WO 20087132002 A 1 |00 00000 0 R 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 November 2008 (06.11.2008)

fﬂﬁ A0 100 0

(10) International Publication Number

WO 2008/132002 Al

(51) International Patent Classification:
GOGF 17/30 (2006.01) GOGF 9/44 (2006.01)

(21) International Application Number:

PCT/EP2008/053831
(22) International Filing Date: 31 March 2008 (31.03.2008)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/741,683 27 April 2007 (27.04.2007) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRODSKY,

(74)

(81)

Stephen Andrew [US/US]; 108 Mozart Avenue, Los
Gatos, California 95032 (US). SURANGE, Sonali
[IN/US]; 107 Twelveoak Hill Drive, San Rafael, Califor-
nia 94903 (US). NIN, Rebecca [US/US]; 2150 Greenwood
Avenue, Morgan Hill, California 95037 (US). AHADIAN,
Azadeh [IR/US]; 80 Descanso Drive, #1415, San Jose,
California 95134 (US). JAMSHIDI, Ardeshir [US/US];
5350 Laurel Canyon Drive, San Jose, California 95138
(US). PAYTON, Brian Gerrit [US/US]; 5845 Moraga
Avenue, San Jose, California 95123 (US).

Agent: ROBERTS, Scott; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester
Hampshire SO21 2IN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,

[Continued on next page]

(54) Title: DATABASE CONNECTIVITY AND DATABASE MODEL INTEGRATION WITHIN INTEGRATED DEVELOP-

MENT ENVIRONMENT TOOL

(57) Abstract: Embodiments of the invention provide database integra-
tion within an integrated development environment (IDE) tool for dis-

DETECT USER HAS EMBEDDED
DATABASE STATEMENT INSIDE SOURCE
CODE OF PROJECT FILE AS TEXT STRING

l

RETRIEVE DATABASE STATEMENT FROM
PROJECT FILE; PASS TO QUERY PARSER

!

QUERY PARSER EVALUATES
DATABASE STATEMENT

e 505

f510

f515

SYNTAX
ERROR IN

DATABASE

STAEMENT?

RETURN
PARSER ERROR
TO IDE

525

RETURN
PARSER ERROR
TO IDE

535

DATABASE
STAEMENT?

PRESENT INDICATION OF ANY
PARSER ERRORS IN IDE TO USER

(540

END

FIG. 5

playing database structure and other database information, query editing
and execution, and error detection for database statements embedded in
program source code. Embodiments of the invention integrate database
connectivity and error detection into the IDE tool, thereby potentially re-
ducing the time required for database-aware application development.

WO 20087132002 A1 |00 0000010000 00

MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, 7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
ZA, M, ZW. NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,

CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH, Published:
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, — with international search report

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831

DATABASE CONNECTIVITY AND DATABASE MODEL INTEGRATION
WITHIN INTEGRATED DEVELOPMENT ENVIRONMENT TOOL

FIELD OF THE INVENTION

Embodiments of the invention are related to tools used to develop application software.
More specifically, embodiments of the invention provide an intelligent integrated

development environment (IDE) tool for database-aware application development.

BACKGROUND OF THE INVENTION

Developing software applications is a complex task, and IDE tools are available to assist
computer programmers with the development process. Currently, IDE tools are available to
assist programmers developing applications in a variety of programming languages (e.g.,
Java® .net, C, C++, C#, etc.). These tools are typically configured with features such as
auto-indenting, syntax highlighting, type checking, and a variety of other features that assist
the development process. An IDE tool may include a text editor that visually displays errors
as source code is typed, allowing a developer to correct errors before proceeding with the
next line to code. Typically, IDE tools are customized for different programming languages
and errors are identified based on the programming language being used by the developer,
often determined a suffix of a project file (e.g., .cpp for a c++ program or .java for a Java®

program).

Although very useful, these IDE tools have a variety of limitations. For example, software
applications often need to interact with a database. And application source code often
includes embedded database statements. The database statements may retrieve data from, or
update/insert data into, the database. In the program source code, database statements are
usually specified as text strings in a database query language, such as SQL. The following
source code fragment illustrates an embedded SQL query using the Java® programming

language:

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831

public interface get data {
// create connection to database
@select sql= (’select column A, column_B from database.table™);
// execute sql statement

// process query results

Because the query is enclosed within double-quotes, conventional IDE’s treat the database
statement as a text string, with no restrictions on string content. Thus, none of the features
available for assisting developers or for detecting errors in the source code are applied to
database statements embedded within application source code. Similarly, when a project is
built from the application source code, the compiler ignores the text string and simply
includes it in the compiled project. Thus, any errors in the database statement may go
undetected until the application is built and executed. And even then, when the program
fails to function as intended, identifying the error may be extremely difficult as the IDE does

not provide any clues that the embedded database statement is the source of run-time errors.

Generally, the application program is responsible to catch any errors and send the right error
messages to help identify the reason for failure. This leaves a burden on the developer to
write source code to retrieve and identify the cause of the error. Upon executing the
program and identifying what went wrong, the developer now goes back to the program
source code to fix the problem. The process is repeated until all of the database statements in

the program are perfected.

Additionally, even when database statements are written correctly, the application may not
function properly in practice. That is, the database statement “works,” but does not update
or retrieve records from the database as intended by the developer. Errors like this are
notoriously difficult to detect and correct, as they do not manifest themselves until after the
project is built and executed. Further, because the IDE ignores database statements —
treating them as literal text strings — developers writing database-aware applications have to
use different disconnected tools in order to accomplish their task. For example, to test the

database statements, the developer may either (i) copy a database statement and paste it into

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831

another tool to execute the statement or (ii) build the project and execute it. At runtime, the
database statement is executed and the results can be evaluated by the developer. If the
results are not what the developer expected, then the developer can revise the query, build

the application, and test it again.

These approaches diminish the developer's productivity as switching from one tool to
another while in the middle of programming an application is distracting. Further, the latter
approach requires the developer to wait for the whole program to be completed and run to
see the results of the database statement may increase the time required to code the
application, without improving application quality. That is, incrementally fixing each SQL
error and running the application (and repeating this process until the whole application is

complete) can introduce large delays in the development cycle.

Accordingly, as the foregoing discussion illustrates, there remains a need for an intelligent

IDE tool for database-aware application development.

SUMMARY OF THE INVENTION

Embodiments of the invention provide an intelligent integrated development environment
(IDE) tool for database-aware application development. For example, embodiments of the
invention may provide development assistance to a computer programmer related to

database statements embedded within computer program source code.

One embodiment of the invention includes a method of providing database connectivity and
database model integration within an integrated development environment (IDE) tool. The
method includes displaying a portion of source code in an editing pane of the IDE tool,
where the portion of the source code includes at least a text string representing a database
statement. The method also includes detecting that a user is interacting with the text string,
determining a database to be accessed using the database statement, and establishing a
database connection between the IDE tool and the database. The method also includes

retrieving a data model associated with the database and providing programming assistance

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831

to the user of the IDE tool, based on the interaction of the user with the database statement

and the data model.

Another embodiment of the invention includes a computer program product comprising a
computer useable storage medium having a computer readable program, where the computer
readable program when executed on a computer causes the computer to perform an
operation. The operation may generally include displaying a portion of source code in an
editing pane of the IDE tool, where the portion of the source code includes at least a text
string representing a database statement. The operation also includes detecting that a user is
interacting with the text string and determining a database to be accessed using the database
statement. The operation also includes establishing a database connection between the IDE
tool and the database, retrieving a data model associated with the database, and providing
programming assistance to the user of the IDE tool, based on the interaction of the user with

the database statement and the data model.

Sill another embodiment of the invention includes a system having a processor and a
memory containing an integrated development environment (IDE) tool configured to provide
database connectivity and database model integration within the IDE tool. The IDE tool
may be configured to perform an operation that includes displaying a portion of source code
in an editing pane of the IDE tool, where the portion of the source code includes at least a
text string representing a database statement. The operation may also include detecting that
a user is interacting with the text string, determining a database to be accessed using the
database statement, and establishing a database connection between the IDE tool and the
database. The operation may further include retrieving a data model associated with the
database and providing programming assistance to the user of the IDE tool, based on the

interaction of the user with the database statement and the data model.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now be described, by way of example

only, with reference to the following drawings in which:

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831

Figure 1 illustrates an exemplary computing system, according to one
embodiment of the invention.

Figures 2A - 2B illustrate screenshots of an exemplary IDE tool configured to
evaluate the syntax of database statements embedded in program source code, according to
one embodiment of the invention.

Figures 3A - 3B illustrate screenshots of an exemplary IDE tool configured to
evaluate the semantic content of database statements embedded in program source code,
according to one embodiment of the invention.

Figure 4 illustrate a screenshot of an exemplary IDE tool configured to halt a
project build process after finding an error in a database statement embedded in program
source code, according to one embodiment of the invention.

Figure 5 illustrates a method for an IDE tool to identify errors in a database
statement embedded in program source code, according to one embodiment of the invention.

Figure 6 illustrates a screenshot from an exemplary IDE tool configured to
execute a database statement embedded in program source code, according to one
embodiment of the invention.

Figures 7A - 7B illustrate results of database query execution presented within an
IDE tool, according to one embodiment of the invention.

Figure 8 illustrates a method for an IDE tool to test the operation of a database
query embedded in program source code, according to one embodiment of the invention.

Figures 9A - 9C illustrate screenshots of an exemplary IDE tool configured to
provide database connectivity and programming assistance to a developer writing a
database-aware software application, according to one embodiment of the invention.

Figure 10 illustrates a screenshot from an exemplary IDE tool configured to
provide information related to elements of a data model associated with a database-aware
software application, according to one embodiment of the invention.

Figure 11 illustrates a method for an IDE tool to provide database connectivity
and programming assistance to a developer writing a database-aware software application,

according to one embodiment of the invention.

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the invention provide seamless integration within an integrated
development environment (IDE) tool for displaying database structure and other database
information, query editing and execution, and error detection for database statements
embedded in program source code. Currently, database statements are routinely ignored by
IDE tools, leaving the developer to learn of errors only after the project is built and the
resulting application is executed. Embodiments of the invention integrate database
connectivity and error detection into the IDE tool, thereby potentially reducing the time

required for database-aware application development.

In one embodiment, the IDE tool may be configured to parse program source code as it is
entered into a text editor provided by the IDE. Upon detecting that a text string is embedded
database statement, the IDE may pass the query to a query parser configured to evaluate both
the syntactic structure and semantic content of the query. For example, semantic validation
provides the validation to indicate whether database table names, column names and other
such artifacts referred to in an embedded database statement are valid. And syntactic
validation provides validation to indicate whether keywords and statement structure are
valid, based on a particular query language (e.g., SQL). Any errors identified by the query
parser may be returned to the IDE, and displayed to the developer. Thus, embodiments of
the invention may increase developer productivity by flagging SQL errors as the developer
enters SQL and also by indicating the cause of the errors. This allows the developer to fix
the errors in place, without having to wait until the program is built, executed, and errors
occur. Further, because the IDE may allow the developer to specify a database to associate
with a particular development project, the IDE tool may be configured to connect with the
database and provide a variety of development assistance such as statement type-ahead

features, type-checking features, and query execution, to name a couple examples.

In one embodiment, as the IDE tool may be configured to recognize database statements
embedded as text-strings within the program source code. Further, the IDE tool may prevent
a developer from successfully compiling a project so long as errors are detected in the

database statements. This may provide a significant advantage to application development

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831

and a boost in productivity since all database statements may be validated during application
development. Moreover, by integrating database functionality within the IDE, embodiments
of the invention may be used to test database statements embedded in program source code
using the same IDE interface used to create the software application. Thus, rather than
having to switch between tools when developing a database-aware application, the developer

may rely on the single, database-aware IDE.

In the following, reference is made to embodiments of the invention. However, it should be
understood that the invention is not limited to specific described embodiments. Instead, any
combination of the following features and elements, whether related to different
embodiments or not, is contemplated to implement and practice the invention. Furthermore,
in various embodiments the invention provides numerous advantages over the prior art.
However, although embodiments of the invention may achieve advantages over other
possible solutions and/or over the prior art, whether or not a particular advantage is achieved
by a given embodiment is not limiting of the invention. Thus, the following aspects,
features, embodiments and advantages are merely illustrative and are not considered
clements or limitations of the appended claims except where explicitly recited in a claim(s).
Likewise, reference to “the invention” shall not be construed as a generalization of any
inventive subject matter disclosed herein and shall not be considered to be an element or

limitation of the appended claims except where explicitly recited in a claim(s).

One embodiment of the invention is implemented as a program product for use with a
computer system. The program(s) of the program product defines functions of the
embodiments (including the methods described herein) and can be contained on a variety of
computer-readable storage media. Illustrative computer-readable storage media include, but
are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a
computer such as CD-ROM disks readable by a CD-ROM drive) on which information is
permanently stored; (ii) writable storage media (e.g., writable DVDs, RW-CDs, and hard-
disk drive) on which alterable information is stored. Such computer-readable storage media,
when carrying computer-readable instructions that direct the functions of the present
invention, are embodiments of the present invention. Other media include

communications media through which information is conveyed to a computer, such as

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831

through a computer or telephone network, including wireless communications networks.
The latter embodiment specifically includes transmitting information to/from the Internet
and other networks. Such communications media, when carrying computer-readable
instructions that direct the functions of the present invention, are embodiments of the present
invention. Broadly, computer-readable storage media and communications media may be

referred to herein as computer-readable media.

In general, the routines executed to implement the embodiments of the invention, may be
part of an operating system or a specific application, component, program, module, object,
or sequence of instructions. The computer program of the present invention typically is
comprised of a multitude of instructions that will be translated by the native computer into a
machine-readable format and hence executable instructions. Also, programs are comprised
of variables and data structures that either reside locally to the program or are found in
memory or on storage devices. In addition, various programs described hereinafter may be
identified based upon the application for which they are implemented in a specific
embodiment of the invention. However, it should be appreciated that any particular program
nomenclature that follows is used merely for convenience, and thus the invention should not
be limited to use solely in any specific application identified and/or implied by such

nomenclature.

Additionally, an embodiment of the invention is described herein relative to an IDE tool
used to develop a database-aware software application using the Java® programming
language that includes embedded SQL statements. One of ordinary skill in the art will
readily recognize, however, that embodiments of the invention may be adapted for use with
a wide variety of programming languages that allow database statements to be embedded
within program source code. Similarly, embodiments of the invention may be adapted for

use with other database query languages.

Figure 1 is a block diagram that illustrates an example view of a computing environment
100, according to one embodiment of the invention. As shown, computing environment 100

includes computer system 120. Computer system 120 is included to be representative of

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831

existing computer systems, e.g., desktop computers, server computers, laptop computers,
tablet computers and the like. However, embodiments of the invention are not limited to any
particular computing system, application, device, or network architecture and instead, may
be adapted to take advantage of new computing systems and platforms as they become
available. Further, although Figure 1 illustrates a single computer system, those skilled in
the art will recognize that embodiments of the invention may be adapted for use on multiple
systems configured to communicate over a network. Additionally, those skilled in the art
will recognize that the illustration of computer system 120 is simplified to highlight aspects
of the present invention and that computing systems and data communication networks

typically include a variety of additional elements not shown in Figure 1.

As shown, computer system 120 includes a processor (or processors) 122, a storage device
124, a networking device 125, and a memory 126, all connected by a bus 121. CPU 122 is a
programmable logic device that executes user applications (e.g., an IDE tool 130).
Computer system 120 may be connected to a display device 115 and one or more input
devices 117. Typically, user input devices 117 include a mouse pointing device and a
keyboard, and display device 115 is a CRT monitor or LCD display. The processing activity
and hardware resources on computer system 120 may be managed by an operating system
(not shown). Well known examples of operating systems include the Windows® operating
system, distributions of the Linux® operating system, and IBM’s AIX and OS/2® operating
systems, among others. (Linux is a trademark of Linus Torvalds in the US, other countries,
or both). Network device 125 may connect computer system 120 to any kind of data

communications network, including both wired and wireless networks.

Storage device 126 stores application programs and data for use by computer system 120.
Typical storage devices include hard-disk drives, flash memory devices, optical media,
network and virtual storage devices, and the like. As shown, storage device 126 contains a
database 140 and a development project 144. Database 140 may store a collection of data
records organized according to a data model 142. For example, data model 142 may provide
a relational schema of tables, columns, and keys for organizing data records stored in
database 140 accessed using SQL database statements. Development project 144 represents

a collection of information used to build a software application. For example, development

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
10

project 144 may include source code files, scripts, etc., along with resources such as fonts,

images, build-instructions, and project documentation, etc.

As shown, memory 124 stores a number of software applications, including an IDE tool 130,

a query parser 134, and a query tool 136. Also, memory 124 includes a project file 132.

IDE tool 130 provides a programming environment that assists a computer programmer in
developing software. IDE tool 130 may include of a source code editor, a compiler and/or
interpreter, build-automation tools, and a debugger (not shown). Other components provided
by IDE tool 130 may include a version control system, a class browser, an object inspector

and, a class hierarchy diagram generator, etc.

Project file 132 represents a file included in development project 144 that is being edited by
a developer using IDE tool 130, e.g., a source code file of a database-aware software
application. IDE tool 130 may display the text of the source code to the developer on

display device 115 and provide an interface that allows the user to edit project file 132.

Query parser 134 may be configured to evaluate a database statement according to a set of
rules for a given query language, e.g., SQL. In one embodiment, IDE tool 130 may interact
with query parser 134 and query tool 136 as a developer writes the source code for a
database-aware software application. For example, the IDE tool 130 may be configured to
detect that certain text-strings embedded in project file 132 are, in fact, database statements.
In turn, IDE tool 130 may pass such a database statement to query parser 134, which may
evaluate the statement for syntactic and semantic correctness. Any errors in the statement
may be returned to the IDE tool 130 and presented to the developer. Additionally, the
developer may interact with IDE tool 130 and query tool 136 to execute a database query
included in project file 132, to display the results of query execution, and to display elements
of the data model 142 using the common interface provided by the IDE tool 130. Examples

these scenarios are provided below.

Figures 2-5 illustrate an embodiment of IDE tool 130 configured to evaluate and provide

error messages to the developer regarding database statements embedded in program source

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
11

code. Figures 6-8 illustrate an embodiment of IDE tool 130 configured to execute and
display query results within the interface provided by IDE tool 130 and Figures 9-11
illustrate an embodiment of IDE tool 130 configured to provide database connectively from

within the IDE tool 130.

Figures 2A and 2B illustrate screenshots of an exemplary IDE tool130 configured to
evaluate a database statement embedded in program source code, according to one
embodiment of the invention. Screenshots 200 and 250 illustrate a graphical user interface
of an IDE tool 130 being used to develop a database-aware application using the Java®
programming language. As shown, screenshot 200 includes a menu bar 205, a button bar
210, a project file hierarchy 215, and an editing pane 220. Menu bar 205 and button bar 210
may be used to access the features and functions provided by IDE tool 130. Project file
hierarchy 215 shows a list of source code files included in development project 144 along
with an expandable list of methods defined in each source code file. In this example, the
item “DepartmentData.java” is selected and editing pane 220 shows the source code 225 of
this file. Illustratively, source code 225 includes an embedded database statement
(specifically, an SQL query) as part of the highlighted line 230. However, as typed in by the
developer, this database query misspells the SQL keyword “select” as “slect.” Thus, as
typed, this query has a syntax error.

In one embodiment, the IDE tool 130 may detect that line 230 is, in fact a database query,
and pass it to a query parser, which may return a message indicating that the syntax of this
query is invalid, as typed. Further, the query parser may also return a text-error message
describing what caused the query to fail evaluation. As shown in Figure 2A, the IDE tool
130 highlights the syntax error displaying a jagged underline for the misspelled keyword

“selct:”

Further, screenshot 250 of Figure 2B illustrates a tool-tip message 235 displayed when a
mouse cursor is hovered over this syntax error. In this case, the tool-tip message 235
presents the text of the message returned by the query parser: “SELECT expected instead of

this input: slect.”

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
12

The misspelled keyword illustrated in Figures 2A and 2B is an example of a syntax error that
may be detected, according to one embodiment of the invention. However, even when a
database statement is syntactically correct, the statement may still fail to function as intended
due to semantic errors. Accordingly, in addition to detecting syntax errors, the IDE tool 130
may be configured to detect and assist developers in correcting semantic errors within an
embedded database statement. Figures 3A and 3B illustrate screenshots 300 and 350 of an
exemplary IDE tool 130 configured to evaluate the semantic content of a database statements
embedded in program source code, according to one embodiment of the invention. Like
screenshots 200 and 250, the item “DepartmentData.java” is selected and editing pane 220
shows the source code 325 of this file. Illustratively, source code 225 includes an embedded
database statement (specifically, an SQL query) as part of the highlighted line 330.
However, as typed in by the developer, this database query misspells a reference to a
database table “SSURANGE.DEPATMENT." Because this is a valid name for a database
table — even if the database being queried has no table by this name — this query is

syntactically valid.

Additionally, the IDE tool 130 may be configured to recommend an appropriate correction
for a detected error. In one embodiment, the developer may accept the recommendation and
allow the IDE tool 130 to edit the database statement directly. For example, for the syntax
error shown in Figure 2A, the tool tip response could provide a suggested correction of
“Select” and allow the user to cause the IDE tool 130 to enter the correction. Quick fixes
such as this may be provided for both semantic errors (e.g., errors in table or column names)
and syntactic errors (e.g., errors in database keywords). Thus, the IDE tool 130 may be
configured to indicate both the presence of syntax error, as well as provide the developer

with helpful messages and assistance in correcting errors in database statements.

In one embodiment, the IDE tool 130 may detect that line 330 is, in fact, a database query,
and pass it to a query parser, which may return a message indicating that the query is invalid,
as typed. Further, the query parser may also return a text-error message describing what
caused the query to fail evaluation. As shown in Figure 3A, the IDE tool 130 highlights the

semantic error displaying a jagged underline for the incorrect table name.

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
13

Further, screenshot 350 of Figure 3B illustrates a tool-tip message 335 displayed when a
mouse cursor is hovered over this semantic error. In this case, the error message presents the
text of the message returned by the query parser: “Unable to find table
“SSURANGE.DEPATMENT.” Thus, the IDE tool 130 may be configured to indicate both
the presence of error, as well as provide helpful messages to assist the developer in

correcting the error.

Figure 4 illustrates a screenshot 400 of an exemplary IDE tool 130 configured to halt a
project build process after finding an error in a database statement embedded in program
source code, according to one embodiment of the invention. In this example, the developer
has selected to build the project that includes the “DepartmetnData.java” source code file
without correcting the syntax error present in embedded database statement 435. Because
the IDE tool 130 may detect errors in database statements (previously ignored during the
build process), in one embodiment, the IDE tool 130 may also be configured to prevent a
successful build of a project where an embedded database query cannot be validated by a
query parser. Thus, in this example, an error pane 440 provides an indication of the error
identified by the build process, allowing the developer to correct the syntax error before this

project can successfully be built.

Figure 5 illustrates a method 500 for an IDE tool 130 to identify errors in a database
statement embedded in program source code, according to one embodiment of the invention.
As shown, method 500 begins at step 505 where the IDE may detect that a developer has
embedded a database statement within the source code of a project file. At step 510, the IDE
may retrieve the database statement from the source code and pass it to a query parser for
evaluation. At step 515 the query parser may evaluate the database statement, based on the
syntax requirements of the particular type of query and on the semantic content of an
associated database. At step 520, if a syntax error is found within the database statement,
then at step 525, an error message may be returned to the IDE tool 130. And at step 530, ifa
semantic error is found within the database statement, then at step 535, an error message
may be returned to the IDE tool 130. At step 540, the IDE tool 130 may display an
indication of any error messages found in the database statement using a variety of user

interface elements (e.g., the jagged underlines and tool-tip features shown in Figures 2 and 3.

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
14

As stated, developers may frequently embed text strings representing database statements
within the source code of a computer program. In one embodiment, an IDE tool 130 may
integrate testing the database statements with application development by providing
scamless integration of a database query tool within the IDE tool 130. For example, in one
embodiment, the developer may simply right-click on a database statement displayed in an
editing pane and select a menu item to execute the statement. The IDE tool 130 may also
display a user interface dialog allowing the developer to select various options to run the
database statement or prompt the developer for values for input and output variables
supplied to the query tool. Further, the IDE tool 130 may store the values provided for each
statement, providing the developer with a quick way to re-perform the database operation
represented by the embedded database statement in the future. This may be particularity

useful for database statements that include a large number of parameters.

Figure 6 illustrates a screenshot 600 from an exemplary IDE tool 130 configured to execute
a database query embedded in program source code, according to one embodiment of the
invention. As shown, screenshot 600 includes an editing pane 602 and a dialog box 610.
[lustratively, editing pane 602 contains a fragment of program source code. Additionally, a
highlighted line 605 of this source code fragment contains an embedded database statement.
In this case, the SQL statement is: “insert into SSURANGE.DEPARTMENT values (?, ?, 2,
?, 7). When performed, this SQL statement creates a new database record in the
“DEPARTMENT?” table of a database named “SSURANGE,” where the new record
contains the values supplied for the five question-marks (“?”’). The developer may supply
values for the “?” fields of the insert statement to use in testing this query using dialog box
610. In one embodiment, the test values may be entered into table 615. Further, the IDE
tool 130 may be configured to access a data model corresponding to the database being
accessed. This information may be used to assist the developer in supposing test values for
query execution. For example, as shown, dialog box 610 includes a type column providing
the developer with an indication of the data type that should be entered for each of the “?”

fields in this database statement.

In one embodiment, the developer may also specify options regarding query execution. For

example, the IDE tool 130 may provide the developer with an option to commit or rollback

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
15

an insert or update transaction after the database statement is executed. This may be useful
where a new application is developed for an existing “live” database. By rolling back any
database operations preformed during application development, embedded database
statements may be fully tested without permanently modifying data records stored in the
“live” database. Another option includes allowing the developer to limit the number of rows
retrieved from the database for a test query. This may be useful if a developer needs to
review only a small number of rows returned from query execution to evaluate an embedded

database query.

In one embodiment, the results of executing the embedded database statement are presented
in an output pane provided by the IDE tool 130. The query output pane may include tabs
that may be selected to various aspects of the query results. For example, Figures 7A - 7B
illustrate an IDE interface 750 used to present the developer with results of database query
execution, according to one embodiment of the invention. As shown, Figure 7A illustrates a
collection of data records retrieved from a database. Specifically, a results tab 715 of
interface 750 is selected and a table 720 shows data records retrieved for a database query
embedded in application source code. Illustratively, the query results shown in table 720

correspond to the SQL “select” statement shown in Figures 2 and 3.

Figure 7B illustrates another example display of interface 750 where a developer has
provided values for the “?” fields of the insert query shown in Figure 6. In this example, a

message tab

710 1s selected and message pane 755 shows any messages generated by a database query
tool during query execution. Assume for this example, that the developer has provided an
invalid value for one of the query fields. In response, when the embedded database
statement is executed, the resulting error message is presented in message pane 755. At this
point, the developer may select the parameters tab 720, modify the parameters supplied to
the database query tool, and perform additional test-runs of the query. Typically, the
developer may be expected to change modify a database statement several times before it is

finalized.

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
16

Moreover, a typical database-aware application is likely to include several database
statements. For example, at a minimum, a database-aware application is likely to include
statements to create records, retrieve records, update records, and delete records from a
given database. Thus, the developer may use an embodiment of the invention to perfect each
separate database statement. Accordingly, embodiments of the invention provide
productivity enhancements for application developers as they write code that accesses an

external database (e.g., as the developer composes a database statement).

Figure 8 illustrates a method 800 for an IDE tool 130 to test the execution of a database
query embedded in program source code, according to one embodiment of the invention. As
shown, method 800 begins at step 805 where an IDE tool 130 receives a request to execute a
database statement embedded in program source code. For example, a developer may right
click the text of a database statement, and in response, the IDE tool 130 may present the
developer with a context-sensitive menu that includes a menu item allowing the developer to
execute the statement. Selecting the menu item may cause the IDE tool 130 to display a user
interface allowing the developer to supply any information needed to run the query. In one
embodiment, if the developer has previously executed the database statement, then the
developer may be presented with the parameter values selected the last time the query was
executed. On the other hand, if the database statement has not been tested within the IDE
tool 130, then the developer may enter values for all input and output parameters along with

values for any host variables.

At step 810, the IDE tool 130 may determine whether the statement specified at step 805
references any host variables. If so, then at step 815, the IDE tool 130 may present a dialog,
or other user interface construct, allowing the developer to specify values to use in
performing the database operation. At step 820, the database statement (and any supplied
values or parameters) are passed to a database query tool which executes the database
statement. After executing the database statement, the results may be passed back to the IDE

tool 130.

At step 825, if an error occurred while the query tool executed the database statement, then

at step 830, error messages may be presented to the developer in the user interface provided

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
17

by the IDE. For example, Figure 7B illustrates message tab 710 of a query output pane 755
being used to present the content of an error generated by executing a database statement
caused by values supplied by the developer. Otherwise, if the query tool successfully
executed the database statement, then at step 835, the query results may be formatted for
display in the user interface provided by the IDE. For example, in the case of a data retrieval
query, the records that satisfied any query conditions may be presented to the developer,
such as the query results shown in table 720 of Figure 7A. At step 840 the query results are
displayed to the developer in an interface provided by the IDE tool 130.

In one embodiment, the IDE tool 130 may be configured to provide a variety of code
assistance features that an application developer may use while writing a database-aware
software application. For example, code assist features may provide valid options for a
database statement as the developer types the statement in an editing pane of the IDE tool
130, based on both the syntax and context of the of the particular query language being used.
Features such as database statement completion assist the developer by providing valid
selections for database statements, as they are typed. Further, features such as syntax
colorization may simplify the readability and understandability of complex database
operations, reducing errors. Similarly, as the IDE tool 130 may establish a connection with
the database, the IDE tool 130 may be may be able to import and display portions of a data
model of a database in response to developer requests for information related to a data
model. For example, the IDE tool 130 may be configured to present elements of a database
schema (e.g., tables, columns, keys, etc.) that underlie a given database statement embedded
in program source code. All of the above features may increase developer productivity and

assist the developer in building complex yet less error-prone applications.

Figures 9A - 9C illustrate screenshots of an exemplary IDE tool 130 configured to provide
database connectivity and programming assistance to a developer writing a database-aware
software application, according to one embodiment of the invention. Screenshots 900, 950
and 975 illustrate a graphical user interface of an IDE tool 130 being used to develop a
database-aware application using the Java® programming language. As shown, the project
element “DepartmentData.java” is selected and editing pane 902 shows the source code 904

of this project element. Illustratively, source code 904 includes an embedded database

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
18

statement (specifically, an SQL query) as part of the highlighted line 905 currently being
entered by a developer. Specifically, the developer has entered the *“s” character within a
pair of double quotes following a statement “db.query,” which signifies that the text string
within the double quotes is a database statement. In one embodiment, the IDE tool 130 may
detect that the developer is entering a database statement and provide code assistance, based
on the keywords of the query language and schema of a database associated with the
development project. For example, Figure 9A includes a text-prediction list 910. Based on
the “s” character, and the keywords of the SQL language, the IDE tool 130 has determined

that the developer may be in the process of entering a “select” or a “set” statement.

Further, screenshot 950 of Figure 9B illustrates a tool-tip message 955 displayed when a
mouse cursor is hovered over the database statement being entered. In this case, message
955 presents the general structure of a select statement: “SELECT coll, col2, FROM tablel,
table2 WHERE ...” In addition to the keyword matching shown in Figure 9A, in one
embodiment, the IDE tool 130 may present valid selections for elements of a data model to
include in a database statement being entered. For example, screenshot 975 of Figure 9C
illustrates a prediction list 985 for a database statement being entered. In this case, the
developer has continued entering the database statement first shown in Figure 9A to a point
where it reads “Select * FROM ssurange. .“ That is, the developer has specified an

embedded database statement that will retrieve all columns from a table named “ssurange.”

However, the developer has not yet entered the name of the table in the database statement.
In response, the IDE tool 130 has determined a list of valid table names based on the data
model underlying the “ssurange” database and displayed them in prediction list 985. As the
developer continues entering the database statement, additional elements of the “ssurange”
may be displayed in a prediction list. For example, once a table is selected, the IDE tool 130

may display a list of columns defined for the selected table.

In addition to providing type-ahead features for a database statement embedded in program
source code, the IDE tool 130 may be configured to provide a developer with information
regarding a database statement embedded in program source code. In one embodiment, the

developer may open a declaration for a table, column or schema name or host variable inside

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
19

the SQL statement. The IDE may display various properties such as table columns, number
of tables in a schema or column properties. In the case of a host variable, the definition of
the variable may be displayed. For example, Figure 10 illustrates a screenshot 1000 from an
exemplary IDE tool 130 configured to provide information related to elements of a data
model associated with a database-aware software application, according to one embodiment
of the invention. As shown, screenshot 1000 includes an editing pane 1010, and element
pane 1025. Editing pane 1010 displays source code lines 1005 that include references to a
database associated with the database-aware application being developed. Specifically, lines
1005 reference an “ADMRDEPT” column of a table named “MYDEPARTMENT.”
Assume for this example that the developer has right clicked on lines 1005 and that the IDE
tool 130 has displayed a context-sensitive menu 1020 that includes an “open definition”

selection choice 1015.

In response, element pane 1025 displays information related to the structure of the database
referenced by lines 1005. Specifically, the definition of the “DEPTNAME” column of the
“MYDEPARTMENT?” table is shown at 1045. Other elements of the “SSURANGE”
database (e.g., table names, and columns of the “MYDEPARTMENT” database are also
shown in 1025. As this example illustrates, embodiments of the invention may allow a
developer to efficiently determine the structure and definitions underlying database elements
referenced in program source code. Further, the IDE tool 130 may provide this
functionality directly from database statements embedded as text strings in the source code
of a database-aware application. Thus, in one embodiment, a developer may right-click on
the text of a database statement, and in response, the IDE tool 130 may identify the text and
open a definition of the database element in a pane like pane 1025. For example, a user may
click on the name of a column or table included in a database query and be presented with a

definition of the selected database element.

Figure 11 illustrates a method 1100 for an IDE tool 130 to provide database connectivity and
programming assistance to a developer writing a database-aware software application,
according to one embodiment of the invention. As shown, method 1100 beings at step 1105
where an IDE tool 130 detects that a developer is interacting with a database statements

embedded within program source code. At step 1110, the IDE tool 130 may determine

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
20

whether the developer is entering a new database statement. If so, at step 1115, the IDE tool
130 may identify the data model associated with the database statement. And at step 1120,
the IDE tool 130 may display elements of the data model predicted to be part of the database
statement, based on the current input. For example, Figures 9A and 9C illustrate prediction

lists that display elements of database content and query statement syntax.

Alternatively, at step 1125, the IDE tool 130 may determine whether the developer is
requesting to open a definition of a database element. If so, at step 1130, the IDE tool 130
may identify the data model associated with the database statement. At step 1135, the IDE
may retrieve the definition for the database element specified at step 1125. And at step
1140, the definition retrieved from the database may be displayed to the developer using the
common interface provided by the IDE tool 130. For example, Figure 10 illustrates a
hierarchical view of database elements, including the definition of a column from a

particular table, as requested by a developer.

Alternatively, at step 1145, the IDE tool 130 may determine whether the developer has
completed entering the database statement. If so, at step 1150, the IDE tool 130 may
identify the database statement and add any syntax highlighting. For example, statement
keywords may be highlighted within the text string to distinguish these elements of the
statement from others. Further, as described above, the IDE tool 130 may also be configured
to pass the text string of the database statement to a query parser and return any errors

introduced by the developer.

Advantageously, embodiments of the invention provide seamless integration within an
integrated development environment (IDE) tool for displaying database structure and other
database information, query editing and execution, and error detection for database
statements embedded in program source code. Currently, database statements are routinely
ignored by IDE tools, leaving the developer to learn of errors only after the project is built
and the resulting application is executed. By integrating database functionality within the
IDE, embodiments of the invention may be used to test database statements embedded in

program source code using the same IDE interface used to create the software application.

WO 2008/132002 PCT/EP2008/053831
21

Thus, rather than having to switch between tools when developing a database-aware

application, the developer may rely on the single, database-aware IDE.

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
22

CLAIMS

1. A method of providing database connectivity and database model integration within
an integrated development environment (IDE) tool, comprising;:

displaying a portion of source code in an editing pane of the IDE tool, wherein the
portion of the source code includes at least a text string representing a database statement;

detecting that a user is interacting with the text string;

determining a database to be accessed using the database statement;

establishing a database connection between the IDE tool and the database;

retrieving a data model associated with the database; and

providing programming assistance to the user of the IDE tool, based on the

interaction of the user with the database statement and the data model.

2. The method of claim 1, wherein detecting that the user is interacting with database
statement comprises determining that the user has clicked a mouse cursor proximal to the

text string displayed in the editing pane.

3. The method of claim 1, wherein the data model comprises a relational schema
specifying an organization of tables, columns, and keys defined for the database associated

with the data model.

4. The method of claim 1, further comprising:

determining that the user has completed entering the text string in the editing pane
provided by the IDE tool; and

highlighting elements of the text string to distinguish different portions of the

database statement from one another.

5. The method of claim 1, wherein the text string represents a partially completed
database statement, and wherein providing the programming assistance to the user of the
IDE tool comprises:

predicting, based on the text string, one or more completed elements of the database

statement; and

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
23

displaying a list of the one or more completed elements in the editing pane.

6. The method of claim 5, wherein at least one of the completed elements is a keyword

of a database query language in which the database statement is being composed.

7. The method of claim 5, wherein at least one of the completed elements specifies a

name of an element of the data model.

8. The method of claim 1, wherein the IDE tool provides a programming environment
used to develop a database-aware application, and wherein the IDE tool includes at least a

graphical text editor and a compiler.

9. A computer program product comprising a computer useable storage medium having
a computer readable program, wherein the computer readable program when executed on a
computer causes the computer to perform an operation comprising:

displaying a portion of source code in an editing pane of the IDE tool, wherein the
portion of the source code includes at least a text string representing a database statement;

detecting that a user is interacting with the text string;

determining a database to be accessed using the database statement;

establishing a database connection between the IDE tool and the database;

retrieving a data model associated with the database; and

providing programming assistance to the user of the IDE tool, based on the

interaction of the user with the database statement and the data model.

10. The computer useable storage medium of claim 9, wherein detecting that the user is
interacting with database statement comprises determining that the user has clicked a mouse

cursor proximal to the text string displayed in the editing pane.

11. The computer useable storage medium of claim 9, wherein the data model comprises
a relational schema specifying an organization of tables, columns, and keys defined for the

database associated with the data model.

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
24

12. The computer useable storage medium of claim 9, wherein the operation further
comprises:

determining that the user has completed entering the text string in the editing pane
provided by the IDE tool; and

highlighting elements of the text string to distinguish different portions of the

database statement from one another.

13. The computer useable storage medium of claim 9, wherein the text string represents a
partially completed database statement, and wherein providing the programming assistance
to the user of the IDE tool comprises:

predicting, based on the text string, one or more completed elements of the database
statement; and

displaying a list of the one or more completed elements in the editing pane.

14. The computer useable storage medium of claim 13, wherein at least one of the
completed elements is a keyword of a database query language in which the database

statement is being composed.

15. The computer useable storage medium of claim 13, wherein at least one of the

completed elements specifies a name of an element of the data model.

16. The computer useable storage medium of claim 9, wherein the IDE tool provides a
programming environment used to develop a database-aware application, and wherein the

IDE tool includes at least a graphical text editor and a compiler.

17. A system, comprising:

a processor; and

a memory containing an integrated development environment (IDE) tool configured
to provide database connectivity and database model integration within the IDE tool by
performing an operation, comprising:

displaying a portion of source code in an editing pane of the IDE tool, wherein the

portion of the source code includes at least a text string representing a database statement,

10

15

20

25

30

WO 2008/132002 PCT/EP2008/053831
25

detecting that a user is interacting with the text string, determining a database to be accessed
using the database statement, establishing a database connection between the IDE tool and
the database, retrieving a data model associated with the database, and providing
programming assistance to the user of the IDE tool, based on the interaction of the user with

the database statement and the data model.

18. The system of claim 17, wherein detecting that the user is interacting with database
statement comprises determining that the user has clicked a mouse cursor proximal to the

text string displayed in the editing pane.

19. The system of claim 17, wherein the data model comprises a relational schema
specifying an organization of tables, columns, and keys defined for the database associated

with the data model.

20. The system of claim 17, wherein the operation further comprises:

determining that the user has completed entering the text string in the editing pane
provided by the IDE tool; and

highlighting elements of the text string to distinguish different portions of the

database statement from one another.

21. The system of claim 17, wherein the text string represents a partially completed
database statement, and wherein providing the programming assistance to the user of the
IDE tool comprises, predicting, based on the text string, one or more completed elements of
the database statement; and displaying a list of the one or more completed elements in the

editing pane.

22. The system of claim 21, wherein at least one of the completed elements is a keyword

of a database query language in which the database statement is being composed.

23. The system of claim 21, wherein at least one of the completed elements specifies a

name of an element of the data model.

WO 2008/132002 PCT/EP2008/053831

26

24. The system of claim 17, wherein the IDE tool provides a programming environment

used to develop a database-aware application, and wherein the IDE tool includes at least a

graphical text editor and a compiler.

WO 2008/132002 PCT/EP2008/053831

112
/100
122
— PROCESSOR(S) 4
| 140
PROCESSOR(S) | pATA MODELS _|[142
| 126
DEVELOPMENT PROJECT 144
STORAGE
120
IDE TOOL ~130
121
~
PROJECT FILE | ~132
- 124
QUERY PARSER 134
QUERY TOOL 136
MEMORY
| 125
L NETWORKING DEVICE
DISPLAY DEVICE INPUT DEVICE
\— 115 \- 117

FIG. 1

PCT/EP2008/053831

WO 2008/132002

212

Gee

0] LNIWLNYJIQIONVENSS 10} spoyiow sey jey) adewalul Uy , @

d¢ 9ld

(. INGWLNYJIA FONVHNSS | 199} Indul siy) jo peajsui pajoadxe 1037135 | o @

enef |bwepy Hﬁ
N el fowsujuswnredeq (e
V eAe[elegaulujjusw)iedag @ﬁw
eAel'jsa | ejeqiuswipedsq (7] m_

! () sjuswpeda(qiab <juswpedsgsiojeia)

AY

SINFANLHYYHIA " JONVHNSS 1B 18

_ eaellegaulupuawedaq @u/x eaelefeqiuswyedaq @

eAel-ejeqiuswpedsg qmm
enef Juawyedsq (7] -m_

pajesBojul woo mmm
[idpajeibapuiog =]

858 |Be=
fD.u_ Ayosesaiy 3K |dxg abexoeq ﬂ)

AN SAN AN AN

} elequawpedaqg soeysiuw oygnd @

[soreseyin-eael pyoduwi g

‘pajesbajur wod abeyoed
eaeluewyedag (r])

Savaallalgi @

g%)i«

sese

S [BiaDBF4aDaBa0astand i@FEHAA

dioH mopum oldweg uny sloid yoleag aefineN Joeyay sanos Jp3 94

eael ejeqiuawyiedsq - eaer

0s¢ J

gz

1} %4

[INIWLHYAIQIONVENSS 10} SPoyjew Sey Jeyl aoepelul Uy , @

V¢ 9Old

_ eaef ejegauljupuawypedaq

(. INFWLYYD3A JONVINSS woy , P98, =

@\/X eAel‘ejeqiuswinedsqg @ ;

eaelbway (7] @

el Aiowauuawedaq @mm

v eAel ejegaulujiuawedaq @ﬁw b

eAel1sa | ejeqiuswiiedaqg -m \m_‘m

eAel ejeqiuswiredag @m P

eaeluswyiedsq 7] @

pajelBojul Wwod mmm

Lpsjeibeiuioq Mea

~88[@e
eAeluswpedag ﬂ y rDﬂ_ Ayoselsiy 3 idxq sfeyoeq w_)

V4

: () siuswpedaieb <uswpedag>loeisy
198is = bs) paES D © ©

SINIWLHVYCAA " IONVINSS lIE 199 |/

e PPN AN

} eleqiuauiiedaq soepaju aggnd @

N

O uoessyrmn-easl podui g

‘pajesbaur oo sbeyoed

. . . ONN . . . s s s/ ole
cacaallalpiQi@fJisaNip@ @i+ BFI+D4D40stan | @ [Jaa}
dieH mopuipy aidweg uny josloid yosesg ejefineN sopeysy saneg Jipg o4 G0¢
eAel ejequawedag - eAer
oom\

PCT/EP2008/053831

WO 2008/132002

3/12

mm mu_n_ - enefbwely fl-@ |
‘() swawpedaqieb <uswyedaq>Iiay enel- Alowapyuuawpedsq Qmm

(., ININLYYIQ " IONVHNSS ___._.Zm_\,_F<n_mo.moz<m:mw__ 91qe) puly 0} m_amcs_ X V%_.Smomc__czco_c:m%o @ym_
SINIWLHVAIQ FONVANSS I8 199 1/ 41 eneliseelequawpedoq (78 |

. enefejeqiuownedaq (M

(% } ejequswpedeq soepeiu Jignd @ el usWpeda(mm

sjeiBaju; woo m
“Jojesa)y jyn-enel podwy @ paieibel mﬂ

. lidpateiBe|oq e
ININIHYHIA'IONYENSS 10} spoyisw sey Jeyy adepsjul Uy , @
‘pajesBajurwos abexoed AED | We

T

_ eAef elegauljujusiupedaq @ X eeleequswitedsq @ eAe[UaW)tedag ﬂ\ fDﬂ_ Ayoressiy 3 idxg abeyoeq w_\

caaallslpiQIEFIaD IS @ Eiap BE 4D aBaQast s | T [Ja!

disH mopuipy odweg uny joslosd Uoieeg ojeBiaeN lojoeyey sanog pp3 a4

eael ejeqiuswpedaq - eer (3

0se J

V¢ Old
eneljbwaly (r] i

uAvmswé_m%%m,%méamova@s_ /ms_éoeﬁécwstm%o@m
(4 INFWLYYAIQ FONVYENSS woy , 198, = bs) 0o @ o @ Vmi.sm%c__c_Emszm%o Y=
SINIWLAYL3a- JONVAHNSS 1€ 18D 11— eAel)s8] ejequuswpedsg Hm.
s eaelejequapedsg m_
oee } elequauedsq adepaiul oignd @ enefuswyedsq ﬁ 5
pajeibajul’woo mmm
[idpsjeibajuioa Mea

\

Gee

“Jojesay n-eael podw g
ININIYYIA'IONYHNSS 10} Spoylsw sey Jey) adepajl uy , @

‘pajelBauriios abeyoed DAWV = _ N7 R=R=
_ eaef ejeqgaulupusuedag ﬂ/x eref-ejeqiuawiedag @ eael'juawnedaqg ﬂ) rDﬂ_ AyoresalH 3¢ 1dxg ebexoey E\

0ce
CacaBalgiQIEF)iIa]iSp @ Fia0 B 2D aDaOstang | 5 [Iag}

day mopuipy eidues uny joaford yoreag ojebiaeN sopeiey 80nog pp3 94

eAel elequuewpedaq - erer (3

00€ /

PCT/EP2008/053831

WO 2008/132002

4/12

v "Old

91 auy ~Boioojzligrelelbaly enel ejeqiuatiyedag 09Is Indu; siu Jo pealsu) paedxd 193 T1IS @ N
(way) sioug 3 [
[vopeoor | {(wed] aonosay | v uondiosag giso) M-
N Soput (‘sBuiusem ¢, “Jouia | 189} [}
// X swaqoid g L nding ereq ~ 3108U0) _cozsm_owo_ aopener | | puioasdiosou =
> ~ Idwapul 8-
J —=
1144 _ 3] g owap [3
Jefswiunigp Q@
! A v mEmEtmamoﬁmm:KAszEtmamDv._oum._w: ™ Hwolo.m.—xu.: Aesqry Em~m>w N /ﬂ$
(4 INFWLYYDIQ " IDNVHNSS woy , 19818, = 1bs) 1083 D o @ V eequauedeg| @m |
SINIWLHVAIa JONVAENSS IIe 1989 // eneleequawedaq (Ma |
eaefuswpedsq (7 @
GEY } eeqiuawpedaq asepsur oygnd nm-m_mmE_.Eo-o e
» Zhdpajeiberuiog -
Lojesaly nenel Jodwi g (1gpaieIBaioq mm
INIFWLHYLIA IONVENSS 10} spoyisiu sey jeyj sdepsiul uy , @ :
‘pajesBajurwoo abeyoed DAle = _ [\ E=R=
X erelejequuawyedag @ f_U.u_ Auypsesald N\ X 1dx3 ebeyoed B)

CaosllalfiQIEFIaD] i@ FisDBFIaD2040avamy | T[T}
disH mopuipt eidweg uny josfold yoresg ejeblaeN iojdeiey eanog pg a4
enel‘eleqiuawpedaq - eaer (3

0oy \

WO 2008/132002

5/12

(BEGIN)

PCT/EP2008/053831

DETECT USER HAS EMBEDDED
DATABASE STATEMENT INSIDE SOURCE
CODE OF PROJECT FILE AS TEXT STRING

RETRIEVE DATABASE STATEMENT FROM
PROJECT FILE; PASS TO QUERY PARSER

|

QUERY PARSER EVALUATES
DATABASE STATEMENT

SYNTAX
ERROR IN
DATABASE

STAEMENT?

520

RETURN
PARSER ERROR
TO IDE

— 525

SEMANTE
ERROR IN
DATABASE

STAEMENT?

NO

530

RETURN 535
PARSER ERROR !
T0 IDE

|

PRESENT INDICATION OF ANY
PARSER ERRORS IN ID E TO USER

END

FIG. 5

PCT/EP2008/053831

WO 2008/132002

6/12

9 Ol

euid

jsouen | _

ysiut4

Gi9

sonjeA INJWLAY

NYHNSS 8jeaid

HYHO
MVHD . uny $5829N
HYHO é BV | sn
[\] HYHOYVA & 00 [uonesepaq oo
\, 0oV UVHO é
_ anjep | adAl | m&.ﬁz P
ayepdn //
asn 0} san|ea ajqeliea ayl Ayosds -
sen|ep SIqBUBA ISOH (i sjepdn @
sl //
fﬁmD senje ejqeuen Aoads (S |
euBuie—otedidep—Buiig——edidep-Buu ualpedagalesio i
430 " IDNVHNSS o pesut, = bs) abpdn ©

py 209

PCT/EP2008/053831

WO 2008/132002

7/12

[eA ejealdnp Burey woy | NFWLHYIIA IONVENSS. 8Iqe) sulelisuoa |, Aq paliuepl xepul enbiun 1o
41su03 anbiun ‘Asy Asewnd ay) asneasq piea jou aJe Juawiajels 313737 e Aq pesned ajepdn Asy ubiaio)
10 ‘JuBwalels 31 yadn uswajels 1HISNI aY} Ul sanjea alow Jo auQ :uoydaax3ibsg o 0ol zqp war woo

GG. \

(. .00V, 020000, “ONINNVYd, ‘108, .) SINTIVA
LNINLYYLIQIONYAENSS OLNI LYISNI

d/ 9ld

-K8y xapui 8y} 1o}

uni Bune)g

_ ejeq buioid _ S)nsay _ slejsleled _ safiessapy

uny

ainje4 ¢

ome 012”7 | eweN9lg0 |

uogoy |

snjelg

¢ INdinQ ejeq %E 8j0su0) _ uonelepaq _ooumz%

0S4 J

V. Old

103 2r 301440 HONVYS zzr

103 21 301340 HONYHE zzl

103 ZH 321440 HONVYE ZZH

103 Z9 301440 HONVAE 729

103 24 301490 HONVYE 224

103 004000 140ddNS 3dYMLA0S 123

103 060000 SNOILYY3dO e

00v 050000 SIOIAY3S LHOddNS 103

Vs 100 020000 SINILSAS NOILYHLSININGY 12a

0cl Lod 090000 SWILSAS ONIHNLOVANNYIN La
00v Y3LN3D INIWDOTIAIA 100

00v 0£0000 H31N3D NOILYWHOANI 10D

00V 020000 ONINNVd 108

00V 040000 "AIT 3OIAY3S HILNDINOD A43IdS 00V

| NOILYDOT | Ld3cuway | onwow | INYNLDIA | ONLd3a

=

| ereg Buyord | synsey | siejewesey [sebessepy

)

0S. L

1191

WO 2008/132002 PCT/EP2008/053831

8/12

(BEGIN)

RECEIVE REQUEST TO 805
EXECUTE DATABASE STATEMENT L/
EMBEDDED IN SOURCE CODE

810 /815

DOES
TaNCEnosT > | FoRPARAVETER
REFERENCE HOST
VARIABLES? VALUES
NO
\
PASS DATABASE STATEMENT /820
TO QUERY TOOL; RECEIVE RESULTS
/830
PRESENT
2 QUERY ERROR
ERROR: IN IDE
END
FORMAT QUERY RESULTS; | 835
DISPLAY IN IDE

1

OPTIONALLY ROLL BACK /840
QUERY OPERATION
IN DATABASE

{

(END)

FIG. 8

PCT/EP2008/053831

WO 2008/132002

9/12

g6 Old (

wewedseb winyes

1937138) Aenbrgp
1 1007 881 = | 10', 808} JUTHM 2 31Ge1 '} 01G) WOY 2109 ‘1100 1035 64 36 <iuawiiedag>iojeisy)

50>J01el8) ognd

GG6

(. ¢ = ONLd3Q 25oum ININIHYLIQ FONVANSS Woy , 108fes , = |bs) 1ajes @ //

sigjowesed 4G INFNLYVAIA IONVHNSS 199
{

enel bwapy (7] -é

eael fsowaupuswiedsq @m_
eAel ejegauyupuswiedaq @@&
eAel'jsa] ejeqiuawitedag Qm._
eAelejleqiuswyiedsg QB

e eaeluowyedag [r]-&

{80 0'c 1] Aeigwaishs 390 N33 B

pejesBsjurwoo (g
I Ldpajesfeuioq Ma

7 88| Pe

X eaefejegeuuuswpedaq, @Q enefuawpedaq , ﬂ; enelejeqiuewpedeq |, (] | fDn._ Ayosesaly N\ 3¢ 10x3 sbexoeq B |

Caonallalpi@

@)i«

deH wmopuipy sidwes uny

@ [FiaD BG40 4aDa0atany | @I

=}

Valoid yoieag ojebiaeN JoeleY 9anog Jp3 94

eAel ejequaiiedaq - eaepr

0567 \/6 ‘D4 ﬁ

mm_ wawypedspieb ums)
1031s | swiedag

‘.|s,) Kienbgp
= gjuswpedsa(ieb <uawedsgsloleisy

G06
!

(ouydsp Buyg) juswpedaqien <juswiedsgslojelsy dqnd

(. ¢ = ONLd3Q a9um INIWLHYAIQ FONVHNSS Woy , o918s , = bs) psjes @ //

706 sisjoweied AQ INIWLYYHIA FONVUNSS 199
{

eel'bwapy (7] @

enel Aowaupuswedsg G—e
eAef ejegaulupuawiiedag @wﬂ
eael1sa | eleqiuasuwiliedaq Qmm
eAel ejeqiuswpiedaq mmmm

o eaeluawyedsq (7] &

{80 0'q P} Arergr7 wayshs e ﬁ m

pojesBajul wod mmm_
N [igpajesbaju|0q mum

/1 Dﬂnuvm_@aunv

NO@\V/X eAefejegauljupjuswpedaq, % ; eAeluswyedsq *H ; eaelejeqiuawpedsq | @ b an._ Ayaiesaiy 3 idxg efiexoed w_)

ca2sllalpi QI EF iaD i 4@ @isPBFisDaDa0astang | P [J4T}
doH mopuipy aidwes uny pslold yoreag sjebiaeN sooeysy soN0S WP 8pd
erel ejeqiuawieds(- eAep
oom\

PCT/EP2008/053831

WO 2008/132002

10/12

JNNSTY dN3 B8
OlOHd div3 EH
LoV dn3 E8
dW3 B8

1430 68
INIW1NYdIa B8
Q3HOS 10 EH
¥3asn4d3av g8
1oV B8

J6 Ol

:(p ‘ssejojuawpedag
<juswpedags.iojela)

wyedsq) wswpedaqien <jusupedags-lojeid
{(swypedsq) wawyedsqleb <luswpedaqs>iojela)]
WLHY43Q IONYVHENSS Wy , 108jes, = |bs) jaaje8 @ //
qo juawpedad Aq INIWIMYLIA FONVHNSS 199 1/

‘Juawpedagieb uing,

086

‘

u

‘(ouydap ‘ssefojuswpedaq

'sbueinss WO¥4 . 1037
5196 <juawpedsg>iojela))

}

(ouydep Buumig) jusunedsqiss <juswpedsgsloess) ongnd

= ON1d3Q a5eum INFWINYCLIA JONVHNSS Woy , 10995, = [bs) 109185 @) //

X enelelegsuupjuswpedsq, @w ;

eAeluawyedsq , ﬂ; erelejeqiusuedaq , (1]) Du_ Ayoiessiy

Zowap [}
Zhdperesbeloq M
o enefiqubsizap, g - sefno”esusol 20fzgp §-@
erehqibs\zap\:Q - 1ef20fzqp §-m
Jefawnunigp Q@
807051 ipl] Areary wiyshs 3 ﬁ m
enelbwaiy [7]-g@
eael Aowapuuswyedag Qm,m
eAelejegoulujiuswyedsqg Qm_ N
eaeljso) elequuawpedaq qﬁm
, erel elequawpedag Qmm |
enefuswyedsq (& |
pajeiBejurwos am
o [idpejeibajuioq Me
A B3B8 |Yes
X Jei0idxg abeyoedE)

Ny

Gac>challalg

°s00
oo00

©

eovo

GF)T ip Biao B}

digH mopulpy, 8idwes uny

4D 2D 40 atang i P [Fal

paloid yoieag ojebliaeN Jopeysy somog Hp3 a4

enel ejegaulujuswpeda(- erer (3

G/6 K

PCT/EP2008/053831

WO 2008/132002

11/12

10Q eseus ER w:mm.r w%m._.
TNX S1eIRUeD &R < sishjeuy sishleuy
64 + BusS a0BHS}U| SjBIBUSD) M) SIEPIEA GIEPLIEA
. P 4 syajold sy ajyoid
84+ HiuS uesg JOS dlessus) ¥ sy Bngag sy Bngeqg
94 + Wiug ___osuay-4) < Sy uny Sy uny 10} pajesauab uoieuswaldwl DN
[sd+uyus “uvopuyeguedo EB||< jsissy eseqejeq | sobessowl 017 B1Ep
A = ﬁ_ %] g0l V/I\\\\ ~sjaddiug 0} ppY] X 8l0suo) L co:ma_omo— ooum>aﬁ_ SWwa|qo)
<1 < suone.lepaq
wm_ocmucwawo _U'.wm < seouslsey
sjurensuo) [J-8
[e1gennN (91) ¥HOI zo_Eoo._ 8- i : < KioysiH jeo0
319NN @ avHOl OZmos_ m DN o
Ell +US+ 891n0
[(9€) YVHONYA] INVYNLIA B ‘,m , 4 S+uSHIlY S
[Md (€) ¥¥HO ONLd30 8.5 A+ID sised
OO _U:m O+H1D Adop
ININLIYVYLIaAN BB B X+HAID ino 0cot
g0l AVHL NI B 8 —
1OVroYddng EB-@ < M+UYIYSHIY U moys
DAWJNI EE ® 1+ Aydtesaiy adA] Joind
33A07dINT ER-8 O+M0 UIINOD D 0101
IdiNg B8 HHIV+0 AydlesalH jleQ usdo /
INNSIY dNI BB
OLOHd diNg BB ¥4 Ayosesaiq edA) uadQ
ININLYY4I0 BB £ uopesejoaq usdo
Q3HOS 10 BB aneg
0l 'Ol ey ripes
m
sainpagold palais [E 2+ Buds _: uonedol buus oyqnd
saouenbag [} m : 9bueys1depiwpe Sug aygnd
5001 seiouspuadaq C}-& A.,Em_om_\,_o,s_ alweu V uwnion®
JONVUNSS &8 5001 Tgnd
r10S &8 mEmEamu mc_:w o__n:a
JOHS &8 & ¢ ouydap Buuig oland
amnN -8 P
\ TNXZaa &8 S9|qeleA sse|) //
e z_Ewm__\ﬂmmm WM JedapAN ssejo aignd
sewsuds (-8 (,FONVINSS.=ewayas ‘. ININLNYIGAN,=oweu) sigel D)

WO 2008/132002 PCT/EP2008/053831

12/12 0

o

|

(BEGIN)

DETECT DEVELOPER INTERACTING 1105
WITH DATABASE STATEMENT s
EMBEDDED IN SOURCE CODE

/1115

QUERY ASSOCIATED
DATA MODEL

1

DISPLAY ELEMENTS OF
DATA MODEL OR DATABASE
NO KEY WORDS ANTICIPATED
TO BE IN QUERY

ENTERING NEW
STATEMENT?

| ~1120

\
END

DEVELOPER 1125

REQUESTING TO
OPEN DEFINITION OF
DATABASE
ELEMENT?

QUERY ASSOCIATED | ~ 1130
DATA MODEL

RETRIEVE REQUESTED |~ 1135
NO DEFINITION

DISPLAY DEFINITION | ~ 1140
OF DATABASE ELEMENT

END

1145
YES

DEVELOPER
COMPLETED

DETERMINE SYNTAX HIGHLIGHTING 1150
STATEMENT?

FOR STATEMENT; COLORIZE
EMBEDDED DATABASE STATEMENT

!
END

FIG. 11

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2008/053831

. CLASSIFICATION OF SUBJECT MATTER

A,
INV. GO6F17/30 GO6F9/44

B. FIELDS SEARCHED

According to international Patent Classification (IPC) or to both national classification and IPC

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO—Interna1, WPI Data, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Gitation of document, with indication, where appropriate, of the relevant passages

figures 3,4A-4G

figures 2,3

A US 2003/172076 A1 (ARNOLD JEREMY ALAN [US] 1,9,17
‘ ET AL) 11 September 2003 (2003-09-11)
paragraph [0034] - paragraph [00381;

X us 2004/267690 Al (BHOGAL KULVIR S [US] ET ' 1-24
AL) 30 December 2004 (2004-12-30)
paragraph [0030] - paragraph [0045];

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

‘A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or after the international
filing date .

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date clatmed

T later document published after the international filing date
or priority date and not in conflict with the .apptication but
cited to understand the principle or theoty underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an invenlive step when the
document is combined with one or more other such docu-
imt?rr]]ts, ﬁuch combination being obvious to a person skilled
n the art.

& document member of the same patent family

Date of the actual completion of the international search

18 July 2008

Date of mailing of the Intemational search report

05/08/2008

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Polzer, Andreas

Form PCT/ISA/210 (sacond shest) {April 2005)

Relevant to claim No.

INTERNAﬂONALSEARCHREPORT

1
" Information on patent famlly members

International application No

PCT/EP2008/053831
Patent document Publication | Patent family Publication
cited in search report. date member(s) date
US 2004267690 Al 30-12-2004
US 2003172076 Al 11-09-2003"

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - wo-search-report
	Page 42 - wo-search-report

