling. Nature 389, 985-989
 - 23. Agwu, D. E., McPhail, L. C., Sozzani, S., Bass, D. A., and McCall, C. E. (1991) Phosphatidic acid as a second messenger in human polymorphonuclear leukocytes. Effects on activation of NADPH oxidase. J. Clin. Invest. 88, 531-539
 - 24. Pettit, T. R., Martin, A., Horton, T., Liossis, C., Lord, J. M., and Wakelam, M. J. O. (1997) Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. J. Biol. Chem. 272, 17354-17359
 - 25. Gomez-Cambronero, J. (1995) Immunoprecipitation of a phospholipase D activity with antiphosphotyrosine antibodies. J. Interferon Cytokine Res. 15, 877-885
 - 26. Abousalham, A., Riviere, M., Teissere, M., and Verger, R. (1993) Improved purification and biochemical characterization of phospholipase D from cabbage. Biochim. Biophys. Acta 1158, 1-7
 - 27. Zhou, H.-L., Chabot-Fletcher, M., Foley, J. J., Sarau, H. M., Tzimas, M. N., Winkler, J. D., and Torphy, T. J. (1993) Association between leukotriene B4-induced phospholipase D activation and degranulation of human neutrophils. Biochem. Pharmacol. 46, 139-148
 - 28. Shechter, I., Fogelman, A. M., and Popjak, G. (1980) A deficiency of mixed function oxidase activities in the cholesterol biosynthetic pathway of human granulocytes. J. Lipid Res. 21, 277-283
 - 29. Rabinowitz, J. L., Baker, D. G., Villanueva, T. G., Asanza, A. P., and Capuzzi, D. M. (1992) Liver lipid profiles of adults taking therapeutic doses of aspirin. Lipids 27, 311-314
- 30. Claria, J., and Serhan, C. N. (1995) Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc. Natl. Acad. Sci. 92, 9475-9479
 - 31. Serhan, C. N. (1997) Lipoxins and Novel Aspirin-Triggered 15-epi-Lipoxins: A Jungle of Cell-Cell Interactions or a Therapeutic Opportunity? Prostaglandins 53, 107-137
 - 32. Exton, J. H. (1997) New developments in phospholipase D. J. Biol. Chem. 272, 15579-15582
- 33. Fensome, A., Whatmore, J., Morgan, C., Jones, D., and Cockcroft, S. (1998) ADP-ribosylation factor and Rho proteins mediate fMLP-dependent activation of phospholipase D in human neutrophils. J. Biol. Chem. 273, 13157-164
 - 34. Jarstfer, M. B., Blagg, B. S. J., Rogers, D. H., and Poulter, C. D. (1996) Biosynthesis of squalene. Evidence for

a tertiary cyclopropylcarbinyl cationic intermediate in the rearrangement of presqualene diphosphate to squalene. J. Amer. Chem. Soc. 118, 13089-13090

35. Bach, T. J. (1995) Some new aspects of isoprenoid biosynthesis in plants --a review. Lipids 30, 191-202

Claims

5

10

15

20

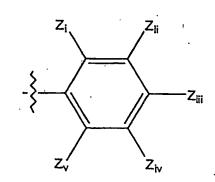
25

30

35

40

45


50

55

1. Use of a lipoxin analog having the formula

 R_4 R_5 Q_1 Q_1 Q_1 Q_2 Q_3 Q_4 Q_5 Q_6 Q_6

- wherein X is R_1 , OR_1 , or SR_1 ; wherein R_1 is
 - (i) a hydrogen atom;
 - (ii) an alkyl of 1 to 8 carbon atoms, inclusive, which may be straight chain or branched;
 - (iii) a cycloalkyl of 3 to 10 carbon atoms;
 - (iv) an aralkyl of 7 to 12 carbon atoms;
 - (v) phenyl;
 - (vi) substituted phenyl

wherein Z_i , Z_{ii} , Z_{iji} , Z_{iv} and Z_v are each independently selected from -NO₂, -CN, -C(=O)-R₁, -SO₃H, a hydrogen atom, halogen, methyl, -OR_x, wherein R_x is 1 to 8 carbon atoms, inclusive, which may be a straight chain or branched, and hydroxyl;

- (vii) a detectable label molecule; or
- (viii) a straight or branched chain alkenyl of 2 to 8 carbon atoms, inclusive;

wherein Q_1 is (C=O), SO_2 or (CN), provided when Q_1 is CN, then X is absent; wherein R_4 is:

- (a) H;
- (b) an alkyl of 1 to 6 carbon atoms, inclusive, which my be a straight chain or branched;

wherein R₅ is

5

10

15

wherein Z_i , Z_{ii} , Z_{iii} , Z_{iv} and Z_v are each independently selected from -NO₂, -CN, -C(=O)-R₁, -SO₃H, a hydrogen atom, halogen, methyl, -OR_v, wherein R_v is 1 to 8 carbon atoms, inclusive, which may be a straight chain or branched, and hydroxyl or a substituted or unsubstituted branched or unbranched alkyl group; wherein R₆ is

20

25

- (a) H;
- (b) an alkyl from 1 to 4 carbon atoms inclusive, straight chain or branched;

HO

and pharmaceutically acceptable salts thereof, with the proviso that 16-phenoxy-LXA₄, 15-epi-16-(parafluoro)-phenoxy-LXA₄, 16-(para-fluoro)-phenoxy-LXA₄ and 15-epi-16-phenoxy-LXA₄ are excluded, for the preparation of a medicament for treating inflammation, vasoconstriction, or myeloid suppression.

ОН

Use according to claim 1, wherein the medicament is to be used in vitro.

30

Use according to claim 1, wherein the medicament is to be used in vivo.

1. Verwendung eines Lipoxinanalogons der Formel

35

Patentansprüche

40

45

50

worin X R₁, OR₁ oder SR₁ ist; worin R₁

55

- (i) ein Wasserstoffatom;
- (ii) ein Alkyl mit 1 bis einschließlich 8 Kohlenstoffatomen, das geradkettig oder verzweigt sein kann;
- (iii) ein Cycloalkyl mit 3 bis 10 Kohlenstoffatomen;

OH

- (iv) ein Aralkyl mit 7 bis 12 Kohlenstoffatomen;
- (v) Phenyl;
- (vi) substituiertes Phenyl

5

10

15

20

worin Z_i , Z_{ii} , Z_{iii} , Z_{iv} und Z_v unabhängig voneinander unter -NO₂, -CN, -C(=O)-R₁, -SO₃H, einem Wasserstoffatom, Halogen, Methyl, - OR_x, wobei R_x 1 bis einschließlich 8 Kohlenstoffatome aufweist und geradkettig oder verzweigt sein kann, und Hydroxy ausgewählt ist;

Ziii

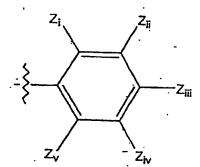
- (vii) ein nachweisbares Markierungsmolekül; oder
- (viii) ein geradkettiges oder verzweigtes Alkenyl mit 2 bis einschließlich 8 Kohlenstoffatomen ist;

25

30

worin Q_1 (C=O), SO_2 oder (CN) ist, mit der Maßgabe, dass wenn Q_1 CN ist, X nicht vorhanden ist; worin R_4 ist:

(a) H;


- (u) i
 - (b) ein Alkyl mit 1 bis einschließlich 6 Kohlenstoffatomen, das geradkettig oder verzweigt sein kann;

wobei R₅

35

40

45

ist, worin Z_i , Z_{ii} , Z_{ii} , Z_{ii} , und Z_v unabhängig voneinander unter - NO_2 , -CN, -C(=O)- R_1 , - SO_3 H, einem Wasserstoffatom, Halogen, Methyl, - OR_x , wobei R_x 1 bis einschließlich 8 Kohlenstoffatome darstellt und geradkettig oder verzweigt sein kann, und Hydroxy oder einer substituierten oder unsubstituierten, verzweigten oder geradkettigen Alkylgruppe ausgewählt ist;

worin R6 ist:

- (a) H:
- (b) ein Alkyl mit 1 bis einschließlich 4 Kohlenstoffatomen, das geradkettig oder verzweigt ist;

55

50

und pharmazeutische geeignete Salze davon,

mit der Maßgabe, dass 16-Phenoxy-LXA₄, 15-epi-16-(para-Fluor)-phenoxy-LXA₄, 16-(para-Fluor)-phenoxy-LXA₄ und 15-epi-16-Phenoxy-LXA₄ ausgeschlossen sind,

für die Präparation eines Arzneimittels zur Behandlung von Entzündung, Gefäßverengung oder Knochenmarkssuppression.

- 2. Verwendung nach Anspruch 1, wobei das Arzneimittel in vitro eingesetzt wird.
- 3. Verwendung nach Anspruch 1, wobei das Arzneimittel in vivo eingesetzt wird.

Revendications

5

10

25

30

35

40

45

50

1. Utilisation d'un analogue de lipoxine répondant à la formule

dans laquelle X est R_1 , OR_1 ou SR_1 ; où R_1 est

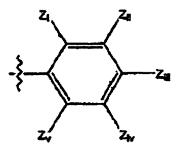
- (i) un atome d'hydrogène;
- (ii) un groupe alkyle de 1 à 8 atomes de carbone, inclus, qui peut être à chaîne droite ou ramifiée ;
- (iii) un groupe cycloalkyle de 3 à 10 atomes de carbone ;
- (iv) un groupe aralkyle de 7 à 12 atomes de carbone ;
- (v) un groupe phényle;
- (vi) un groupe phényle substitué

Z₁ Z₂ Z₃ Z₃

où Z_i , Z_{ii} , Z_{iii} , Z_{iv} and Z_v sont chacun indépendamment choisis parmi -NO₂, -CN, -C(=O)-R₁, -SO₃H, un atome d'hydrogène, un atome d'halogène, un groupe méthyle, - OR_x, où R_x est un groupe à 1 à 8 atomes de carbone, inclus, qui peut être à chaîne droite ou ramifiée, et hydroxyle;

- (vii) une molécule de marqueur détectable ; ou
- (viii) un groupe alcényle à chaîne droite ou ramifiée de 2 à 8 atomes de carbone, inclus ;

où Q_1 est (C=O), SO_2 ou (CN), à condition que lorsque Q_1 est CN, alors X est absent ; où R_4 est :


(a) H;

(b) un groupe alkyle de 1 à 6 atomes de carbone, inclus, qui peut être à chaîne droite ou ramifiée ;

où R₅ est

5

10

15

20

où Z_i , Z_{ii} , Z_{iii} , Z_{iv} and Z_v sont chacun indépendamment choisis parmi -NO₂, -CN, -C(=O)-R₁, -SO₃H, un atome d'hydrogène, un atome d'halogène, un groupe méthyle, - OR_x, où R_x est un groupe à 1 à 8 atomes de carbone, inclus, qui peut être à chaîne droite ou ramifiée, et hydroxyle ou un groupe alkyle ramifié ou non ramifié substitué ou non substitué ;

où R₆ est

- (a) H;
- (b) un groupe aralkyle de 1 à 4 atomes de carbone, inclus, à chaîne droite ou ramifiée ;

et ses sels pharmaceutiquement acceptables,

à condition que 16-phénoxy-LXA $_4$, 15-épi-16-(para-fluoro)-phénoxy-LXA $_4$, 16-(para-fluoro)-phénoxy-LXA $_4$ et 15-épi-16-phénoxy-LXA $_4$ soient exclus, pour la préparation d'un médicament destiné à traiter une inflammation, une vasoconstriction ou une suppression myéloïde.

- 30 2. Utilisation selon la revendication 1, dans laquelle le médicament est à utiliser in vitro.
 - 3. Utilisation selon la revendication 1, dans laquelle le médicament est à utiliser in vivo.

35

40

45

50

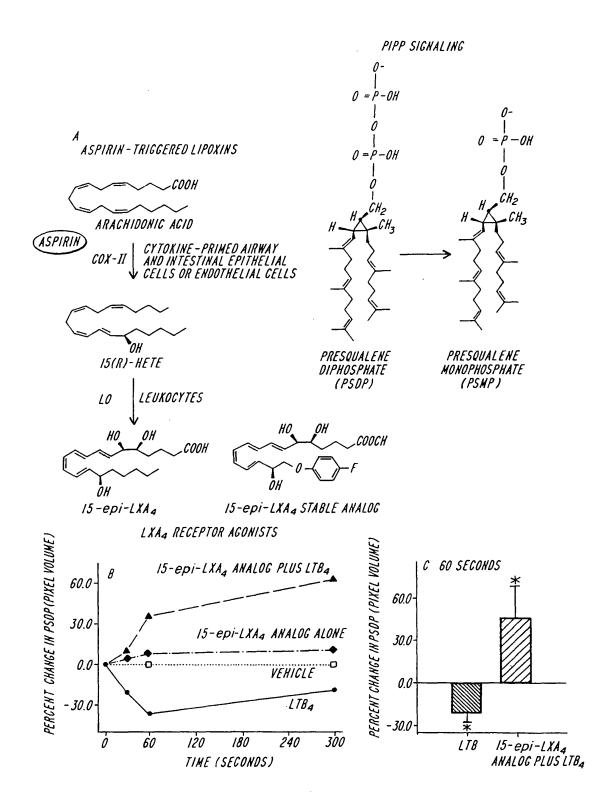
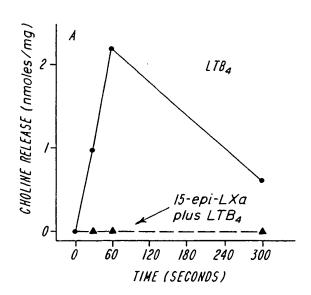
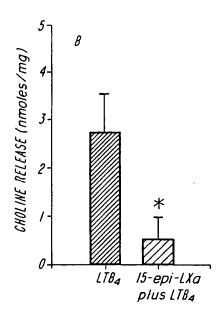




FIG. 1

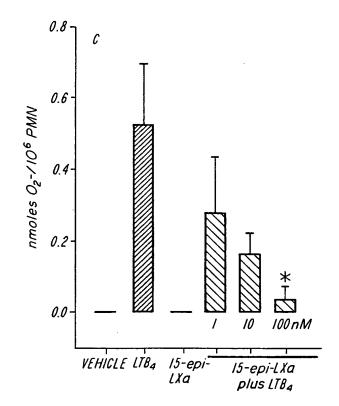


FIG. 2

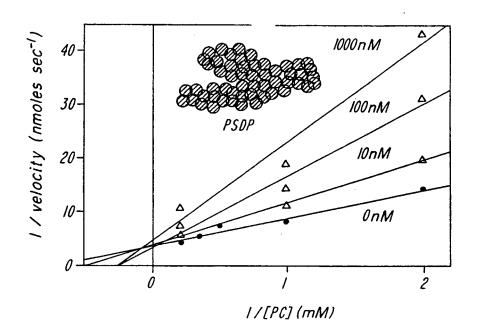


FIG. 3

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5411951 A [0009]
- US 5648512 A [0009]
- US 5650435 A [0009]

- US 5750354 A [0009]
- US 5441951 A [0013]

Non-patent literature cited in the description

- Weissmann, G.; Smolen, J. E.; Korchak, H. M. Release of inflammatory mediators from stimulated neutrophils. N. Engl. J. Med., 1980, vol. 303, 27-34 [0001] [0083]
- Serhan, C.N.; Haeggstrom, J. Z.; Leslie, C. C. Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J., 1996, vol. 10, 1147-1158 [0001]
- Weiss, S. J. Tissue destruction by neutrophils. N. Engl. J. Med., 1989, vol. 320, 365-376 [0001] [0083]
- Serhan, C. N. Lipoxin biosynthesis and its impact in inflammatory and vascular events. *Biochim. Biophys. Acta*, 1994, vol. 1212, 1-25 [0001] [0006] [0083]
- Levy et al. Nature, 1998, vol. 389, 985-990 [0005]
- Borgeat, P.; Naccache, P. H. Biosynthesis and biological activity of leukotriene B. Clin. Biochem., 1990, vol. 23, 459-468 [0006] [0072] [0083]
- Yokomizo, T.; Izumi, T.; Chang, K.; Takuwa, T.; Shimizu, T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. *Nature*, 1997, vol. 387, 620-624 [0006] [0072] [0083]
- Fiore, S.; Romano, M.; Reardon, E. M.; Serhan,
 C. N. Induction of functional lipoxin A4 receptors in
 HL-60 cells. *Blood*, 1993, vol. 81, 3395-3403 [0006]
 [0083]
- Isakson, P.; Seibert, K.; Masferrer, J.; Salvemini, D.; Lee, L.; Needleman, P. Discovery of a better aspirin. Advances in Prostaglandin. *Thromboxane & Leukotriene Research*, 1995, vol. 23, 49-54 [0008]
- Chiang, N.; Takano, T.; Clish, C. B.; Petasis, N. A.; Tai, H.-H.; Serhan, C. N. Aspirin-triggered 15-epi-lipoxin A4 (ATL) generation by human leukocytes and murine peritonitis exudates: development of a specific 15-epi-LXA4 ELISA. *J. Pharmacol Exper. Ther.*, 1998, vol. 287, 779-790 [0008] [0079] [0083]

- Serhan, C. N.; Maddox, J. F.; Petasis, N. A.; Akritopoulou-Zanze, I.; Papayianni, A.; Brady, H. R.; Colgan, S. P.; Madara, J. L. Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. *Biochemistry*, 1995, vol. 34, 14609-14615 [0008] [0009] [0083]
- Takano, T.; Fiore, S.; Maddox, J. F.; Brady, H. R.; Petasis, N. A.; Serhan, C. N. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 Stable analogues are potent inhibitors of acute inflammation: Evidence for anti-inflammatory receptors. *J. Exp. Med.*, 1997, vol. 185, 1693-1704 [0008] [0009] [0073] [0083]
- Owman, C.; Garzino-Demo, A.; Cocchi, F.; Popovic, M.; Sabirsh, A.; Gallo, R. The leukotriene B4 receptor functions as a novel type of coreceptor mediating entry of primary HIV-1 isolates into CD4-positive cells. *Proc. Natl. Acad. Sci.*, 1998, vol. 95, 9530-9534 [0008] [0079] [0083]
- Marcus, A. J. Aspirin as prophylaxis against colorectal cancer. N. Engl. J. Med., 1995, vol. 333, 656-658 [0009] [0083]
- Vainio, H.; Morgan, G. Aspirin for the second hundred years: new uses for an old drug. *Pharmacol Toxicol*, 1997, vol. 81, 151-152 [0009] [0083]
- Isakson, P.; Seibert, K.; Masferrer, J.; Salvemini, D.; Lee, L.; Needleman, P. Discovery of a better aspirin. Advances in Prostaglandin, Thromboxane & Leukotriene Research, 1995, vol. 23, 49-54 [0009] [0083]
- Herschman, H. R. Recent progress in the cellular and molecular biology of prostaglandin synthesis.
 Trends in Cardiovasc. Med., 1998, vol. 8, 145-150 [0009] [0083]
- Takano, T.; Clish, C. B.; Gronert, K.; Petasis, N.; Serhan, C. N. Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. *J. Clin. Invest.*, 1998, vol. 101, 819-826 [0009] [0065] [0083]

- Billah, M. M.; Eckel, S.; Mullmann, T. J.; Egan, R. W.; Siegel, M. 1. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phsophatidate phosphohydrolase in signal transduction. *J. Biol. Chem.*, 1989, vol. 264, 17069-17077 [0010]
- Wakelam, M. J. O.; Martin, A.; Hodgkin, M. N.; Brown, F.; Pettit, T. R.; Cross, M. J.; De Takats, P. G.; Reynolds, J. L. Role and regulation of phospholipase D activity in normal and cancer cells. *Advances in Enzyme Regulation*, 1997, vol. 37, 29-34 [0010] [0083]
- Olson, S. C.; Lambeth, J. D. Biochemistry and cell biology of phospholipase D in human neutrophils. Chem. Phys. Lipids, 1996, vol. 80, 3-19 [0010] [0074] [0080] [0083]
- Steed, P. M.; Clark, K. L.; Boyar, W. C.; Lasala, D. J. Characterization of human PLD2 and the analysis of PLD isoform splice variants. *FASEB J.*, 1998, vol. 12, 1309-1317 [0010] [0083]
- Martin, A.; Saqib, K. M.; Hodgkin, M. N.; Brown, F. D.; Pettit, T. R.; Armstrong, S.; Wakelam, M. J. O. Role and regulation of phospholipase D signalling. *Biochem. Soc. Trans.*, 1997, vol. 25, 1157-1160 [0010] [0082] [0083]
- Hammond et al. J. Biol. Chem., 1995, vol. 270, 29640-29643 [0010]
- Hammond et al. J. Biol. Chem., 1997, vol. 272, 3 860-3 868 [0010]
- Levy, B. D.; Petasis, N. A.; Serhan, C. N. Polyiso-prenyl phosphates in intracellular signalling. *Nature*, 1997, vol. 389, 985-989 [0011] [0066] [0072] [0078] [0082] [0083]
- Agwu, D. E.; McPhail, L. C.; Sozzani, S.; Bass, D. A.; McCall, C. E. Phosphatidic acid as a second messenger in human polymorphonuclear leukocytes. Effects on activation of NADPH oxidase. *J. Clin. Invest.*, 1991, vol. 88, 531-539 [0011] [0083]
- Nicolaou, K.C. et al. Angew. Chem. Int. Ed. Engl., 1991, vol. 30, 1100 [0013]
- Nicolaou, K.C. et al. J. Org. Chem., 1989, vol. 54, 5527 [0013]
- Webber, S.E. et al. Adv. Exp. Med. Biol., 1988, vol. 229, 61 [0013]
- Raduchel, B.; Vorbruggen, H. Ady. Prostaglandin Thromboxane Leukotriene Res., 1985, vol. 14, 263 [0013]
- Levy, B. D.; Petasis, N. A.; Serhan, C. N. Polyisoprenyl phosphates in intracellular signaling. *Nature*, 1997, vol. 389, 985-989 [0065]
- Zhou, H.-L.; Chabot-Fletcher, M.; Foley, J. J.; Sarau, H. M.; Tzimas, M. N.; Winkler, J. D.; Torphy, T. J. Association between leukotriene B4-induced phospholipase D activation and degranulation of human neutrophils. *Biochem.*, 1993, vol. 46, 139-148 [0074]

- Gomez-Cambronero, J. Immunoprecipitation of a phospholipase D activity with antiphosphotyrosine antibodies. J. Interferon Cytokine Res., 1995, vol. 15, 877-885 [0074] [0083]
- Zhou, H.-L.; Chabot-Fletcher, M.; Foley, J. J.; Sarau, H. M.; Tzimas, M. N.; Winkler, J. D.; Torphy, T. J. Association between leukotriene B4-induced phospholipase D activation and degranulation of human neutrophils. *Biochem. Pharmacol.*, 1993, vol. 46, 139-148 [0074] [0083]
- Shechter, I.; Fogelman, A. M.; Popjak, G. A deficiency of mixed function oxidase activities in the cholesterol biosynthetic pathway of human granulocytes.
 J. Lipid Res., 1980, vol. 21, 277-283 [0078] [0083]
- Pettit, T. R.; Martin, A.; Horton, T.; Liossis, C.; Lord, J. M.; Wakelam, M. J. O. Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. J. Biol. Chem., 1997, vol. 272, 17354-17359 [0078] [0083]
- Rabinowitz, J. L.; Baker, D. G.; Villanueva, T. G.; Asanza, A. P.; Capuzzi, D. M. Liver lipid profiles of adults taking therapeutic doses of aspirin. *Lipids*, 1992, vol. 27, 311-314 [0079] [0083]
- Claria, J.; Serhan, C. N. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. *Proc. Natl.* Acad. Sci., 1995, vol. 92, 9475-9479 [0079] [0083]
- Serhan, C. N. Lipoxins and Novel Aspirin-Triggered 15-epi-Lipoxins: A Jungle of Cell-Cell Interactions or a Therapeutic Opportunity?. *Prostaglandins*, 1997, vol. 53, 107-137 [0079] [0083]
- Exton, J. H. New developments in phospholipase D.
 J. Biol. Chem., 1997, vol. 272, 15579-15582 [0080]
- Fensome, A.; Whatmore, J.; Morgan, C.; Jones, D.; Cockcroft, S. ADP-ribosylation factor and Rho proteins mediate fMLP-dependent activation of phospholipase D in human neutrophils. *J. Biol. Chem.*, 1998, vol. 273, 13157-13164 [0080]
- Serhan, C. N.; Haeggstrom, J. Z.; Leslie, C. C. Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J., 1996, vol. 10, 1147-1158 [0081] [0083]
- Jarstfer, M. B.; Blagg, B. S. J.; Rogers, D. H.; Poulter, C. D. Biosynthesis of squalene. Evidence for a tertiary cyclopropylcarbinyl cationic intermediate in the rearrangement of presqualene diphosphate to squalene. J. Amer. Chem. Soc., 1996, vol. 118, 13089-13090 [0081] [0083]
- Bach, T. J. Some new aspects of isoprenoid biosynthesis in plants --a review. *Lipids*, 1995, vol. 30, 191-202 [0082] [0083]

- Billah, M. M.; Eckel, S.; Mullmann, T. J.; Egan, R. W.; Siegel, M. I. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phsophatidate phosphohydrolase in signal transduction. J. Biol. Chem., 1989, vol. 264, 17069-17077 [0083]
- Abousalham, A.; Riviere, M.; Teissere, M.; Verger, R. Improved purification and biochemical characterization of phospholipase D from cabbage. *Biochim. Biophys. Acta*, 1993, vol. 1158, 1-7 [0083]
- Exton, J. H. New developments in phospholipase D.
 J. Biol. Chem., 1997, vol. 272, 15579-15582 [0083]
- Fensome, A.; Whatmore, J.; Morgan, C.; Jones, D.; Cockcroft, S. ADP-ribosylation factor and Rho proteins mediate fMLP-dependent activation of phospholipase D in human neutrophils. *J. Biol. Chem.*, 1998, vol. 273 (131), 57-164 [0083]