(12) STANDARD PATENT (11) Application No. AU 2014318585 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Automated runtime detection of malware

(51) International Patent Classification(s)
GO6F 21/56 (2013.01)

(21) Application No: 2014318585 (22) Date of Filing: 2014.09.12
(87) WIPO No: WO15/038944

(30) Priority Data

(31) Number (32) Date (33) Country
61/960,209 2013.09.12 us
(43) Publication Date: 2015.03.19

(44) Accepted Journal Date: 2018.01.04

(71) Applicant(s)
Virsec Systems, Inc.

(72) Inventor(s)
Gupta, Satya Vrat;Demeo, Raymond F.

(74) Agent/ Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
US 2005/0108562 A1
US 8510596 B1
US 5983348 A

wo 2015/038944 A1 [N/ N0F 0000 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/038944 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

19 March 2015 (19.03.2015) WIPOIPCT
International Patent Classification:
GO6F 21/56 (2013.01)
International Application Number:
PCT/US2014/055469

International Filing Date:
12 September 2014 (12.09.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/960,209 12 September 2013 (12.09.2013) US
Applicant: VIRSEC SYSTEMS, INC. [US/US]; 43

Nagog Park, Suite 215, Acton, MA 01720 (US).

Inventors: GUPTA, Satya, Vrat; 3 Bramble Way, Acton,
MA 01720 (US). DEMEOQO, Raymond, F.; 159 Fox Run
Road, Bolton, MA 01740 (US).

Agents: MEAGHER, Timothy, J. et al.; Hamilton, Brook,
Smith & Reynolds, P.C., 530 Virginia Rd., P.O. Box 9133,
Concord, MA 01742-9133 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

of inventorship (Rule 4.17(iv))

Published:

with international search report (Art. 21(3))

(54) Title: AUTOMATED RUNTIME DETECTION OF MALWARE

(57) Abstract: One example method and correspond apparatus extracts a model of a computer application during load time and
stores the model of the computer application in a database. This example method and corresponding apparatus also inserts instruc-
tions into the computer application to collect data at runtime. This example method and corresponding apparatus then analyzes the
data collected at runtime against the stored model of the computer application to detect one or more security events and tracks the
one or more security events using a state machine.

22 Nov 2017

2014318585

AUTOMATED RUNTIME DETECTION OF MALWARE

RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Application No.
61/960,2009, filed on September 12, 2013. The entire teachings of the above

application are incorporated herein by reference.

BACKGROUND

[0002] With each passing day, cyber-attacks are becoming increasingly
sophisticated. A large number of attacks are targeted to exploit specific vulnerabilities
in specific applications. These attacks are not discernible at the network layer because
they do not trigger network activity that appears to be overtly malicious. In order to
deal with these targeted attacks, many vendors have deployed products, such as next
generation firewalls which attempt to trace the behavior of the application or
sandboxing technologies which attempt to run suspicious code in a sandbox and wait
for the suspicious code to perform malicious activity. However, in these scenarios,
malware simply adapts its behavior slightly or waits for a longer period of time to
carry out its malicious intent. These changes in behavior hamper these products’
ability to recognize the behavior of the attack and therefore their ability to detect the
malware is greatly diminished.

[0002A] It is desired to provide a computer-implemented method, a computer-
implemented method, a system, and an apparatus, that alleviate one or more

difficulties of the prior art, or to at least provide a useful alternative.

SUMMARY

[0002B] In accordance with some embodiments of the present invention, there is
provided a computer-implemented method comprising:
as a module of a computer application loads into memory:
disassembling machine code of the module;
examining the disassembled machine code to identify transition

instructions, including direct and indirect transition instructions for

1697177.v1

22 Nov 2017

2014318585

- 1A -

determining a target address, wherein direct transition instructions
determine a target address at load time, and indirect transition instructions
have a runtime dependency preventing determining a target address until
runtime,

for each identified transition instruction,
(1) storing the target address of the identified transition
instruction, if the identified transition instruction is a direct transition
instruction, storing the identified transition instruction, if the identified
transition instruction is an indirect transition instruction; and
(ii) inserting one or more collection instructions into the
module of the computer application to collect data at runtime; and
as the module of the computer application executes at runtime:

analyzing the data collected at runtime against the stored target
addresses and stored indirect transition instructions to detect one or more
security events; and

tracking the one or more security events using a state machine.

[0002C] In accordance with some embodiments of the present invention, there is

provided a computer-implemented method comprising:

as a module of a computer application loads into memory:

disassembling machine code of the module;

examining the disassembled machine code to identify transition
instructions, including direct and indirect transition instructions for
determining a target address, wherein a direct transition instruction determines
a target address at load time, and an indirect transition instruction has a
runtime dependency preventing determining a target address until runtime, for
each identified transition instruction,

storing the target address of the identified transition instruction, if the
identified transition instruction is a direct transition instruction, storing the
identified transition instruction, if the identified transition instruction is an

indirect transition instruction; and

1697177.v1

22 Nov 2017

2014318585

-1B -

inserting one or more collection instructions into the module of the

computer application to collect data at runtime.

[0002D] In accordance with some embodiments of the present invention, there is
provided a computer-implemented method comprising:
as a module of a computer application executes at runtime:
analyzing data collected at runtime for a computer application against
stored target addresses and indirect transition instructions of the computer
application to detect one or more security events; and

tracking the one or more security events using a state machine.

[0002E] In accordance with some embodiments of the present invention, there is
provided a system comprising:
a client configured to:
as a module of a computer application loads into memory:
disassemble machine code of the module;
examine the disassembled machine code to identify transition
instructions, including direct and indirect transition instructions for
determining a target address, wherein a direct transition instruction determines
a target address at load time, and an indirect transition instruction has a
runtime dependency preventing determining a target address until runtime,
for each identified transition instruction,
(1) store the target address of the identified transition
instruction, if the identified transition instruction is a direction
transition instruction, store the identified transition instruction, if the

identified transition instruction is an indirect transition instruction;

1697177.v1

22 Nov 2017

2014318585

(i1) insert one or more collection instructions into the module of
the computer application to collect data at runtime; and
as the module of the computer application executes at runtime:
an analysis engine configured to:
analyze the data collected at runtime against the stored target addresses
and indirect transition instructions to detect one or more security events; and

track the one or more security events using a state machine.

[0002F] In accordance with some embodiments of the present invention, there is
provided an apparatus comprising:
a processor configured to execute a first process and a second process;
as a module of a computer application loads into memory:
the first process configured to
disassemble machine code of the module;
examine the disassembled machine code to identify transition
instructions, including direct and indirect transition instructions for
determining a target address, wherein a direct transition instruction
determines a target address at load time, and an indirect transition
instruction has a runtime dependency preventing determining a target
address until runtime,
for each identified transition instruction,
store the target address of the identified transition instruction, if
the identified transition instruction is a direct transition instruction,
store the identified transition instruction, if the identified transition
mstruction is an indirect transition instruction;
the second process configured to insert one or more collection
instructions into the module of the computer application to collect data at

runtime.

1697177.v1

22 Nov 2017

2014318585

_3.

[0002G] In accordance with some embodiments of the present invention, there is
provided an apparatus comprising:

a processor configured to execute a first process and a second process;

the first process configured to analyze data collected at runtime for a computer
application against stored target addresses and indirect transition instructions of the
computer application to detect one or more security events, wherein the model
includes transition mapping data from the computer application; and

the second process configured to track the one or more security events using a

state machine.

[0003] Computer applications, including but not limited to single and multitier,
closed and distributed, standalone, web-based, and cloud-based, are vulnerable to
malware attacks. The largest number of malware attacks of computer applications
today result from the ability of a malicious actor to inject and later execute malicious
content in a running process of a computer application. The process of injecting such
malicious content involves identifying and exploiting poorly designed code that
performs inadequate input validation. The current cyber security technologies attempt

to either observe malicious content in the application or trace the behavior of an

1697177.v1

13 Apr 2017

2014318585

-3A -

application or screen the behavior of suspicious code in a sandbox. These
technologies do not have the capability to examine computer applications in real time
at a low enough granularity to reliably detect events that indicate the injection of
malicious content. In addition, these technologies do not have the capability to track
and correlate such events over time in order to accurately identify these malware
attacks before the malware successfully carries out its malicious intent.

[0004] One example method and corresponding apparatus described herein
extracts and stores a model of a computer application at load time, wherein the model
includes transition mapping data from the computer application. This example
method and corresponding apparatus also inserts instructions into the computer
application at load time in order to collect data at runtime. The data collected at
runtime is analyzed against the stored model of the computer application to detect one
or more security events. This example method and corresponding apparatus tracks
the one or more security events triggered by an attacker using a state machine.

[0005] The method and corresponding apparatus may extract as part of the model
of the computer application data one or more of the following: memory mapping data,
soft spot data, and/or OS functions or system calls that affect access permissions and
privileges referenced by the computer application. Such information may be saved in
a model database. Furthermore, the method and corresponding apparatus may extract
the model of the computer application at least in part using a code disassembler. The
computer application being extracted may be in various formats including binary
format or interpreted format.

[0006] The method and corresponding apparatus may check the computer
application for integrity during load time. The method and corresponding apparatus
may check the computer application for integrity by computing a checksum such as
the MD35 hash of the code or using a trusted checksum verification service.

[0007] The model database may contain one or more tables for modeling the
computer application. Furthermore, the model database may be on a local or remote
system. If the model database is on a remote system, the method and corresponding

apparatus may package the model of the computer application for transmission to the

1697177.v1

13 Apr 2017

2014318585

-3B -

remote system for storing in the database. The packaged model of the database may
be transmitted using a standards based transport protocol such as TCP/IP or UDP.
[0008] The method and corresponding apparatus may insert instrumentation
instructions at load time into the computer application using a dynamic binary
analysis engine or a byte code instrumentation engine. When the instrumented
application runs, the data collected at runtime may be packaged for transmission to
another process for analyzing. This other process for analyzing may be on a local or a
remote system. Furthermore, the data collected at runtime may comprise data for one
or more threads of the computer application.

[0009] When analyzing the data collected at runtime against the stored model of
the computer application, the method and correspond apparatus may analyze one or
more of the following: transition data, Critical OS functions and system calls that
affect access permissions and privileges, memory writes, heap allocation or de-
allocation, and/or soft spot data.

[0010] Tracking the one or more security events using a state machine may
comprise correlating the events based on a predefined sequence. Tracking the one or
more security events may also include capturing forensic data for the events. The one
or more security events may be tracked using severity levels. Furthermore, one or
more actions may be taken in response to the occurrence of one or more security
events. In one example embodiment, the one or more actions in response to an event
are automatically taken by the system, and in another example embodiment, the one
or more actions can be taken after manual intervention by the user. The one or more
actions may include one or more of the following: terminating one or more threads of
the computer application, closing a communication socket on one or more threads of
the computer application, terminating the application, recording the event, and/or

generating alerts in response to the one or more security events.

BRIEF DESCRIPTION OF THE DRAWINGS

10011] Some embodiments of the invention are herein described , by way of
example only, with reference to the accompanying drawings in which like reference

characters refer to the same parts

1697177.v1

WO 2015/038944 PCT/US2014/055469

-4-

throughout the different views. The drawings are not necessarily to scale, emphasis
instead being placed upon illustrating embodiments of the present invention.

[0012] Fig. 1 depicts an example configuration of an advanced persistent malware
threat;

[0013] Fig. 2 shows an example chain of immutable events indicating a code
execution style attack; | ;
[0014] Fig. 3 shows an example flow chart of load time operations executed by a
client;

[0015] Fig. 4 depicts an example protocol data unit (PDU) used to transmit data
between the client and an analysis engine;

[0016] Fig. 5 shows an example flow chart of a process used by the analysis
engine to generate events based on data collected at runtime;

[0017] Fig. 6 depicts an example Event Chain State Machine used to track
generated events; and

[0018] Fig. 7 depicts an example block diagram of the client and analysis engine.
[0019] Fig. 8 illustrates a computer network or similar digital processing
environment in which embodiments of the present invention may be implemented.
[0020] Fig. 9 is a diagram of an example internal structure of a computer (e.g.,

client processor/device or server computers) in the computer system of Fig. 8.

DETAILED DESCRIPTION

[0021] A description of example embodiments of the invention follows.

[0022] The teachings of all patents, published applications and references cited
herein are incorporated by reference in their entirety.

[0023] Fig. 1 represents an example of an advance persistent malware threat. In
this scenario, a malicious actor (or hacker) from the actor’s own infrastructure 102
remotely scans the web facing the infrastructure of an enterprise 108 using scanning
tools such as nmap 104. When the scan finds a server that has either a known
vulnerability or zero-day vulnerability, the actor installs shell code 106 to gain control
of the remote enterprise server 110 and access the enterprise network. Once inside

the network, the malicious actor loads additional tools 104. These tools may include

WO 2015/038944 PCT/US2014/055469

-5.

nmap, port scanners, password cracking tools, ftp client, compression tools, hashing,
and/or encryption and decryption tools.

[0024] The actor then accesses the enterprise infrastructure looking for a machine
114 or 116 from which elevated privileged users log into valuable targets such as
databases and file repositories for the purposes of scraping the access credentials of
the user and for finding a home for more hacking tools. Upon finding a machine with
vulnerable applications 114 or 116, the malicious actor can scrape for credentials,
infiltrate and subsequently access the target 118. Once the target is accessed,
additional tools of the trade are loaded onto the target 104. Malware can also be
deposited onto mobile devices such as smartphones and laptops of privileged users as
they take their machines through unprotected networks such as coffee shops, airports,
and hotels. In another scenario, an inside user may infect target machines.

[0025] By using sophisticated password cracking tools or snooping intranet
traffic, the malware can obtain the credentials of the administrative user 116. After
credentials have been obtained, the malicious actor can connect to the databases and
file repositories 118 with impunity and extract valuable data such as real names, home
addresses, social security, driver licenses, birth dates, medical records, financial
information such as credit/debit cards, phone numbers, email addresses, user names
and passwords, and insurance information. The malicious actor can optionally
compress and encrypt this information and upload it to the Hacker Command Control
Center 112 in small chunks so as to not draw attention of the enterprise security
analysts. To achieve this objective, the malicious actor changes the IP addresses of the
Hacker Command Control Center 112 on a daily basis or uses proxies so that
intrusion detection systems in the enterprise cannot establish a pattern. An enterprise
typically sends and receives over 10 GB of data every day; therefore uploading
relatively small amounts of data in short bursts often goes unnoticed.

[0026] Being able to detect and block the chain of events for this type of scenario
reliably is the key to thwarting such advanced persistent threats. Contemporary cyber
security tools suffer from four major shortcomings. First, these tools do not examine
the application at a low enough granularity. Without this capability, many signs of
attacks cannot be discerned reliably. Next, these tools do not have the capability to

track the attack over time. The typical security information and event management

WO 2015/038944 PCT/US2014/055469

-6-

(SIEM) systems only correlate events (that are of too high a granularity) for typically
24 hours. Malware can simply lie dormant for a long enough period of time to escape
detection. Without the capability to track the attack reliably over time, the individual
malicious events contributing to the attack appear as disjoint un-correlated events.
[0027] In addition, these cyber security tools depend on security analysts to set
the threshold of events that signify an attack. For example, one security analyst may
have internalized that some number of port scans and login attempts per hour will
occur in the normal course of the day. The question becomes how many port scan
attempts per source per hour are one too many before an alert is triggered. If an alert
is generated too early, an analyst may be investigating port scans with no malicious
intent or failed logins by legitimate users. If an alert is raised too late, then the
malware attack may have already succeeded. Furthermore, these tools have an
incomplete knowledge base to effectively detect the attack. The ability to generate
truly genuine alerts requires the tools to distinguish between benign and malicious
events reliably. A malicious actor would be aware of the same signatures or known
suspicious network or application behaviors. Therefore, the malicious actor can
tweak the behavior of the attack, such as using encryption to encode the data,
changing IP and port combinations, or by slowing down the attack so as to avoid
detection based on the behavior specified in the knowledge base.

[0028] Fig. 2 shows a chain of immutable events depicting a code execution
attack. For various malware attacks, such as code execution attacks, a corresponding
event chain of the malware attack can be represented by a series of immutable events.
These events can be stored in the process memory of a computer for tracking specific
malware attacks. The following scenario describes the behavior represented by the
series of immutable events at 202-216 of a code execution attack.

[0029] In executing a code execution attack, once a malicious actor locates an
unpatched application or a so-called 0-day vulnerability, the actor can compose a
specially crafted payload of malformed content. This payload is then sent directly or
through a network to a target process at 202 running on the central processing unit
(CPU) of a computer system to divert the CPU from calling the instructions of a
computer application and instead calls instructions at the behest of the malicious

payload. This specially crafted payload can be injected into the application through

WO 2015/038944 PCT/US2014/055469

-7

many mechanisms, such as over a network socket, through the keyboard, or even
through a file, depending on the application being targeted.

[0030] To activate the malicious payload injected during the attack at 206, the
malware can leverage one of many attack vectors. In the case of the code execution
attack, the malware exploits a buffer error or user naivety at 204. Other examples of
attacks vectors include the simplistic Stack Smashing approach, using format
specifiers, finding the pseudo random stack canary, over running the exception
handler tables, or Return Oriented Programming (ROP) gadgets as well as many
additional vectors.

[0031] Before commencing its full blown malicious activity, the malware can
hibernate for a sufficiently long period of time so that detection techniques can be
subverted. For example sandbox techniques that inspect emails for suspicious activity
must eventually give up and deliver the email to the recipient. At some later point in
time, the malware can use either an existing application thread or spin one or more
new threads at 212 to start executing its intent. In some cases, using an existing
thread may attract user attention and spinning new ones ay go unnoticed. This is
because most security solutions do not have the ability to determine if spinning a new
thread is malicious or benign activity. Having now created a wedge in the
application, the malware establishes connectivity with the malicious actor’s
Command Control Center (C&C) at 210. Once connectivity from inside the
enterprise firewall is established, the thread on which malware can download more
malware at 208 such as password cracking tools, port scanning tools, encryption tools
etc. in bits and pieces so as to not attract attention of file blacklisting solution.

[0032] Once the tools are downloaded, the malware looks to extract useful content
from the infected machine and all other machines reachable from the infected
machine. In the code execution attack in Fig. 2, the malware may keep searching the
enterprise until it finds a user with elevated privileges. Alternatively, it could sniff
traffic, such as SMB/NETBIOS/CIFS traffic, in the enterprise to find privileged users’
user names and login credentials. Alternatively, it could use password cracking tools
or simply compare the hash of guess passwords with contents of password files. With
today’s processing power, an 8 character long password can be cracked in a few

hours.

WO 2015/038944 PCT/US2014/055469

-8-

[0033] After the privileged user’s credentials have been extracted, the malware is
adequately armed and can go about its business of extracting useful content from the
infected machine and all other machines reachable from the infected machines. The
list of reachable machines may include database servers, code repositories, or CAD
machines with valuable design documents. Once the valuable content has been
extracted, the malware may encrypt data or upload data to the Command Control
Center at 216 before the attack is culminated. If data is encrypted, the malicious actor
may contact the target with a ransom request.

[0034] Fig. 3 shows the operations that an example client referred to herein as the
Resolve Client performs at load time to prepare for detecting malware activity, in
accordance with principles of the present disclosure. The Path Validation Engine is
part of the Resolve Client that can reliably detect malware activity within
microseconds from the point the malware starts to run. The Resolve Client first
verifies the integrity and then analyzes each module of the application in order to
extract a model of the application. The model of the application is stored in an
Application Map Database that may contain the following tables: Code Table, Export
Table, V Table, Other Table, Basic Block Table, Soft Spot Table, Memory Operand
Table, Transition Table, Disassembly Table, and Critical OS Functions Table. In the
embodiment in Fig. 3, the Application Map Database is located on a remote system
from the Resolve Client. In other embodiments, the Application Map Database can
be saved on the same hardware where the application is executing or on hardware
external to both the Resolve Client and Analysis Engine. The Resolve Client uses a
Streaming Engine to package the extracted model of the application into Resolve
Protocol Data Units (PDUs) to dispatch the data to be stored in the Application Map
Database on the analysis system. The PDU structure is shown in Fig. 4.

[0035] After the Resolve Client starts processing the application at load time at
302, the same operations are performed in a loop for each module of the computer
application at 304 and 306. As each module of the application loads in memory, the
Resolve Client examines all the exeéutables and libraries of the given module using a
disassembler such as a machine code or a byte code disassembler. The modules of the
application file are in a standard file format, such as Executable and Linkable Format

(ELF) or Common Object File Format (COFF). In this format, the modules of the

WO 2015/038944 PCT/US2014/055469

-9

application are organized into sections that include a code section, exported data
section, v-table section, and other additional sections. As each module of the
application loads in memory, the Resolve Client extracts these data sections as part of
the model of the application. The bounds and access attributes of the code section of
the module are dispatched and saved to the Application Map Database in the Code
Table at 314. Each record in this table is of the form {Start Address, End Address}.
The bounds and number of instructions of each basic block in the code section of the
module are dispatched and saved in the Application Map database in the Basic Block
Table at 330. Each record in this table is of the form {Start Address, End Address, and
Number of instructions}. The bounds and access attributes of the exported data
section of the module are saved in the Application Map database in the Export Table
at 318. Each record in this table is of the form {Start Address, End Address}. The
bounds and access attributes of a v-table section (if any) of the module are dispatched
and saved in the Application Map database in the V Table at 322. Each record in this
table is of the form {Start Address, End Address}. The bounds and access attributes
of all other sections of the module are dispatched and saved in the Application Map
database in the Other Table at 326. Each record in this table is of the form {Start
Address, End Address, and Protection Attributes}.

[0036] As each module loads into memory, the Resolve Client also extracts other
memory mapping data and soft spot datafrom the modules of the application.
Memory mapping data includes instructions for memory allocation, memory de-
allocation, and memory writes to critical segments of memory. Soft spot data
includes instructions for manipulating large memory buffers (spot spots) including
instructions that execute loops (such as instructions with REP style opcodes). The
address of soft spot instructions and the size of each memory write are dispatched and
saved in the Application Map database in the Soft Spot Table at 334. Each record in
this table is of the form {Address, Write size}. The address and the write size will be
stored for memory write instructions where the destination is a memory operand. This
data is stored in the Application Map Database in the Memory Operand Write Table
at 340. Each record in this table is of the form {Source Address, Memory Write
Size}.

WO 2015/038944 PCT/US2014/055469

-10 -

[0037] As each module of the application loads into memory, the Resolve Client
also extracts transition mapping data (branch transfer or transition data) from the
module. The transition mapping data can be for a direct transition mapping where
transition instructions for the target address can be presently determined or for an
indirect memory mapping where transition instructions for the target address have run
time dependency preventing these instructions from being fully determined until
runtime. The full disassembly of instructions where indirect transitions occur are
dispatched and saved in the Application Map Database in the Disassembly Table at
324. All the extracted transition mappings are also dispatched and saved in the
Application Map Database in the Transition Table at 324 and 332. Each record in this
table is of the form {Source Address, Destinaﬁon Address}. In addition, an operator
can manually add Transition Mapping Data into the Map Transition Table prior to
runtime at 320. In order to add records manually into the Map Transition Table, an
operator may be required to authenticate themselves using a 2-factor authentication
process to eliminate possible tampering of the Transition Table by malware.

[0038] Transition mapping is central to the ability of the Path Validation Engine
to reliably detect malware activity within microseconds from the point that the
malware starts to run. The concept of transition mapping can be better understood by
an examination of source code. In the following sample source code, the function
main() makes a call to the function printf() which is defined in a library, but does not
make a call to function notCalled(). After a compiler and linker have run through this
code and the binary produced is examined, the inter-relationships or lack thereof
between the functions main(), printf() and notCalled() is preserved. The function
main() is said to have a “transition” to the function printf() which can be expressed as
{Address sgc => Address pst} where Address sge is the address of the instruction
where the function printf() is called in the function main() and Address psr is the
address of the function printf(). The source and target could be a system call or an
exception handler. A record such as the above is a single record in the application’s

Transition Map Table.

//C hello world example

#include <stdio.h>

WO 2015/038944 PCT/US2014/055469

-11 -

int main()

{
printf("Hello world\n");

return 0;

}

int notCalled()
{

printf(*Feeling lonely !\n™);

return 0;

}

[0039] While the above example is written in C/C++ which is a compiled
language, this analogy between transitions in source code can be envisioned in code
written in any other language, including interpreted or JIT compiled code. The same
example is shown in an interpreted language like Java as shown below.

/*

Java Hello World example.

*/

public class HelloWorldExample {

public static void main(String args|[]){
System.out.printIn("Hello World !");

}

public static void notCalled() {
System.out.printIn("Feeling lonely !");

}

[0040] As each module of the application loads into memory, the Resolve Client
also checks the application for integrity at 308. In one embodiment, this is
accomplished by computing a checksum such as the MD35 hash of the code as it is
loading and comparing it against its corresponding known good checksum saved in a
Checksum database. Alternatively, a trusted checksum verification service can also be
leveraged. This ensures that the code of the currently loading module is not already
corrupted with malware. The Resolve Client may be configured to throw an alarm if

the integrity check fails at 310.

WO 2015/038944 PCT/US2014/055469

-12-

[0041] At load time, particular OS functions and system calls that affect access
permissions and privileges are also identified and their addresses are dispatched and
saved in the Critical OS Functions Table at 312 and 316. The particular OS functions
and system calls dispatched by the Resolve client have long reaching effects on the
execution path of the executable. These administrative and critical OS functions and
system calls change access permissions of memory segments, bump up access
privileges, changes the no-execute policy, changes the Structured Exception Handler
protection, shuts down the Address Space Layout Randomization policy, allocated
and de-allocates memory, creates a new process, creates a new thread, or are involved
in encrypting and decrypting data.

[0042] As each module of the application loads into memory, the Resolve Client
additionally instruments instructions that are inserted into the module of the
application to collect data at runtime. The instrumented code is inserted into the
modules of the application using a dynamic binary analysis engine and/or a byte code
instrumentation engine. Soft spot instructions are instrumented in areas within the
modules that malware tend to attack, such as instructions that execute loops, to collect
data to track activities in these areas at runtime at 338. Direct and indirect transition
mapping instructions are instrumented in the modules to collect data to track activities
involving transition mappings at runtime at 328. Memory Operand Write instructions
are instrumented in the modules to collect data on memory write activities at runtime
at 336. In the presence of self-modifying code, the basic blocks may change at run
time. Additionally, instructions are instrumented in the application to collect data for
activities involving OS functions and systems calls stored in the Critical OS Function
Table at 312 and 316.

[0043] As aresult of the instrumentation inserted at load time, critical information
is generated at run time and collected for analysis. As the transition mapping data
related instrumentation is accessed, the Resolve Client collects the thread ID, current
instruction address, destination instruction address and optionally data contained in
each general purpose register. As the Soft Spot instrumentation is accessed before the
instruction is executed, the Resolve Client captures the thread ID and the bounds of
the stack through appropriate registers. As the soft spot instrumentation is completed,

the Resolve Client captures the thread ID and a few general purpose registers that

WO 2015/038944 PCT/US2014/055469

-13 -

allow it to estimate the region of memory updated by this write operation. As the
critical API or OS call instrumentation is accessed before the call is executed, the
Resolve Client captures the thread ID, API name or System Call number and input
parameters. As the critical API or OS call instrumentation is accessed after the call is
executed, the Resolve Client captures the thread ID, API name or System Call number
and return value. Instrumentation in the OS functions or system calls that allocate or
de-allocate memory helps to track the regions of memory that are currently involved
in the various heaps the application may have created. This memory envelop is
leveraged to track the target of indirect memory writes run time in order to find if the
malware wants to overrun control structures in the heap. In addition, by tracking the
bounds of basic blocks using a cache, the Analysis Engine can determine if the basic
block has changed. When the determination is positive, the Basic Block Table in the
model database can be updated.

[0044] In this example embodiment, the Resolve Client then dispatches the
captured information to a Streaming Engine to be packaged into a PDU for
transmission to the Analysis Engine. The Streaming Engine uses a very low overhead
OS artifact such as pipes or local procedure calls to move the data generated by the
various instrumentation to another process so that the instrumented process can
continue its normal course of operation. As in this example embodiment, the
Streaming Engine can also package the information collected from the
instrumentation into a Resolve PDU for further transmission to the Analysis Engine
using an appropriate standards based transport protocol. In one embodiment, the
transport protocol may be TCP/IP. In another embodiment, it may be UDP. In yet
another embodiment the transport protocol may involve using shared memory
technologies such as pipes or local procedure calls.

[0045] Fig. 4 depicts the Resolve PDU. In order for the Resolve Client and the
Analysis Engine to work effectively with each other, they communicate with each
other using the Resolve PDU. The Resolve PDU can specifically be used by the
Resolve Client to package the extracted model of the application and/or collected
runtime data for transmission to the Analysis Engine. The Resolve PDU contains

fields for each type of information to be transmitted between the Resolve Client and

WO 2015/038944 PCT/US2014/055469

-14-

the Analysis Engine. The Resolve PDU is divided into the Application Provided Data
Section, the HW/CAE Generated, and Content Analysis Engine or Raw Data sections.
[0046] The Application Provided Data Section contains data from various
registers as well as source and target addresses that are placed in the various fields of
this section. The Protocol Version contains the version number of the Resolve PDU
402. As the Resolve protocol version changes over time, the source and destination
must be capable of continuing to communicate with each other. This 8 bit field
describes the version number of the Resolve packet as generated by the source entity.
A presently unused reserved field 404 follows the Protocol Version field.

[0047] The next field of the Application Provided Data Section is the Message
Source/Destination Identifiers 406, 408, and 410 are used to exchange traffic within
the Analysis Engine infrastructure as shown in Fig. 7. From time to time, the various
entities shown in Fig. 7, exchange traffic between themselves. Not all these devices
have or need IP addresses and therefore, the two (hardware and host) Query Router
Engines uses the Message Source and Destination fields to route traffic internally.
Some messages need to go across the network to entities in the Analysis Engine. For
this purpose, the entities are assigned the following IDs, A given Analysis Engine
appliance may have more than one accelerator card. Each card will have a unique IP
address; therefore, the various entities will have a unique ID. The aforementioned
infrastructure may also be running more than one application. Since each application
server will have a unique IP address, the corresponding Resolve client side entity will

also have a unique ID.

[0048]
Resolve Client Side Entities
1. Resolve GUI
2. Instrumentation and Analysis Engine
3. Client Message Router
4. Streaming Engine
5. Client Side Daemon
6. CLI Engine
7. Client Watchdog
8. Client Compression Block
9. Client iWarp Ethernet Driver (100 Mb/1Gb/10Gb)

Per PCI Card Entities (starting address = 20 + n*20)
20. Securalyzer TOE block

WO 2015/038944

21.
22.
23.
24.
25.
26.
27.
28.
29.

-15 -

Securalyzer PCI Bridge
Decompression Block

Message Verification Block
Packet Hashing Block
Time-Stamping Block

Message Timeout Timer Block
Statistics Counter Block
Securalyzer Query Router Engine
Securalyzer Assist

Securalyzer Host Entities

200.
201.
202.
203.
204.
205.
206.
207.
208.
209.

Securalyzer PCle Driver
Host Routing Engine
Content Analysis Engine
Log Manager

Daemon

Web Service Engine
Watchdog

IPC Messaging Bus
Configuration Database
Log Database

SIEM Connectors

220.
221.
222.
223.

SIEM Connector 1 — Virsec Dashboard
SIEM Connector 2 — HP ArcSight
SIEM Connector 3 — IBM QRadar
SIEM Connector 4 — Alien Vault USM

Securalyzer Infrastructure Entities

230.
231.
232.
233.
234,
235.
236.
237.
238.
239.
240.
241.

Virsec dashboard
SMTP Server

LDAP Server

SMS Server
Entitlement Server
Database Backup Server
OTP Client

OTP Server
Checksum Server
Ticketing Server
Virsec Rules Server
Virsec Update Server

All user applications

PCT/US2014/055469

WO 2015/038944 PCT/US2014/055469

-16 -

255. User Applications — Application PID is used to identify the application
issuing a query

[0049] Another field of the Application Provided Data section is the Message
Type field which indicates the type of data being transmitted 412. At the highest
level, there are three distinct types of messages that flow between the various local
Resolve client side entities, between the Analysis Engine appliance side entities and
between Client side and appliance side entities. Furthermore, messages that need to
travel over a network must conform to the OSI model and other protocols.

[0050] The following field of the Application Provided Data section is the Packet
Sequence Number field containing the sequence identifier for the packet 414. The
Streaming Engine will perform error recovery on lost packets. For this purpose it
needs to identify the packet uniquely. An incrementing signed 64 bit packet sequence
number is inserted by the Streaming Engine and simply passes through the remaining
Analysis Engine infrastructure. If the sequence number wraps at the 64 bit boundary,
it may restart at 0. In the case of non-application packets such as heartbeat or log
message etc., the packet sequence number may be -1.

[0051] The Application Provided Data section also contains the Resolve Canary
Message field contains a canary used for encryption purposes 422. The Resolve Client
and the Analysis Engine know how to compute the Canary from some common
information but of a fresh nature such as the Application Launch time, PID, the
license string, and an authorized user name.

[0052] The Application Provided Data section additionally contains generic fields
that are used in all messages. The Application Source Instruction Address 458,
Application Destination Instruction Address 416, Memory Start Address Pointer 418,
Memory End Address Pointer 420, Application PID 424, Thread ID 426, Analysis
Engine Arrival Timestamp 428, and Analysis Engine Departure Timestamp 430 fields
which hold general application data.

[0053] The Resolve PDU also contains the HW/CAE Generated section. In order
to facilitate analysis and to maintain a fixed time budget, the Analysis Engine hashes
the source and destination address fields and updates the Resolve PDU prior to

processing. The HW/ CAE Generated section of the Resolve PDU is where the hashed

WO 2015/038944 PCT/US2014/055469

-17 -

data is placed for later use. This section includes the Hashed Application Source
Instruction Address 432, Hash Application Destination Instruction Address 434,
Hashed Memory Start Address 436, and Hashed Memory End Address 438 fields.
The HW/CAW Generated section additionally contains other fields related to the
Resolve Canary 442 including the Hardcoded Content Start Magic header, API Name
Magic Header, Call Context Magic Header and Call Raw Data Magic Header are
present in all Resolve PDU packets.

[0054] The HW/CAW Generated section also includes a field 440 to identify
other configuration and error data which includes Result, Configuration Bits,
Operating Mode, Error Code, and Operating Modes data. The Result part of the field
1s segmented to return Boolean results for the different Analysis Engine queries — the
transition playbook, the code layout, the Memory (Stack or Heap) Overrun, and the
Deep Inspection queries. The Configuration Bits part of the field indicates when a
Compression Flag, Demo Flag, or Co-located Flag is set. The presence of the flag in
this field indicates to the Analysis Engine whether the packet should be returned in
compression mode. The Demo Flag indicates that system is in demo mode because
there is no valid license for the system. In this mode, logs and events will not be
available in their entirety. The Co-located Flag indicates that the application is being
run in the Analysis Engine so that Host Query Router Engine can determine where to
send packets that need to return to the Application. If this flag is set, the packets are
sent via the PCI Bridge, otherwise they are sent over the Ethernet interface on the PCI
card. The Operating Mode part of the field indicates whether the system is in
Paranoid, Monitor, or Learn mode. These modes will be discussed in more details
later in this section. Lastly, the Error Code part of the field indicates an error in the
system. The first eight bits of the error code will correspond to the message source.
The remaining 12 bits will correspond to the actual error reported by each subsystem.
[0055] The Resolve PDU also contains the Content Analysis Engine or Raw
Data. All variable data such as arguments and return value of the OS library calls and
System Calls is placed in this section of the Resolve PDU. The data in this section
contains the content of the data collected from the application and is primarily
targeted at the Content Analysis Engine. This section contains the Variable Sized API
Name or Number 444, the Call Content Magic Header 446, the Variable Sized Call

WO 2015/038944 PCT/US2014/055469

-18 -

Content 450, the Call Raw Data Magic Header 452, Variable Sized Raw Data
Contents 456, and two reserved 448 and 454 fields. Furthermore, these fields can be
overloaded for management messages.

[0056] Fig. 5 shows the process used by Analysis Engine to detect security events
at runtime. In this example embodiment, the Analysis Engine is a separate process
running on the same or different hardware relative to the Resolve Client. By
separating the data collection from the data analysis part, the processing overheads
associated with the analysis of information generated by the instrumentation process
is substantially reduced. This allows the Analysis Engine to perform runtime analysis
for multiple applications at the same time.

[0057] During run time, instrumentation on the code provides an opportunity to
examine the appropriate context, such as thread ID, stack start and base addresses,
general purpose registers, source addresses, and destination addresses. The sequence
of operations for examining the content has no specific order, is interchangeable, and
can even be performed in parallel by multiple threads of the Analysis Engine. Using
the process described in Fig. 5, the Secure Engine will generate individual events for
each thread in the application that can be collected on a specific and individual Event
Chain State Machine to track the progression of the attack in real time. The events
generated by the Analysis Engine follow a standards based event format, such as
SYSLOG. This enables a standards based event management system to use the events
generated by the Resolve Client either directly or through a connector that translates
SYSLOG to a standard target format, such as Common Event Format (CEF). Since
the Analysis Engine has access to the previously saved Application Map with all its
tables, when a performed transition instruction reports its context, the Analysis
Engine has access to the extracted model of the application, including data indicating
whether or not a target address is a valid destination.

[0058] After the process starts at 502, new runtime information is received in a
Resolve PDU packet from the Resolve Client at 504. Before saving the packet in a
buffer at 508, the Analysis Engine verifies the canary and timestamp contained in the
packet at 506. While the Resolve PDU is still buffered, the Analysis Engine hashes
the address fields and puts the hashed data in the HW/CAE section of the Resolve
PDU at 510. The packet can then be pulled from the packet buffering for processing

WO 2015/038944 PCT/US2014/055469

-19 -

at 512. When processing of the packet is complete, the process then waits for the next
packet at 554.

[0059] The process used by the Analysis Engineer looks at transition mapping
data. If the runtime information reported by a transition type instruction is from a
direct transition at 520 and the target address is not found in the Transition Map Table
at 528, the Analysis Engine generates an event with the details of the thread in which
the event occurred at 544. If the runtime information reported by a transition type
instruction is from an indirect transition at 522 and the target address is in the Code
Table at 530 and in the middle of a basic block at 548, the Analysis Engine generates
an event at 550 with the details of the thread in which the event occurred. If the
runtime information reported by a transition type instruction is from an indirect
transition at 522 and the target address is in a region associated with the heap memory
at 530 and 548, the Analysis Engine generates an event at 550 with the details of the
thread in which the event occurred. If the runtime information reported by a
transition type instruction is from an indirect transition at 522 and the target address is
in a non-code, non-import-table region of memory at 552, the Analysis Engine
generates an event at 556 with the details of the thread in which the event occurred.
[0060] The process used by the Analysis Engine looks at Memory Write data at
516. If the runtime information being reported is from a memory write instruction
and if the write target address is in a memory region of the V Table at 524, the
Analysis Engine generates an event at 536 with the details of the thread in which the
event occurred. If the runtime information being reported is from a. memory write
instruction and if the write target address is in a memory region of the Export Table at
524, the Analysis Engine generates an event at 536 with the details of the thread in
which the event occurred. If the runtime information being reported is from a
memory write instruction and if the write target address is in the target control section
of'a heap memory region at 538, the Analysis Engine generates an event at 536 with
the details of the thread in which the event occurred. If the runtime information being
reported is from a memory write instruction and if the write target address is in the
target control section of the stack memory region at 532, the Analysis Engine

generates an event 536 with the details of the thread in which the event occurred.

WO 2015/038944 PCT/US2014/055469

-20 -

[0061] The process used by the Analysis Engine looks at soft spot data at 514. If
the instruction is a soft spot instruction and the write target address is in a memory
region of the V Table at 524, the Analysis Engine generates an event at 536 with the
details of the thread in which the event occurred. If the instruction is a soft spot
instruction and the write target address is in the memory region of the Export Table at
524, the Analysis Engine generates an event at 536 with the details of the thread in
which the event occurred. If the instruction is a soft spot instruction and the write
target address is in the target control section of the heap memory region at 538, the
Analysis Engine generates an event at 536 with the details of the thread in which the
event occurred. If the instruction is a soft spot instruction and the write target address
overwrites the instruction pointer saved in the control region of the stack at a memory
location below the base pointer at 532, the Analysis Engine generate an event 536
with the details of the thread in which such an event occurred.

[0062] The process used by the Analysis Engine looks at OS functions and system
calls at 518. If the instrumentation associated with the entry point of a critical OS
function or system call is called at 526 because of an invalid OS function or system
call operation at 542, the Analysis Engine generates an event at 544 with the details of
the thread on which the event occurred when activities in the Critical OS Function
Table occur. This causes an event being generated for calls to code that changes
memory access permissions is declared invalid, calls to code that changes privilege
levels is declared as potentially invalid, a privilege escalation occurs on a thread
servicing a WAN based user is elevated, changes to the No-Execute policy is declared
invalid, changes the Address Space Layout Randomization (ASLR) policy is declared
invalid, changes the Safe Exception Handling (SEH) policy is declared invalid, calls
to admin specified functions are not handled in accordance with the event associated
with that particular function call, or calls to admin specified system calls are not
handled in accordance with the event associated with that particular system call. In
addition, critical system call operations at 526 to heap memory operations at 534 are
used to update the heap memory envelop at 540. Those regions of memory that are
related to allocation increase the memory envelop size whereas those that de-allocate

free up the targeted region.

WO 2015/038944 PCT/US2014/055469

-21 -

[0063] Fig. 6 depicts an Event Chain State Machine used to track detected
security events. The Path Validation Engine generates events and tracks the state of
the events in accordance with the event chain state machine shown. The Event Chain
State Machine uses records stored in a Transition Playbook database to track these
events. When a new thread starts, the Event Chain state machine is initialized to Start
State at 602. The Event Management Engine serializes events so that the set of events
on one thread are updated on the state machine for the appropriate thread. As
transitions occur on the thread, the state machine records the target address but stays
in the Start State. When the Path Validation Engine generates a medium or high
severity event, the Event Chain state machine advances to the next state, the E;,state at
604. This new state continues to record the target address of transitions as they occur.
This process of the state machine updating to a new state on medium and high
severity events and recording transition events continues at 606, 608, and 610 until
the thread reaches the Terminate State at 612. The Security Analyst is notified when
a highest severity level event is triggered and the Event Chain State Machine captures
the forensics when an attack occurs.

[0064] Depending on the modes of the system, there are various remedial actions
that can be taken in response to events. The remedial actions taken are performed in
real-time. One remedial action may consist of shutting down the application. Other
remedial actions may be to unbind or release the socket(s) associated with the threads
on which the threat has appeared, terminate the thread on which a threat has appeared,
and/or blacklisting the user that caused the threat. Another remedial action would be
to unblock all sockets associated with the application server’s socket(s). This will
block all users connected at the time. Yet another remedial action may be to ignore
the attack. This may be due to the analyst not considering the attack to be of major
consequence. The most appropriate suggested remedial actions for a given event are
pre-programmed so that if the security analyst has chosen to operate the Analysis
Engine in automatic mode, the remedial action occurs automatically.

[0065] The Path Validation Engine of the Analysis Engine can be run in three
modes: Monitor, Paranoid or Learning mode. The difference between these modes is
how and when to enforce the remedial actions associated with the event(s) received

on a given thread in the application. In the Monitor mode, as runtime information

WO 2015/038944 PCT/US2014/055469

-922.-

arrives and is analyzed by the Analysis Engine, it generates notifications that are
directed to the designated security analysts. It is then the security analyst’s job to
intervene and choose the most appropriate remedial action. The security analyst may
decide to change an “ignore” type pre-programmed remedial action to a higher impact
remedial action even before the thread has reached the Terminate State. On finalizing
the remedial action, the Analysis Engine implements the remedial action when the
appropriate authority in the enterprise clears the proposed remedial action for a given
thread.

[0066] In the paranoid mode, the programmed (default or user configured)
remedial action is executed automatically without any manual intervention from the
security analyst. In either mode, once the remedial action is ready to be carried out,
the Analysis Engine lets the Resolve Client know which remedial action to carry out.
The Resolve Client then performs the action associated with the remedial action on
the application. Once the remedial action is completed, the Resolve Client sends a
confirmation message back to the Analysis Engine. On receiving the
acknowledgement, the Analysis Engine performs housekeeping including updating
the security analyst.

[0067] In learning mode, the Analysis Engine ignores all events and remedial
actions. In this mode, the application runs in a pristine environment and records all
events and event chains. The security analyst uses this information to build criteria for
when an event should be raised and what remedial action should be associated with
the said event.

[0068] Fig. 7 depicts a high level block diagram of an example Resolve Client and
Analysis Engine infrastructure. This infrastructure may be configured on a various
hardware including computing devices ranging from smartphones, tablets, laptops,
desktops to high end servers. As shown in this figure, data collection performed by
the Resolve Client may be segregated from analysis performed by the Analysis
Engine to improve application performance. The infrastructure provides high
availability to prevent hackers from subverting its protection against malware attacks.
The Resolve Client interacts with an application to gather load time and runtime data.
The infrastructure of the application 701 includes process memory 703, third-party

libraries 704, kernel services 706, and an instruction pipeline 707. The infrastructure

WO 2015/038944 PCT/US2014/055469

-23 -

of the Resolve Client 702 includes the Instrumentation & Analysis Engine (IAE) 705,
graphical user interface (GUT) 711, Client Daemon 708, Configuration database 709,
and Streaming and Compression Engine 710, and central processing unit (CPU) 736.
Local or remote users 702 of the application 701 interact with the application either
through devices like keyboards, mice or similar I/O devices or over a network through
a communication channel that may be established by means of pipes, shared memory
or sockets. In response the application process 703 dispatches appropriate sets of
instructions into the instruction pipeline 707 for execution. The application may also
leverage its own or third party libraries 704 such as libc.so (Linux) or msvertxx.dll
(Windows). As functionality from these libraries is invoked, appropriate instructions
from these libraries are also inserted into the instruction pipeline for execution 707. In
addition the application may leverage system resources such as memory, file /O etc.
from the kernel 706. These sequences of instructions from the application, libraries
and the kernel put together in a time ordered sequence deliver the application
functionality desired by a given user.

[0069] As the application’s code begins to load into memory, the IAE 705
performs several different load time actions. Once all the modules have loaded up,
the instrumented instructions of the application generate runtime data. The Client
Daemon 708 initializes the Instrumentation and Analysis Engine 705, the Streaming
Engine 710 and the GUI 711 processes in the CPU at 736 by reading one or more
configuration files from the Configuration database 709. It also initializes
intercommunication pipes between the IAE, Streaming Engine, GUI, Analysis Engine
and itself. The Client Daemon also ensures that if any Resolve Client process,
including itself, becomes unresponsive or dies, it will be regenerated. This ensures
that the Resolve Client is a high availability enterprise grade product.

[0070] The Instrumentation and Analysis Engine pushes load and runtime data
collected from the application into the Streaming Engine. The Streaming Engine
packages the raw data from the Resolve Client into the Resolve PDU. Then it pushes
the Resolve PDU over a high bandwidth, low latency communication channel 712 to
the Analysis Engine 711. If the Client and the analyzer are located on the same
machine this channel can be a memory bus. If these entities are located on different

hardware but in the same physical vicinity, the channel can be an Ethernet or Fiber

WO 2015/038944 PCT/US2014/055469

-4 -

based transport, which allows remote connections to be established between the
entities to transport the load and runtime data across the Internet.

[0071] The infrastructure of the Analysis Engine includes the Network Interface
Card (NIC) 713, the Packet Pool 714, the Time Stamp Engine 715, the Processor
Fabric 716, the Hashing Engine 717, the TCAM Engine 718, the Application Map
database 719, and the Thread Context database 720. The infrastructure of the
Analysis Engine further includes the Content Analysis Engine 721, the Events and
Event Chains 722, the Event Management Engine 723, the Event Log 724, the
Application Daemon 725, the Analysis Engine Configuration database 726, the
Network Interface 727, the Dashboard 728, the SMS/SMTP Server 729, the OTP
Server 730, the Upgrade Client 731, the Software Upgrade Server 732, Software
Images 733, the Event Update Client 734, and the Event Upgrade Server 735.

[0072] The Resolve PDU together with the protocol headers is intercepted at the
Network Interface Card 713 from where the Resolve PDU is pulled and put into the
Packet Pool 714. The timestamp fields in the Resolve PDU are filled up by the Time
Stamp Engine 715. This helps to make sure that no packet is stuck in the packet Pool
buffer for an inordinately long time.

[0073] The Processor Fabric 716 pulls packets from the packet buffer and the
address fields are hashed and replaced in the appropriate location in the packet. This
operation is performed by the Hashing Engine 717. Then the Processor Fabric starts
removing packets from the packet buffer in the order they arrived. Packets with
information from the load time phase are processed such that the relevant data is
extracted and stored in the Application Map database 719. Packets with information
from the runtime phase are processed in accordance with Figure 5. The efficiency of
the Analysis Engine can be increased or decreased based on the number of processors
in the Processor Fabric.

[0074] The transition target data is saved in the Thread Context database 720
which has a table for each thread. The Processor fabric also leverages the TCAM
Engine 718 to perform transition and memory region searches. Since the processor
fabric performing lookups using hashes, the actual time used is predictable and very
short. By choosing the number of processors in the fabric carefully, per packet

throughput can be suitable altered.

WO 2015/038944 PCT/US2014/055469

-925.

[0075] When the Analysis Engine performs searches, it may, from time to time
find an invalid transition, invalid operation of critical/admin functions or system calls,
or find a memory write on undesirable locations. In each of these cases, the Analysis
Engine dispatches an event of the programmed severity as described by the policy
stored in the Event and Event Chain database 722 to the Event Management Engine
723. The raw event log is stored in the Event Log Database 724. The Dashboard can
also access the Event Log and display application status.

[0076] A remedial action is also associated with every event in the Event and
Event Chain database 722. A user can set the remedial action from a range of actions
from ignoring the event in one extreme to terminating the thread in the other extreme.
A recommended remedial action can be recommended to the analyst using the Event
Update Client 734 and Event Upgrade Server 735. In order to change the
aforementioned recommended action, an analyst can use the Dashboard 728
accordingly. The Dashboard provides a GUI interface that displays the state of each
monitored application and allows a security analyst to have certain control over the
application, such as starting and stopping the application. When an event is
generated, the Event Chain advances from the normal state to a subsequent state. The
remedial action associated with the new state can be taken. If the remedial action
involves a non-ignore action, a notification is sent to the Security Analyst using and
SMS or SMTP Server 729. The SMS/ SMTP address of the security analyst can be
determined using an LDAP or other directory protocol. The process of starting or
stopping an application from the Dashboard requires elevated privileges so the
security analyst must authenticate using an OTP Server 730.

[0077] New events can also be created and linked into the Event and Event Chain
database 722 with a severity and remedial action recommended to the analyst. This
allows unique events and event chains for a new attack at one installation to be
dispatched to other installations. For this purpose, all new events and event chains are
loaded into the Event Upgrade Server 735. The Event Update Client 734 periodically
connects and authenticates to the Event Upgrade Server to retrieve new events and
event chains. The Event Update Client then loads these new events and event chains

into the Events and Events Chain database 722. The Content Analysis Engine 721

WO 2015/038944 PCT/US2014/055469

=26 -

can start tracking the application for the new attacks encapsulated into the new event
chains.

[0078] Just as with the Client Daemon, the Appliance Daemon 725 is responsible
for starting the various processes that run on the Analysis Engine. For this purpose, it
must read configuration information from the Analysis Engine Configuration database
726. The daemon is also responsible for running a heartbeat poll for all processes in
the Analysis Engine. This ensures that all the devices in the Analysis Engine
ecosystem are in top working condition at all times. Loss of three consecutive
heartbeats suggests that the targeted process is not responding. If any process has
exited prematurely, the daemon will revive that process including itself.

[0079] From time to time, the software may be upgraded in the Appliance host,
or of the Analysis Engine or of the Client for purposes such as fixing errors in the
software. For this purpose, the Upgrade Client 731 constantly checks with the
Software Upgrade Server 732 where the latest software is available. If the client finds
that the entities in the Analysis Engine or the Client are running an older image, it will
allow the analysts to upgrade the old image with a new image from the Software
Upgrade Server 732. New images are bundled together as a system image 733. This
makes it possible to provision the appliance or the host with tested compatible images.
If one of the images of a subsystem in the Analysis Engine or the Resolve Client does
not match the image for the same component in the System image, then all images
will be rolled to a previous known good system image.

[0080] Fig. 8 illustrates a computer network or similar digital processing
environment in which embodiments of the present invention may be implemented.
[0081] Client computer(s)/devices 50 and server computer(s) 60 provide
processing, storage, and input/output devices executing application programs and the
like. The client computer(s)/devices 50 can also be linked through communications
network 70 to other computing devices, including other client devices/processes 50
and server computer(s) 60. The communications network 70 can be part of a remote
access network, a global network (e.g., the Internet), a worldwide collection of
computers, local area or wide area networks, and gateways that currently use
respective protocols (TCP/IP, Bluetooth®, etc.) to communicate with one another.

Other electronic device/computer network architectures are suitable.

13 Apr 2017

2014318585

-7 -

[0082] Fig. 9 is a diagram of an example internal structure of a computer (e.g.,
client processor/device 50 or server computers 60) in the computer system of Fig. 8.
Each computer 50, 60 contains a system bus 79, where a bus is a set of hardware lines
used for data transfer among the components of a computer or processing systeni.
The system bus 79 is essentially a shared conduit that connects different elements of a
computer system (e.g., processor, disk storage, memory, input/output ports, network
ports, etc.) that enables the transfer of information between the elements. Attached to
the system bus 79 is an I/O device interface 82 for connecting various input and
output devices (e.g., keyboard, mouse, displays, printers, speakers, etc.) to the
computer 50, 60. A network interface 86 allows the computer to connect to various
other devices attached to a network (e.g., network 70 of Fig. 8). Memory 90 provides
volatile storage for computer software instructions 92 and data 94 used to implement
an embodiment of the present invention (e.g., resolve client and analysis engine
elements described herein). Disk storage 95 provides non-volatile storage for
computer software instructions 92 and data 94 used to implement an embodiment of
the present invention. A central processor unit 84 is also attached to the system bus
79 and provides for the execution of computer instructions.

[0083] While this invention has been particularly shown and described with
references to example embodiments thereof, it will be understood by those skilled in
the art that various changes in form and details may be made therein without
departing from the scope of the invention encompassed by the appended claims.
10084] Throughout this specification and claims which follow, unless the context
requires otherwise, the word "comprise", and variations such as "comprises” and
"comprising", will be understood to imply the inclusion of a stated integer or step or
group of integers or steps but not the exclusion of any other integer or step or group of
integers or steps.

[0085] The reference in this specification to any prior publication (or information
derived from it), or to any matter which is known, is not, and should not be taken as
an acknowledgment or admission or any form of suggestion that that prior publication
(or information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

1697177.v1

22 Nov 2017

2014318585

_928 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method comprising:

as a module of a computer application loads into memory:

disassembling machine code of the module;

examining the disassembled machine code to identify transition
instructions, including direct and indirect transition instructions for
determining a target address, wherein direct transition instructions
determine a target address at load time, and indirect transition
instructions have a runtime dependency preventing determining a
target address until runtime,

for each identified transition instruction,
(1) storing the target address of the identified transition
instruction, if the identified transition instruction is a direct
transition instruction, storing the identified transition
instruction, if the identified transition instruction is an indirect
transition instruction; and
(i1) inserting one or more collection instructions into the
module of the computer application to collect data at runtime;
and
as the module of the computer application executes at runtime:

analyzing the data collected at runtime against the stored target
addresses and stored indirect transition instructions to detect one or
more security events; and

tracking the one or more security events using a state machine.

2. A computer-implemented method comprising:
as a module of a computer application loads into memory:
disassembling machine code of the module;
examining the disassembled machine code to identify transition

instructions, including direct and indirect transition instructions for

1697177.v1

22 Nov 2017

2014318585

-29

determining a target address, wherein a direct transition instruction
determines a target address at load time, and an indirect transition
instruction has a runtime dependency preventing determining a target
address until runtime, for each identified transition instruction,

storing the target address of the identified transition instruction,
if the identified transition instruction is a direct transition instruction,
storing the identified transition instruction, if the identified transition
instruction is an indirect transition instruction; and

inserting one or more collection instructions into the module of

the computer application to collect data at runtime.

3. A computer-implemented method comprising:
as a module of a computer application executes at runtime:
analyzing data collected at runtime for a computer application
against stored target addresses and indirect transition instructions of
the computer application to detect one or more security events; and

tracking the one or more security events using a state machine.

4. The method of Claim 1 or 2 wherein disassembling machine code of the

module includes: extracting direct and indirect transition mapping data from
the computer application, extracting memory mapping data from the computer
application, extracting instructions that manipulate memory buffers from the
computer application, extracting instructions that execute program loops from
the computer application, and extracting OS functions and system calls

referenced by the computer application.

5. The method of Claim 1 or 2 wherein disassembling machine code of the

module is accomplished at least in part using a code disassembler.

1697177.v1

22 Nov 2017

2014318585

6.

7.

10.

- 30 -

The method of Claim 1 or 2 wherein the computer application is in binary or

interpreted format.

The method of Claim 1 or 2 further comprising:

checking the computer application for integrity during load time,

optionally wherein checking the computer application for integrity

comprises computing a checksum.

The method of Claim 1 or 2 wherein storing the target address or target
instruction includes storing the target address or target instruction in a
database that contains one or more tables for modeling the computer

application.

The method of Claim 1 or 2 wherein storing the target address or target
instruction includes storing the target address or target instruction in a
database on a remote system, optionally wherein the method further

comprises:

packaging the target address or target instruction for transmission to the

remote system for storing in the database; and
further optionally, wherein the method comprises:

placing a canary into the transmission to secure the

transmission.

The method of Claim | or 2 wherein inserting one or more collection
instructions into the computer application is accomplished at least in part

using a dynamic binary analysis engine or a byte code instrumentation engine.

1697177.v1

22 Nov 2017

2014318585

11

13.

14.

15.

16.

-3 -

The method of Claim 1 or 2 further comprising:

packaging the data collected at runtime for transmission to one or more
processes, optionally wherein the one or more processes are on a remote

system or the method further comprises:

placing a canary into the transmission to secure the transmission.

The method of Claim 1 or 2 wherein the data collected at runtime comprises

data for one or more threads of the computer application.

The method of Claim 1 or 3 wherein analyzing the data collected at runtime
against the stored target addresses and transition instructions comprises one or
more of analyzing transition data, analyzing OS functions, analyzing system
calls, analyzing memory writes, analyzing instructions that manipulate

memory buffers, analyzing instructions that execute program loops.

The method of Claim 1 or 3 wherein tracking the one or more security events
comprises correlating the one or more security events based on a predefined
sequence, optionally wherein the predefined sequence is based on an

immutable chain.

The method of Claim 1 or 3 wherein tracking the one or more security events
includes capturing forensic data for the events or wherein tracking the one or

more security events comprises the use of severity levels.

The method of Claim 1 further comprising taking one or more actions in
response to tracking the one or more security events, optionally wherein the
one or more actions are automatically taken by a system or wherein the one or

more actions are taken by a user or wherein the one or more actions include

1697177.v1

22 Nov 2017

2014318585

-32 .

any of terminating the computer application, include terminating one or more
threads of the computer application, include closing a socket on one or more
threads of the computer application, and generating alerts in response to the
one or more security events or wherein the one or more actions taken in

response to tracking the one or more security events are adjustable.

17. The method of Claim 1 or 3, further comprising: receiving the data collected at
runtime from a process on a remote system; and/or further comprising
receiving the stored target addresses and transition instructions from a process

on a remote system.

18. A system comprising:
a client configured to:
as a module of a computer application loads into memory:
disassemble machine code of the module;
examine the disassembled machine code to identify transition
mstructions, including direct and indirect transition instructions for
determining a target address, wherein a direct transition instruction
determines a target address at load time, and an indirect transition
instruction has a runtime dependency preventing determining a target
address until runtime,
for each identified transition instruction,

(1) store the target address of the identified transition
instruction, if the identified transition instruction is a direction
transition instruction, store the identified transition instruction,
if the identified transition instruction is an indirect transition
instruction;

(i1) insert one or more collection instructions into the
module of the computer application to collect data at runtime;
and

as the module of the computer application executes at runtime:

1697177.v1

22 Nov 2017

2014318585

-33 -

an analysis engine configured to:

analyze the data collected at runtime against the stored target
addresses and indirect transition instructions to detect one or more
security events; and

track the one or more security events using a state machine.

19. An apparatus comprising:
a processor configured to execute a first process and a second process;
as a module of a computer application loads into memory:
the first process configured to
disassemble machine code of the module;
examine the disassembled machine code to identify transition
mstructions, including direct and indirect transition instructions
for determining a target address, wherein a direct transition
instruction determines a target address at load time, and an
indirect transition instruction has a runtime dependency
preventing determining a target address until runtime,
for each identified transition instruction,
store the target address of the identified transition
instruction, if the identified transition instruction is a direct
transition instruction, store the identified transition instruction,
if the identified transition instruction is an indirect transition
instruction;
the second process configured to insert one or more collection
instructions into the module of the computer application to collect data

at runtime.

20. An apparatus comprising:
a processor configured to execute a first process and a second process;
the first process configured to analyze data collected at runtime for a

computer application against stored target addresses and indirect transition

1697177.v1

22 Nov 2017

2014318585

-34 -

instructions of the computer application to detect one or more security events,
wherein the model includes transition mapping data from the computer
application; and

the second process configured to track the one or more security events

using a state machine.

1697177.v1

WO 2015/038944 PCT/US2014/055469

1/9

116

118

ENTERPRISE
WEB ASSETS

110

ENTERPRISE
NETWORK

(e @]
S
< v
LL
A <
o M=
=
=2 -
=0)
<E %Q
2 S
© Y
| S
0 vy T o
ot L]
o [
L]
<7 x 25
O WZO
;E:(/) §§_l
< =0
o
L T— O
O
= prd
O
(&

SUBSTITUTE SHEET (RULE 26)

WO 2015/038944 PCT/US2014/055469

2/9

Buffer Error or
User naivety

Malformed content

Malicious code
sent to target

. activates
process exploited 206
202 204
Establish
Download some connectivity with Start thread for
more malware malware to run
C&C
208 210 212

Data mangling or
exfiltration {o
C&C
216

Find OS functions
needed
214

WO 2015/038944

{ Throw Alarm

\ 310

e No
//

PCT/US2014/055469

3/9
Start)
a
U
New Module Loaded |—— Wait Loop
304 306
Chetci;sur;w Instrument Admin
maicnes: Function/ Sys Call
308 Add
resses 4,
Yes ?

. Instrument Critical
Dlsp_atch Code Function/ Syscall
Section Bounds Add

314 resseS3qg
Dispatch Export Load “Manual”
Section Bounds transitions
318 320
Dispatch V-Table Dispatch
Section Bounds Disassembly of
(if 1ny) 322 Indirect }rans;t;c&s
Dispatch Other Instrument Code
. Transition
Section Bounds :
326 Instructions e
Dispatch
Dispatch Block Addresses of {In)
Bounds Direct Code
¢ 330 Transitions 332
Dispatch Instrument Mem
Addresses of Soft operand Write
Spots 334 Instructions 354
Dispatch
Instrument Soft Addresses of
Spot instructions Writes with Mem
338 Operand 340

FIG. 3

WO 2015/038944

HWICAE Generated —»——— Application Provided Data

~— Content Analysis Engine or Raw Data

402
A

PCT/US2014/055469

4/9

404
\

Resolve Protocol
Version - 8 bits

408 410 Reserved - 24 bits 412
\ S~ \

Original Message

Source - 8 hits

]

Current Message Message " Message
Source - 8 bits | Destination - 8 bits Type - 8 bits

)]
406

Packet Sequence Number - 64 bits 414
Application Source Instruction Address (64 bits) +-458
Application Destination Instruction Address (84 bits) 4416
Memory Start Address Pointer - 64 bits +418
Memory End Address Pointer - 64 bits ~- 420
Resolve Canary Message -32 bits 422
Application PID - 32 bits - 424
Thread ID - 32 bits 4+~ 426
Analysis Engine Arrival Timestamp (64 bits) ~4- 498
Analysis Engine Artival Timestamp (64 bits) ~-430
Hashed Application Source Instruction Address + Reserved (28 bits +4 bits) 4~ 432
Hashed Application Destination Instruction Address + Reserved (28 bits + 4 bits) §~434
Hashed Memory Start Address + Reserved (28 bits +4 bits) T-436
Hashed Memory End Address + Reserved (28 bits +4 bits) ~~438
Transition Plagbook + Layout + Memory Overrun + Deep Inspection Result +
Config Bits + Operating Mode + Error Code - (4 +4 +4 + 20 bits) ~440
Content Start Inspection Target | TP Rule + SOF Rule + CARule + § 449
Magic Header - 8 bits | (APV Sys) - 8 bits | Effective Flags + Reserved - 15 bits
446 Variable Sized API Name or Number 444
\
Call Context :
Magic Header - 8 hits Reserved - 24 bits 1-448
459 Variable Sized Call Context T-450
A
Call Raw Data ! . i
Magic Header - 8 bits Reserved - 24 bits 454
Variable Sized Raw Data Contents 456

FIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/055469

WO 2015/038944

5/9

966

¢ old

vA\ GG Y
»_Joxoed IxeN Joj Jep) /
a
Zuonos
e 0vS lonuo?) desH
JUSAT MOJY | dojeAug jobie
I - Kiowsy 8es
— ajepd
o . uonoe
)i ¢ fuepunog 8oy zuonesadQ [y
ONNL0Ig U0 _~"g3A 1128] pIfeAU] S| S3A _eﬁm _m_oﬂw
ajepdn
8vS A% A%
SdA SdA S3 y
: ¢8lqeL 1IB9SAS ¢dIqeL 9¢5
(UOOSS uopIsuel] Ui el flodx3 Jo s[qe]-A
H : eoni JUSA3
8poQ Y| Yoyep ON Jldv _w_ I ~0ON jobie| MOIY]
0€s 8¢S 9¢s fAY
S3A S3A S3A S3A ' S3A
s uonisues | cuonisues |
JRUpUI S|~ ON Paud s ON ON ON ON
¢cs 0¢s 816 916 v1G
Y
215 015 R 90 70
jayngioyoed ||« spal4 - Joung e—{dwesewl] pue|<— peAlsosy UoIewIo| %
wioJ} 19¥oed lind sSeIppy UseH 19308 9ABS \ fieuen Ajusp awnuNy MoN

SUBSTITUTE SHEET (RULE 26)

WO 2015/038944 PCT/US2014/055469

6/%
- O
/,/ \ /,/ \\
/ N /
{ Event {, Event
—————
\ E; State \ En State
604 / _606 A
T T —_"\\\

/ /.//ﬁ\‘\\ / \\
4/ Start)\ [/ Event Y
Lo Pl \ E.State ./
~ANSEe /) _ 608 /

o S

/// h \\
{ Event |
\ E, State |
N\ 610 7
Y
\\\—/

FIG. 6

JARE

PCT/US2014/055469

719

8l It G/ w1l 101
oz, | INONT | | INioONT ANIONT 100d INIT3dId NOLLONHLSNI
1xaiNoo | wvoLl | | oNIHSYH | |anvis 3wt | E3xyovd — 1 T
QvddHl =3] f) INONI 901
@fv — — ~| NOISSTHNOD S30IAYIS
9/ - e1l . ANy TN
OIdgY4 HOSSID0Hd JOVAYILNI YHOMLIN -1 ONIAVIILS . 1
S Y Y S TANNYHO 1] 50L
6L/ y] SNGAUONIN | NOILYD Y INI9NT SISATYNY %
4Vl = o 033dS HOIH | INNIWNOD 0L | [NOILY INJWNYLSNI
ddY | | ong 1wow | | ONT SISATYNY oy |THLAMANVE NOW3va | 3
IN3AZ IN3LNOD sgovm | o | Ceoz | INITO bo
A Md/MS MOT OIINOO ¥ ¢ Sdn
4 ﬁl» 1741 SNIVHD \ ALYVd PIg
4 [—_—
p— V01 1IN3AZ ANV 9¢/ || 112 } ‘
Gzl INIAT SINIAT L S __
NOW3va I ; AN AN momw
JONVI1ddY m ¥e/ X S5 AHOW3N SSI00¥d
- | Em%_%m A3 mmawwwg 1T | INITD IAT0S3 || 102 T NOILYOIddY
ONOD i yS— I m —
RES ! v R R T zcl
1L | 22 30V4YILNI YHOMLIN | >| /YIS 3AVHOdN
INIONT SISATYNY “ - | JAYMLA0S
¥ ¥ " p—
— — — !]
621 <« B2/ QUYOgHSYQ |<-> 0¢cl - YIAYIS IAVHON
HIAYIS dLNS/SWS YIAYIS d1O IN3IAT

WO 2015/038944

SUBSTITUTE SHEET (RULE 26)

WO 2015/038944 PCT/US2014/055469

8/9

50

WO 2015/038944 PCT/US2014/055469

9/9

90,60
: Central

I/O Devices Network
Interface Prolcje%(sor Interface

82 N 86

el _8& 2

System bus 79
Memory 90 Disk Storage 95
Routine OS Program
92 92

Data Data

FIG. 9

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

