(19) **日本国特許庁(JP)**

(12)特許公報(B2)

(11) 特許番号

特許第5527610号 (P5527610)

(45) 発行日 平成26年6月18日(2014.6.18)

(24) 登録日 平成26年4月25日(2014.4.25)

(51) Int.Cl.			FΙ		
GO3B	21/62	(2014.01)	GO3B	21/62	
GO3B	21/14	(2006.01)	GO3B	21/14	Z
GO3B	21/00	(2006.01)	GO3B	21/00	D
G02B	5/02	(2006.01)	GO2B	5/02	В

請求項の数 1 (全 10 頁)

(21) 出願番号	特願2010-213802 (P2010-213802)	(73)特許権者 0000
(22) 出願日	平成22年9月24日 (2010.9.24)	日本電
(65) 公開番号	特開2012-68468 (P2012-68468A)	東京都
(43) 公開日	平成24年4月5日(2012.4.5)	(73)特許権者 5041
審査請求日	平成24年10月26日 (2012.10.26)	国立大
		宮城県
		(7.4) (15.700 L 1.100.01

004226

信電話株式会社

8千代田区大手町一丁目5番1号

157024

大学法人東北大学

具仙台市青葉区片平二丁目1番1号

||(74)代理人 110001634

特許業務法人 志賀国際特許事務所

||(72)発明者 高田 英明

東京都千代田区大手町二丁目3番1号 日

本電信電話株式会社内

|(72)発明者 伊達 宗和

東京都千代田区大手町二丁目3番1号 日

本電信電話株式会社内

最終頁に続く

(54) 【発明の名称】プロジェクションディスプレイ用スクリーン

(57)【特許請求の範囲】

【請求項1】

内部に屈折率分布構造が形成され、所定の入射角度領域から入射した光を所定の拡散角 度領域へ拡散させる拡散フィルムが、複数枚積層されたプロジェクションディスプレイ用 スクリーンであって、

前記積層された複数枚の拡散フィルムは、それぞれ前記入射角度領域および前記拡散角 度領域が異なっていて、

前記積層された複数枚の拡散フィルムにおける入射側には、プリズムアレイが配置され

前記積層された複数枚の拡散フィルムは、前記所定の入射角度領域から入射した光を一 つの面内方向である第1方向のみに拡散させる拡散フィルムと、

前記所定の入射角度領域から入射した光を一方向のみに拡散させるものであるとともに 前記一方向を前記第1方向に直交する方向とする第2方向とした際の前記第2方向の拡散 を前記第1方向に拡散する角度の半値幅±5°以上とする一方向性拡散フィルムと、を有

前記第1方向にのみ拡散させる拡散フィルムと前記一方向性拡散フィルムとは、それら の拡散角度領域が前記第1方向に配列されるように積層されていることを特徴とするプロ ジェクションディスプレイ用スクリーン。

【発明の詳細な説明】

【技術分野】

20

[00001]

本発明は、観察角度によって異なる画像を表示することができるプロジェクションディ スプレイ用スクリーンに関する。

【背景技術】

[0002]

観察角度によって異なる画像を表示可能なディスプレイは、観察者の注目を集めること ができるため、広告用ディスプレイとして有用とされている。

このようなディスプレイは、ディスプレイ本体とレンズ素子とを用いることで実現可能 であるが、表示する画像の数が増えると、その数に反比例して解像度や輝度が減少すると いう問題がある。

[0003]

このため、ディスプレイ本体にLCD(Liquid Crystal Display)やPDP(Plasma Display Panel)のような自発光ディスプレイを 用いる場合は、ディスプレイ本体の解像度や輝度を十分高くしなければならず、製造にコ ストがかかり実現が困難であると考えられる。

[0004]

これに対し、プロジェクションディスプレイを用いる場合は、プロジェクタを複数台使 用することで比較的容易に解像度や輝度の低下を補うことができる。

このとき、プロジェクションディスプレイ用スクリーンに、入射角度依存拡散特性を有 し、光軸方向を中心に入射光を拡散させる拡散フィルムを用いる場合、複数のプロジェク タからそれぞれプロジェクションディスプレイ用スクリーンに投影される光(画像)を平 行光とする必要がある。

[00005]

そして、複数のプロジェクタからプロジェクションディスプレイ用スクリーンに投影さ れる光を平行光とするには、複数のプロジェクタをプロジェクションディスプレイ用スク リーン後方の無限遠に設置する方法が考えられるが、プロジェクションディスプレイ用ス クリーンとプロジェクタとの間隔は有限であるため現実的ではない。

このため、プロジェクタからプロジェクションディスプレイ用スクリーンに投影された 光を、レンズを用いて屈折させ平行光に偏向させる技術が提案されている。

例えば、特許文献 1 には、プロジェクタから投影された光を、フレネルレンズを用いて 偏向させる技術が開示されている。

【先行技術文献】

【特許文献】

[0006]

【特許文献1】特開2008-304586号公報

【発明の概要】

【発明が解決しようとする課題】

[0007]

しかしながら、フレネルレンズは複雑な界面が形成されているため、プロジェクタから 投影された画像にこの界面における反射によって多重像および後方散乱が生じてしまい、 画像品位が低下するという問題がある。

[00008]

本発明は、上述する問題点に鑑みてなされたもので、観察角度によって異なる画像を表 示することができるとともに、画像品位を確保することができるプロジェクションディス プレイ用スクリーンを提供することを目的とする。

【課題を解決するための手段】

[0009]

上記目的を達成するため、本発明に係るプロジェクションディスプレイ用スクリーンは . 内部に屈折率分布構造が形成され、所定の入射角度領域から入射した光を所定の拡散角 度領域へ拡散させる拡散フィルムが、複数枚積層されたプロジェクションディスプレイ用 10

20

30

40

スクリーンであって、前記積層された複数枚の拡散フィルムは、それぞれ前記入射角度領域および前記拡散角度領域が異なっていて、前記積層された複数枚の拡散フィルムにおける入射側には、プリズムアレイが配置されており、前記積層された複数枚の拡散フィルムは、前記所定の入射角度領域から入射した光を一つの面内方向である第1方向のみに拡散させる拡散フィルムと、前記所定の入射角度領域から入射した光を一方向のみに拡散させるものであるとともに前記一方向を前記第1方向に直交する方向とする第2方向とした際の前記第2方向の拡散を前記第1方向に拡散する角度の半値幅±5。以上とする一方向性拡散フィルムと、を有し、前記第1方向にのみ拡散させる拡散フィルムと前記一方向性拡散フィルムとは、それらの拡散角度領域が前記第1方向に配列されるように積層されていることを特徴とする。

[0010]

本発明では、それぞれ入射角度領域および拡散角度領域が異なる拡散フィルムを複数枚積層することにより、異なる入射角度領域からそれぞれ異なる画像(光)を投影することによって、複数の画像(光)は各入射角度領域に対応する異なる拡散角度領域に拡散されるため、拡散角度領域毎に異なる画像を表示することができる。

また、拡散フィルムには、内部に屈折率分布構造が形成されていることにより、プロジェクタから投影された光(画像)を平行光に偏向させるレンズを設ける必要がない。このため、投影された画像にレンズの界面における反射によって多重像および後方散乱が生じることがなく、画像品位を確保することができる。

また、積層された複数枚の拡散フィルムにおける入射側には、プリズムアレイまたはフレネルレンズが配置されていることにより、画像(光)を投影するプロジェクタなどの投影手段とプロジェクションディスプレイ用スクリーンとの間の距離を短縮することができる。

[0012]

また、複数枚の拡散フィルムの拡散角度領域が一方向にのみ配列され、拡散フィルムは、所定の入射角度領域から入射した光を一方向にのみ拡散させるものであるとともに、拡散角度領域の配列方向に直交する方向の拡散を一方向に拡散する角度の半値幅±5°以上とする一方向性拡散フィルムとすることによって、プロジェクタから投影された光(画像)を拡散角度領域の配列方向のみに拡散させることができる。

【発明の効果】

[0014]

本発明によれば、複数枚の拡散フィルムは、それぞれ入射角度領域および拡散角度領域が異なることにより、異なる入射角度領域からそれぞれ異なる画像(光)を投影することによって、各入射角度領域に対応する異なる拡散角度領域に拡散されるため、拡散角度領域に異なる画像を表示することができる。

また、拡散フィルムには、内部に屈折率分布構造が形成されていることにより、プロジェクタから投影された光(画像)を平行光に偏向させるレンズを設ける必要ないため、投影された画像にレンズの界面における反射によって多重像および後方散乱が生じることがなく、画像品位を確保することができる。

【図面の簡単な説明】

[0015]

- 【図1】第1実施形態によるプロジェクションディスプレイ用スクリーンの一例を示す上 面図である。
- 【図2】プロジェクションディスプレイ用スクリーンの一例を示す斜視図である。
- 【図3】(a)は拡散フィルムを説明する図、(b)は拡散フィルム内部の屈折率分布構造を説明する図である。
- 【図4】拡散フィルムを説明する斜視図である。
- 【図5】第2実施形態によるプロジェクションディスプレイ用スクリーンの一例を示す斜 視図である。
- 【図6】第3実施形態によるプロジェクションディスプレイ用スクリーンの第一拡散フィ

10

20

30

40

ルムの一例を示す斜視図である。

【図7】第3実施形態によるプロジェクションディスプレイ用スクリーンの第2拡散フィルムの一例を示す斜視図である。

【図8】第3実施形態によるプロジェクションディスプレイ用スクリーンの拡散フィルム 積層体の一例を示す斜視図である。

【発明を実施するための形態】

[0016]

(第1実施形態)

以下、本発明の第1実施形態によるプロジェクションディスプレイ用スクリーンについて、図1万至図4に基づいて説明する。

図 1 および図 2 に示すように、第 1 実施形態によるプロジェクションディスプレイ用スクリーン 1 A は、 2 枚の拡散フィルム 2 (2 a , 2 b)が積層されて形成されている。

[0017]

図3(a)および図4に示すように、拡散フィルム2は、内部に微細な屈折率分布構造が形成されていて、所定の入射角度領域 p から入射した光Lを、所定の拡散角度領域 c 拡散する入射角度無依存拡散特性を有している。図3(b)に示すように、本実施形態による拡散フィルム2は、異なる屈折率 n 1と屈折率 n 2の領域が交互に配列されることで屈折率分布構造が形成されている。

そして、図4に示すように、拡散フィルム2は、特定の入射角度領域 p から入射した光 L を水平方向、垂直方向および水平方向と垂直方向の合成方向(立体的)に拡散させている。このため、拡散角度領域 d は、拡散フィルム2側を頂部とする略錐状体に形成されており、本実施形態では略四角錐に形成されている。なお、拡散角度領域 d は、円錐や、四角錐以外の多角錐に形成されるような特性を有していてもよい。

本実施形態の拡散フィルム 2 に適したフィルムとしては、例えば、株式会社巴川製紙所製のマイクロピラー(登録商標)を挙げることができ、このフィルムは、その拡散角度領域 。 が略円錐に形成されている。

ここで、積層された2枚の拡散フィルム2のうち一方を第1拡散フィルム2a、他方を第2拡散フィルム2bとして以下説明する。

[0018]

図 1 および図 2 に示すように、第 1 拡散フィルム 2 a は第 1 入射角度領域 $_{p,1}$ から入射された光 L 1 を第 1 拡散角度領域 $_{d,1}$ に拡散させ、第 2 拡散フィルム 2 b は第 2 入射角度領域 $_{p,2}$ から入射された光 L 2 を第 2 拡散角度領域 $_{d,2}$ に拡散させている。そして、この第 1 入射角度領域 $_{p,1}$ と第 2 入射角度領域 $_{p,2}$ とは異なる領域となるように構成され、第 1 拡散角度領域 $_{d,1}$ と第 2 拡散角度領域 $_{d,2}$ とは異なる領域となるように構成されている。

また、第1入射角度領域 _{p1}と第2入射角度領域 _{p2}とは水平方向に隣接しており、第1拡散角度領域 _{d1}と第2拡散角度領域 _{d2}とは水平方向に隣接している。

[0019]

なお、第1入射角度領域 p_1 と第2入射角度領域 p_2 とは、鉛直方向や斜め方向に隣接していてもよく、第1入射角度領域 p_1 と第2入射角度領域 p_2 との間に間隔があってもよい。また、第1拡散角度領域 p_1 と第2拡散角度領域 p_2 とは、鉛直方向や斜め方向に隣接していてもよく、第1拡散角度領域 p_1 と第2拡散角度領域 p_2 との間に間隔があってもよい。

[0020]

図1に示すように、プロジェクションディスプレイ用スクリーン1Aの一方の面1aと 所定の間隔をあけた位置に、第1プロジェクタ3aおよび第2プロジェクタ3bがプロジェクションディスプレイ用スクリーン1Aの面方向に互いに間隔をあけて設置されている

第 1 プロジェクタ 3 a は、第 1 入射角度領域 $_{p-1}$ からプロジェクションディスプレイ 用スクリーン 1 A へ第 1 画像 4 a を投影することができ、第 2 プロジェクタ 3 b は第 2 入

10

20

30

40

射角度領域 p^2 からプロジェクションディスプレイ用スクリーン 1 A へ第 2 画像 4 b を投影することができる。

[0021]

すると、プロジェクションディスプレイ用スクリーン1Aの他方の面1b側における第 1拡散角度領域 _{d 1}に対向する位置に居る第1観察者5aは、第1プロジェクタ3aから投影された第1画像4aを見ることができる。

また、プロジェクションディスプレイ用スクリーン1Aの他方の面1b側における第2拡散角度領域 d2に対向する位置に居る第2観察者5bは、第2プロジェクタ3bから投影された第2画像4bを見ることができる。

[0022]

本実施形態では、第1プロジェクタ3aによって第1入射角度領域 $_{p,1}$ からプロジェクションディスプレイ用スクリーン1Aへ第1画像4aが投影されると、第1画像4aが第1拡散フィルム2aによって、第1拡散角度領域 $_{d,1}$ に拡散される。これにより、第1観察者5aが、第1画像4aを観察することができる。

また、第 2 プロジェクタ 3 b によって第 2 入射角度領域 $_{p2}$ からプロジェクションディスプレイ用スクリーン 1 A へ第 2 画像 4 b を投影すると、第 2 画像 4 b は、第 2 拡散フィルム 2 b によって、第 2 拡散角度領域 $_{d2}$ に拡散される。これにより、第 2 観察者 5 b は第 2 画像 4 b を観察することができる。

[0023]

上述した第1実施形態によれば、プロジェクションディスプレイ用スクリーン1Aを用いて、ある位置に配された第1観察者5aが第1画像4aを観察することができ、第1観察者5aと異なる位置に配された第2観察者5bが第1画像4aと異なる第2画像4bを観察することができる。

このことから、第1実施形態によるプロジェクションディスプレイ用スクリーン1Aによれば、拡散角度領域 d 1 , d 2 毎に異なる画像4a、4bを表示することができる

また、拡散フィルム 2 は、内部に微細な屈折率分布構造が形成されていて、特定の入射角度領域 p から入射した光 L を、特定の拡散角度領域 d に拡散する入射角度無依存拡散特性を有していることにより、第 1 プロジェクタ 3 a および第 2 プロジェクタ 3 b からそれぞれ投影された第 1 画像 4 a および第 2 画像 4 b を平行光とするフレネルレンズなどのレンズを設ける必要がないため、画像品位を確保することができる。

[0024]

(第2実施形態)

次に、本発明の第2実施形態について、添付図面に基づいて説明するが、上述の第1実施形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第1実施形態と異なる構成について説明する。

図 5 に示すように、第 2 実施形態によるプロジェクションディスプレイ用スクリーン 1 B は、 4 枚の拡散フィルム 2 (2 a , 2 b , 2 c , 2 d) が積層されて形成されている。 4 枚の拡散フィルム 2 は、それぞれ入射角度領域 $_p$ および拡散角度領域 $_d$ が異なっている。

第1~第4拡散角度領域 d_1 d_4 は、第1~第4拡散フィルム2a~2dが積層された際に、鉛直方向に2段、水平方向にそれぞれ2列に配列するように構成されている。そして、上段に第1拡散角度領域 d_1 と第2拡散角度領域 d_2 とが水平方向に隣接して配され、下段に第3拡散角度領域 d_3 と第4拡散角度領域 d_4 とが水平方向に隣接接して配されている。

[0025]

本実施形態によるプロジェクションディスプレイ用スクリーン1Bには、第1~第4画

10

20

30

40

像4a~4dが、それぞれ第1~第4入射角度領域 p1~ p4から投影される。 そして、プロジェクションディスプレイ用スクリーン1Bに、第1~第4画像4a~4dが投影されると、第1~第4画像4a~4dは、それぞれ第1~第4拡散角度領域 d1~ d4から第1~第4画像4a~4dを観察することができる。

[0026]

第2実施形態によるプロジェクションディスプレイ用スクリーン1Bでは、第1実施形態と同様の効果を奏するとともに、水平方向や鉛直方向に異なる拡散角度領域 d 1 ~ a 4 年に異なる画像4a ~ 4 d を表示することができる。

[0027]

(第3実施形態)

次に、第3実施形態によるプロジェクションディスプレイ用スクリーンは、図6および図7に示すような入射された光Lをある一つの面内方向(平面的)に拡散させる拡散フィルム12が複数積層されている。

図 6 に示す第 1 拡散フィルム 1 2 a は、入射角度領域 $^{\prime}$ $_{p}$ から入射された光 L 1 を鉛直面である拡散角度領域 $^{\prime}$ $_{d}$ に拡散させている。また、図 7 に示す第 2 拡散フィルム 1 2 b は、入射角度領域 $_{p}$ から入射された光 L 2 を水平面である拡散角度領域 $_{d}$ に拡散させている。

入射光を平面的に拡散させる拡散フィルム12としては、住友化学工業株式会社製のルミスティ(登録商標)が挙げられる。

[0028]

第3実施形態によるプロジェクションディスプレイ用スクリーンでは、第1拡散フィルム12a(図6参照)と、第2拡散フィルム12b(図7参照)とを積層し、図8に示すような入射された光L3を立体的(水平方向、鉛直方向および水平方向と鉛直方向の合成方向)に拡散させる拡散フィルム積層体13を形成している。

光L3は、入射角度領域 $_p$ (図6参照)および入射角度領域 $_p$ (図7参照)をあわせた入射角度領域 $_p$ から入射された光を示している。そして、光L3は、拡散角度領域 $_d$ (図6参照)および拡散角度領域 $_d$ に拡散される。

本実施形態では、拡散フィルム積層体 1 3 が第 1 実施形態の拡散フィルム 2 (図 1 参照)に相当している。このため、拡散角度領域 p が異なる複数のフィルム積層体 1 3 を積層させることによって、プロジェクションディスプレイ用スクリーンが形成される。

[0029]

なお、本実施形態では、入射光を平面的に拡散させる方向が鉛直方向である第1拡散フィルム12a(図6参照)と、水平方向である第2拡散フィルム12b(図7参照)を使用しているが、拡散フィルム12の入射光を平面的に拡散させる方向は、水平方向や鉛直方向以外でもよく、また、直交していなくてもよい。

[0030]

(第4実施形態)

第4実施形態によるプロジェクションディスプレイ用スクリーンは、図6および図7に示すような所定の入射角度領域 p_p から入射した入射光を一つの面内方向(平面的)に拡散させる拡散フィルム12と、所定の入射角度領域から入射した光を一方向に拡散させる一方向性拡散フィルム(不図示)とが積層されている。

本実施形態では、拡散フィルム12は、所定の入射角度領域から入射した入射光を一つの面内方向である第1方向に拡散させている。そして、一方向拡散フィルムは、入射角度無依存特性はなく、この第1方向に直交する第2方向へ、第1方向に拡散する角度の半値幅±5°以上拡散させている。

このような一方向性拡散フィルムとしては、例えば、Lumimit社製レンズ拡散板(LSD:Light Shaping Diffusers)が挙げられる。

[0031]

10

20

30

40

そして、この拡散フィルムと一方向拡散フィルムとが積層された複数の拡散フィルム積層体が、これらの拡散角度領域が第1方向に配列されるように積層されて、プロジェクションディスプレイ用スクリーンが形成される。

このように形成されたプロジェクションディスプレイ用スクリーンは、第 1 方向に対して入射角度無依存拡散特性を有しており、第 2 方向に対しては、入射角度無依存拡散特性を有していないことになる。

第4実施形態によるプロジェクションディスプレイ用スクリーンでは、プロジェクタから投影された画像を拡散角度領域の配列方向のみに拡散させることができる。

[0032]

(第5実施形態)

第5実施形態によるプロジェクションディスプレイ用スクリーンは、上述した第1乃至第4実施形態によるプロジェクションディスプレイ用スクリーンにおいて、プロジェクションディスプレイ用スクリーンのプロジェクタ側にプリズムアレイまたはフレネルレンズを設置するものである。

このように、プロジェクションディスプレイ用スクリーンのプロジェクタ側にプリズムアレイまたはフレネルレンズを設置することによって、プロジェクタから斜め方向に画像が投射された場合に対応することができる。

[0033]

第5実施形態によるプロジェクションディスプレイ用スクリーンでは、プリズムアレイ またはフレネルレンズによってプロジェクタとスクリーンとの間の距離を大幅に短縮する ことができる。

[0034]

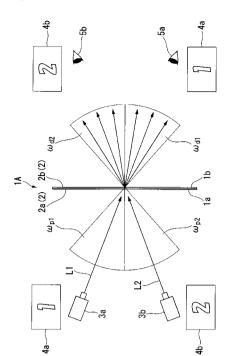
以上、本発明によるプロジェクションディスプレイ用スクリーンの実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。

例えば、上述した実施形態では、拡散フィルム2を2枚又は4枚積層させているが、観察角度に併せて3枚や5枚以上積層させてもよい。

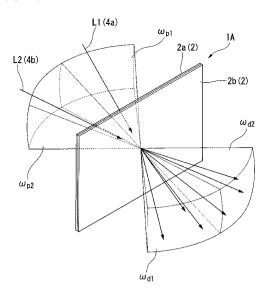
また、上述した実施形態では、入射角度領域 p や拡散角度領域 d が水平方向や鉛直方向に配列されているが、斜め方向に配列されていてもよく、隣接する入射角度領域 c との間や隣接する拡散角度領域 d との間に間隔があってもよい。

【符号の説明】

[0035]

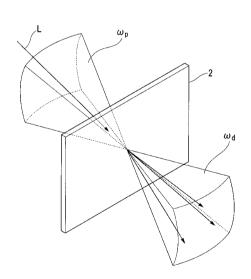

- 1 A , 1 B プロジェクションディスプレイ用スクリーン
- 2 , 1 2 拡散フィルム
- 2 a , 1 2 a 第 1 拡散フィルム
- 2 b , 1 2 b 第 2 拡散フィルム
- 2 c 第 3 拡散フィルム
- 2 d 第 4 拡散フィルム
- 3 a 第 1 プロジェクタ
- 3 b 第2プロジェクタ
- 4 a 第1画像
- 4 b 第 2 画像
- 5 a 第 1 観察者
- 5 b 第 2 観察者
 - p, p1, p2, p3, p4 入射角度領域
 - d, p1, p2, p3, p4 拡散角度領域

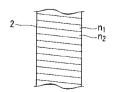
10

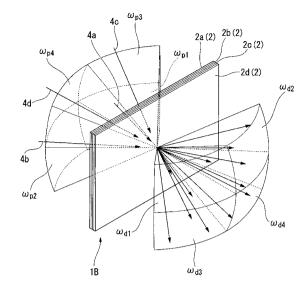

20

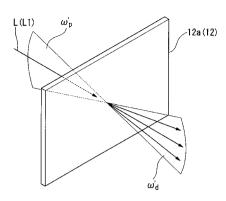
30

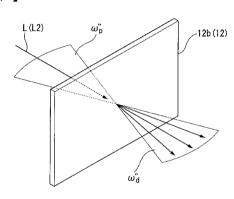
【図1】

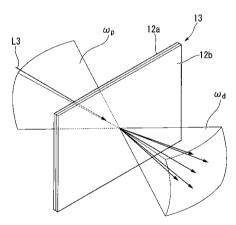

【図2】


【図3】


【図4】


(b)


【図5】


【図6】

【図7】

【図8】

フロントページの続き

(72)発明者 内田 龍男

宮城県仙台市青葉区片平二丁目1番1号 国立大学法人東北大学内

(72)発明者 片桐 麦

宮城県仙台市青葉区片平二丁目1番1号 国立大学法人東北大学内

(72)発明者 鈴木 芳人

宮城県仙台市青葉区片平二丁目1番1号 国立大学法人東北大学内

審査官 小野 博之

(56)参考文献 特開平07-036117(JP,A)

特開2008-304586(JP,A)

特開2008-122812(JP,A)

特開2005-266264(JP,A)

特開平06-253303(JP,A)

特開2010-122646(JP,A)

特開2005-326824(JP,A)

(58)調査した分野(Int.CI., DB名)

G03B 21/56-21/64

G03B 21/00-21/30

G 0 2 B 5 / 0 0 - 5 / 0 8

5/10-5/136