Abstract: This invention relates to compounds (e.g., those delineated herein), pharmaceutically acceptable salts, prodrugs, solvates, and hydrates thereof. This invention also provides compositions comprising a compound of this invention and the use of such compounds and compositions in methods of treating diseases and conditions that are beneficially treated by administering modulating compounds or compositions that modulate \(\alpha \beta \), PAMPS and DAMPS.
COMPUNDS FOR TREATING NEURODEGENERATIVE PROTEINOPATHIES

STATEMENT OF RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH

[1] This work was supported in part by the National Institutes of Health, National Institute on Aging grant R01 AG18454. The government has certain rights in the invention.

RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

[3] Toll Like Receptors (TLRs) are endogenous pattern recognition receptors that recognize exogenous pathogen and endogenous danger associated molecular patterns (PAMPs and DAMPs). TLRs are upregulated in neurodegenerative proteinopathies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), and may lead to excessive inflammatory signaling.

[4] Effective therapy for AD, PD and related neurodegenerative diseases remains a huge unmet medical need. Immunotherapeutic approaches remain a major focus of the effort to develop effect disease modifying therapeutics for AD. As opposed to secretase inhibitors that target Aβ production, anti-Aβ immunotherapies have potential to clear preexisting deposits, neutralize toxic Aβ aggregates, or both; thus, there is better rationale for testing immunotherapies in patients with preexisting pathology. In addition, specific immunotherapies that may be capable of targeting tau and α-synuclein are of interest.

SUMMARY OF THE INVENTION
This invention relates to novel compounds (e.g., those delineated herein), pharmaceutically acceptable salts, solvates, prodrugs, and hydrates thereof. This invention also provides compositions comprising a compound of this invention and the use of such compounds and compositions in methods of treating diseases and conditions that are beneficially treated by administering compounds that attenuate.

In one aspect, the invention provides an isolated and/or purified compound that is a soluble Toll-Like Receptor (sTLR) or fragment thereof comprising a ligand binding site of a Toll-Like Receptor; an sTLR-Fc fusion protein comprising (i) a sTLR polypeptide comprising a ligand binding site of a Toll-Like Receptor and (ii) an Fc polypeptide; including heterodimers thereof; or combinations of the sTLRs; or a pharmaceutically acceptable salts, esters, amides, hydrates, stereoisomers, prodrugs, or solvates thereof. The sTLRs and sTLR-Fc fusion proteins delineated herein include human and mouse sTLRs and sTLR-Fc fusion proteins.

In one aspect, the invention provides an isolated soluble Toll-Like Receptor (sTLR) or fragment thereof comprising a ligand binding site of a Toll-Like Receptor.

In another aspect, the isolated soluble Toll-Like Receptor (sTLR) is that wherein the ligand binding site is selected from Toll-Like Receptor 2 (TLR2), Toll-Like Receptor 4 (TLR4), Toll-Like Receptor 5 (TLR5), or Toll-Like Receptor 6 (TLR6).

In another aspect, the isolated soluble Toll-Like Receptor (sTLR) is that wherein the ligand binding site binds a disease associated molecular pattern (DAMP) and/or pathogen associated molecular pattern (PAMP).

In another aspect, the isolated soluble Toll-Like Receptor (sTLR) is that wherein the disease associated molecular pattern (DAMP) is one or more of Aβ40, Aβ42, tau, and synuclein.

In another aspect, the isolated soluble Toll-Like Receptor (sTLR) is that wherein the soluble Toll-Like Receptor is sTLR2-TAP, sTLR4-TAP, sTLR5-TAP, sTLR6-TAP, STLR2-FLAG, sTLR4-FLAG, sTLR5-FLAG, or sTLR6-FLAG.

In another aspect, the isolated sTLR-Fc fusion protein is that comprising (i) a sTLR polypeptide comprising a ligand binding site of a Toll-Like Receptor and (ii) an Fc polypeptide.

In another aspect, the isolated sTLR-Fc fusion protein is that wherein the sTLR polypeptide and the Fc polypeptide are connected by a peptide linker.
[14] In another aspect, the isolated sTLR-Fc fusion protein is that wherein the C-terminus of the sTLR polypeptide is connected to the N-terminus of the Fc polypeptide.

[15] In another aspect, the isolated sTLR-Fc fusion protein is that wherein the ligand binding site is selected from Toll-Like Receptor 2 (TLR2), Toll-Like Receptor 4 (TLR4), Toll-Like Receptor 5 (TLR5), or Toll-Like Receptor 6 (TLR6).

[16] In another aspect, the isolated sTLR-Fc fusion protein is that wherein the ligand binding site binds a disease associated molecular pattern (DAMP) and/or pathogen associated molecular pattern (PAMP).

[17] In another aspect, the isolated sTLR-Fc fusion protein is that wherein the disease associated molecular pattern (DAMP) is one or more of Aβ40, Aβ42, tau, and synuclein.

[18] In another aspect, the isolated sTLR-Fc fusion protein is that wherein the sTLR-Fc fusion protein is sTLR2-Fc-V5, sTLR4-Fc-V5, sTLR5-Fc-V5, sTLR6-Fc-V5, sTLR2-Fc-FLAG, sTLR4-Fc-FLAG, sTLR5-Fc-FLAG, or sTLR6-Fc-FLAG.

[19] Another aspect is a method of treating a neurodegenerative proteinopathy disease or disorder in a subject, the method comprising administering to the subject an effective amount of a soluble polypeptide comprising a ligand binding site of a Toll-Like Receptor (TLR).

[20] In another aspect, the method is that wherein the disease or disorder is Alzheimer’s disease (AD), Parkinson’s disease (PD), synucleinopathy, or tauopathy.

[21] In another aspect, the method is that wherein the sTLR is delivered peripherally or directly to the brain.

[22] Another aspect is a method of modulating Aβ plaque deposition in a subject (e.g., a subject identified as being in need of such treatment), the method comprising administering to the subject an effective amount of a polypeptide comprising polypeptide comprising a soluble polypeptide comprising a ligand binding site of a Toll-Like Receptor (TLR).

[23] Another aspect is a method of modulating plaque associated glial activation in a subject (e.g., a subject identified as being in need of such treatment), the method comprising administering to the subject an effective amount of a polypeptide comprising soluble polypeptide comprising a ligand binding site of a Toll-Like Receptor (TLR).
[24] Another aspect is a method of blocking Aβ, tau, and/or synuclein toxicity in a subject (e.g., a subject identified as being in need of such treatment), the method comprising administering to the subject an effective amount of a soluble polypeptide comprising a ligand binding site of a Toll-Like Receptor (TLR).

[25] Another aspect is a method of modulating harmful effects of Aβ and/or DAMPS in a subject (e.g., a subject identified as being in need of such treatment), the method comprising administering to the subject an effective amount of soluble polypeptide comprising a ligand binding site of a Toll-Like Receptor (TLR).

[26] In another aspect, the method is that wherein the ligand binding site is selected from Toll-Like Receptor 2 (TLR2), Toll-Like Receptor 4 (TLR4), Toll-Like Receptor 5 (TLR5), or Toll-Like Receptor 6 (TLR6).

[27] In another aspect, the method is that wherein the ligand binding site binds a disease associated molecular pattern (DAMP).

[28] In another aspect, the method is that wherein the disease associated molecular pattern (DAMP) is one or more of Aβ40, Aβ42, tau, and synuclein.

[29] In another aspect, the method is that wherein the polypeptide is an isolated soluble Toll-Like Receptor (sTLR) or sTLR-Fc fusion protein.

[30] In another aspect, the method is that wherein the polypeptide is one or more of sTLR2-TAP, sTLR4-TAP, sTLR5-TAP, sTLR6-TAP, sTLR2-FLAG, sTLR4-FLAG, sTLR5-FLAG, sTLR6-FLAG, sTLR2-Fc-V5, sTLR4-Fc-V5, sTLR5-Fc-V5, sTLR6-Fc-V5, sTLR2-Fc-FLAG, sTLR4-Fc-FLAG, sTLR5-Fc-FLAG, or sTLR6-Fc-FLAG.

[31] In another aspect, the method is that wherein the soluble polypeptide comprising a ligand binding site of a Toll-Like Receptor (TLR) is expressed from a vector.

[32] In another aspect, the method is that wherein the vector is an Adeno-associated viral vector (AAV), lentiviral vector, retroviral vector, or herpes simplex viral vector.

[33] In another aspect, the method is that wherein the method decreases inflammation.

[34] Another aspect is a nucleic acid molecule encoding a soluble Toll-Like Receptor (sTLR) herein or a sTLR-Fc fusion protein herein.

[35] Another aspect is a vector comprising a nucleic acid molecule encoding the soluble Toll-Like Receptor (sTLR) herein or a sTLR-Fc fusion protein herein.
In another aspect, the vector of is that wherein the vector is an Adeno-
associated viral vector (AAV), lentiviral vector, retroviral vector, or herpes simplex
viral vector.

Another aspect is a pharmaceutical composition comprising a soluble
polypeptide comprising an isolated soluble Toll-Like Receptor (sTLR) herein or
sTLR-Fc fusion protein herein or a vector comprising a nucleic acid sequence
comprising a soluble Toll-Like Receptor (sTLR) herein or sTLR-Fc fusion protein
herein, and a pharmaceutically acceptable carrier or diluent suitable for injection.

In another aspect, the composition is that further comprising an additional
therapeutic agent.

In another aspect, the invention provides a pharmaceutical composition
comprising a compound of any of the formulae delineated herein, or a
pharmaceutically acceptable salt, ester, amide, hydrate, stereoisomer, prodrug, or
solvate thereof, together with a pharmaceutically acceptable carrier or diluent. In
other embodiments, the pharmaceutical composition is suitable for administration by
injection (subcutaneous, intravenous, parenterally, intraperitoneally, intrathecal), oral
administration, rectal administration or transdermal administration. In other
embodiments, the pharmaceutically acceptable carrier is suitable for administration by
injection (subcutaneous, intravenous, parenterally, intraperitoneally, intrathecal), oral
administration, rectal administration or transdermal administration. In other
embodiments the composition is not for inhalation. In other embodiments the
pharmaceutically acceptable carrier is not for inhalation.

The invention also provides the use of a compound of any of the formulae
herein, or a pharmaceutically acceptable salt, ester, amide, hydrate, stereoisomer,
prodrug, or solvate thereof, for the manufacture of a medicament for treatment of a
disease or condition identified herein.

The invention also provides the use of a compound of any of the formulae
herein, or a pharmaceutically acceptable salt, ester, amide, hydrate, stereoisomer,
prodrug, or solvate thereof, for administration to a subject for treatment of a disease or
condition identified herein.

In another aspect, the invention provides a method of treating an
inflammatory, neurodegenerative, or immunomodulatory disease or disorder in a
subject (e.g., a subject identified as in need of such treatment), wherein the method
comprises administering to the subject an effective amount of a compound of any of
the formulae herein, or a pharmaceutically acceptable salt, ester, amide, hydrate, stereoisomer, prodrug, or solvate thereof.

[43] In another aspect, the invention provides a method of treating a disease or disorder in a subject (e.g., a subject identified as being in need of such treatment), wherein the method comprises administering to the subject an effective amount of a compound of any of the formulae herein, or a pharmaceutically acceptable salt, ester, amide, hydrate, stereoisomer, prodrug, or solvate thereof, or composition thereof. In certain embodiments, the disease or disorder is selected from the group consisting of Alzheimer's disease (AD), Parkinson's disease (PD), synucleinopathy, or tauopathy, (e.g., acute, chronic, etc.). In certain embodiments, the disease or disorder is one beneficially treated with immunomodulatory agent (e.g., any compound or composition herein).

[44] In another aspect, the invention provides a method of modulating immune activity in vitro, in a subject, or in a cell. The method comprising contacting (e.g., combining, introducing, administering) a compound of any of the formulae herein or composition thereof with/to the cell and/or subject.

[45] Another aspect of the invention provides a method for preventing or treating a neurodegenerative or neurologic disease such as Alzheimer's disease ("AD"), Parkinson's Disease ("PD"), Amyotrophic Lateral Sclerosis ("ALS"), Multiple Sclerosis ("MS"), Stroke or Frontal temporal Dementia, or a disease or disorder that exhibits a systemic inflammatory condition, such as sepsis, osteoarthritis, rheumatoid arthritis or inflammatory bowel disease in a subject by administering to the subject an effective amount of a soluble polypeptide that possesses a ligand binding site of a Toll-Like Receptor (TLR), to thereby prevent or treat such a disease or disorder. In certain embodiments, the extent of prevention or treatment is evaluated by reference to an appropriate control population, marker level, phenotypic characterization indicative of the disease or disorder, etc. for the indication that is being treated or prevented.

[46] The invention also provides methods for isolation, structure determination, and biological determination of a compound of any of the formulae herein, or a pharmaceutically acceptable salt, ester, amide, hydrate, stereoisomer, prodrug, or solvate thereof. The methods comprise one or a combination of steps or actions essentially as delineated herein, including those specifically recited in the examples herein.
BRIEF DESCRIPTION OF THE DRAWINGS

[47] The present invention is further described below with reference to the following non-limiting examples and with reference to the following figures, in which:

[48] Figures 1A and 1B are a schematic of a study methodology to assess the activity of soluble TLRs. Figure 1A is a schematic depicting construction and verification of soluble TLR constructs. Figure 1B is a schematic depicting injection of rAAV constructs in neonatal Po TgCRND8 mice, and analysis of tissue.

[49] Figures 2A-2D depict the construction and verification of soluble TLR constructs. Figure 2A is a schematic representation of the different domains in TLRs. Schematic of a typical TLR and its domains (top, left panel). Different TLRs (2, 4, 5 and 6) and their heterodimers are shown with their classic ligands (top, right panel). The soluble TLRs were constructed by removing the intra-membrane and cytoplasmic domains of selected TLRs by PCR cloning from commercially available full length mouse TLRs (bottom panel). Figure 2B depicts representative mouse sTLR-TAP (left panel) and sTLR-Fc-V5 (right panel) constructs in pTR2 plasmid. The area bounded by the arrowheads was cloned upstream of TAP tag and expressed as soluble non-signaling receptors. Not to scale. LRR, Leucine repeat domain; PCC, polycistine domain; TIR, Toll/IL1betal receptor. Figure 2C depicts representative human sTLR-FLAG (left panel) and sTLR-Fc-FLAG (right panel) constructs in pTR2 plasmid. Not to scale. LRR, Leucine repeat domain; PCC, polycistine domain; TIR, Toll/IL1betal receptor. Figure 2D is an image of a representative anti-FLAg western blot of HEK293 cells transiently transfected with mouse sTLR4 and 5. Mouse sTLR4 and 5 tagged with TAP tag, B. Mouse sTLR4 and 5 tagged with Fc-V5. GFP (green fluorescent protein) is the negative control.

[50] Figure 3 depicts nucleotide sequences of the constructs described herein.

[51] Figures 4A and 4B show that sTLRs reduced Aβ plaque pathology in Alzheimer's disease mice brains. rAAV2/l mediated delivery of sTLR4 and 5 to neonatal day Po CRND8 mice brains shows marked decreases in Aβ deposition at 5 months of age. Both total plaque burden, total number of Thioflavin S cored plaques and formic acid extracted insoluble Aβ levels decreased in sTLR4 and sTLR5 expressing mice compared to controls. Quantification of Plaque Burden (Aperio pixel
count program) and Thio S positive plaques (n = 6-8 per group) were done on formalin fixed paraffin embedded brain sections.

Figure 5 depicts the effect of sTLR4 and sTLR5 on plaque loads in APP overexpressing TgCRND8 mice. Both sTLR4 and sTLR5 effectively reduced amyloid plaque loads in the forebrain and hippocampus of CRND8 mice at 5 months of age. Plaques were stained with 33.1.1 antibody (T Golde) and visualized using dia-minobenzidine (top panel). Plaque burden was counted using the pixel count program in Scanscope (Aperio) (bottom panel).

Figure 6 depicts analysis of microglial activation in sTLR4 and sTLR5 expressing RND8 mice brains. Ibal immunoreactivity (marker for microglia) showed decrease plaque associated microglia in sTLR4 expressing CRND8 mice (top panel). Immunoblotting with cdllb antibody showed reduced glial activation in sTLR4-CRND8 mice whereas the cdllb levels in sTLR5-CRND8 mice were not significantly altered compared to control CRND8 mice (bottom panel). Plaques are marked with asterisks. *p<0.05, n=4/group.

Figure 7 shows analysis of astrocytic activation in sTLR4 and sTLR5 expressing CRND8 mice brains. GFAP immunoreactivity (marker for astrocyte) shows decreased plaque associated astrocyte in the hippocampus (DG, dentate gyrus) of sTLR4 expressing CRND8 mice (top panel). Higher magnification panels showing individual plaque associated astrocytosis is also shown. Immunoblotting with GFAP antibody showed reduced astrocytic presence in sTLR4-CRND8 mice whereas the GFAP levels in sTLR5-CRND8 mice were not significantly altered compared to control CRND8 mice (bottom panel). Plaques are marked with asterisks. *p<0.05, n=4/group.

Figure 8 is a graph depicting the effect of sTLRs on soluble and insoluble Aβ levels in 5 month old CRND8 mice. Quantification of effects of sTLRs 2, 4 and 5 on biochemical Aβ42 and Aβ40 loads were assessed by sandwich end-specific Aβ ELISA on brains sequentially extracted with RIPA, 2% SDS and 70% formic acid. Soluble fraction denotes SDS soluble Aβ and insoluble fraction denotes formic acid extractable Aβ. Aβ in the RIPA soluble fraction usually accounts for less than 1% of SDS soluble fraction. n=5/group; *p<0.05, **p<0.01. Two way ANOVA.

Figure 9 depicts western blot analysis showing expression of sTLR4 or sTLR5 did not affect APP or CTF levels. RIPA soluble brain extracts of sTLR4-CRND8 and sTLR5-CRND8 were separated on SDS PAGE and probed with 82E1 (IBL
International, for CTFβ or CT20 (T Golde, for APP). The band intensity of individual proteins of interest was normalized to the internal control, β-actin. n=6/group, t test.

[57] Figure 10 is a graph depicting the effect of aggregated Aβ on TLR-SEAP assay. HEK-Blue TLR cells stably co-expressing human TLR4/MD-2gene or TLR5 gene and an NF-KB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene was used to test whether different forms of Aβ act as TLR ligands in vitro. Assay was performed as per manufacturer's protocol (Invivogen). TLR binding and intracellular signaling was monitored using the SEAP detection media QUANTI-Blue at OD 650nm. LPS, lipopolysaccharide, mono, monomeric, agg, aggregated.

[58] Figure 11 is a graph depicting the effect of Aβ on TLR2-SEAP assay. HEK-Blue TLR cells stably co-expressing human TLR2 gene and an NF-KB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene was used to test whether different forms of Aβ act as TLR ligands in vitro. Assay was performed as per manufacturer's protocol (Invivogen). TLR binding and intracellular signaling was monitored using the SEAP detection media QUANTI-Blue at OD 650nm. FSL-1, synthetic diacetylated lipoprotein, mono, monomeric, agg, aggregated.

[59] Figure 12 is a graph depicting the effect of aggregated amyloid in TLR4-SEAP assay. HEK-Blue TLR cells stably co-expressing human TLR4/MD-2gene and an NF-KB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene was used to test whether different species of 'heterologous' amyloid act as TLR ligands in vitro. Assay was performed as per manufacturer's protocol (Invivogen). TLR binding and intracellular signaling was monitored using the SEAP detection media QUANTI-Blue at OD 650nm. LPS, lipopolysaccharide, agg, aggregated, 40, Aβ40, 42, Aβ42.

[60] Figure 13 is a graph depicting the effect of a-synuclein (a-syn) in TLR4-SEAP assay. HEK-Blue TLR cells stably co-expressing human TLR4/MD-2gene and an NF-KB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene was used to test whether different forms of aggregated and monomeric synuclein act as TLR ligands in vitro. Assay was performed as per manufacturer's protocol (Invivogen). TLR binding and intracellular signaling was monitored using the SEAP detection media QUANTI-Blue at OD 650nm. LPS, lipopolysaccharide, fib, fibrillar.
Figure 14 is a graph depicting the effect of monomeric α-synuclein (α-syn) in TLR4-SEAP assay. HEK-Blue TLR cells stably coexpressing human TLR4/MD-2 gene and an NF-κB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene was used to test whether different fragments of monomeric synuclein act as TLR ligands in vitro. The numbers denote the amino acids of synuclein that were altered, as denoted in the bottom panel. For example, 1-89 denoted a C terminal deletion of amino acids 89-140 whereas Δ68-94 denotes a deletion of internal amino acids 68 through 94. Assay was performed as per manufacturer’s protocol (Invivogen). TLR binding and intracellular signaling was monitored using the SEAP detection media QUANTI-Blue at OD 650nm. LPS, lipopolysaccharide; 40 agg, aggregated Aβ40.

Figure 15 is a graph depicting the effect of α-synuclein (α-syn) in TLR5-SEAP assay. HEK-Blue TLR cells stably co-expressing human TLR5 gene and an NF-κB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene was used to test whether different fragments of monomeric and aggregated synuclein act as TLR ligands in vitro. Assay was performed as per manufacturer’s protocol (Invivogen). TLR binding and intracellular signaling was monitored using the SEAP detection media QUANTI-Blue at OD 650nm. FLA-ST, flagellin, mono, monomeric, fib, fibrillar (aggregated).

Figure 16 is a graph depicting the effect of α-synuclein (α-syn) in TLR2-SEAP assay. HEK-Blue TLR cells stably co-expressing human TLR2 gene and an NF-κB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene was used to test whether different fragments of monomeric and aggregated synuclein act as TLR ligands in vitro. Assay was performed as per manufacturer’s protocol (Invivogen). TLR binding and intracellular signaling was monitored using the SEAP detection media QUANTI-Blue at OD 650nm. FLA-ST, flagellin, fib, fibrillar (aggregated).

Figure 17 is a graph depicting the effect of tau in TLR4-SEAP assay. HEK-Blue TLR cells stably co-expressing human TLR4/MD-2 gene and an NF-κB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene was used to test whether monomeric and fibrillar wild type (Tau40) and disease associated mutant tau (Tau40 PL) act as TLR ligands in vitro. Assay was performed as per manufacturer’s protocol (Invivogen). TLR binding and intracellular signaling was monitored using the SEAP detection media QUANTI-Blue at OD 650nm. LPS, lipopolysaccharide, fib, fibrillar (aggregated).
Figure 18 is a graph depicting the effect of synuclein in TLR5-SEAP assay. HEK-Blue TLR cells stably co-expressing human TLR5 gene and an NF-κB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene was used to test whether different fragments of monomeric and aggregated tau act as TLR ligands in vitro. Assay was performed as per manufacturer's protocol (Invivogen). TLR binding and intracellular signaling was monitored using the SEAP detection media QUANTI-Blue at OD 650nm. FLA-ST, flagellin, fib, fibrillar (aggregated).

Figure 19 is a graph depicting the effect of tau in TLR2-SEAP assay. HEK-Blue TLR cells stably co-expressing human TLR2 gene and an NF-κB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene was used to test whether monomeric and fibrillar wild type (Tau40) and disease associated mutant tau (Tau40 PL) act as TLR ligands in vitro. Assay was performed as per manufacturer's protocol (Invivogen). TLR binding and intracellular signaling was monitored using the SEAP detection media QUANTI-Blue at OD650nm. FSL-1, synthetic diacylated lipoprotein, fib, fibrillar (aggregated).

Figure 20 shows that neonatal CRND8 mice injected with AAV2/1-sTLR5FcV5 or EGFP (Control) in the cerebral ventricles and then aged for 6 months, exhibited a striking reduction in Aβ cerebral plaque load in sTLR5FcV5-treated CRND8 mice, in both hippocampus and cortex sections.

Figure 21 shows that significant reductions in thioflavin S staining (thioflavin S labels beta-pleated sheets of plaques and neurofibrillary tangles (NFTs)) were seen in both hippocampus and cortex sections of neonatal CRND8 mice injected with AAV2/1-sTLR5FcV5 or EGFP (Control) in the cerebral ventricles and aged for 6 months.

Figure 22 demonstrates the selectivity of the sTLR5FcV5 effect for prevention and/or disruption of Aβ plaque deposits (extracted using formic acid (FA)), as opposed to impacting soluble forms of Aβ (extracted using RIPA or SDS), as observed in neonatal CRND8 mice that were injected with AAV2/1-sTLR5FcV5 or EGFP (Control) in the cerebral ventricles and aged for 6 months (n=8 mice/group; 1-way Anova, *p<0.05 and ***p<0.001).

Figure 23 shows that survival of transgenic CRND8 mice expressing either sTLR5FcV5 or EGFP (Control) was positively affected across a 150 day study by sTLR5FcV5 expression.
Figure 24 shows that a sTLR5FcV5 treatment regimen performed via hippocampal expression for three months duration of sTLR5FcV5 (using rAAV2/l-sTLR5FcV5 or rAAV2/l-GFP as a control) in nine month old transgenic CRND8 mice resulted in reduced Aβ plaque levels, indicating a therapeutic effect of such sTLR5FcV5 treatment (n=5 mice/group. 1-way Anova, *p<0.05).

Figures 25A and 25B demonstrate that overexpression of human sTLR5FcV5 in mouse brain via rAAV2/l directed somatic brain transgenesis was confirmed via immunoprecipitation with anti-V5 antibody. The sTLR5FcV5 molecule containing the following regions is shown in Figure 25A: (a) endogenuous human TLR5 secretion signal, region (b) human TLR5 ectodomain, region (c) human IgGl Fc domain and region (d) V5 molecular tag (regions are not to scale, and notations denote length of polypeptide (amino acid)). Immunoprecipitation was used to examine expressed levels of human sTLR5FcV5 in neonatal CRND8 mice injected in the cerebral ventricles with either rAAV2/l-sTLR5FcV5 or rAAV2/l-GFP and aged to 6 months. As shown in Figure 25B, presence of sTLR5FcV5 protein was tested in sequentially extracted RIPA soluble and detergent (2% SDS) soluble fractions using a V5 immunoprecipitation (IP) assay. (In such experiments, "Bead" lane indicates a mock IP assay; "M" lane indicates molecular weight standards (from top to bottom in kDa, 250, 150, 100, 75, 50, 37); lanes 1-3, rAAV2/l-sTLR5FcV5 injected brain lysates and lanes 4-7, rAAV2/l-GFP injected mice brain lysates; Pos Ct = positive control lanes to test efficiency of V5 IP assay; "4B1" lane was media from sTLR4FcV5 -CHO clonal cell line and "5D6" lane was media from sTLR5FcV5-CHO clonal cell line.) The arrow in Figure 25B corresponds to the expected molecular weight of sTLR5FcV5 protein, which was most prominently observed in RIPA-extracted lanes 1-3, as well as in positive control lanes (the "4B1" lane that contained media from the sTLR4FcV5 -CHO clonal cell line and the "5D6" lane that contained media from the sTLR5FcV5-CHO clonal cell line).

Figures 26A and 26B demonstrate that sTLR5FcV5 formed a complex with soluble Aβ in vivo. In Figure 26A, TBS-extracted soluble brain lysates obtained from 6 month old mice neonatally injected with rAAV2/l-sTLR5FcV5 or rAAV2/l-GFP were incubated with two different anti-Aβ antibodies bound to Sepharose beads: 4G8 (Covance) corresponding to amino acids 17-24 and Ab5 (T. Golde) corresponding to amino acids 1-16. After binding, immune complexes were then pulled down, separated on a SDS PAGE and tested for the presence of sTLR5FcV5 using anti-V5
tag antibody. Meanwhile, a mock pulldown assay served as a negative control and a lane of purified sTLR5FcV5 protein was loaded at left to assist in molecular weight determination. Total inputs in each lane were assessed using an anti-actin antibody (Figure 26A, lower panel). In Figure 26B, dual Li-Cor immunoblotting was used to show that neither purified sTLR5FcV5 nor purified sTLR4FcV5 was recognized by anti-\(\alpha \)\(\beta \) antibodies 4G8 or Ab5 by themselves (lanes 1 show molecular weight markers, lanes 2 show sTLR4FcV5 results and lanes 3 show sTLR5FcV5 results).

Figure 27 shows that sTLR5FcV5 in the media of stable CHO cell lines expressing sTLR5FcV5, when incubated with aggregated \(\alpha \)\(\beta \)42 for a 12 hour time course, bound \(\alpha \)\(\beta \)42. ELISA analysis of \(\alpha \)\(\beta \) in the media demonstrated that a proportionately higher amount of \(\alpha \)\(\beta \) remained sequestered in sTLR5FcV5 media, as compared to control CHO cell media.

Figure 28 shows the selectivity of the sTLR5FcV5 effect for aggregated \(\alpha \)\(\beta \) as compared to monomeric \(\alpha \)\(\beta \). Specifically, sTLR5FcV5 and sTLR4FcV5 were observed to bind more efficiently to aggregated \(\alpha \)\(\beta \), as compared to monomeric \(\alpha \)\(\beta \). (Purified sTLR5FcV5, sTLR4FcV5 and FcV5 proteins were employed in a direct ELISA assay to assess binding to aggregated \(\alpha \)\(\beta \) or monomeric \(\alpha \)\(\beta \). Detection was performed using HRP conjugated anti-Fc antibody. 1-way Anova, *\(p < 0.05 \), ***\(p < 0.01 \).)

Figure 29 demonstrates the ability of soluble, CHO cell-expressed sTLR5FcV5 present in CHO cell media to bind to \(\alpha \)\(\beta \), as examined using immobilized sTLR5FcV5 from CHO cell media as an immobilized ligand for \(\alpha \)\(\beta \).

DETAILED DESCRIPTION OF THE INVENTION

The invention features compounds, compositions, and methods of using such compounds for treating diseases or disorders. In one embodiment, the compounds are useful as novel immune modulatory agents that can attenuate neurotoxicity induced by pathologic disease-associated DAMPS and effectively remove such harmful DAMPs. In one embodiment, the compounds are useful as biologic therapeutics targeting amyloid and other proteinaceous aggregates in neurodegenerative proteinopathies.

The invention is based, at least in part, on the discovery of compounds herein and their use as novel compounds for modulating neurodegenerative disease...
mechanisms.

Definitions

[79] The terms "ameliorate" and "treat" are used interchangeably and include both therapeutic and prophylactic treatment. Both terms mean decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease (e.g., a disease or disorder delineated herein).

[80] "Disease" means any condition or disorder that damages or interferes with the normal function of a cell, tissue, organ or organism.

[81] As used in the specification and claims, the singular term "a", "an" and "the" include plural references unless the context clearly dictates otherwise. For example, the term "a cell" includes a plurality of cells, including mixtures thereof.

[82] The term "administration" or "administering" includes routes of introducing the compound of the invention(s) to a subject to perform their intended function. Examples of routes of administration that may be used include injection (subcutaneous, intravenous, parenterally, intraperitoneal, intrathecal), oral, inhalation, rectal and transdermal. The pharmaceutical preparations may be given by forms suitable for each administration route. For example, these preparations are administered in tablets or capsule form, by injection, inhalation, eye lotion, ointment, suppository, etc. administration by injection, infusion or inhalation; topical by lotion or ointment; and rectal by suppositories. Oral administration is preferred. The injection can be bolus or can be continuous infusion. Depending on the route of administration, the compound of the invention can be coated with or disposed in a selected material to protect it from natural conditions which may detrimentally affect its ability to perform its intended function. The compound of the invention can be administered alone, or in conjunction with either another agent as described above or with a pharmaceutically-acceptable carrier, or both. The compound of the invention can be administered prior to the administration of the other agent, simultaneously with the agent, or after the administration of the agent. Furthermore, the compound of the invention can also be administered in a pro-drug form which is converted into its active metabolite, or more active metabolite in vivo.

[83] The term "agent" refers to a small molecule compound, a polypeptide, polynucleotide, or fragment, or analog thereof, or other biologically active molecule.
The term "chiral" refers to molecules which have the property of non-superimposability of the mirror image partner, while the term "achiral" refers to molecules which are superimposable on their mirror image partner.

The terms "comprises," "comprising," "containing" and "having" and the like can have the meaning ascribed to them in U.S. Patent law and can mean "includes," "including," and the like; "consisting essentially of" or "consists essentially" likewise has the meaning ascribed in U.S. Patent law and the term is open-ended, allowing for the presence of more than that which is recited so long as basic or novel characteristics of that which is recited is not changed by the presence of more than that which is recited, but excludes prior art embodiments.

As used herein, an "amyloid-related disease or disorder" includes Alzheimer's Disease (AD) and Parkinson's Disease (PD).

Exemplary proteinopathies of the invention include AD, Parkinson's Disease, Amyotrophic Lateral Sclerosis ("ALS"), Multiple Sclerosis ("MS"), Stroke and Frontal temporal Dementia.

Diseases or disorders for which prevention and/or treatment is contemplated via administration of the sTLRs of the invention include AD, Parkinson's Disease, Amyotrophic Lateral Sclerosis ("ALS"), Multiple Sclerosis ("MS"), Stroke and Frontal temporal Dementia, and diseases or disorders that exhibit a systemic inflammatory condition, such as sepsis, osteoarthritis, rheumatoid arthritis or inflammatory bowel disease.

The term "diastereomers" refers to stereoisomers with two or more centers of dissymmetry and whose molecules are not mirror images of one another.

The term "enantiomers" refers to two stereoisomers of a compound which are non-superimposable mirror images of one another. An equimolar mixture of two enantiomers is called a "racemic mixture" or a "racemate."

With respect to the nomenclature of a chiral center, terms "d" and "l" configuration are as defined by the IUPAC Recommendations. As to the use of the terms, diastereomer, racemate, epimer and enantiomer is used in their normal context to describe the stereochemistry of preparations.

The term "effective amount" includes an amount effective, at dosages and for periods of time necessary, to achieve the desired result, e.g., sufficient to treat a disease or disorder delineated herein. An effective amount of compound of the invention may vary according to factors such as the disease state, age, and weight of
the subject, and the ability of the compound of the invention to elicit a desired response in a cell or in the subject. Dosage regimens may be adjusted to provide the optimum therapeutic response. An effective amount is also one in which any toxic or detrimental effects (e.g., side effects) of the compound of the invention are outweighed by the therapeutically beneficial effects.

A therapeutically effective amount of compound (i.e., an effective dosage) may range from about 0.005 µg/kg to about 200 mg/kg, about 0.1 µg/kg to about 100 mg/kg, or about 1 mg/kg to about 50 mg/kg of body weight. In other embodiments, a therapeutically effective concentration may range from about 1.0 nM to about 1 µM. The skilled artisan will appreciate that certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a compound can include a single treatment or, preferably, can include a series of treatments. In one example, a subject is treated with a compound in the range of between about 0.005 µg/kg to about 200 mg/kg of body weight, one time per day for between about 1 to 10 weeks, between 2 to 10 weeks, between about 1 to 8 weeks, or for about 4, 5, or 6 weeks. It will also be appreciated that the effective dosage of a compound used for treatment may increase or decrease over the course of a particular treatment.

The term "in combination with" is intended to refer to all forms of administration that provide an a compound of the invention together with an additional pharmaceutical agent, such as a second compound used in clinic for treating or preventing osteoclast-related disease or disorder, where the two are administered concurrently or sequentially in any order.

The term "compound," as used herein, is also intended to include any salts, prodrugs, solvates or hydrates thereof.

The term "hydrate" means a compound of the present invention or a salt thereof, which further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces.

A salt of a compound of this invention is formed between an acid and a basic group of the compound, such as an amino functional group, or a base and an acidic group of the compound, such as a carboxyl functional group. According to another
embodiment, the compound is a pharmaceutically acceptable acid addition salt.

[98] The terms "isolated," "purified," "pure" or "biologically pure" refer to material that is substantially or essentially free from components (such as proteins, nucleic acids, carbohydrates, and other cellular materials) that normally accompany it as found in its native or natural state, e.g., its state in an organism in which the compound or material naturally occurs. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. In certain embodiments, a compound of this invention is at least 50% pure, 60% pure, 75% pure, 80% pure, 85% pure, at least 90% pure, or at least 95% pure (e.g., by weight). In certain instances, the compound is at least 98% pure, 99% pure, 99.5% pure, 99.8% pure, or 99.9% pure.

[99] The term "modulate" refers to an increase or decrease, e.g., in the ability of a compound inhibiting activity of a target in response to exposure to a compound of the invention, including for example in an subject (e.g., animal, human) such that a desired end result is achieved, e.g., a therapeutic result.

[100] The term "obtaining" as in "obtaining a compound" capable of modulating (agonizing, antagonizing) a target delineated herein includes purchasing, synthesizing or otherwise acquiring the compound.

[101] The term "subject" includes organisms which are capable of suffering from a disorder as described herein or who could otherwise benefit from the administration of a compound of the present invention, such as human and non-human animals. Preferred humans include human patients suffering from or prone to suffering from diseases or disorders as discussed above, as described herein. The term "non-human animals" of the invention includes all vertebrates, e.g., mammals, e.g., rodents, e.g., mice, and non-mammals, such as non-human primates, e.g., sheep, dog, cow, chickens, amphibians, reptiles, fish, etc. A "subject identified as being in need of treatment" includes a subject diagnosed, e.g., by a medical or veterinary professional, as suffering from or susceptible to a disease, disorder or condition described herein.

[102] The term "pharmaceutically acceptable," as used herein, refers to a component that is, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and other mammals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. A "pharmaceutically acceptable salt" means any non-toxic salt that, upon administration
to a recipient, is capable of providing, either directly or indirectly, a compound of this invention. A "pharmaceutically acceptable counterion" is an ionic portion of a salt that is not toxic when released from the salt upon administration to a recipient.

[103] Acids commonly employed to form pharmaceutically acceptable salts include inorganic acids such as hydrogen bisulfide, hydrochloric acid, hydrobromic acid, hydriodic acid, sulfuric acid and phosphoric acid, as well as organic acids such as para-toluenesulfonic acid, salicylic acid, tartaric acid, bitartaric acid, ascorbic acid, maleic acid, besylic acid, fumaric acid, gluconic acid, glucuronic acid, formic acid, glutamic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, lactic acid, oxalic acid, para-bromophenylsulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid and acetic acid, as well as related inorganic and organic acids. Such pharmaceutically acceptable salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydr genophosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-1,4-dioate, hexyne-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, terephthalate, sulfonate, xylene sulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, β-hydroxybutyrate, glycolate, maleate, tartrate, methanesulfonate, propanesulfonate, naphthalene-1-sulfonate, naphthalene-2-sulfonate, mandelate and other salts. In one embodiment, pharmaceutically acceptable acid addition salts include those formed with mineral acids such as hydrochloric acid and hydrobromic acid, and especially those formed with organic acids such as maleic acid.

[104] As used herein, the term "hydrate" means a compound which further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces.

[105] As used herein, the term "solvate" means a compound which further includes a stoichiometric or non-stoichiometric amount of solvent such as water, acetone, ethanol, methanol, dichloromethane, 2-propanol, or the like, bound by non-covalent intermolecular forces.

[106] As used herein and unless otherwise indicated, the term "prodrug" means a derivative of a compound that can hydrolyze, oxidize, or otherwise react under biological conditions (in vitro or in vivo) to provide a compound of this invention.
Prodrugs may only become active upon such reaction under biological conditions, or they may have activity in their unreacted forms. Examples of prodrugs contemplated in this invention include, but are not limited to, analogs or derivatives of compounds of any one of the formulae disclosed herein that comprise biohydrolyzable moieties such as amides, esters, carbamates, carbonates, and phosphate analogues. Prodrugs can typically be prepared using well-known methods, such as those described by Burger's Medicinal Chemistry and Drug Discovery (1995) 172-178, 949-982 (Manfred E. Wolff ed., 5th ed); see also Goodman and Gilman's, The Pharmacological basis of Therapeutics, 8th ed., McGraw-Hill, Int. Ed. 1992, "Biotransformation of Drugs".

[107] As used herein and unless otherwise indicated, the term "biohydrolyzable moiety" means a functional group (e.g., amide, ester, carbamate, carbonate, or phosphate) analogue, that either: 1) does not destroy the biological activity of the compound and confers upon that compound advantageous properties in vivo, such as uptake, duration of action, or onset of action; or 2) is itself biologically inactive but is converted in vivo to a biologically active compound.

[108] A prodrug salt is a compound formed between an acid and a basic group of the prodrug, such as an amino functional group, or a base and an acidic group of the prodrug, such as a carboxyl functional group. In a one embodiment, the prodrug salt is a pharmaceutically acceptable salt.

[109] Particularly favored prodrugs and prodrug salts are those that increase the bioavailability of the compounds of this invention when such compounds are administered to a mammal (e.g., by allowing an orally administered compound to be more readily absorbed into the blood) or which enhance delivery of the parent compound to a biological compartment (e.g., the brain or central nervous system) relative to the parent species. Preferred prodrugs include derivatives where a group that enhances aqueous solubility or active transport through the gut membrane is appended to the structure of formulae described herein. See, e.g., Alexander, J. et al. Journal of Medicinal Chemistry 1988, 31, 318-322; Bundgaard, H. Design of Prodrugs; Elsevier: Amsterdam, 1985; pp 1-92; Bundgaard, H.; Nielsen, N. M. Journal of Medicinal Chemistry 1987, 30, 451-454; Bundgaard, H. A Textbook of Drug Design and Development; Harwood Academic Publ.: Switzerland, 1991; pp 113-191; Digenis, G. A. et al. Handbook of Experimental Pharmacology 1975, 28, 86-112; Friis, G. J.; Bundgaard, H. A Textbook of Drug Design and Development; 2 ed.; Overseas Publ.: Amsterdam, 1996; pp 351-385; Pitman, I. H. Medicinal Research Reviews 1981, 1, 189-214.
The compounds of the present invention may contain an asymmetric carbon atom, for example, as the result of deuterium substitution or otherwise. As such, compounds of this invention can exist as either individual enantiomers, or mixtures of the two enantiomers. Accordingly, a compound of the present invention will include both racemic mixtures, and also individual respective stereoisomers that are substantially free from another possible stereoisomer. The term "substantially free of other stereoisomers" as used herein means less than 25% of other stereoisomers, preferably less than 10% of other stereoisomers, more preferably less than 5% of other stereoisomers and most preferably less than 2% of other stereoisomers, or less than "X"% of other stereoisomers (wherein X is a number between 0 and 100, inclusive) are present. Methods of obtaining or synthesizing an individual enantiomer for a given compound are well known in the art and may be applied as practicable to final compounds or to starting material or intermediates.

The term "stable compounds," as used herein, refers to compounds which possess stability sufficient to allow for their manufacture and which maintain the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., formulation into therapeutic products, intermediates for use in production of therapeutic compounds, isolatable or storable intermediate compounds, treating a disease or condition responsive to therapeutic agents).

As used herein, the term "alkyl" refers to a straight-chained or branched hydrocarbon group containing 1 to 12 carbon atoms. The term "lower alkyl" refers to a C1-C6 alkyl chain. Examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, t-butyl, and n-pentyl.

"Stereoisomer" refers to both enantiomers and diastereomers.
"Tert", "m", and "t-" each refer to tertiary.
"US" refers to the United States of America.

Throughout this specification, a variable may be referred to generally (e.g., "each R") or may be referred to specifically (e.g., R₁, R₂, R₃, etc.). Unless otherwise indicated, when a variable is referred to generally, it is meant to include all specific embodiments of that particular variable.

The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable herein includes that embodiment as any single embodiment or in combination with any other
embodiments or portions thereof. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.

[118] The compounds herein may be in the form of racemic mixtures, enriched in a particular enantiomer or diastereomer. Although specific stereoisomers may be depicted, all such optically active forms and mixtures are contemplated.

Exemplary Synthesis

[119] The specific approaches and compounds shown above are not intended to be limiting. The chemical structures in the schemes herein depict variables that are hereby defined commensurately with chemical group definitions (moieties, atoms, etc.) of the corresponding position in the compound formulae herein, whether identified by the same variable name (i.e., R^1, R^2, R^3, etc.) or not. The suitability of a chemical group in a compound structure for use in the synthesis of another compound is within the knowledge of one of ordinary skill in the art. Additional methods of synthesizing compounds herein and their synthetic precursors, including those within routes not explicitly shown in schemes herein, are within the means of chemists of ordinary skill in the art. Methods for optimizing reaction conditions and, if necessary, minimizing competing by-products, are known in the art. In addition to the synthetic references cited herein, reaction schemes and protocols may be determined by the skilled artisan by use of commercially available structure-searchable database software, for instance, SciFinder® (CAS division of the American Chemical Society), STN® (CAS division of the American Chemical Society), CrossFire Beilstein® (Elsevier MDL), or internet search engines such as Google® or keyword databases such as the US Patent and Trademark Office text database.

[120] The methods to make the compounds described herein may also additionally include steps, either before or after the steps described specifically herein, to add or remove suitable protecting groups in order to ultimately allow synthesis of the compounds herein. In addition, various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the applicable compounds are known in the art and include, for example, those described in Larock R, Comprehensive Organic Transformations, VCH Publishers (1989); Greene TW et al., Protective Groups in Organic Synthesis,

[121] Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds.

[122] Toll-Like Receptors (TLRs)

[123] Toll-like Receptors (TLRs) are major positive effectors of innate immunity and central to the development of antimicrobial inflammatory responses initiated by PAMP (pathogen associated molecular pattern) binding. A typical TLR has leucine rich (LRR) ligand binding ectodomain, a transmembrane domain and the cytoplasmic signaling TIR domain (see Figure 1). Binding of different DAMPs and PAMPs with the ectodomain leads to engagement of adaptor proteins to the intracellular TIR domain, leading to activation of transcription of inflammatory mediators. Adaptor proteins, MyD88, MAL/Trap, TRIF, SARM and TRAM, transduce signals from the TIR domain by activating a series of protein kinases which in activate pro-inflammatory transcription factors (e.g., NF-κB, IRF). All TLRs are constitutively expressed in the central nervous system (CNS) and they have been reported to confer neuroprotection and neurotoxicity, but there has been relatively limited study of TLRs in neurodegenerative proteinopathies. Consistent with their role in innate immunity TLRs are expressed on microglia and astrocytes in the brain, but they also can be expressed on neurons.

[124] There are 10 human TLRs with TLRs 1, 2, 4, 5, 6 and 10 functioning as extracellular receptors. These TLRs are found primarily on the cell surface and are activated by extracellular ligands. TLRs 3, 7, 8 and 9 function as lumenal receptors, as they are primarily expressed in endosomes and the ER and are activated by ligands binding in the lumen of these organelles. TLRs can from noncovalent homodimers and some form heterodimers. Generally, TLR ligands fall into three classes: lipids and lipilated peptides (which bind TLR4 and the heterodimers TLR2/1 and TLR2/6), proteins (TLR5), and nucleic acids (TLR 3, 7, 8, 9). TLRs not only recognize exogenous pathogen associated molecular patterns (PAMPs) but also endogenous disease associated molecular patterns (DAMPs). Significantly, recent evidence demonstrates that misfolded amyloid-like proteins including Aβ and a-synuclein
aggregates represent DAMPs that can bind and activate select TLRs. In vitro studies have shown that Aβ aggregates can bind and activate TLR2, 4 and a tripartite complex of CD36-TLR2-TLR6. Other amyloids and a-synuclein aggregates are also impacted as ligands and activators of TLR2 and 4 [14, 65]. TLRs have also been shown to regulate Aβ deposition. Administration of TLR4 and TLR9 agonists decreases Aβ loads in APP transgenic mice brains, whereas knocking down TLR2 or TLR4 in APP mice exacerbates Aβ plaque pathology. [125] Activation of TLR co-receptors or adaptor proteins like Myd88 also appears to regulate Aβ aggregate induced inflammation and deposition. TLR4 and TLR2 exacerbates Aβ induced neuronal injury, and abolishing Myd88 signaling rescues cells from Aβ-induced neurotoxicity, indicating that Aβ aggregate-induced TLR engagement may be detrimental to cell viability. Though these data all paint a picture that Aβ-aggregates and other DAMPs activate several TLRs increasing inflammation and thereby reduce Aβ; one study of Myd88 KO showed that loss of Myd88 paradoxically reduced Aβ deposition, whereas myd88 haploinsufficiency was reported to be beneficial as well. Of interest, TLR2 and 4 variants have also been associated with AD risk Chinese populations.

[126] Generation of soluble TLRs is a naturally occurring phenomenon for many innate immune receptors, whereby ectodomain shedding of the ligand binding domain results in decoy receptor that blocks singling thorough the intact receptor. Although not all TLRs are known to have a naturally occurring soluble form, TLR 2, 4, 5 and 6 do. Given the structural similarities among all the TLRs there is no a priori reason why engineered TLRs cannot be utilized. As described herein, decoy receptors were generated by removing the transmembrane domain and the TIR domain of native full length TLRs (frTLR) and expressing these (see Figure 1, the region bounded by arrowheads, as sTLRs. For example, soluble immune decoy receptors provide important negative regulatory mechanisms for cytokines and chemokines, and for their respective receptor interactions. Such decoy receptors can essentially bind and/or sequester ligands and be removed from the circulation by complement and other innate immune system components following ligand binding. Multiple sTLRs that could effectively block TLR signaling (Table 1). Without being bound to a particular theory, natural soluble TLRs (sTLR) are thought to prevent excessive triggering of membrane-bound TLRs and subsequent overactivation of the innate immune system (Table 1). Such a mechanism has the potential to provide a direct
attenuation of acute host inflammatory responses to pathogenic ligands and stress proteins.

[127] Table 1. Naturally occurring sTLRs

<table>
<thead>
<tr>
<th>Protein</th>
<th>Source</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>sTLR2</td>
<td>Breast milk</td>
<td>Inhibits HIV proliferation and cell-free HIV infection</td>
<td>Henrick, 2012, PLoS One</td>
</tr>
<tr>
<td>sTLR4, sTLR2</td>
<td>Human saliva</td>
<td>Inhibits LPS signaling; Modulates IL-1β production by macrophages</td>
<td>Zunt, Clin Exp Immunol 2009; Kurotschi, 2007, Mol Immunol</td>
</tr>
<tr>
<td>sTLR2</td>
<td>Human plasma, breast milk</td>
<td>Serum depletion results in higher sensitivity to LPS</td>
<td>LeBlouder, 2005, J Immunol</td>
</tr>
<tr>
<td>sTLR2</td>
<td>Human amniotic fluid</td>
<td>Antagonizes TLR2 signaling in vitro</td>
<td>Dulay, 2009, J Immunol</td>
</tr>
<tr>
<td>sTLR2</td>
<td>sTLR2 ip in mice</td>
<td>Reduces inflammation without compromising bacterial clearance</td>
<td>Raby, 2009, J Immunol</td>
</tr>
<tr>
<td>sCD14, sTLR2</td>
<td>saliva</td>
<td>Biomarker of burning mouth syndrome</td>
<td>Srinivasan, 2008, Clin Immunol</td>
</tr>
<tr>
<td>sCD14</td>
<td>saliva</td>
<td></td>
<td>Uehara, 2003, Clin Diagn Lab Immunol</td>
</tr>
<tr>
<td>sCD14</td>
<td>Synovial fluid</td>
<td>Biomarker of early stage osteoarthritis</td>
<td>Nair, 2012, Arthritis Rheum</td>
</tr>
<tr>
<td>sCD14</td>
<td>Human astrocyte (functional screen)</td>
<td>Agonist of TLR2 signaling in vitro</td>
<td>Bubisi, 2007, Glia</td>
</tr>
<tr>
<td>sTLR3</td>
<td>Invitro (HEK293, RAW, HeLa)</td>
<td>Binds to CpG and negatively regulates TLR9 signaling</td>
<td>Chockalingam, 2011, Eur J Immunol</td>
</tr>
<tr>
<td>sTLR5</td>
<td>Brain, heart, kidney of Japanese flounder; Catfish; Atlantic salmon</td>
<td>Upregulated in flounder following flagellin stimulation</td>
<td>Hwang, 2010; Fish Shellfish Immunol; Baoprasertkul, 2007, Fish Shellfish Immunol; Tsui, 2006, Vet Immunol Immunopathol</td>
</tr>
<tr>
<td>sTLR5</td>
<td>Rainbow trout</td>
<td>Binds to flagellins</td>
<td>Tsujita, 2006, Vaccine</td>
</tr>
</tbody>
</table>

[128] Negatively targeting TLR-induced inflammasome by such endogenous decoy receptors has the potential to harness the beneficial effects of innate immune signaling (i.e., Aβ removal by activated glia) while minimizing bystander toxicity (i.e., inflammasome-induced sterile inflammation) in a mouse model of Alzheimer’s disease, as described herein. Compared to using widely available TLR inhibitors or antagonists (Table 2), this approach enables one to utilize the beneficial component of innate immune activation (i.e., binding and removing DAMPs, while attenuating activation of excessive cytokines and other harmful factors). It is possible that using TLR inhibitors may have unexpected detrimental effects by shutting down the cells’ first line of defense (i.e., the innate immune system) in the face of accumulating DAMPs. Advantageously, sTLRs have broader biological activity, as they are
capable of targeting Aβ, synuclein, and tau. Fully human versions would be well tolerated and non-immunogenic.

Table 2. Clinical development status of TLR antagonists

<table>
<thead>
<tr>
<th>Compound</th>
<th>Targeting TLR</th>
<th>Developing company</th>
<th>Indications</th>
<th>Clinical status</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPN-305</td>
<td>TLR2</td>
<td>Gessen Therapeutics</td>
<td>Inflammation, autoimmunity, ischemia/reperfusion</td>
<td>Preclinical</td>
</tr>
<tr>
<td>OPN-401</td>
<td>TLR4</td>
<td>Optosan Therapeutics</td>
<td>Inflammatory bowel disease, RA</td>
<td>Preclinical</td>
</tr>
<tr>
<td>Entorani</td>
<td>TLR4</td>
<td>Eisai Pharma</td>
<td>Sepsis and septic shock</td>
<td>Phase III</td>
</tr>
<tr>
<td>TAK-242</td>
<td>TLR4</td>
<td>Takeda Pharma</td>
<td>Sepsis</td>
<td>Suspended</td>
</tr>
<tr>
<td>Con10</td>
<td>TLR4</td>
<td>CBio Ltd</td>
<td>RA, MS, psoriasis</td>
<td>Phase III</td>
</tr>
<tr>
<td>NI-0101</td>
<td>TLR4</td>
<td>Novimmune</td>
<td>Acute and chronic inflammation</td>
<td>Preclinical</td>
</tr>
<tr>
<td>TA6</td>
<td>TLR4</td>
<td>Novimmune</td>
<td>Collitis</td>
<td>Preclinical</td>
</tr>
<tr>
<td>AV431</td>
<td>TLR4</td>
<td>Avigen</td>
<td>Pain management and withdrawal</td>
<td>Phase II</td>
</tr>
<tr>
<td>RRS-954 (DV-1079)</td>
<td>TLR7 and 9</td>
<td>Dynavax Technologies</td>
<td>SLE, HAV</td>
<td>Preclinical</td>
</tr>
<tr>
<td>IMO-1101</td>
<td>TLR7 and 5</td>
<td>Idena Pharma</td>
<td>SLE, RA, MS</td>
<td>Phase I</td>
</tr>
<tr>
<td>CFG-52364</td>
<td>PolyTLR</td>
<td>Pfizer</td>
<td>SLE</td>
<td>Phase I completed</td>
</tr>
</tbody>
</table>

RA: Rheumatoid arthritis; SLE: Systemic lupus erythematosus.

Therefore, using sTLRs as alternatives to TLR inhibitors or antagonists may synergize with the natural defense capacity of the body to recognize and remove harmful DAMPs. In addition, different sTLRs have been designed that are tagged with immunoglobulin (IgG) at their C terminal ends. The purpose of this is manifold:
1) it increases solubility and extends half-life of molecules in vivo, 2) the TLRs are phagocytosed more effectively by cellular mechanisms, such as FcR mediated mechanisms, and 3) it allows fast and efficient purification and detection in vitro. Mutiple anti-Abeta antibodies (passive immunotherapies) for AD are in trial.

Compositions

The invention also provides compositions comprising an effective amount of a compound herein, or a pharmaceutically acceptable salt, prodrug, solvate, or hydrate of said compound; and an acceptable carrier. Preferably, a composition of this invention is formulated for pharmaceutical use ("a pharmaceutical composition"), wherein the carrier is a pharmaceutically acceptable carrier. The carrier(s) are "acceptable" in the sense of being compatible with the other ingredients of the formulation and, in the case of a pharmaceutically acceptable carrier, not deleterious to the recipient thereof in an amount used in the medicament.

Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to,
ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.

[133] The pharmaceutical compositions of the invention include those suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. In certain embodiments, the compound of the formulae herein is administered transdermally (e.g., using a transdermal patch or iontophoretic techniques). Other formulations may conveniently be presented in unit dosage form, e.g., tablets, sustained release capsules, and in liposomes, and may be prepared by any methods well known in the art of pharmacy. See, for example, Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, PA (17th ed. 1985).

[134] Such preparative methods include the step of bringing into association with the molecule to be administered ingredients such as the carrier that constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers, liposomes or finely divided solid carriers, or both, and then, if necessary, shaping the product.

[135] In certain embodiments, the compound is administered orally. Compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, sachets, or tablets each containing a predetermined amount of the active ingredient; a powder or granules; a solution or a suspension in an aqueous liquid or a non-aqueous liquid; an oil-in-water liquid emulsion; a water-in-oil liquid emulsion; packed in liposomes; or as a bolus, etc. Soft gelatin capsules can be useful for containing such suspensions, which may beneficially increase the rate of compound absorption.

[136] In the case of tablets for oral use, carriers that are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include
lactose and dried cornstarch. When aqueous suspensions are administered orally, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.

[137] Compositions suitable for oral administration include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; and pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia.

[138] Compositions suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets.

[139] Such injection solutions may be in the form, for example, of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80, solutol and the like) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant.

[140] The pharmaceutical compositions of this invention may be administered in the form of suppositories for rectal administration. These compositions can be prepared
by mixing a compound of this invention with a suitable non-irritating excipient which
is solid at room temperature but liquid at the rectal temperature and therefore will
melt in the rectum to release the active components. Such materials include, but are
not limited to, cocoa butter, beeswax and polyethylene glycols.

[141] The pharmaceutical compositions of this invention may be administered by
nasal aerosol or inhalation. Such compositions are prepared according to techniques
well-known in the art of pharmaceutical formulation and may be prepared as solutions
in saline, employing benzyl alcohol or other suitable preservatives, absorption
promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or
dispersing agents known in the art. See, e.g.: Rabinowitz JD and Zaffaroni AC, US
Patent 6,803,031, assigned to Alexza Molecular Delivery Corporation.

[142] Topical administration of the pharmaceutical compositions of this invention is
especially useful when the desired treatment involves areas or organs readily
accessible by topical application. For topical application topically to the skin, the
pharmaceutical composition should be formulated with a suitable ointment containing
the active components suspended or dissolved in a carrier. Carriers for topical
administration of the compounds of this invention include, but are not limited to,
mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene
polyoxypropylene compound, emulsifying wax, and water. Alternatively, the
pharmaceutical composition can be formulated with a suitable lotion or cream
containing the active compound suspended or dissolved in a carrier. Suitable carriers
include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60,
cetyl esters wax, cetearyl alcohol, 2-octyldecanol, benzyl alcohol, and water. The
pharmaceutical compositions of this invention may also be topically applied to the
lower intestinal tract by rectal suppository formulation or in a suitable enema
formulation. Topically-transdermal patches and iontophoretic administration are also
included in this invention.

[143] Application of the subject therapeutics may be local, so as to be administered
at the site of interest. Various techniques can be used for providing the subject
compositions at the site of interest, such as injection, use of catheters, trocars,
projectiles, pluronic gel, stents, sustained drug release polymers or other device which
provides for internal access. Brain pumps are explicitly contemplated as an
exemplary mode of delivery for the therapeutics of the invention.
Thus, according to yet another embodiment, the compounds of this invention may be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents, or catheters. Suitable coatings and the general preparation of coated implantable devices are known in the art and are exemplified in US Patents 6,099,562; 5,886,026; and 5,304,121. The coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethylsiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof. The coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccharides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition. Coatings for invasive devices are to be included within the definition of pharmaceutically acceptable carrier, adjuvant or vehicle, as those terms are used herein.

According to another embodiment, the invention provides a method of coating an implantable medical device comprising the step of contacting said device with the coating composition described above. It will be obvious to those skilled in the art that the coating of the device will occur prior to implantation into a mammal.

According to another embodiment, the invention provides a method of impregnating an implantable drug release device comprising the step of contacting said drug release device with a compound or composition of this invention. Implantable drug release devices include, but are not limited to, biodegradable polymer capsules or bullets, non-degradable, diffusible polymer capsules and biodegradable polymer wafers.

According to another embodiment, the invention provides an implantable medical device coated with a compound or a composition comprising a compound of this invention, such that said compound is therapeutically active.

According to another embodiment, the invention provides an implantable drug release device impregnated with or containing a compound or a composition comprising a compound of this invention, such that said compound is released from said device and is therapeutically active.

Where an organ or tissue is accessible because of removal from the patient, such organ or tissue may be bathed in a medium containing a composition of this invention, a composition of this invention may be painted onto the organ, or a composition of this invention may be applied in any other convenient way.
[150] In another embodiment, a composition of this invention further comprises a second therapeutic agent. The second therapeutic agent may be selected from any compound or therapeutic agent known to have or that demonstrates advantageous properties when administered with a compound having the same mechanism of action as a compound of any of the formulae herein.

[151] Preferably, the second therapeutic agent is an agent useful in the treatment or prevention of a disease or condition selected from neurodegeneration, inflammation, immunomodulation, or neuroinflammation (e.g., acute, chronic, etc.).

[152] In another embodiment, the invention provides separate dosage forms of a compound of this invention and one or more of any of the above-described second therapeutic agents, wherein the compound and second therapeutic agent are associated with one another. The term "associated with one another" as used herein means that the separate dosage forms are packaged together or otherwise attached to one another such that it is readily apparent that the separate dosage forms are intended to be sold and administered together (within less than 24 hours of one another, consecutively or simultaneously).

[153] In the pharmaceutical compositions of the invention, the compound of the present invention is present in an effective amount. As used herein, the term "effective amount" refers to an amount which, when administered in a proper dosing regimen, is sufficient to reduce or ameliorate the severity, duration or progression of the disorder being treated, prevent the advancement of the disorder being treated, cause the regression of the disorder being treated, or enhance or improve the prophylactic or therapeutic effect(s) of another therapy.

[155] In one embodiment, an effective amount of a compound of this invention can vary dependent on the subject. Treatment can be initiated with smaller dosages, which are less than the optimum dose of the compound. Thereafter, the dosage may be increased by small increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day if desired. A therapeutically effective amount and a
prophylactically effective amount of a compound of the invention is expected to vary from about 0.005 µg/kg to about 200 mg/kg per day, or 0.001 milligram per kilogram of body weight per day (mg/kg/day) to about 100 mg/kg/day.

[156] Effective doses will also vary, as recognized by those skilled in the art, depending on the diseases treated, the severity of the disease, the route of administration, the sex, age and general health condition of the patient, excipient usage, the possibility of co-usage with other therapeutic treatments such as use of other agents and the judgment of the treating physician. For example, guidance for selecting an effective dose can be determined by reference to the prescribing information for a compound of any of the formulae herein.

[157] For pharmaceutical compositions that comprise a second therapeutic agent, an effective amount of the second therapeutic agent is between about 20% and 100% of the dosage normally utilized in a monotherapy regime using just that agent. Preferably, an effective amount is between about 70% and 100% of the normal monotherapeutic dose. The normal monotherapeutic dosages of these second therapeutic agents are well known in the art. See, e.g., Wells et al., eds., Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, Calif. (2000), each of which references are incorporated herein by reference in their entirety.

[158] It is expected that some of the second therapeutic agents referenced above will act synergistically with the compounds of this invention. When this occurs, it will allow the effective dosage of the second therapeutic agent and/or the compound of this invention to be reduced from that required in a monotherapy. This has the advantage of minimizing toxic side effects of either the second therapeutic agent of a compound of this invention, synergistic improvements in efficacy, improved ease of administration or use and/or reduced overall expense of compound preparation or formulation.

Methods of Treatment

[159] In another embodiment, the invention provides a method of directly or indirectly modulating the activity of amyloid-like protein aggregation, DAMPS, or PAMPS in a cell, comprising contacting a cell with one or more compounds herein.
According to another embodiment, the invention provides a method of treating a patient suffering from, or susceptible to, a disease that is beneficially treated by a compound of any of the formulae herein comprising the step of administering to said patient an effective amount of a compound or a composition of this invention. Such diseases are well known in the art and are disclosed herein as well.

Methods delineated herein also include those wherein the patient is identified as in need of a particular stated treatment. Identifying a patient in need of such treatment can be in the judgment of a patient or a health care professional and can be subjective (e.g. opinion) or objective (e.g. measurable by a test or diagnostic method). In other methods, the subject is prescreened or identified as in need of such treatment by assessment for a relevant marker or indicator of suitability for such treatment.

In another embodiment, any of the above methods of treatment comprises the further step of co-administering to said patient one or more second therapeutic agents. The choice of second therapeutic agent may be made from any second therapeutic agent known to be useful for co-administration with a compound of any of the formulae herein. The choice of second therapeutic agent is also dependent upon the particular disease or condition to be treated. Examples of second therapeutic agents that may be employed in the methods of this invention are those set forth above for use in combination compositions comprising a compound of this invention and a second therapeutic agent.

The term "co-administered" as used herein means that the second therapeutic agent may be administered together with a compound of this invention as part of a single dosage form (such as a composition of this invention comprising a compound of the invention and an second therapeutic agent as described above) or as separate, multiple dosage forms. Alternatively, the additional agent may be administered prior to, consecutively with, or following the administration of a compound of this invention. In such combination therapy treatment, both the compounds of this invention and the second therapeutic agent(s) are administered by conventional methods. The administration of a composition of this invention, comprising both a compound of the invention and a second therapeutic agent, to a patient does not preclude the separate administration of that same therapeutic agent, any other second therapeutic agent or any compound of this invention to said patient at another time during a course of treatment.
Effective amounts of these second therapeutic agents are well known to those skilled in the art and guidance for dosing may be found in patents and published patent applications referenced herein, as well as in Wells et al., eds., Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, Calif. (2000), and other medical texts. However, it is well within the skilled artisan's purview to determine the second therapeutic agent's optimal effective-amount range.

In yet another aspect, the invention provides the use of a compound delineated herein (e.g., sTLR, sTLR-Fc fusion protein) alone or together with one or more of the above-described second therapeutic agents in the manufacture of a medicament, either as a single composition or as separate dosage forms, for treatment or prevention in a patient of a disease, disorder or symptom set forth above. Another aspect of the invention is a compound delineated herein for use in the treatment or prevention in a patient of a disease, disorder or symptom thereof delineated herein.

The administration of a composition of the invention for the treatment of a neurodegenerative proteinopathy disease or disorder may be by any suitable means that results in expression of an effective amount of sTLR that, combined with other components, is effective in ameliorating, reducing, or stabilizing the disease. For example, an amount that reduces plaque formation, including amyloid (Α40, Α42), tau, and/or synuclein, plaque formation. A therapeutic sTLR expression vector or sTLR polypeptide may be contained in any appropriate amount in any suitable carrier substance, and is generally present in an amount of 1-95% by weight of the total weight of the composition. The composition may be provided in a dosage form that is suitable for parenteral (e.g., intravenously, intra-arterial) administration route. The pharmaceutical compositions may be formulated according to conventional pharmaceutical practice (see, e.g., Remington: The Science and Practice of Pharmacy (20th ed.), ed. A. R. Gennaro, Lippincott Williams & Wilkins, 2000 and Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1999, Marcel Dekker, New York).

If desired, therapeutic compositions of the invention (e.g., a viral expression vector comprising a polynucleotide encoding an sTLR polypeptide) are provided together with other agents that are useful for reducing inflammation or that are otherwise therapeutic for neurodegenerative proteinopathy disease or disorder.
Polynucleotide Therapy

[168] For therapeutic uses, a viral expression vector comprising a polynucleotide encoding an sTLR polypeptide disclosed herein may be administered systemically, for example, formulated in a pharmaceutically-acceptable buffer, such as physiological saline. Preferable routes of administration include, for example, intravenous, intra-arterial, into the cerebrospinal fluid, into the ventricles of the brain, or any other injection site that provides continuous, sustained levels of expression in the patient to treat a neurodegenerative proteinopathy disease or disorder.

[169] The invention provides methods for recombinantly expressing sTLR in a cell, tissue, or organ. If desired, a viral vector (e.g., an adeno-associated viral vector) is used to inducibly or constitutively express an sTLR polypeptide. Polynucleotide therapy featuring a polynucleotide (e.g., an AAV expression vector, such as an AAV-2, AAV-9 vector) encoding a sTLR protein, variant, or fragment thereof is one therapeutic approach for treating a neurodegenerative proteinopathy disease or disorder (e.g., Alzheimer's disease, Parkinson's disease). Such sTLR-expressing nucleic acid molecules can be delivered to cells (e.g., neurons, endothelial cells, astrocytes, glia) of a subject having a neurodegenerative proteinopathy disease or disorder. The polynucleotide encoding a sTLR protein must be delivered to the cells of a subject in a form in which they can be taken up so that therapeutically effective levels of sTLR can be produced. Preferably, persistent expression of an sTLR polypeptide is maintained at an effective level for longer than 1 week, 2 weeks, 3 weeks, or longer than 1, 3, 6, or 12 months. If desired, the expression of sTLR is combined with any standard method of treating a neurodegenerative proteinopathy disease or disorder (e.g., Alzheimer's disease, Parkinson's disease).

[170] Transducing viral (e.g., retroviral, adenoviral, and adeno-associated viral) vectors can be used for somatic cell gene therapy, especially because of their high efficiency of infection and stable integration and expression (see, e.g., Cayouette et al., Human Gene Therapy 8:423-430, 1997; Kido et al., Current Eye Research 15:833-844, 1996; Bloomer et al, Journal of Virology 71:6641-6649, 1997; Naldini et al, Science 272:263-267, 1996; and Miyoshi et al., Proc. Natl. Acad. Sci. U.S.A. 94:10319, 1997). For example, a polynucleotide encoding an sTLR polypeptide, variant, or fragment thereof, can be cloned into a retroviral vector and expression can be driven from its endogenous promoter, from a retroviral long terminal repeat, or
from a promoter specific for a target cell type of interest (e.g., neurons, endothelial cells).

[171] In other embodiments, any of the following vectors may be used: Adeno-associated viral vector (AAV), lentiviral vector, retroviral vector, herpes simplex viral vector. More specifically, vectors useful in the methods of the invention include a vaccinia virus, a bovine papilloma virus, or a herpes virus, such as Epstein-Barr Virus (also see, for example, the vectors of Miller, Human Gene Therapy 15-14, 1990; Friedman, Science 244:1275-1281, 1989; Eglitis et al., BioTechniques 6:608-614, 1988; Tolstoshev et al., Current Opinion in Biotechnology 1:55-61, 1990; Sharp, The Lancet 337:1277-1278, 1991; Cornetta et al., Nucleic Acid Research and Molecular Biology 36:311-322, 1987; Anderson, Science 226:401-409, 1984; Moen, Blood Cells 17:407-416, 1991; Miller et al., Biotechnology 7:980-990, 1989; Le Gal La Salle et al., Science 259:988-990, 1993; and Johnson, Chest 107:77S-83S, 1995). Retroviral vectors are particularly well developed and have been used in clinical settings (Rosenberg et al., N. Engl. J. Med 323:370, 1990; Anderson et al., U.S. Pat. No. 5,399,346). In one embodiment, an adeno-associated viral vector (e.g., serotype 2, 9) is used to administer a polynucleotide intravenously, into the cerebrospinal fluid, or by surgical injection into the brain.

[172] Non-viral approaches can also be employed for the introduction of a therapeutic to a cell of a patient requiring treatment or prevention of a neurodegenerative proteinopathy disease or disorder (e.g., Alzheimer's disease, Parkinson's disease). For example, a nucleic acid molecule can be introduced into a cell by administering the nucleic acid in the presence of lipofection (Feigner et al., Proc. Natl. Acad. Sci. U.S.A. 84:7413, 1987; Ono et al., Neuroscience Letters 17:259, 1990; Brigham et al., Am. J. Med. Sci. 298:278, 1989; Staubinger et al., Methods in Enzymology 101:512, 1983), asialoorosomucoid-polylysine conjugation (Wu et al., Journal of Biological Chemistry 263:14621, 1988; Wu et al., Journal of Biological Chemistry 264:16985, 1989), or by micro-injection under surgical conditions (Wolff et al., Science 247:1465, 1990). In one embodiment, the nucleic acids are administered in combination with a liposome and protamine.

[173] Gene transfer can also be achieved using non-viral means involving transfection in vitro. Such methods include the use of calcium phosphate, DEAE dextran, electroporation, and protoplast fusion. Liposomes can also be potentially beneficial for delivery of DNA into a cell. Transplantation of normal genes into the
affected tissues of a patient can also be accomplished by transferring a normal nucleic acid into a cultivatable cell type ex vivo (e.g., an autologous or heterologous primary cell or progeny thereof), after which the cell (or its descendants) are injected into a targeted tissue or delivered via a canula.

[174] cDNA expression for use in polynucleotide therapy methods can be directed from any suitable promoter (e.g., the human cytomegalovirus (CMV), simian virus 40 (SV40), or metallothionein promoters), and regulated by any appropriate mammalian regulatory element. For example, if desired, enhancers known to preferentially direct gene expression in specific cell types (e.g. endothelial cells, neurons, astrocytes, glia) can be used to direct the expression of a nucleic acid. The enhancers used can include, without limitation, those that are characterized as tissue- or cell-specific enhancers. Alternatively, if a genomic clone is used as a therapeutic construct, regulation can be mediated by the cognate regulatory sequences or, if desired, by regulatory sequences derived from a heterologous source, including any of the promoters or regulatory elements described above.

[175] Another therapeutic approach included in the invention involves administration of a recombinant therapeutic, such as a recombinant sTLR variant, or fragment thereof, either directly to the site of a potential or actual disease-affected tissue, to an organ where the polypeptide will have a therapeutic effect, or systemically (for example, by any conventional recombinant protein administration technique). The dosage of the administered protein depends on a number of factors, including the size and health of the individual patient. For any particular subject, the specific dosage regimes should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions.

[176] A pharmaceutical composition comprising a viral expression vector comprising a polynucleotide encoding an sTLR polypeptide may be administered by injection (intravenous, intra-arterial, intra-spinal, intra-ventricular or the like), infusion or implantation in dosage forms, formulations, or via suitable delivery devices or implants containing conventional, non-toxic pharmaceutically acceptable carriers and adjuvants. In one embodiment, a therapeutic composition of the invention is provided via an osmotic pump. The formulation and preparation of such compositions are well known to those skilled in the art of pharmaceutical formulation.
Formulations can be found in Remington: The Science and Practice of Pharmacy, supra.

[177] Compositions for parenteral use may be provided in unit dosage forms (e.g., in single-dose ampoules), or in vials containing several doses and in which a suitable preservative may be added. The composition may be in the form of a solution, a suspension, an emulsion, an infusion device, or a delivery device for implantation, or it may be presented as a dry powder to be reconstituted with water or another suitable vehicle before use. Apart from the active sTLR polynucleotide therapeutic(s), the composition may include suitable parenterally acceptable carriers and/or excipients. The active sTLR polynucleotide therapeutic(s) may be incorporated into an osmotic pump, microspheres, microcapsules, nanoparticles, liposomes, or the like for controlled release. Furthermore, the composition may include suspending, solubilizing, stabilizing, pH-adjusting agents, tonicity adjusting agents, and/or dispersing, agents.

[178] As indicated above, the pharmaceutical compositions according to the invention may be in a form suitable for sterile injection. To prepare such a composition, the suitable active sTLR polynucleotide therapeutic(s) are dissolved or suspended in a parenterally acceptable liquid vehicle. Among acceptable vehicles and solvents that may be employed are water, water adjusted to a suitable pH by addition of an appropriate amount of hydrochloric acid, sodium hydroxide or a suitable buffer, 1,3-butanediol, Ringer's solution, and isotonic sodium chloride solution and dextrose solution. The aqueous formulation may also contain one or more preservatives (e.g., methyl, ethyl or n-propyl p-hydroxybenzoate). In cases where one of the compounds is only sparingly or slightly soluble in water, a dissolution enhancing or solubilizing agent can be added, or the solvent may include 10-60% w/w of propylene glycol or the like.

[179] In one embodiment, a therapeutic composition of the invention (e.g., sTLR polypeptide, an expression vector comprising a polynucleotide encoding an sTLR polypeptide, or cell comprising such agents) is provided locally via a canula.

Kits

[180] The present invention also provides kits for use to treat a disease or disorder in a subject (e.g., a disorder delineated herein). In certain embodiments, the disease or disorder is one beneficially treated with a therapeutic agent (e.g., any compound or
composition herein). These kits comprise (a) a pharmaceutical composition comprising a compound herein, or a salt, hydrate, prodrug, or solvate thereof, wherein said pharmaceutical composition is in a container; and (b) instructions describing a method of using the pharmaceutical composition to treat a disease or disorder in a subject (e.g., a disorder delineated herein).

[181] The container may be any vessel or other sealed or sealable apparatus that can hold said pharmaceutical composition. Examples include bottles, ampules, divided or multi-chambered holders bottles, wherein each division or chamber comprises a single dose of said composition, a divided foil packet wherein each division comprises a single dose of said composition, or a dispenser that dispenses single doses of said composition. The container can be in any conventional shape or form as known in the art which is made of a pharmaceutically acceptable material, for example a paper or cardboard box, a glass or plastic bottle or jar, a re-sealable bag (for example, to hold a “refill” of tablets for placement into a different container), or a blister pack with individual doses for pressing out of the pack according to a therapeutic schedule. The container employed can depend on the exact dosage form involved, for example a conventional cardboard box would not generally be used to hold a liquid suspension. It is feasible that more than one container can be used together in a single package to market a single dosage form. For example, tablets may be contained in a bottle, which is in turn contained within a box. In one embodiment, the container is a blister pack.

[182] The kits of this invention may also comprise a device to administer or to measure out a unit dose of the pharmaceutical composition. Such device may include an inhaler if said composition is an inhalable composition; a syringe and needle if said composition is an injectable composition; a syringe, spoon, pump, or a vessel with or without volume markings if said composition is an oral liquid composition; or any other measuring or delivery device appropriate to the dosage formulation of the composition present in the kit.

[183] In certain embodiment, the kits of this invention may comprise in a separate vessel of container a pharmaceutical composition comprising a second therapeutic agent, such as one of those listed above for use for co-administration with a compound of this invention.

[184] The following examples are provided by way of illustration and are not intended to limit the scope of the invention.
Experimental Section

Example 1. sTLR4 and sTLR5 reduced amyloid plaques in an Alzheimer's disease mouse model.

A study was designed to assess the activity of soluble TLRs, including construction and verification of soluble TLR constructs, injection of rAAV constructs in neonatal Po TgCRND8 mice, and analysis of tissue. Extracellular TLRs 2, 4, 5 and 6 were selected for study, as they have been described as having a naturally occurring soluble form. In particular, TLR5 was chosen because flagellin is a protein PAMP for TLR5. Without being bound to a particular theory, TLR5 might also recognize ordered protein DAMPs such as Aβ amyloid. Interestingly, flagellin proteins lacking the N- or C-terminus form polymers of reduced filament stability, especially the N terminal 1-15 residues readily form β sheet fibrils, resembling β-amyloid and prion peptides (Hakalehto, 2004).

Mouse sTLR2, 4, 5 and 6 were cloned and expressed in pAG3 vector and pAAV2 vectors (Figure 2A). Both these vectors contain a TAP tag (Strep/FLAG tandem affinity purification Gloeckner, 2007) in the C terminus. These were also re-cloned upstream of a mouse IgG Fc sequence flanked by the V5 tag (Table 3; Figure 2B). The corresponding human sequences were cloned in both pAG3 and pAAV2 vectors, flanked by a C terminal FLAG sequence or a fusion of human IgG Fc and FLAG sequence (Figure 2C). The predicted sizes are described at Table 4. Human and mouse TLRs, although conserved in terms of overall domain organization and size, are not identical - the sequence identity in the amino acid level are TLR2 (71%), TLR4 (67%), TLR5 (73%) and TLR6 (74%). A representative immunoblot showing transiently transfected HEK293 cells expressing mouse sTLR-TAP is depicted (Figure 2D). Individual DNA sequences of all the constructs (mentioned in Table 4) are provided at Figure 3.

Table 3. Description of constructs used.
See Figure 3 for nucleotide sequences.

[189] Recombinant AAV2/1 vectors encoding sTLRs 2, 4, 5 and 6 were used to transduce neonatal day PO APP CRND8 mouse brain. Mice were aged to 5 months, brains were harvested and amyloid loads and gliosis were assessed. Expression of sTLR4 and 5 showed dramatic suppression of Aβ deposition (Figure 4, Figure 5) as well decreases in plaque associated microglia (Figure 6) and astrocytes (Figure 7). Both total plaque burden as well as total number of Thioflavin S cored plaques decreased in sTLR4 and sTLR5 expressing mice compared to controls (Figure 4). Both sTLR4 and sTLR5 expression lowered biochemical insoluble Aβ levels (Figure 8). On the other hand, sTLR2 did not significantly alter plaque burden or biochemical Aβ levels (Figure 8). None of these sTLRs caused significant changes in APP or CTF levels (Figure 9). A significant finding was that sTLR4 and sTLR5 expression also resulted in decreased over all gliosis, as assessed by Iba-1 (Figure 6) and GFAP (Figure 7) immunohistochemistry and cdllb (Figure 6) and GFAP (Figure 7) immunoblotting.

[190] Whether toxic DAMPs, such as aggregated Aβ40, Aβ42, α-synuclein or tau acted as ligands of human TLRs and were capable of activating hTLRs was tested. In HEK293 cells stably co-expressing human TLR gene (TLR4/MD-2 or TLR5) and an NF-KB-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene, it was observed that these DAMPS had differential effect on TLR activation. Aβ42, Aβ40 (1 mg/ml California Peptide) were aggregated in vitro according to established protocols. Aggregated Aβ40 (but not aggregated Aβ42) bound and activated human
TLR5 in a dose dependent manner whereas TLR4 mediated signaling was activated by both aggregated Aβ42 and aggregated Aβ40 (Figure 10). Neither of the TLRs showed any activation in the presence of monomeric Aβ42 or monomeric Aβ40. A non-aggregatable Aβ construct Aβ1-22 (“22 mono”) could not activate either TLR4 or 5. TLR2 activation was achieved to very modest levels only at the highest concentration of Aβ40 or 42 tested with no apparent dose-dependence activation, suggesting that Aβ does not elicit TLR2 signaling (Figure 11). This agrees well with in vivo observations on the effect of sTLR2 overexpression in mouse brains (Figure 8). Heterologous amyloids formed from other amyloidogenic proteins/peptides were also tested, some of which are not found in mouse or humans. These proteins were: sup 35-7 (from Sup35, a prion-like protein in yeast), prion protein fragment 106-126, Tox CS25 (Bacillus cold shock protein attached to T-helper toxoid peptide in the C terminal), MSP2 (Plasmodium merozoite surface protein 2), AVS12Tox (adenovirus type 2 shaft 12 amino acid peptide tagged to toxoid peptide on the C terminus) and ToxAVS25 (adenovirus type 2 shaft 25 amino acid peptide tagged to toxoid peptide on the N terminus). Of these different heterologous amyloids tested, ToxAVS12, AVS12Tox and MSP2 showed significant TLR4 activation (Figure 12).

[191] Synuclein (5mg/ml) was aggregated in vitro according to established protocols. Aggregated as well as monomeric synuclein activated human TLR4 dramatically in a dose-dependent manner and activated TLR2 to a lesser extent at the highest concentration tested (Figures 13, 16). Synuclein weakly activated TLR5 signaling, only at the highest concentration tested (Figure 15). A very interesting observation was that monomeric synuclein was also capable of eliciting TLR2, TLR4 and TLR5 signaling (Figures 13, 15). To test which sequence of monomeric synuclein actually can elicit TLR4 signaling, different peptides corresponding to internal and N-/C- terminal deletions were used (Figure 14). The sequence deletion of amino acids 102-140 completely abolished TLR4 signaling whereas synuclein containing amino acids 1-110 was sufficient for TLR4 signaling. This indicates that the amino acids between 102 and 110 are important for synuclein mediated TLR4 activation.

[192] Wild type tau T40 and disease associated mutant tau P301L (‘Tau 40 PL’) was fibrillized in the presence of heparin according to established protocols (Giasson, 2003). Neither monomeric wild type T40 nor heparin by itself activated human TLR4 or human TLR5 signaling (Figures 17-19). Aggregated wild type T40, aggregated
T40 PL as well as monomeric T40PL could lead to TLR4 activation and signaling (Figure 17), whereas none of these tau species tested activated either TLR5 or TLR6. Altogether, these experiments show that these proteins/peptides associated with different neurodegenerative diseases had very unique and distinct effects on TLR signaling, justifying their use as specific disease modifying tools targeting unique pathologic proteinopathic inclusions.

[193] Whether expression of sTLRs can block Aβ and synuclein induced toxicity in primary mouse neuroglial cultures was also examined. In these studies, mouse neuroglial cultures were transduced with rAAV2/I encoding sTLR2, 4 or 5, and after 7 days the cultures were exposed to aggregated Aβ42 (10µM) or aggregated synuclein (1µM) for 24 hours. In these studies both sTLR4 and 5 completely blocked Aβ-induced toxicity as assessed by PI/calcein cell viability assay (data not shown). sTLR2 could also block Aβ-induced neurotoxicity but to a lesser extent. It was also tested whether these sTLRs could block a-synuclein induced neuronal death. sTLR2 and 4, but not sTLR5, were able to reverse a-synuclein induced cell death (data not shown), supporting the observations from the in vitro TLR activation assay (Figures 14-16).

[194] The results indicated that: 1) sTLR 4 and 5 but not sTLR2 and 6 modulated Aβ plaque deposition in vivo, 2) sTLR 4 and 5 modulate plaque associated glial activation, 3) sTLR2, 4 and 5 blocked Aβ toxicity in primary neuronal cultures, 4) sTLR 2 and 4, but not sTLR5, blocked synuclein toxicity in primary neuronal culture, and 5) human full length TLR 2, 4 and 5 were differentially activated by Aβ, tau and synuclein.

[195] Further experiments identified a striking reduction in Aβ cerebral plaque load in sTLR5FcV5 -treated CRND8 mice. As shown in Figure 20, when neonatal CRND8 mice were injected with AAV2/I-sTLR5FcV5 or EGFP (Control) in the cerebral ventricles and then aged for 6 months, post-sacrifice analysis of Aβ plaques in the hippocampus and cortex (stained with pan Aβ 33.1.1 antibody) showed dramatic reduction in Aβ plaques in the sTLR5FcV5 injected mice, as compared to control mice (n=8-10 mice/group). Consistent with this reduction in Aβ plaques as ascertained by staining with pan Aβ 33.1.1 antibody, a reduction in thioflavin S-stained Aβ plaques was also observed in CRND8 mice administered sTLR5FcV5. As shown in Figure 21, significant reductions in thioflavin S staining (thioflavin S labels beta-pleated sheets of plaques and neurofibrillary tangles (NFTs)) were seen in
neonatal CRND8 mice injected with AAV2/l-sTLR5FcV5 or EGFP (Control) in the cerebral ventricles and aged for 6 months. Analysis of Aβ plaques in the hippocampus and cortex (stained with Thioflavin S) showed reduced cored Aβ plaque in sTLR5FcV5 injected mice, as compared to control mice (n=8 mice/group). Thus, locally administered sTLR5FcV5 had a preventive effect upon the accumulation of Aβ plaques in CRND8 mice.

[196] The selectivity of the sTLR5FcV5 effect for prevention and/or disruption of Aβ plaque deposits, as compared to any impact upon soluble forms of Aβ, was examined in neonatal CRND8 mice that were injected with AAV2/l-sTLR5FcV5 or EGFP (Control) in the cerebral ventricles and aged for 6 months. As shown in Figure 22, where Aβ levels in the forebrain were analyzed following serial extraction in formic acid (FA, representing amyloid plaque associated Aβ), RIPA (radio-immunoprecipitation assay) buffer or SDS (both RIPA and SDS results represent 'soluble' Aβ), there was a massive decrease in both FA-extracted Aβ42 and Aβ40 levels but no significant changes in RIPA- and SDS-extracted Aβ levels (n=8 mice/group; 1-way Anova, *p<0.05 and ***p<0.001). Thus, sTLR5FcV5 expression led to reduction in plaque-associated Aβ levels with a high level of selectivity of effect.

[197] Example 2. sTLR5FcV5 produced a survival benefit in Alzheimer's disease model mice.

[198] In view of the dramatic changes in Aβ plaque formation and disruption observed for sTLR5FcV5-administered mice, whether such changes also translated into a survival advantage for sTLR5FcV5-administered mice was examined. As shown in Figure 23, survival was tracked in transgenic CRND8 mice expressing either sTLR5FcV5 or EGFP (Control). While high (approx. 80% or greater of the n=20-25 mice/group) rates of survival were observed in both groups over the first approximately 70 days, a dramatic and persistent divergence between the two groups was observed across the latter half of the study (Figure 23). Thus, a greater proportion of sTLR5FcV5-expressing mice survived until the end of the 150 day study, indicating a survival benefit for sTLR5FcV5 expression.

[199] Example 3. Therapeutic impact of sTLR5FcV5 upon Aβ plaques confirmed in Alzheimer's disease model mice.

[200] To examine the impact of hippocampal expression of sTLR5FcV5 in non-neonatal CRND8 mice, nine month old transgenic CRND8 mice were injected in the
hippocampus with rAAV2/l-sTLR5FcV5 or rAAV2/l-GFP and analyzed after three months. As shown in Figure 24, this sTLR5 FcV5 treatment regimen resulted in reduced Aβ plaque levels. Specifically, analysis of formic acid-extracted Aβ levels in the hippocampus of the 9-12 month cohort showed reduced Aβ42 in sTLR5FcV5-injected mice, as compared to control mice. Meanwhile, there was no change in the RIPA and SDS soluble Aβ levels (data not shown; n=5 mice/group. 1-way Anova, *p<0.05). Thus, sTLR5 FcV5 had a therapeutic effect (as measured by Aβ plaque levels) upon nine month old CRND8 mice.

[201] Example 4. V5 immunoprecipitation confirmed the overexpression of sTLR5FcV5 in mice administered sTLR5FcV5 via rAAV2/l directed somatic brain transgenesis.

[202] Overexpression of human sTLR5FcV5 in mouse brain via rAAV2/l directed somatic brain transgenesis was confirmed via immunoprecipitation with anti-V5 antibody. The sTLR5FcV5 molecule containing the following regions is shown in Figure 25A: (a) endogenous human TLR5 secretion signal, region (b) human TLR5 ectodomain, region (c) human IgGl Fc domain and region (d) V5 molecular tag (regions are not to scale, and notations denote length of polypeptide (# amino acid)). Immunoprecipitation was used to examine expressed levels of human sTLR5FcV5 in neonatal CRND8 mice injected in the cerebral ventricles with either rAAV2/l-sTLR5FcV5 or rAAV2/l-GFP and aged to 6 months. As shown in Figure 25B, presence of sTLR5FcV5 protein was tested in sequentially extracted RIPA soluble and detergent (2% SDS) soluble fractions using a V5 immunoprecipitation (IP) assay. (In such experiments, "Bead" lane indicates a mock IP assay; "M" lane indicates molecular weight standards (from top to bottom in kDa, 250, 150, 100, 75, 50, 37); lanes 1-3, rAAV2/l-sTLR5FcV5 injected brain lysates and lanes 4-7, rAAV2/l-GFP injected mice brain lysates; Pos Ct = positive control lanes to test efficiency of V5 IP assay; "4B1" lane was media from sTLR4FcV5-CHO clonal cell line and "5D6" lane was media from sTLR5FcV5-CHO clonal cell line.) The arrow in Figure 25B corresponds to the expected molecular weight of sTLR5FcV5 protein, which was most prominently observed in RIPA-extracted lanes 1-3, as well as in positive control lanes (the "4B1" lane that contained media from the sTLR4FcV5 -CHO clonal cell line and the "5D6" lane that contained media from the sTLR5FcV5-CHO clonal cell line). Thus, overexpression of human sTLR5FcV5 in mouse brain via rAAV2/l directed somatic brain transgenesis was confirmed via immunoprecipitation.
Example 5. sTLR5FcV5 bound to Aβ in vivo and in vitro.

The dramatic impact of sTLR5FcV5 expression upon Aβ plaque levels indicated a direct effect of sTLR5FcV5 upon Aβ plaques. To examine whether sTLR5FcV5 might actually bind Aβ, a series of experiments (shown in Figures 26-29) was performed. Within the first such experiments, TBS-extracted soluble brain lysates obtained from 6 month old mice neonatally injected with rAAV2/1-sTLR5FcV5 or rAAV2/1-GFP were incubated with two different anti-Aβ antibodies bound to Sepharose beads: 4G8 (Covance) corresponding to amino acids 17-24 and Ab5 (T. Golde) corresponding to amino acids 1-16. After binding, immune complexes were then pulled down, separated on a SDS PAGE and tested for the presence of sTLR5FcV5 using anti V5 tag antibody. Such experiments demonstrated that sTLR5FcV5 formed a complex with soluble Aβ in vivo (Figure 26A). (Meanwhile, a mock pulldown assay served as a negative control and a lane of purified sTLR5FcV5 protein was loaded at left to assist in molecular weight determination. Total inputs in each lane were assessed using an anti-actin antibody (Figure 26A, lower panel).) As a further control, dual Li-Cor immunoblotting was used to show that neither purified sTLR5FcV5 nor purified sTLR4FcV5 was recognized by anti-Aβ antibodies 4G8 or Ab5 by themselves (Figure 26B, where lanes 1 show molecular weight markers, lanes 2 show sTLR4FcV5 results and lanes 3 show sTLR5FcV5 results). Thus, sTLR5FcV5 bound Aβ in vivo.

Initial in vivo observations of sTLR5FcV5-Aβ binding were then pursued in greater biochemical detail in vitro. In an initial in vitro experiment to detect sTLR5FcV5-Aβ binding, stable CHO cell lines expressing sTLR5FcV5 were incubated with aggregated Aβ42 for a 12 hour time course (Figure 27). ELISA analysis of Aβ in the media demonstrated that a proportionately higher amount of Aβ remained sequestered in sTLR5FcV5 media, as compared to control CHO cell media. Thus, sTLR5FcV5 bound to aggregated Aβ42 in vitro.

In vitro sTLR5FcV5-Aβ binding experiments also demonstrated a selectivity of effect for aggregated Aβ as compared to monomeric Aβ, which were consistent with the above-observed differential impacts upon Aβ plaques and soluble forms of Aβ. In such experiments, sTLR5FcV5 and sTLR4FcV5 were observed to bind more efficiently to aggregated Aβ, as compared to monomeric Aβ (Figure 28). Specifically, purified sTLR5FcV5, sTLR4FcV5 and FcV5 proteins were employed in a direct ELISA assay to assess binding to aggregated Aβ or monomeric Aβ.
Detection was performed using HRP conjugated anti-Fc antibody. 1-way Anova, *p<0.05, ***p<0.01.
In a final in vitro experiment, the ability of soluble, CHO cell-expressed sTLR5FcV5 present in CHO cell media to bind to Aβ was examined using immobilized sTLR5FcV5 from CHO cell media as an immobilized ligand for Aβ. As shown in Figure 29, binding of sTLR5FcV5 to aggregated Aβ42 was observed in real time. Specifically, media from stable CHO cell lines expressing sTLR5FcV5, sTLR4FcV5, FcV5 or commercially available recombinant IgGl Fc was immobilized on anti-human Fc sensor followed by association of sensor-immobilized ligand to aggregated Aβ42. Presence of bound Aβ42 was detected by anti Aβ1-16 antibody Ab5 only in the sensor incubated with sTLR5FcV5 (see, in particular, the sTLR5FcV5 media trace of the "Detection with Ab5" period of Figure 29; in Figure 29, the identities of the traces from lowest to highest at the end of the "Loading on Sensor" period are: (1) lowest = CHO WT media; (2) buffer only; (3) sTLR5FcV5 media; (4) sTLR4FcV5 media; (5) recombinant Fc; and (6) FcV5 media). Thus, sTLR5FcV5 demonstrated specific, real-time binding to Aβ.

[207] Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. It should be understood that the foregoing discussion and examples merely present a detailed description of certain preferred embodiments. It will be apparent to those of ordinary skill in the art that various modifications and equivalents can be made without departing from the spirit and scope of the invention. All the patents, journal articles and other documents discussed or cited above are herein incorporated by reference.
We claim:

1. An isolated soluble Toll-Like Receptor (sTLR) or fragment thereof comprising a ligand binding site of a Toll-Like Receptor.

2. The isolated soluble Toll-Like Receptor (sTLR) of claim 1, wherein the ligand binding site is selected from Toll-Like Receptor 2 (TLR2), Toll-Like Receptor 4 (TLR4), Toll-Like Receptor 5 (TLR5), or Toll-Like Receptor 6 (TLR6).

3. The isolated soluble Toll-Like Receptor (sTLR) of claim 1 or 2, wherein the ligand binding site binds a disease associated molecular pattern (DAMP) and/or pathogen associated molecular pattern (PAMP).

4. The isolated soluble Toll-Like Receptor (sTLR) of any one of claims 1-3, wherein the disease associated molecular pattern (DAMP) is one or more of Aβ40, Aβ42, tau, and synuclein.

5. The isolated soluble Toll-Like Receptor (sTLR) of any one of claims 1-4, wherein the soluble Toll-Like Receptor is sTLR2-TAP, sTLR4-TAP, sTLR5-TAP, sTLR6-TAP, sTLR2-FLAG, sTLR4-FLAG, sTLR5-FLAG, or sTLR6-FLAG.

6. An isolated sTLR-Fc fusion protein comprising (i) a sTLR polypeptide comprising a ligand binding site of a Toll-Like Receptor and (ii) an Fc polypeptide.

7. The isolated sTLR-Fc fusion protein of claim 6, wherein the sTLR polypeptide and the Fc polypeptide are connected by a peptide linker.

8. The isolated sTLR-Fc fusion protein of claim 6 or 7, wherein the C-terminus of the sTLR polypeptide is connected to the N-terminus of the Fc polypeptide.

9. The isolated sTLR-Fc fusion protein of any one of claims 6-8, wherein the ligand binding site is selected from Toll-Like Receptor 2 (TLR2), Toll-Like Receptor 4 (TLR4), Toll-Like Receptor 5 (TLR5), or Toll-Like Receptor 6 (TLR6).
10. The isolated sTLR-Fc fusion protein of any one of claims 6-9, wherein the ligand binding site binds a disease associated molecular pattern (DAMP) and/or pathogen associated molecular pattern (PAMP).

11. The isolated sTLR-Fc fusion protein of any one of claims 6-10, wherein the disease associated molecular pattern (DAMP) is one or more of Aβ40, Aβ42, tau, and synuclein.

12. The isolated sTLR-Fc fusion protein of any one of claims 6-10, wherein the sTLR-Fc fusion protein is sTLR2-Fc-V5, sTLR4-Fc-V5, sTLR5-Fc-V5, sTLR6-Fc-V5, sTLR2-Fc-FLAG, sTLR4-Fc-FLAG, sTLR5-Fc-FLAG, or sTLR6-Fc-FLAG.

13. A method of treating a neurodegenerative proteinopathy disease or disorder in a subject, the method comprising administering to the subject an effective amount of a soluble polypeptide comprising a ligand binding site of a Toll-Like Receptor (TLR).

14. The method of claim 2, wherein the disease or disorder is Alzheimer's disease (AD), Parkinson's disease (PD), synucleinopathy, or tauopathy.

15. The method of claim 2, wherein the sTLR is delivered peripherally or directly to the brain.

16. A method of modulating Aβ plaque deposition in a subject (e.g., a subject identified as being in need of such treatment), the method comprising administering to the subject an effective amount of a soluble polypeptide comprising a ligand binding site of a Toll-Like Receptor (TLR).

17. A method of modulating plaque associated glial activation in a subject (e.g., a subject identified as being in need of such treatment), the method comprising administering to the subject an effective amount of a soluble polypeptide comprising a ligand binding site of a Toll-Like Receptor (TLR).

18. A method of blocking Aβ, tau, and/or synuclein toxicity in a subject (e.g., a subject identified as being in need of such treatment), the method comprising
administering to the subject an effective amount of a soluble polypeptide comprising a ligand binding site of a Toll-Like Receptor (TLR).

19. A method of modulating harmful effects of Aβ and/or DAMPS in a subject (e.g., a subject identified as being in need of such treatment), the method comprising administering to the subject an effective amount of a soluble polypeptide comprising a ligand binding site of a Toll-Like Receptor (TLR).

20. The method of any one of claims 13-19, wherein the ligand binding site is selected from Toll-Like Receptor 2 (TLR2), Toll-Like Receptor 4 (TLR4), Toll-Like Receptor 5 (TLR5), or Toll-Like Receptor 6 (TLR6).

21. The method of any one of claims 13-20, wherein the ligand binding site binds a disease associated molecular pattern (DAMP).

22. The method of any one of claims 13-21, wherein the disease associated molecular pattern (DAMP) is one or more of Aβ40, Aβ42, tau, and synuclein.

23. The method of any one of claims 13-22, wherein the polypeptide is an isolated soluble Toll-Like Receptor (sTLR) or sTLR-Fc fusion protein.

24. The method of any one of claims 13-23, wherein the polypeptide is one or more of sTLR2-TAP, sTLR4-TAP, sTLR5-TAP, sTLR6-TAP, sTLR2-FLAG, sTLR4-FLAG, sTLR5-FLAG, sTLR6-FLAG, sTLR2-Fc-V5, sTLR4-Fc-V5, sTLR5-Fc-V5, sTLR6-Fc-V5, sTLR2-Fc-FLAG, sTLR4-Fc-FLAG, sTLR5-Fc-FLAG, or sTLR6-Fc-FLAG.

25. The method of any one of claims 13-24, wherein the soluble polypeptide comprising a ligand binding site of a Toll-Like Receptor (TLR) is expressed from a vector.

26. The method of claim 25, wherein the vector is an Adeno-associated viral vector (AAV), lentiviral vector, retroviral vector, or herpes simplex viral vector.
27. The method of any one of claims 13-26, wherein the method decreases inflammation.

28. A nucleic acid molecule encoding the soluble Toll-Like Receptor (sTLR) of claims 1-5 or sTLR-Fc fusion protein of fusion protein of claims 6-12.

29. A vector comprising a nucleic acid molecule encoding the soluble Toll-Like Receptor (sTLR) of claims 1-5 or sTLR-Fc fusion protein of fusion protein of claims 6-12.

30. The vector of claim 29, wherein the vector is an Adeno-associated viral vector (AAV), lentiviral vector, retroviral vector, or herpes simplex viral vector.

31. A pharmaceutical composition comprising a soluble polypeptide comprising an isolated soluble Toll-Like Receptor (sTLR) of claims 1-5 or sTLR-Fc fusion protein of claims 6-12 or a vector comprising a nucleic acid sequence comprising the soluble Toll-Like Receptor (sTLR) of claims 1-5 or sTLR-Fc fusion protein of claims 6-12, and a pharmaceutically acceptable carrier or diluent suitable for injection.

32. The composition of claim 31, further comprising an additional therapeutic agent.
Construction and verification of soluble TLR5 and soluble TLR4 constructs

FIG. 1A

Study methodology
FIG. 1B

Injection of rAAV constructs in neonatal Po TgCRND8 mice and tissue

Intracerebral injection → Age till 5 months → RIPA → 2% SDS → 70% Formic acid → Formalin fix and paraffin embed
FIG. 3A

Engineered Soluble TLRs:
Please refer to Table 3 for a summary of the constructs used in the assays.

Mouse sequences:
Mouse soluble TLR2
ATGCCACATACCTTTTGGAATGGTGGGCTTTGGGGGTCATCATAAGCTCTTCCAAGGAA
GAATCTCCACCTAGGCCCTCTCTCTTTGACAGGCGATGTGTCGGCAGGGGGACTTCA
GGATCTTTAAACCTCCATCTCCAGGCTCAGACAAAGCTGAATAAAAAGCTTGGAGCC
AACAAAGGACATATGTAAGGTTATATCCAAAATATATGGTGGAATTTGGGTATTTTC
AGTTGAACGGTCTTCAAGTCTACTTTTATGTTGAACTCAGACCATTTTCATGATTTTG
TACAGTTCCGTGAAATTTGGAACCTGCCGAGATGATTTGGACACTTTTTCATGATTTTC
GAACTATCCACTGCTGAAACAAAATTTTATCTGATAAAATGACATTTTAAATGGAAG
ACTACGAGTTATAGATCCAGGTAAAGTGGAAAACTTACAACAGAGGCTGCAATATGCC
AGTTTTATCTATTATTATTGATCTGACCTTTATATTACACAGAAAGAAGTTTAAA
ATCACAGTAGAAGAACAGATTTTTCTGTTCTTTGTTATCTACACACATTAAAA
TCAATAGGATCTTTGCTAGCTGAAAATATTTGAGTGTGGAATAGACTTTGAAAATTCA
GCCGTGAGGATGCTGCTGCTCTCTACAACATTTAATTGAGCCAAAAATGTTTTGCCA
TCATTGGAAAAACCGGAGACTTGTGACTCTTTGCTAGCTCTCTGAAAATCTTACAGTATC
AGTAAGAATAGTTCTATTCTATCTGCTGAAAATTGCTGAGTGCAGGACAGAAAAAGATGAAAT
TTGAACTTATACACAGCAAGATACAGAGGCGATGGAATTTCCCAAAAGACACTGAAA
ATTTGAGATGTGCAAAACACACATCTAAATTTTTTCTGGAATTGTGGCCAACATCXXX
GAACTTTATATTGAGTGACACTCTGCTACTGAGCTGCTTGCAATATCTTTTCTCCTGCTGTA
TTCTCCTCTTCACGGAGACAGCAAGACACTCGGCCAAGGCTGATTTGGGCCAGCA
AATTACCTCTGCTGATCTTCCATCATCTCGAGCAGGCTGTGGGCTCGAGCGTTTACGATTCGCCTC
TCGGTGCTGGAATGTCACAGGACAGCAGCGTCGCTGGCTGCTGGCTGCTGCTGCTGCTGCTGCT
Mouse soluble TLR4

ATGATGTCTGCTCAGCCCTGGCTGAGCTCTGATCCCCACGACATGGCCTCTCTCCAGC
GTAGACCAAGAAAGTCGGAGCCCTGGTGGGAGTTTATCCATACATATAGTCC
ATGGAGCTGAAATTTTCATACCAAAAATCCCGACACACCTTCTTCCACAAAGAAGAG
CTATGACCTTTATCCCTGAGCATTATAGCAAGGAAAACCACCATCCAGGTTTACCC
CAGGTGCTGGATTATCCAGGAGCTGCGGGCTGTGGAGGAGTTTATCCACATAC
CTAAGGCAACCTTACCAGAATCTACCTATATTGAGTTTACCTAATCTGGCACAACTT
CTTGACATATTTTTCTATGACTGGAAAGATGTTTACCTCTACAATCTCTGATATT
ATTGACATTATTTAACTGTTGACAATGTCTGTCTTTTCTCGTGGAGTCTGACTATT
AAAAGGGGTAAAAAGATTTCTTCTACTATATTTGCGAGATGCAACATTTTAGATTTAAGCT
AAATTTGGACAGTTTCCACCATCTAACAAGTTCAATATCTTCAAAAGGACTTATTACCC
AACAAAGGTGGGAAATGGCTTTTACAAGAATTGTGATCTACCAAGCCTGAGTTTATCTAGAT
AGTAGAAGAATGTGCTGTTGACGTTAACAGGATTTGGGACAACACCACG
CTAAGATTTTAGATCTGACGTCTCAATGTGTATTTACCATGAGTTCAACACTCTTGGGC
TTAGAAGAACCACATCTGATTTGCAAGTCCATTCTCAAATGAAATGATGGTTTATTCAGATTC
TCAGTTATCTATCAGACAAACCTCATTACCTTCAGACATCTTCATCTCACACACAG
GTGTCCTCTAAAATGGGACATCCTTCAAGGCTGCTCAAGTGGGCTTGAAGAATGGCTGGC
AATTCTTCCGAGAAAATTCTCCTCCAGATATCTTCCACAGACGTCAGAAACCTGACCTTC
CTTGGACCCTCTCTCATGCAACGGACAGCTTGTCTTCCACACAGGTATTTACACTCTCC
AGCTCTCCAGGTACTAAATATGGAGGCCAACAACACTCTTTTCTTTGAGATCAGTGGTTTCTAT
AAAGTGTGCTGAACTCCCTCAGGTTTTCTGATTACAGCTCTACTACATACAAAGTTTAAG
AAACAGGAACCTACAGCTTTTCCAGAATGATCTGACGTCTTTTTATTTTACTACTGAGAATGAC
TTGTCCTTGACTGGACAAGCTGTTTCTGGCTCAGAATGACAGGACAGGCGACCTGCTG
TTGGTGGAAAGTTGCAAGAATGGAATGGCACAACCTTTGACGATAGCCAGGGCATTGCCGTGG
CTGAGTTGATATATCACGTTGCTAGATGGAAAAG
FIG. 3C

Mouse soluble TLR5
ATGGGAGACCACCTGAGCTCTGTCATTAGGAGTGCTGCTATGCCGCTCTGTGTGTGTTAGA
ATTCCCTCTGCTGCTCTTTGATGGCCGAATTACCTTTATGTCTGACACTCAAGAGGAGAGG
GTCCCCAGGTCTCACAACACACTGAAGGCTCTCTGCTGCTAGTTCAACTATAACAGGACA
GTCAGTCTCTTTACCTTTCTCTTTCTCTGAGACCTGCTGCTGGAGCCTGGAGAGCCAG
TATACCCCCTTGGACTATTGACACAGGAGGGCCTTCAAGAAGCTGACCAACCCCTAGATCTTG
GACCTGGGAGATGTAAGATATACTTCTTTCGATCCAGTAAGCTTTTCAAGGACTCTTCTCAT
CTGTTGAACACTTGAAGTATTTTCTGCTGATCTTGCAGTATTTGAAAGATGTTATTT
TCACAAATTTAAAGGCTTAAACCTGTGCTGTGCTATCTCAAACACTTTACTTCCTCCTACAC
TTAGCTCGCTGCAAGTATAGCTTTATAGAGAAGAGCTGCAAGCTTCTCTTCTCTGATTTCTT
GCCGACCCACACCATGGGTGGGTTCGTCCATTCATACACACAGAAGAGTCTGCTGCTGATTTT
AACCATTTTAAATATGACTGACATAAGCTTCAGCTTTCAAGATATCTTCACTTCTGCAGAAG
ACATTGCCTGGCCCAGAAAGAAACTGCTGGAAGCACCCTCTCTGCTGCTGCTGCTGCTGCTT
TCTCCCTGATCACTCAAGACTCTTTAGGACAAATCTCAAGACTCAGCTGCTGCTGCTGCTGCT
TTACAAAGATAAATAAGATGACAGATGAAGCATTTTACAGGACTTGGCAACCTCCAGATTT
CCAATGTTGTACATAAACCTTTCTGAGGAAATTACAGTTTCAATTTCTGAAGACCAACTACCT
AAGCTGACCTACCAGCTATCTTGTGACATCCAAAAACTGACATAATAGACAAACACT
AAAAATCTCGGGAAAAATTCGGAGCTGACTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT
TTATCCAGCATACCAACGATATTCTCTTGATTGGCAATATACAGTGGACTTTTGCAAAAG
ATACACCCTTACAGGAACCTCATACCACTTTATCAAGAAAAACAGGCTGAAATAATCTAGATTT
CTCACAATTCCTCTTACAGGTTACCTCTTCATCTACAGTTTTAATTCAACATGCTTC
TCCTCTGTAAGTTGGAAGATCAAAAAACCTTCAAGAATACAGCTGAGACAGTTTTCTCTT
GGAGAAAAATATATGTTGCAAGAGTTGCTGAGAAGAGCTGAGCTGTTTGAGAGGAGA
CTTCTCTACATCTTTACAGTTTGATTTGAAACATAACTATACATCTTTATCCCTTCTCACCAGAG
GTTTTAGCTATCTGCAGCTCATTAGGGGAGCTAAAGCCCTACACTCAGCCAGGAGGCTGACAGG
CTTTCTCAAAAGATTACCTCTGCTATTTAGAGATCTGCTGAGATCTACATTAGAGATGCTG
CTAGCTTCATTACATGCTGATTTTGAGAGGAGATTTTACGAGTTCATTGCTGAGATGCTG
CTCCTCTTCCAGGAAGGTTGTGATGAAGAGGAAAGTCTTTAAG
Human sequences:

Human soluble TLR2

ATGCCACATACCTTTGAGATGTTGTGGGCTTCTTGCTGGGCTCATTCATCGGCCTCTCCAAGGAA
GAATCTCCCAACAGGCTTTCTCTGCCTGTTGCCAGGCAATGGCTTCGCTCAAGGCGACTCCA
GGATCTTAAACTCCATTCCCTCACGGGCTCACAGAAGCTGTTAAAAGCCCTTGAACCTGTC
AACAACAGGATCACACTACATTAGCAACAGTGACCTACAGAGGTTGTTGGAACCTCAGGGCT
CTGGTGCTGACATCCCATGGAATTAAACACAAATAGAGGAAGATCTTTTCTTCCTCCCTGAGC
AGTGCTGACATTAGTCATTATCCCTATATATGCTTATATTTTCTGCTCCGATTTGTC
AAGGCCCTTCTCTTCTAATTTACCTTTACTGGGAAATCTCTTACAAAAACATGGG
GAAAACACTCTTCTTTCTGCTATCTCACAAGATGCAAATCCTGAGAGTTGGAATATGGGAAC
ACCTTCACTAAGATTCAAGAAAAGAATTTTGTGCTGGACTCCCTCTTGAGGAACCTTGA
ATTGATGCTTCTAGATCTCACTCTATATGAAAGCAGCTATATTATTTCTGCTGGGCTGATTT
ACAAGGTCGGTTGGAATTTTGGGAAACTGCGAGATCGTTTCCCTGAGCACCTTCTCATTCTCA
GAACATCACCTTTCTTCATTAGTTTAAAGATTTTACATTAGAAGAATGGTAAA
ATCACCCGATGAAAGATTTTTCTGCTAGTTAAACAGTAAAAATGCCCAGGCTCAGTATA
GAATTAGAGTTTGTGACGTCTACCTTAAATGGAGTTGCTAATTTTATAGACATCTGTAAT
GACAGAGTTTATGAGTTCCAGTGAAGGAAATCTTAAACTACGGAGAATATCCGAGGCTCAGTATT
CAAGTTTTTCTTTTTATATTGACTTTgtAGCACGTCCTTTATATTCCACCTAGAAGCTAA
ATACAGTCAGAAAAACAGTAAAGTCTTCTGGCTCCCTTATTCTCACAATGAAAAAATTCA
TCATTGGAAAACCAGGAGAGCTTTTGCTCAGTACTTTGAGAAATCTCTCCCTTAACTCAGGGG
GCTGGTGGAGTGGCTGCTGGGCTCACGCAAGTTTATTTGATCTGACCTACCCCTTCTTACCAAT
ATGTAAGAATGTTTATCTCTTCTGAAATCTCTTCTGCTGGGCTCCGCGAAAGATAGATAAT
TTGAACTTTATTCAGCAGCAGCAATACAGAGTGTAACAGGCTGATTCCAAGAACACCTGGGAA
AATTGAGATTGCAAAAACACATCAATTTTATTGGTACGACATCCACTCCTCCCTTCACCAATG
TTACTAGTATGAAATCTCTGCATGCAAATACACTGTTTCTGTTAACGCAACACTTAGG
TCATTCCACACACTGGAAGACTTTGGAAGCCTGGTGAGCAATTCACTTTGTCCCTGCTGGAA
TTCTGCTCTTCCCTAAGGAGCAGCAAGACACTGGGCTCCAAAGTCCTGCTGAGATGACTC
TGGGTGTCGGAATGTCACAGGGCA
FIG. 3E

Human soluble TLR4
ATGGAGCTGAATTCTACAAAAATCCCTGGCACACTCCCTACTCTCACAACGAAGACCTGAC
CTGAGCTTTTAATCCCCGAGCAGCTTATTGAGGCGATCTATAGGCTCAGTTTCCACAGAACTG
CAAGTGGCTGGAATTATACCAAGGTGTGAATCCAGACAATTTGGAAGATGGGCGATTATCAAGGC
CTAAGCCACCTCTCTACTCTTTAAATATCTGCAAGAAACCCCATCCAGAGTTTGACCGCTGGGA
GCTTTTCTGGACTATCAGTTTACAGAAGCTGTGGCCTGGATAGAGACAAATCTAGCAATCT
CTAGAGAACTTCCACATTGGACATCTACAAACTTTTTGAAAGAACCTTTAATGTCGCAACAAT
ATTACCAATCTTTCAAATTACCAGATTTTTTCTAATCTGACCAAATCTAGAGCACTTGG
GACCCTTCCAGCAACAAAGATCTCAAAAGATTATTTGAGCAAGCTTGGGTTCTACATCAA
ATGCCCTCTACATCTCTCTTCTATACGTGCCCTTTGAAACCTTATGAACTTTTACCAACCA
GGTGCATAATTAAGAGATTTGCTCTACAGTCTTACAAAGAATAATTGTGTATTTTA
AATGTGAAATGGACATTCTTTCTATACAGTGCTGTGTTTAGAGCATTCCATGTGTTGTTCTG
GGAGAATTGGAATAGGGAAGACTTCTTGGAAGAGTGTGGGTTCTGAAACACGCTTTCTCGAGGAGC
TGCAATTGAGAATGAGATTTCCGATATTAGCATACTTAAACTACCTACCTGAGATATT
ATTGACTTAATTAAATTGTTGCTCTTTATCTTCTTTTTGTTCAATGGTGTGACTATT
GAAGAGGTAAAGAGACCTTCTTATATAATTCTCGAGATGCAACACTTTAGGATTAGTТАААГТ
AAATTTGGAAGCTTTCTCCCAATATTCTAAATCTCAAAAGAGCTTCTTCTCTACCTTC
AAACAAGTGAGGGAAATCTTTCAAGAGGATGGCACATCAACGCTTTCTAGCTATCATCC
AGTACAATGAGCTGTGTTTCTAAGGATTTGCTTCCAAAGATTTGTTCTGGAACACAGAGC
CTCAAAGATTTTAGCCTCTCAGGCTCTATGTTTTAACAAGTAGTTGATCTGTTCCCTGGGC
TTAGAAACACTAGAAACTCTGGAGATTTCCGAC ATTCAATTTGAAACTACACTGAGATTT
TCAGTATTCTACTACTCAAGAAACCTCTAATTACCTTCTGACATTTTCTACTACACCAAGA
GGTGGCTTTTCTATGCAATCTTATGGCTGCTGACCTGCTGAGTTGAAATGGCCTGCG
AAATTTTGACCTTCTCCCTCCCATAGCTCTTCATTTCAAGAGCTGAATAGTACTC
CTGGACCCTCTCTACTGTTCAAGCTGGAGCTTGTACCTTACTCAACACTCTC
AGTCTTTGAGAATTTACTGAGCACACAAACTTCTTCTTATGTTGATCTGTTCTTAT
AAAGTGGTCTGACTCCTTCCATTGATTACAGTCTCAATACATGACTACTTTACA
AATGAGGAAACTACAGCAGATTTTTCAAAGATCTACATCTGATTAATGAGCAC
TTGGCTTTTCTATGCAATCTCAGCAGATTTTTCTCTCAGATTAAGCAGAGGCTTCTGCTG
CTGAGATTTGAAATTACATCCTTGCAAGATGAAAG
FIG. 3F

Human soluble TLR5

ATGGGAGACCCACTGGACCTTCTCTCTAGAGTGGTGCTCATGCGCGTCCTGTGGTTGGA
ATTCCCTCTGGCCTCTTCTTGTGGGCCGAAATAGCCCTTTATCTGTTTCTGCACTCTGACCCAG
GTCCCCAGGTCTCAAACACACTGAGAGGCCTCTGCTGAGCTTCAACTATATCAGGACA
GTCAGCTCCCTCTCCTTCCCCCTTTCTGGAACAGCTGAGCTGCTGGCTGCGGACCCGAG
TAGTACCCCTTTGACTATTTGACAGAGGAGGCTCTACGAAACTCCCTGCGCAAACACTTGAATTG
GACCGGGGAGATGAATGAATATATCTTCTTGCAATCAGATGCTTTCCGGAGCTGCTGCT
TACCTTCTCATCTTCTATTTGGGAAAGTGAATCTTTAATAGCCCTGATGATTTTCTTCCACAC
CAAAATTTCTCTTGTATGGAACATGACGCTGAGCCCTCCTAACAAGGGAAAAACGCCTCTCCTTT
TTTAGCCTCGACAGTAATAGCTTGTATAGCAGAGCTCAGTGAGGTGGAGAAAAATGTATG
AAACCCATCAGAAACATGTTGCGTGAGATACAGATGTGTTTCTGGAATGGCTGAGAACATG
GACATCACAGGGAAATTTAGAAATCAGATCGCAGCAAAGACGAGGCTCTCCTCTTT
GCCACACCACATCATGGTGCCCGGTGTTTGCTCTCCATAAACATCAAAGATCTCGACCAGAAC
ACATTTCTGCGCTGCGACAGAAGTGCAGAGCAACTGGCTGATCTAAGAGGGATTTTTCTGGAACCTTGCC
TACAACAAAGTAAAATAGATTGCTGAGAGATTTTTCTGAGCATGACCTTCAAAAGTT
CTCAATTGTTCATAAATCCCTCTGGGGAGAATTTACAGTGGCTGACTACCT
AAGCTGACCTACTTTGATTTGCAAAAGATACACATTTGCCATAATATCAGACCACCAACATCT
AAAATTCTGAAAAAGTTACGAGGCTCTGTGACCCGAGAATGCTCCTAACAAGATT
TTATACTGAAACGATACCGGATATCTCTGAGTGCAATAAACTAGTGACCTTTGCAAAAG
ATCAACATTAACGGAACCCTCATTCCACTTTAGAAAAGAGCCTGAAAGGAAATCTGATATT
CTCTACTTTTCTCTACGGGTACCTCATCTCCAGATTTCTCATTTTAAATCAAATACTGCTCTC
TCCCTCTGTAGGGGAATCAAACTCCCTTCCACGAAATACTCCAGCTTTAGAAAGGCTTTCTCCTT
GGAGAAAATATGTTGCAAATCTGCTGGGAACTGACTGTGGTGGATTTTGGAGGA
CTTTCTACTCTCAGGATTTCTGTATTGGAATCATAAATCTTATCTTTCTCTTCTCACCAAGGA
GTATTTAGCCATCTGACATTAGGGGACTAAAGCCTCAAACAGGCTGGACAGTT
CTTTCTCAAAATGATTTCCTGCTAAATAGAGATCTGCGACATATCCAGGAACAGCTC
CTAGCCTCATAATCGGTATGATATCTACTTATGTCCTGGATATATACTCACAAG
TTCCATTGTGAATGGAACCTTACAGACTTTTATCAAATTGGCTTATACACCAAATGTCACCT
ATAGCGGGGCCTCTCGACAGATATATTGTGTGATACCCTGACTGCTCTTGGGGCTTTCC
CTCTTCCTCTTCCACCGGAGGGTGCTGATGAAAGGAAAGGCTTAAAGTGCCCTAAAG

SUBSTITUTE SHEET (RULE 26)
FIG. 3G

Molecular tags used (C terminal)

TAP
GATTATAAGATGATGATGATAAAAGGTGCGCCCGCACGTGGGAGCCACCCCTCAGTTGAG
AAGGGAGAAGGAGCCGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGTGGGAC
AAACATCATCACCACATACCATACACATACCGGTCATTACATACCATACCATACCATTGA

Mouse IgG1 Fc sequence tagged with V5

GGTCACGCCAGGTATGTGCTTTCTAAGCCCTTGCTATGCTACAGTCGCCAGAGTATCAGCTCAG
TTCTACCTTCCCCAAAGCCCAAGGATGTTCTCACCATTACCTCTGACTCTTTCAAGGTCAG
TGATGGTTGTGAGATGACAGCAAGGAAGATGATCAGGCCAGTTCACTGAGTTGATAGAT
GATGTTGGAGGTGCAACAGACACTCAGACAGCAGAACCCGGGAGGAGGAGGATTTAACACAGCCTT
CGCTCACGATGACTCTTCCCCACATCAGCACAGCTGCTGCAATGCAAGGAGGAGTTCTAAA
TGCAAGGTTACAGTGACCTCTTCCCCCTGACGCCATCACGAGAAAACATTCTCCAAAAACA
GGCGCAAGCCGAGGGCCTTCAAGGAGCTCACCAACCATCCACCTCCAAAAGGAAGATGGGAG
GATAAGCTAGCTCGACCTCATGATATAAGACAGTCTTCTCCTGAGACATCTAGTGAG
TGCGCTAGGAAATGGGCAAGCCAGGCCAGAAGACTCAAGAACACTCCGCGCCATCATAGAGAACA
GATGGAGGTGCTTTCT
ACGTAA

*V5 sequence is underlined

Human IgG1 Fc sequence tagged with FLAG

GAGTCACCCATGTGCCGCCCCCTGATGCGACCTGAGTTTCTGGGGGAGCAGCGTAC
TCAGCTCTTTCTGTCTTCCCCAAAGCCCAAGGACACTCTCGAGTCTTCCCCCGGCCCTTGAAG
GTCAGCTGCGCTGGTGGAGCCAGGGACAGACCCGGGAGGAGGAGGAGTCTGACCTTCCAGGAC
GTCAGGGATGGGGAGGTGCAACAGACACTCAGACAGCAGAACCCGGGAGGAGGAGGATTTAACACAGCCTT
ACGTACCCGCTGGTCTAGCAGCTCTCATCACCACAGCTGCTGCAATGCAAGGAGGAGTTCTAAA
TGCAAGGTTACAGTGACCTCTTCCCCCTGACGCCATCACGAGAAAACATTCTCCAAAAACA
GGCGCAAGCCGAGGGCCTTCAAGGAGCTCACCAACCATCCACCTCCAAAAGGAAGATGGGAG
GATAAGCTAGCTCGACCTCATGATATAAGACAGTCTTCTCCTGAGACATCTAGTGAG
TGCGCTAGGAAATGGGCAAGCCAGGCCAGAAGACTCAAGAACACTCCGCGCCATCATAGAGAACA
GATGGAGGTGCTTTCT
ACGTAA

*FLAG sequence is underlined
FIG. 3H

Cloning vectors used:

pAG3-Zeo

1 gacgagatccg gacgatgatc ccgttgaacat tgaattctga ctatgattta atagtaatta atagtaatca
61 attacccggtt cattagctca tagcccatat atggacttcc gcttacata acttaacctgta
121 aattcgccgcc ctggctgacc gcctacggt cggctgccat tagcgtctaa atatagctaat
181 gatgccccatag taacgctcaat aggacgcttt acatgacgtc aatgggtgga acctattacgg
241 taaacatcgg acctggcagt acatatagt caccattgac ccctattttgc actatgttgcg
301 gttcagctag gcctagcgcc gcctgtgccat ccgacggtct atatgccagt atagacatct
361 cctacttggcc agtacatcat caaatgtgag ccgcctgctac gttcctgtct cttccccctc
421 cctcttcccc cttccccccc ctaaattttt gattattat tttttttatatt ttttttttatttttgtcag
481 cgatgcccccg cacgccccgcgc ggcgacg gccgcgcgcg cggcgcgcgcg cggcgcgcgcg
541 gcggccccgg gaaccggagcg tccgcccccg ccacatcgac gcgccccgct cggcgcgcgcg
601 cccctttttag cagccccgcgc gcggccccgcgc cctataaaaa accgacgcgc gcggccccgcgc
661 gcgaggtgcc gcgttccccgc gcgctccgcgc cggctccccgc cggcgcgcgcgc ggctccccgc
721 cgctctcgcgc tgcaggccgcct attccacccag gttgcgccgcgg gggcgcgcgcgc cttccccctc
781 ggctatgataag acgcctttggt ttaatgcgcc ctcttttttct ttctgtgctgt cgtgtaaacg
841 cttaaagccgg ctgggccccgg ccctctttgct ggccccggagcg gcggccccgg gcggccccgg
901 gttgctgtgct gcggcgaggg gcgccccgtgc cggcgcgcgc gcgccggcgcc ggcgtctgcc
961 ggcgccggccgc gcggccccggct tgtcctcgccc cggcgtcgcgc gcggccccggg gcggccccgg
1021 gtgcggccccgg gcgctgaggg gccgtggggcgc ggcgcaaggg ggggctgcgcgc gcggccccggc
1081 cgccgggctgct gcacggtgggt tgggcgctgc gcggcgtctcg taaccccccc ctgcaccccc
1141 cttccgcgggt gcgtggggct gcggaaggg ggtggtgggg ggcgtgctgcgc gcggcgtgctg
1201 cggtggcgcgg ccggccccggcg cggggggggg ggcggtgggg gcggccccggg gcggccccggc
1261 cgccctcgccg gcggcgaggg gggggggggg gcgaggggcgc gcggccccggc gcggcgcgcgc
1321 tccagggccgg gcgcggtcgg caacctggccc tttatatgtaa tggcgcgctgc gcggccaggg
1381 actcctctttgc tcccaatctg gcgagcgccgg gatctgggg aacccgttcgc gcggccccgc gc
1441 agccgggctgct gcggccgaggg tgggccccgg gcgcggtcgg gcagggaggg ggggggaaaa
gtcgcgctgc gcggccccggg gcggccccggg gcggccccggg
1501 gttgcctgcc gcggccccgct gcggccccggc atctcgcgct gcggccccggc gcggccccggg
1561 cgccgtgcttt gcggggggac gcggcgcgcc gcggccccggc gggggggttc gcggccccggg
FIG. 3K

5101 gaggcaccta ttc accgcat tcatcatttt cgttcatcga tagttcgctg acctcccggtc
5161 gtgtagataa ctacgatacg gggggtctta cctatggcgc ccatgtcgcg aatgtacccg
5221 cgagaccccac gtcaccgccc tccagatatta tcagcaataa accagcaggc gggaggggcc
5281 gagccgcagaat ggtctctgc acacttatcgg cctcccatcc agtctattaa tgttggcggc
5341 gaagctagag taagttaag ccagatattta agtttgcgca acgttggtgc cattgctaca
5401 ggcacactgtt gtcacgcctc gttgcctgttt atggcttcat tcagctcggg ttttcaacgga
5461 tcaagggcag taatcatgatc ccccatgttg tgcaaaaaag cggtagtcct cttcgtctct
5521 cccgatcgttgt tcagagtaaa gggcggcgcg aatgttagcc tcaggggttt actaacgacg
5581 catactttcc ttactgtcat gccccccgta agatgtctttt cttgacgctg tgcgtacata
5641 accaagtcatt cttgagaata gtgtagcgcg cgacaggttt gctttgccc ggcttacaata
5701 cgggataata cccgcccaca tagcagaact tttaaagtgcc tcatcattgc aaaaagttct
5761 tcggggcggaa aactctcaag gatctttaccg tgtttgcagat ccagttcgcg gtaacccact
5821 cgtgcaccca actgatcttc acgcatctttt acgtctccaa gcccattgctg gttgacgaaaa
5881 acagagggcg aaaaagccgc aaaaaagggg aataaggcgca cacggagactt ttagaatatct
5941 atactctcctt tttttctata tttattgaga acttatattt gccgtgcttct catgacgcggg
6001 tacatatttgg aagtatttta gaaaaatattt caaattaggc tttccggcgc aatcccccga
6061 aaggtgcccc ctc gacgctc

pTR2-CB-MCS-TAP-BGHpa (referred to as ‘AAV vector’)

1 eeeeeegege eeggegege eeggegege ggcactcccg ttcgctgcgt ccctaggggct
61 ggcaccccaaa agttgagcccc cggggggggc cttggccggg ddggctcagtt gagggagcga
121 ggcgcagcagag aggagttgcc caacctcactc actaggggctt cctagatctg aattcttgac
181 cctagtttatt aatagtaatcc attaccggtt tcactacgctt atagggcattt tataggtttc
241 cgcgtgctctaat cttactggatg cattgggctcc ctggctgggg ccgaaaccg ccgggggccc
301 tgtacgctcatt taattgacgtc ttcgtgcatttata gtaacgccac tagggacctt cattggatgt
361 gattgggcgg aagctatagcgt ctgatcgccgt cagtttgcct ccttcctcatgctgattcagt
421 ccaagtgactg cccctatttgac ggtcaatgtcc gggaataggg cggctcggcca tttattgcccc
481 tacatgcacc tattgagcttc ccctacttcgg ctgacagatc acctgcattt gcgttcctatt
FIG. 3L

541 accatgggtcg aaggtagcccc cacgtttctgc ttcactctccc ccatctcccc cccctccccca
601 ccccccaattt tgtattttatt tattttttaa tattttttgt cagccgatgg ggcgggggggg
661 ggggggggggc gcgcggcagg ggggggggggg gggggggagg ggggggggcc ggggggagcgg
721 aggaggtaggg ccgccagccaa tgacagggcg ggcgtccgaa atgtttcttt tattggcgagg
781 cgggcggcgcg ccgggcctctta ataaagagca aggcgcggcgc gcggggggagt gcgtcgagcg
841 cttgcctctgc cccgttgcccc gctcccgcgc gcccgcggcc gcggacttgct gctctgtgacg
901 gacgcgcgctta cttccacagg tggcggggcc gcaggccgct ttccttcggg cttgataatta
961 gcggctggtttta taacgcggcg tggggccttt ttcgcttgcag gtcggcgggg ttgggctggc
tttgggcagcc agaatgaaagc cttgggaggtc
1021 cgggggagcc ccttggcggc ggaggagagcg cgggcgggcttg gtcggccggcg tgcggccggcg
tgaggggccgtt gacgtgttcg ttcggtggctt cttgggaggtc
1081 tgggggagcc cccgcggccc cccgcgcttcc cggcgccgtgt gacgctgccg gcgggcgggg
tgaggggccgtt gacgtgttcg ttcggtggctt cttgggaggtc
1141 cgggcttttg ggcgctcggcagt gtgcgcgcggc ggggggggggg ggggggggggg ggggggggggg
ggggggggggg ggggggggggg ggggggggggg
tgaggggccgtt gacgtgttcg ttcggtggctt cttgggaggtc
1201 tgctgcggcaggg ggggggggggg ggggggggggg ggggggggggg ggggggggggg ggggggggggg
gttgggaggtc
1261 agcaggggggg cgggguuugggc ggggggggggg ggggggggggg ggggggggggg ggggggggggg
gttgggaggtc
1321 tgtggctgacgca cggccgggcgt cggggtgctgg gggccgcgtac ggggggggggg ggggggggggg
gttgggaggtc
1381 cccgtgcgggcc ggggggggggg ggggggggggg ggggggggggg ggggggggggg ggggggggggg
gttgggaggtc
1441 cccgggggagg cttcgggggag ggggggggggg ggggggggggg ggggggggggg ggggggggggg
gttgggaggtc
1501 cgggggaggcc cggcgcccccct tcccttttttt atactgggttc ttcgtggccgt gcggccgcttc
1561 tgtgcacagct cttggcgggag cccagacact gcggcggggg ggggggggggg gttgggaggtc
ttgggaggtc
1621 gcgggggcgaa gcgtgtgccg gcgggggggggg ggggggggggg ggggggggggg gttgggaggtc
ttgggaggtc
1681 gcgggggcgaa gcgtgtgccg gcgggggggggg ggggggggggg ggggggggggg gttgggaggtc
ttgggaggtc
1741 ggcattgggag gggagagggac ggggggggggg ggggggggggg ggggggggggg gttgggaggtc
ttgggaggtc
1801 gcgctggttcg ttccttcggt gcgtgtgcgg gcggccgggct gcggccgggct gcggccgggct
1861 tgtgtattgt gcgtgctcatt cattttgcca aagatactcc agaagatcga gcggccgggct
1921 cggggcgacact aagatactcc agatcctttg ggtcgagcgg agatcctttg ggtcgagcgg
1981 tgtgaagaggg tccctgggag cggcggaggg caggggaggg cggcggaggg cggcggaggg
2041 cgaggcgaggg gcggagggag gcggagggag cggcggaggg cggcggaggg cggcggaggg
2101 ccataccgggt cattcaagcc accaccatttg agtttaaaacc cggcggaggg cggcggaggg
2161 agctgctgctgactgctcctg ccagcctgcag ctggtgccccc tagttgccag ccacggtggag ttgggaggtc
FIG. 9

Normalized to actin
FIG. 26

Mock

rAAV2/1-GFP

rAAV2/1-sTLR5-GFP

STL5EV5

468 pull-down

Ab5 pull-down

Input
FIG. 27

- **Control**
- **sTLR5**

Total Aβ (pM)

- 0
- 1
- 2
- 3
- 4
- 5
- 6

hrs post incubation

- 30min
- 1h
- 2h
- 3h
- 9h
- 12h

Vertical bars indicate standard deviation.
FIG. 28

Aggregated Aβ

Binding to Aβ42: OD (450nm)

sTLR concentration

Monomeric Aβ

Binding to Aβ42: OD (450nm)

sTLR concentration
A. CLASSIFICATION OF SUBJECT MATTER
C07K 14/705(2006.01)i, A61K 38/17(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07K 14/705; A61K 39/395; A61K 38/17

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of database and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: soluble TLR, PAMP, DAMP, sTLR-Fc fusion protein

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>RABY, A.-C., et al., 'Soluble TLR2 reduces inflammation without compromising bacterial clearance by disrupting TLR2 triggering' The Journal of Immunology, Vol. 183, No. 1, pp. 506-517 (2009). See abstract; pages 506-508, 513-514; and Figure 6.</td>
<td>1-3, 6-8</td>
</tr>
<tr>
<td>X</td>
<td>A2 (OPSONA THERAPEUTICS LIMITED) 31 December 2008. See abstract; and page 15, lines 7-18.</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td>RE, F., et al., 'Monomeric recombinant MD-2 binds Toll-like receptor 4 tightly and confers lipopolysaccharide responses in vivo.' Journal of Biological Chemistry, Vol. 277, No. 26, pp. 23427-23432 (2002). See the whole document, especially Figure 1.</td>
<td>6-8</td>
</tr>
<tr>
<td>A</td>
<td>GROβ', P., et al., 'Lipopolysaccharide-tap-Fc, a multifunctional agent to battle gram-negative bacteria.' Infect Immun, Vol. 77, No. 7, pp. 2925-2931 (2009). See the whole document, especially Figure 1A.</td>
<td>1-3, 6-8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
16 July 2014 (16.07.2014)

Date of mailing of the international search report
17 July 2014 (17.07.2014)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheonsga-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer
AHN, Kyu Jeong
Telephone No. +82-42-481-5975

Form PCT/ISA/210 (second sheet) (July 2009)
Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☑ Claims Nos.: 13, 16-27
 because they relate to subject matter not required to be searched by this Authority, namely:
 Claims 13, 16-27 pertain to methods for treatment of the human body by therapy, as well as diagnostic methods, and thus relate to a subject matter which this International Searching Authority is not required, under Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search.

2. ☑ Claims Nos.: 14, 15, 26, 30, 32
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
 i) Claims 26, 30 and 32 are unclear since they are referring to the multiple dependent claims which do not comply with PCT Rule 6.4(a).
 ii) Dependent claims 14-15 refer to claim 2, though they seem to rely on claim 13 in their context.
 Therefore, the matter for which the protection is sought in claims 14-15 is not clear.

3. ☑ Claims Nos.: 4-5, 9-12, 21-25, 27-29, 31
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☑ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☑ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of any additional fees.

3. ☑ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 13, 16-27, 26, 30, 32.

4. ☑ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 13, 16-27, 26, 30, 32.

Remark on Protest

☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2008-267151 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2691784 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2170392 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010-0247527 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009-000929 A3</td>
</tr>
</tbody>
</table>