
(12) STANDARD PATENT (11) Application No. AU 2014318585 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Automated runtime detection of malware

(51) International Patent Classification(s)
G06F 21/56 (2013.01)

(21) Application No: 2014318585 (22) Date of Filing: 2014.09.12

(87) WIPO No: W015/038944

(30) Priority Data

(31) Number (32) Date (33) Country
61/960,209 2013.09.12 US

(43) Publication Date: 2015.03.19
(44) Accepted Journal Date: 2018.01.04

(71) Applicant(s)
Virsec Systems, Inc.

(72) Inventor(s)
Gupta, Satya Vrat;Demeo, Raymond F.

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
US 2005/0108562 Al
US 8510596 B1
US 5983348 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2015/038944 Al
19 March 2015 (19.03.2015) W I PO I P CT

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
G06F 21/56 (2013.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

PCT/US2014/055469 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

12 September 2014 (12.09.2014) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every

(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,

61/960,209 12 September 2013 (12.09.2013) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

(71) Applicant: VIRSEC SYSTEMS, INC. [US/US]; 43 TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Nagog Park, Suite 215, Acton, MA 01720 (US). DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

(72) Inventors: GUPTA, Satya, Vrat; 3 Bramble Way, Acton, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

MA 01720 (US). DEMEO, Raymond, F.; 159 Fox Run SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

Road, Bolton, MA 01740 (US). GW, KM, ML, MR, NE, SN, TD, TG).

(74) Agents: MEAGHER, Timothy, J. et al.; Hamilton, Brook, Declarations under Rule 4.17:

Smith & Reynolds, P.C., 530 Virginia Rd., P.O. Box 9133, - of inventorship (Rule 4.17(iv))
Concord, MA 01742-9133 (US). Published:

(81) Designated States (unless otherwise indicated, for every .
kind of national protection available): AE, AG, AL, AM,

(54) Title: AUTOMATED RUNTIME DETECTION OF MALWARE

(57) Abstract: One example method and correspond apparatus extracts a model of a computer application during load time and
f4 stores the model of the computer application in a database. This example method and corresponding apparatus also inserts instruc

tions into the computer application to collect data at runtime. This example method and corresponding apparatus then analyzes the
data collected at runtime against the stored model of the computer application to detect one or more security events and tracks the
one or more security events using a state machine.

- 1

AUTOMATED RUNTIME DETECTION OF MALWARE

RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Application No.

61/960,209, filed on September 12, 2013. The entire teachings of the above

application are incorporated herein by reference.

BACKGROUND

[0002] With each passing day, cyber-attacks are becoming increasingly

sophisticated. A large number of attacks are targeted to exploit specific vulnerabilities

in specific applications. These attacks are not discernible at the network layer because

they do not trigger network activity that appears to be overtly malicious. In order to

deal with these targeted attacks, many vendors have deployed products, such as next

generation firewalls which attempt to trace the behavior of the application or

sandboxing technologies which attempt to run suspicious code in a sandbox and wait

for the suspicious code to perform malicious activity. However, in these scenarios,

malware simply adapts its behavior slightly or waits for a longer period of time to

carry out its malicious intent. These changes in behavior hamper these products'

ability to recognize the behavior of the attack and therefore their ability to detect the

malware is greatly diminished.

[0002A] It is desired to provide a computer-implemented method, a computer

implemented method, a system, and an apparatus, that alleviate one or more

difficulties of the prior art, or to at least provide a useful alternative.

SUMMARY

[0002B] In accordance with some embodiments of the present invention, there is

provided a computer-implemented method comprising:

as a module of a computer application loads into memory:

disassembling machine code of the module;

examining the disassembled machine code to identify transition

instructions, including direct and indirect transition instructions for

1697177.vl

-1A

determining a target address, wherein direct transition instructions

determine a target address at load time, and indirect transition instructions

have a runtime dependency preventing determining a target address until

runtime,

for each identified transition instruction,

(i) storing the target address of the identified transition

instruction, if the identified transition instruction is a direct transition

instruction, storing the identified transition instruction, if the identified

transition instruction is an indirect transition instruction; and

(ii) inserting one or more collection instructions into the

module of the computer application to collect data at runtime; and

as the module of the computer application executes at runtime:

analyzing the data collected at runtime against the stored target

addresses and stored indirect transition instructions to detect one or more

security events; and

tracking the one or more security events using a state machine.

[0002C] In accordance with some embodiments of the present invention, there is

provided a computer-implemented method comprising:

as a module of a computer application loads into memory:

disassembling machine code of the module;

examining the disassembled machine code to identify transition

instructions, including direct and indirect transition instructions for

determining a target address, wherein a direct transition instruction determines

a target address at load time, and an indirect transition instruction has a

runtime dependency preventing determining a target address until runtime, for

each identified transition instruction,

storing the target address of the identified transition instruction, if the

identified transition instruction is a direct transition instruction, storing the

identified transition instruction, if the identified transition instruction is an

indirect transition instruction; and

1697177.vl

-1B

inserting one or more collection instructions into the module of the

computer application to collect data at runtime.

[0002D] In accordance with some embodiments of the present invention, there is

provided a computer-implemented method comprising:

as a module of a computer application executes at runtime:

analyzing data collected at runtime for a computer application against

stored target addresses and indirect transition instructions of the computer

application to detect one or more security events; and

tracking the one or more security events using a state machine.

[0002E] In accordance with some embodiments of the present invention, there is

provided a system comprising:

a client configured to:

as a module of a computer application loads into memory:

disassemble machine code of the module;

examine the disassembled machine code to identify transition

instructions, including direct and indirect transition instructions for

determining a target address, wherein a direct transition instruction determines

a target address at load time, and an indirect transition instruction has a

runtime dependency preventing determining a target address until runtime,

for each identified transition instruction,

(i) store the target address of the identified transition

instruction, if the identified transition instruction is a direction

transition instruction, store the identified transition instruction, if the

identified transition instruction is an indirect transition instruction;

1697177.vl

(ii) insert one or more collection instructions into the module of

the computer application to collect data at runtime; and

as the module of the computer application executes at runtime:

an analysis engine configured to:

analyze the data collected at runtime against the stored target addresses

and indirect transition instructions to detect one or more security events; and

track the one or more security events using a state machine.

[0002F] In accordance with some embodiments of the present invention, there is

provided an apparatus comprising:

a processor configured to execute a first process and a second process;

as a module of a computer application loads into memory:

the first process configured to

disassemble machine code of the module;

examine the disassembled machine code to identify transition

instructions, including direct and indirect transition instructions for

determining a target address, wherein a direct transition instruction

determines a target address at load time, and an indirect transition

instruction has a runtime dependency preventing determining a target

address until runtime,

for each identified transition instruction,

store the target address of the identified transition instruction, if

the identified transition instruction is a direct transition instruction,

store the identified transition instruction, if the identified transition

instruction is an indirect transition instruction;

the second process configured to insert one or more collection

instructions into the module of the computer application to collect data at

runtime.

1697177.vl

-3

[0002G] In accordance with some embodiments of the present invention, there is

provided an apparatus comprising:

a processor configured to execute a first process and a second process;

the first process configured to analyze data collected at runtime for a computer

application against stored target addresses and indirect transition instructions of the

computer application to detect one or more security events, wherein the model

includes transition mapping data from the computer application; and

the second process configured to track the one or more security events using a

state machine.

[0003] Computer applications, including but not limited to single and multitier,

closed and distributed, standalone, web-based, and cloud-based, are vulnerable to

malware attacks. The largest number of malware attacks of computer applications

today result from the ability of a malicious actor to inject and later execute malicious

content in a running process of a computer application. The process of injecting such

malicious content involves identifying and exploiting poorly designed code that

performs inadequate input validation. The current cyber security technologies attempt

to either observe malicious content in the application or trace the behavior of an

1697177.vl

- 3A

application or screen the behavior of suspicious code in a sandbox. These

technologies do not have the capability to examine computer applications in real time

at a low enough granularity to reliably detect events that indicate the injection of

malicious content. In addition, these technologies do not have the capability to track

and correlate such events over time in order to accurately identify these malware

attacks before the malware successfully carries out its malicious intent.

[0004] One example method and corresponding apparatus described herein

extracts and stores a model of a computer application at load time, wherein the model

includes transition mapping data from the computer application. This example

method and corresponding apparatus also inserts instructions into the computer

application at load time in order to collect data at runtime. The data collected at

runtime is analyzed against the stored model of the computer application to detect one

or more security events. This example method and corresponding apparatus tracks

the one or more security events triggered by an attacker using a state machine.

[0005] The method and corresponding apparatus may extract as part of the model

of the computer application data one or more of the following: memory mapping data,

soft spot data, and/or OS functions or system calls that affect access permissions and

privileges referenced by the computer application. Such information may be saved in

a model database. Furthermore, the method and corresponding apparatus may extract

the model of the computer application at least in part using a code disassembler. The

computer application being extracted may be in various formats including binary

format or interpreted format.

[0006] The method and corresponding apparatus may check the computer

application for integrity during load time. The method and corresponding apparatus

may check the computer application for integrity by computing a checksum such as

the MD5 hash of the code or using a trusted checksum verification service.

[0007] The model database may contain one or more tables for modeling the

computer application. Furthermore, the model database may be on a local or remote

system. If the model database is on a remote system, the method and corresponding

apparatus may package the model of the computer application for transmission to the

1697177.v1

- 3B

remote system for storing in the database. The packaged model of the database may

be transmitted using a standards based transport protocol such as TCP/IP or UDP.

[0008] The method and corresponding apparatus may insert instrumentation

instructions at load time into the computer application using a dynamic binary

analysis engine or a byte code instrumentation engine. When the instrumented

application runs, the data collected at runtime may be packaged for transmission to

another process for analyzing. This other process for analyzing may be on a local or a

remote system. Furthermore, the data collected at runtime may comprise data for one

or more threads of the computer application.

[0009] When analyzing the data collected at runtime against the stored model of

the computer application, the method and correspond apparatus may analyze one or

more of the following: transition data, Critical OS functions and system calls that

affect access permissions and privileges, memory writes, heap allocation or de

allocation, and/or soft spot data.

[0010] Tracking the one or more security events using a state machine may

comprise correlating the events based on a predefined sequence. Tracking the one or

more security events may also include capturing forensic data for the events. The one

or more security events may be tracked using severity levels. Furthermore, one or

more actions may be taken in response to the occurrence of one or more security

events. In one example embodiment, the one or more actions in response to an event

are automatically taken by the system, and in another example embodiment, the one

or more actions can be taken after manual intervention by the user. The one or more

actions may include one or more of the following: terminating one or more threads of

the computer application, closing a communication socket on one or more threads of

the computer application, terminating the application, recording the event, and/or

generating alerts in response to the one or more security events.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Some embodiments of the invention are herein described, by way of

example only, with reference to the accompanying drawings in which like reference

characters refer to the same parts

1697177.v1

WO 2015/038944 PCT/US2014/055469

-4

throughout the different views. The drawings are not necessarily to scale, emphasis

instead being placed upon illustrating embodiments of the present invention.

[0012] Fig. 1 depicts an example configuration of an advanced persistent malware

threat;

[0013] Fig. 2 shows an example chain of immutable events indicating a code

execution style attack;

[0014] Fig. 3 shows an example flow chart of load time operations executed by a

client;

[0015] Fig. 4 depicts an example protocol data unit (PDU) used to transmit data

between the client and an analysis engine;

[0016] Fig. 5 shows an example flow chart of a process used by the analysis

engine to generate events based on data collected at runtime;

[0017] Fig. 6 depicts an example Event Chain State Machine used to track

generated events; and

[0018] Fig. 7 depicts an example block diagram of the client and analysis engine.

[0019] Fig. 8 illustrates a computer network or similar digital processing

environment in which embodiments of the present invention may be implemented.

[0020] Fig. 9 is a diagram of an example internal structure of a computer (e.g.,

client processor/device or server computers) in the computer system of Fig. 8.

DETAILED DESCRIPTION

[0021] A description of example embodiments of the invention follows.

[0022] The teachings of all patents, published applications and references cited

herein are incorporated by reference in their entirety.

[0023] Fig. 1 represents an example of an advance persistent malware threat. In

this scenario, a malicious actor (or hacker) from the actor's own infrastructure 102

remotely scans the web facing the infrastructure of an enterprise 108 using scanning

tools such as nmap 104. When the scan finds a server that has either a known

vulnerability or zero-day vulnerability, the actor installs shell code 106 to gain control

of the remote enterprise server 110 and access the enterprise network. Once inside

the network, the malicious actor loads additional tools 104. These tools may include

WO 2015/038944 PCT/US2014/055469

-5

nmap, port scanners, password cracking tools, ftp client, compression tools, hashing,

and/or encryption and decryption tools.

[0024] The actor then accesses the enterprise infrastructure looking for a machine

114 or 116 from which elevated privileged users log into valuable targets such as

databases and file repositories for the purposes of scraping the access credentials of

the user and for finding a home for more hacking tools. Upon finding a machine with

vulnerable applications 114 or 116, the malicious actor can scrape for credentials,

infiltrate and subsequently access the target 118. Once the target is accessed,

additional tools of the trade are loaded onto the target 104. Malware can also be

deposited onto mobile devices such as smartphones and laptops of privileged users as

they take their machines through unprotected networks such as coffee shops, airports,

and hotels. In another scenario, an inside user may infect target machines.

[0025] By using sophisticated password cracking tools or snooping intranet

traffic, the malware can obtain the credentials of the administrative user 116. After

credentials have been obtained, the malicious actor can connect to the databases and

file repositories 118 with impunity and extract valuable data such as real names, home

addresses, social security, driver licenses, birth dates, medical records, financial

information such as credit/debit cards, phone numbers, email addresses, user names

and passwords, and insurance information. The malicious actor can optionally

compress and encrypt this information and upload it to the Hacker Command Control

Center 112 in small chunks so as to not draw attention of the enterprise security

analysts. To achieve this objective, the malicious actor changes the IP addresses of the

Hacker Command Control Center 112 on a daily basis or uses proxies so that

intrusion detection systems in the enterprise cannot establish a pattern. An enterprise

typically sends and receives over 10 GB of data every day; therefore uploading

relatively small amounts of data in short bursts often goes unnoticed.

[0026] Being able to detect and block the chain of events for this type of scenario

reliably is the key to thwarting such advanced persistent threats. Contemporary cyber

security tools suffer from four major shortcomings. First, these tools do not examine

the application at a low enough granularity. Without this capability, many signs of

attacks cannot be discerned reliably. Next, these tools do not have the capability to

track the attack over time. The typical security information and event management

WO 2015/038944 PCT/US2014/055469

-6

(SIEM) systems only correlate events (that are of too high a granularity) for typically

24 hours. Malware can simply lie dormant for a long enough period of time to escape

detection. Without the capability to track the attack reliably over time, the individual

malicious events contributing to the attack appear as disjoint un-correlated events.

[0027] In addition, these cyber security tools depend on security analysts to set

the threshold of events that signify an attack. For example, one security analyst may

have internalized that some number of port scans and login attempts per hour will

occur in the normal course of the day. The question becomes how many port scan

attempts per source per hour are one too many before an alert is triggered. If an alert

is generated too early, an analyst may be investigating port scans with no malicious

intent or failed logins by legitimate users. If an alert is raised too late, then the

malware attack may have already succeeded. Furthermore, these tools have an

incomplete knowledge base to effectively detect the attack. The ability to generate

truly genuine alerts requires the tools to distinguish between benign and malicious

events reliably. A malicious actor would be aware of the same signatures or known

suspicious network or application behaviors. Therefore, the malicious actor can

tweak the behavior of the attack, such as using encryption to encode the data,

changing IP and port combinations, or by slowing down the attack so as to avoid

detection based on the behavior specified in the knowledge base.

[0028] Fig. 2 shows a chain of immutable events depicting a code execution

attack. For various malware attacks, such as code execution attacks, a corresponding

event chain of the malware attack can be represented by a series of immutable events.

These events can be stored in the process memory of a computer for tracking specific

malware attacks. The following scenario describes the behavior represented by the

series of immutable events at 202-216 of a code execution attack.

[0029] In executing a code execution attack, once a malicious actor locates an

unpatched application or a so-called 0-day vulnerability, the actor can compose a

specially crafted payload of malformed content. This payload is then sent directly or

through a network to a target process at 202 running on the central processing unit

(CPU) of a computer system to divert the CPU from calling the instructions of a

computer application and instead calls instructions at the behest of the malicious

payload. This specially crafted payload can be injected into the application through

WO 2015/038944 PCT/US2014/055469

-7

many mechanisms, such as over a network socket, through the keyboard, or even

through a file, depending on the application being targeted.

[0030] To activate the malicious payload injected during the attack at 206, the

malware can leverage one of many attack vectors. In the case of the code execution

attack, the malware exploits a buffer error or user naivety at 204. Other examples of

attacks vectors include the simplistic Stack Smashing approach, using format

specifiers, finding the pseudo random stack canary, over running the exception

handler tables, or Return Oriented Programming (ROP) gadgets as well as many

additional vectors.

[00311 Before commencing its full blown malicious activity, the malware can

hibernate for a sufficiently long period of time so that detection techniques can be

subverted. For example sandbox techniques that inspect emails for suspicious activity

must eventually give up and deliver the email to the recipient. At some later point in

time, the malware can use either an existing application thread or spin one or more

new threads at 212 to start executing its intent. In some cases, using an existing

thread may attract user attention and spinning new ones ay go unnoticed. This is

because most security solutions do not have the ability to determine if spinning a new

thread is malicious or benign activity. Having now created a wedge in the

application, the malware establishes connectivity with the malicious actor's

Command Control Center (C&C) at 210. Once connectivity from inside the

enterprise firewall is established, the thread on which malware can download more

malware at 208 such as password cracking tools, port scanning tools, encryption tools

etc. in bits and pieces so as to not attract attention of file blacklisting solution.

[0032] Once the tools are downloaded, the malware looks to extract useful content

from the infected machine and all other machines reachable from the infected

machine. In the code execution attack in Fig. 2, the malware may keep searching the

enterprise until it finds a user with elevated privileges. Alternatively, it could sniff

traffic, such as SMB/NETBIOS/CIFS traffic, in the enterprise to find privileged users'

user names and login credentials. Alternatively, it could use password cracking tools

or simply compare the hash of guess passwords with contents of password files. With

today's processing power, an 8 character long password can be cracked in a few

hours.

WO 2015/038944 PCT/US2014/055469

[00331 After the privileged user's credentials have been extracted, the malware is

adequately armed and can go about its business of extracting useful content from the

infected machine and all other machines reachable from the infected machines. The

list of reachable machines may include database servers, code repositories, or CAD

machines with valuable design documents. Once the valuable content has been

extracted, the malware may encrypt data or upload data to the Command Control

Center at 216 before the attack is culminated. If data is encrypted, the malicious actor

may contact the target with a ransom request.

[0034] Fig. 3 shows the operations that an example client referred to herein as the

Resolve Client performs at load time to prepare for detecting malware activity, in

accordance with principles of the present disclosure. The Path Validation Engine is

part of the Resolve Client that can reliably detect malware activity within

microseconds from the point the malware starts to run. The Resolve Client first

verifies the integrity and then analyzes each module of the application in order to

extract a model of the application. The model of the application is stored in an

Application Map Database that may contain the following tables: Code Table, Export

Table, V Table, Other Table, Basic Block Table, Soft Spot Table, Memory Operand

Table, Transition Table, Disassembly Table, and Critical OS Functions Table. In the

embodiment in Fig. 3, the Application Map Database is located on a remote system

from the Resolve Client. In other embodiments, the Application Map Database can

be saved on the same hardware where the application is executing or on hardware

external to both the Resolve Client and Analysis Engine. The Resolve Client uses a

Streaming Engine to package the extracted model of the application into Resolve

Protocol Data Units (PDUs) to dispatch the data to be stored in the Application Map

Database on the analysis system. The PDU structure is shown in Fig. 4.

[00351 After the Resolve Client starts processing the application at load time at

302, the same operations are performed in a loop for each module of the computer

application at 304 and 306. As each module of the application loads in memory, the

Resolve Client examines all the executables and libraries of the given module using a

disassembler such as a machine code or a byte code disassembler. The modules of the

application file are in a standard file format, such as Executable and Linkable Format

(ELF) or Common Object File Format (COFF). In this format, the modules of the

WO 2015/038944 PCT/US2014/055469

-9

application are organized into sections that include a code section, exported data

section, v-table section, and other additional sections. As each module of the

application loads in memory, the Resolve Client extracts these data sections as part of

the model of the application. The bounds and access attributes of the code section of

the module are dispatched and saved to the Application Map Database in the Code

Table at 314. Each record in this table is of the form {Start Address, End Address}.

The bounds and number of instructions of each basic block in the code section of the

module are dispatched and saved in the Application Map database in the Basic Block

Table at 330. Each record in this table is of the form {Start Address, End Address, and

Number of instructions}. The bounds and access attributes of the exported data

section of the module are saved in the Application Map database in the Export Table

at 318. Each record in this table is of the form {Start Address, End Address}. The

bounds and access attributes of a v-table section (if any) of the module are dispatched

and saved in the Application Map database in the V Table at 322. Each record in this

table is of the form {Start Address, End Address}. The bounds and access attributes

of all other sections of the module are dispatched and saved in the Application Map

database in the Other Table at 326. Each record in this table is of the form {Start

Address, End Address, and Protection Attributes}.

[00361 As each module loads into memory, the Resolve Client also extracts other

memory mapping data and soft spot datafrom the modules of the application.

Memory mapping data includes instructions for memory allocation, memory de

allocation, and memory writes to critical segments of memory. Soft spot data

includes instructions for manipulating large memory buffers (spot spots) including

instructions that execute loops (such as instructions with REP style opcodes). The

address of soft spot instructions and the size of each memory write are dispatched and

saved in the Application Map database in the Soft Spot Table at 334. Each record in

this table is of the form {Address, Write size}. The address and the write size will be

stored for memory write instructions where the destination is a memory operand. This

data is stored in the Application Map Database in the Memory Operand Write Table

at 340. Each record in this table is of the form {Source Address, Memory Write

Size}.

WO 2015/038944 PCT/US2014/055469

- 10

[00371 As each module of the application loads into memory, the Resolve Client

also extracts transition mapping data (branch transfer or transition data) from the

module. The transition mapping data can be for a direct transition mapping where

transition instructions for the target address can be presently determined or for an

indirect memory mapping where transition instructions for the target address have run

time dependency preventing these instructions from being fully determined until

runtime. The full disassembly of instructions where indirect transitions occur are

dispatched and saved in the Application Map Database in the Disassembly Table at

324. All the extracted transition mappings are also dispatched and saved in the

Application Map Database in the Transition Table at 324 and 332. Each record in this

table is of the form { Source Address, Destination Address}. In addition, an operator

can manually add Transition Mapping Data into the Map Transition Table prior to

runtime at 320. In order to add records manually into the Map Transition Table, an

operator may be required to authenticate themselves using a 2-factor authentication

process to eliminate possible tampering of the Transition Table by malware.

[0038] Transition mapping is central to the ability of the Path Validation Engine

to reliably detect malware activity within microseconds from the point that the

malware starts to run. The concept of transition mapping can be better understood by

an examination of source code. In the following sample source code, the function

main makes a call to the function printfo which is defined in a library, but does not

make a call to function notCalledo. After a compiler and linker have run through this

code and the binary produced is examined, the inter-relationships or lack thereof

between the functions main, printfO and notCalledo is preserved. The function

main is said to have a "transition" to the function printfo which can be expressed as

{Address SRC -> Address DST} where Address SRC is the address of the instruction

where the function printfo is called in the function main and Address DST is the

address of the function printfO. The source and target could be a system call or an

exception handler. A record such as the above is a single record in the application's

Transition Map Table.

//C hello world example

#include <stdio.h>

WO 2015/038944 PCT/US2014/055469

- 11

int main

{
printf("Hello world\n");
return 0;
}

int notCalledo

{
printf("Feeling lonely !\n");
return 0;

}

[0039] While the above example is written in C/C++ which is a compiled

language, this analogy between transitions in source code can be envisioned in code

written in any other language, including interpreted or JIT compiled code. The same

example is shown in an interpreted language like Java as shown below.

Java Hello World example.

public class HelloWorldExample {

public static void main(String args[]){
System.out.println("Hello World!");

}

public static void notCalledo {
System. out.println("Feeling lonely !");

}

}

[0040] As each module of the application loads into memory, the Resolve Client

also checks the application for integrity at 308. In one embodiment, this is

accomplished by computing a checksum such as the MD5 hash of the code as it is

loading and comparing it against its corresponding known good checksum saved in a

Checksum database. Alternatively, a trusted checksum verification service can also be

leveraged. This ensures that the code of the currently loading module is not already

corrupted with malware. The Resolve Client may be configured to throw an alarm if

the integrity check fails at 310.

WO 2015/038944 PCT/US2014/055469

-12

[0041] At load time, particular OS functions and system calls that affect access

permissions and privileges are also identified and their addresses are dispatched and

saved in the Critical OS Functions Table at 312 and 316. The particular OS functions

and system calls dispatched by the Resolve client have long reaching effects on the

execution path of the executable. These administrative and critical OS functions and

system calls change access permissions of memory segments, bump up access

privileges, changes the no-execute policy, changes the Structured Exception Handler

protection, shuts down the Address Space Layout Randomization policy, allocated

and de-allocates memory, creates a new process, creates a new thread, or are involved

in encrypting and decrypting data.

[00421 As each module of the application loads into memory, the Resolve Client

additionally instruments instructions that are inserted into the module of the

application to collect data at runtime. The instrumented code is inserted into the

modules of the application using a dynamic binary analysis engine and/or a byte code

instrumentation engine. Soft spot instructions are instrumented in areas within the

modules that malware tend to attack, such as instructions that execute loops, to collect

data to track activities in these areas at runtime at 338. Direct and indirect transition

mapping instructions are instrumented in the modules to collect data to track activities

involving transition mappings at runtime at 328. Memory Operand Write instructions

are instrumented in the modules to collect data on memory write activities at runtime

at 336. In the presence of self-modifying code, the basic blocks may change at run

time. Additionally, instructions are instrumented in the application to collect data for

activities involving OS functions and systems calls stored in the Critical OS Function

Table at 312 and 316.

[0043] As a result of the instrumentation inserted at load time, critical information

is generated at run time and collected for analysis. As the transition mapping data

related instrumentation is accessed, the Resolve Client collects the thread ID, current

instruction address, destination instruction address and optionally data contained in

each general purpose register. As the Soft Spot instrumentation is accessed before the

instruction is executed, the Resolve Client captures the thread ID and the bounds of

the stack through appropriate registers. As the soft spot instrumentation is completed,

the Resolve Client captures the thread ID and a few general purpose registers that

WO 2015/038944 PCT/US2014/055469

- 13

allow it to estimate the region of memory updated by this write operation. As the

critical API or OS call instrumentation is accessed before the call is executed, the

Resolve Client captures the thread ID, API name or System Call number and input

parameters. As the critical API or OS call instrumentation is accessed after the call is

executed, the Resolve Client captures the thread ID, API name or System Call number

and return value. Instrumentation in the OS functions or system calls that allocate or

de-allocate memory helps to track the regions of memory that are currently involved

in the various heaps the application may have created. This memory envelop is

leveraged to track the target of indirect memory writes run time in order to find if the

malware wants to overrun control structures in the heap. In addition, by tracking the

bounds of basic blocks using a cache, the Analysis Engine can determine if the basic

block has changed. When the determination is positive, the Basic Block Table in the

model database can be updated.

[0044] In this example embodiment, the Resolve Client then dispatches the

captured information to a Streaming Engine to be packaged into a PDU for

transmission to the Analysis Engine. The Streaming Engine uses a very low overhead

OS artifact such as pipes or local procedure calls to move the data generated by the

various instrumentation to another process so that the instrumented process can

continue its normal course of operation. As in this example embodiment, the

Streaming Engine can also package the information collected from the

instrumentation into a Resolve PDU for further transmission to the Analysis Engine

using an appropriate standards based transport protocol. In one embodiment, the

transport protocol may be TCP/IP. In another embodiment, it may be UDP. In yet

another embodiment the transport protocol may involve using shared memory

technologies such as pipes or local procedure calls.

[0045] Fig. 4 depicts the Resolve PDU. In order for the Resolve Client and the

Analysis Engine to work effectively with each other, they communicate with each

other using the Resolve PDU. The Resolve PDU can specifically be used by the

Resolve Client to package the extracted model of the application and/or collected

runtime data for transmission to the Analysis Engine. The Resolve PDU contains

fields for each type of information to be transmitted between the Resolve Client and

WO 2015/038944 PCT/US2014/055469

- 14

the Analysis Engine. The Resolve PDU is divided into the Application Provided Data

Section, the HW/CAE Generated, and Content Analysis Engine or Raw Data sections.

100461 The Application Provided Data Section contains data from various

registers as well as source and target addresses that are placed in the various fields of

this section. The Protocol Version contains the version number of the Resolve PDU

402. As the Resolve protocol version changes over time, the source and destination

must be capable of continuing to communicate with each other. This 8 bit field

describes the version number of the Resolve packet as generated by the source entity.

A presently unused reserved field 404 follows the Protocol Version field.

100471 The next field of the Application Provided Data Section is the Message

Source/Destination Identifiers 406, 408, and 410 are used to exchange traffic within

the Analysis Engine infrastructure as shown in Fig. 7. From time to time, the various

entities shown in Fig. 7, exchange traffic between themselves. Not all these devices

have or need IP addresses and therefore, the two (hardware and host) Query Router

Engines uses the Message Source and Destination fields to route traffic internally.

Some messages need to go across the network to entities in the Analysis Engine. For

this purpose, the entities are assigned the following IDs. A given Analysis Engine

appliance may have more than one accelerator card. Each card will have a unique IP

address; therefore, the various entities will have a unique ID. The aforementioned

infrastructure may also be running more than one application. Since each application

server will have a unique IP address, the corresponding Resolve client side entity will

also have a unique ID.

100481

Resolve Client Side Entities
1. Resolve GUI
2. Instrumentation and Analysis Engine

3. Client Message Router

4. Streaming Engine

5. Client Side Daemon

6. CLI Engine

7. Client Watchdog

8. Client Compression Block

9. Client iWarp Ethernet Driver (100 Mb/i Gb/i 0Gb)

Per PCI Card Entities (starting address = 20 + n*20)
20. Securalyzer TOE block

WO 2015/038944 PCT/US2014/055469

- 15

21. Securalyzer PCI Bridge

22. Decompression Block

23. Message Verification Block

24. Packet Hashing Block

25. Time-Stamping Block

26. Message Timeout Timer Block

27. Statistics Counter Block

28. Securalyzer Query Router Engine

29. Securalyzer Assist

Securalyzer Host Entities
200. Securalyzer PCIe Driver

201. Host Routing Engine

202. Content Analysis Engine

203. Log Manager

204. Daemon

205. Web Service Engine

206. Watchdog

207. IPC Messaging Bus

208. Configuration Database

209. Log Database

SIEM Connectors
220. SIEM Connector 1 - Virsec Dashboard

221. SIEM Connector 2 - HP ArcSight

222. SIEM Connector 3 - IBM QRadar
223. SIEM Connector 4 - Alien Vault USM

Securalyzer Infrastructure Entities
230. Virsec dashboard

231. SMTP Server

232. LDAP Server

233. SMS Server

234. Entitlement Server

235. Database Backup Server

236. OTP Client
237. OTP Server

238. Checksum Server

239. Ticketing Server

240. Virsec Rules Server

241. Virsec Update Server

All user applications

WO 2015/038944 PCT/US2014/055469

- 16

255. User Applications - Application PID is used to identify the application

issuing a query

[0049] Another field of the Application Provided Data section is the Message

Type field which indicates the type of data being transmitted 412. At the highest

level, there are three distinct types of messages that flow between the various local

Resolve client side entities, between the Analysis Engine appliance side entities and

between Client side and appliance side entities. Furthermore, messages that need to

travel over a network must conform to the OSI model and other protocols.

[0050] The following field of the Application Provided Data section is the Packet

Sequence Number field containing the sequence identifier for the packet 414. The

Streaming Engine will perform error recovery on lost packets. For this purpose it

needs to identify the packet uniquely. An incrementing signed 64 bit packet sequence

number is inserted by the Streaming Engine and simply passes through the remaining

Analysis Engine infrastructure. If the sequence number wraps at the 64 bit boundary,

it may restart at 0. In the case of non-application packets such as heartbeat or log

message etc., the packet sequence number may be -1.

[0051] The Application Provided Data section also contains the Resolve Canary

Message field contains a canary used for encryption purposes 422. The Resolve Client

and the Analysis Engine know how to compute the Canary from some common

information but of a fresh nature such as the Application Launch time, PID, the

license string, and an authorized user name.

[0052] The Application Provided Data section additionally contains generic fields

that are used in all messages. The Application Source Instruction Address 458,

Application Destination Instruction Address 416, Memory Start Address Pointer 418,

Memory End Address Pointer 420, Application PID 424, Thread ID 426, Analysis

Engine Arrival Timestamp 428, and Analysis Engine Departure Timestamp 430 fields

which hold general application data.

[0053] The Resolve PDU also contains the HW/CAE Generated section. In order

to facilitate analysis and to maintain a fixed time budget, the Analysis Engine hashes

the source and destination address fields and updates the Resolve PDU prior to

processing. The HW/ CAE Generated section of the Resolve PDU is where the hashed

WO 2015/038944 PCT/US2014/055469

- 17

data is placed for later use. This section includes the Hashed Application Source

Instruction Address 432, Hash Application Destination Instruction Address 434,

Hashed Memory Start Address 436, and Hashed Memory End Address 438 fields.

The HW/CAW Generated section additionally contains other fields related to the

Resolve Canary 442 including the Hardcoded Content Start Magic header, API Name

Magic Header, Call Context Magic Header and Call Raw Data Magic Header are

present in all Resolve PDU packets.

[0054] The HW/CAW Generated section also includes a field 440 to identify

other configuration and error data which includes Result, Configuration Bits,

Operating Mode, Error Code, and Operating Modes data. The Result part of the field

is segmented to return Boolean results for the different Analysis Engine queries - the

transition playbook, the code layout, the Memory (Stack or Heap) Overrun, and the

Deep Inspection queries. The Configuration Bits part of the field indicates when a

Compression Flag, Demo Flag, or Co-located Flag is set. The presence of the flag in

this field indicates to the Analysis Engine whether the packet should be returned in

compression mode. The Demo Flag indicates that system is in demo mode because

there is no valid license for the system. In this mode, logs and events will not be

available in their entirety. The Co-located Flag indicates that the application is being

run in the Analysis Engine so that Host Query Router Engine can determine where to

send packets that need to return to the Application. If this flag is set, the packets are

sent via the PCI Bridge, otherwise they are sent over the Ethernet interface on the PCI

card. The Operating Mode part of the field indicates whether the system is in

Paranoid, Monitor, or Learn mode. These modes will be discussed in more details

later in this section. Lastly, the Error Code part of the field indicates an error in the

system. The first eight bits of the error code will correspond to the message source.

The remaining 12 bits will correspond to the actual error reported by each subsystem.

[0055] The Resolve PDU also contains the Content Analysis Engine or Raw

Data. All variable data such as arguments and return value of the OS library calls and

System Calls is placed in this section of the Resolve PDU. The data in this section

contains the content of the data collected from the application and is primarily

targeted at the Content Analysis Engine. This section contains the Variable Sized API

Name or Number 444, the Call Content Magic Header 446, the Variable Sized Call

WO 2015/038944 PCT/US2014/055469

- 18

Content 450, the Call Raw Data Magic Header 452, Variable Sized Raw Data

Contents 456, and two reserved 448 and 454 fields. Furthermore, these fields can be

overloaded for management messages.

[0056] Fig. 5 shows the process used by Analysis Engine to detect security events

at runtime. In this example embodiment, the Analysis Engine is a separate process

running on the same or different hardware relative to the Resolve Client. By

separating the data collection from the data analysis part, the processing overheads

associated with the analysis of information generated by the instrumentation process

is substantially reduced. This allows the Analysis Engine to perform runtime analysis

for multiple applications at the same time.

[0057] During run time, instrumentation on the code provides an opportunity to

examine the appropriate context, such as thread ID, stack start and base addresses,

general purpose registers, source addresses, and destination addresses. The sequence

of operations for examining the content has no specific order, is interchangeable, and

can even be performed in parallel by multiple threads of the Analysis Engine. Using

the process described in Fig. 5, the Secure Engine will generate individual events for

each thread in the application that can be collected on a specific and individual Event

Chain State Machine to track the progression of the attack in real time. The events

generated by the Analysis Engine follow a standards based event format, such as

SYSLOG. This enables a standards based event management system to use the events

generated by the Resolve Client either directly or through a connector that translates

SYSLOG to a standard target format, such as Common Event Format (CEF). Since

the Analysis Engine has access to the previously saved Application Map with all its

tables, when a performed transition instruction reports its context, the Analysis

Engine has access to the extracted model of the application, including data indicating

whether or not a target address is a valid destination.

[0058] After the process starts at 502, new runtime information is received in a

Resolve PDU packet from the Resolve Client at 504. Before saving the packet in a

buffer at 508, the Analysis Engine verifies the canary and timestamp contained in the

packet at 506. While the Resolve PDU is still buffered, the Analysis Engine hashes

the address fields and puts the hashed data in the HW/CAE section of the Resolve

PDU at 510. The packet can then be pulled from the packet buffering for processing

WO 2015/038944 PCT/US2014/055469

- 19

at 512. When processing of the packet is complete, the process then waits for the next

packet at 554.

[00591 The process used by the Analysis Engineer looks at transition mapping

data. If the runtime information reported by a transition type instruction is from a

direct transition at 520 and the target address is not found in the Transition Map Table

at 528, the Analysis Engine generates an event with the details of the thread in which

the event occurred at 544. If the runtime information reported by a transition type

instruction is from an indirect transition at 522 and the target address is in the Code

Table at 530 and in the middle of a basic block at 548, the Analysis Engine generates

an event at 550 with the details of the thread in which the event occurred. If the

runtime information reported by a transition type instruction is from an indirect

transition at 522 and the target address is in a region associated with the heap memory

at 530 and 548, the Analysis Engine generates an event at 550 with the details of the

thread in which the event occurred. If the runtime information reported by a

transition type instruction is from an indirect transition at 522 and the target address is

in a non-code, non-import-table region of memory at 552, the Analysis Engine

generates an event at 556 with the details of the thread in which the event occurred.

[00601 The process used by the Analysis Engine looks at Memory Write data at

516. If the runtime information being reported is from a memory write instruction

and if the write target address is in a memory region of the V Table at 524, the

Analysis Engine generates an event at 536 with the details of the thread in which the

event occurred. If the runtime information being reported is from a memory write

instruction and if the write target address is in a memory region of the Export Table at

524, the Analysis Engine generates an event at 536 with the details of the thread in

which the event occurred. If the runtime information being reported is from a

memory write instruction and if the write target address is in the target control section

of a heap memory region at 538, the Analysis Engine generates an event at 536 with

the details of the thread in which the event occurred. If the runtime information being

reported is from a memory write instruction and if the write target address is in the

target control section of the stack memory region at 532, the Analysis Engine

generates an event 536 with the details of the thread in which the event occurred.

WO 2015/038944 PCT/US2014/055469

- 20

[0061] The process used by the Analysis Engine looks at soft spot data at 514. If

the instruction is a soft spot instruction and the write target address is in a memory

region of the V Table at 524, the Analysis Engine generates an event at 536 with the

details of the thread in which the event occurred. If the instruction is a soft spot

instruction and the write target address is in the memory region of the Export Table at

524, the Analysis Engine generates an event at 536 with the details of the thread in

which the event occurred. If the instruction is a soft spot instruction and the write

target address is in the target control section of the heap memory region at 538, the

Analysis Engine generates an event at 536 with the details of the thread in which the

event occurred. If the instruction is a soft spot instruction and the write target address

overwrites the instruction pointer saved in the control region of the stack at a memory

location below the base pointer at 532, the Analysis Engine generate an event 536

with the details of the thread in which such an event occurred.

[0062] The process used by the Analysis Engine looks at OS functions and system

calls at 518. If the instrumentation associated with the entry point of a critical OS

function or system call is called at 526 because of an invalid OS function or system

call operation at 542, the Analysis Engine generates an event at 544 with the details of

the thread on which the event occurred when activities in the Critical OS Function

Table occur. This causes an event being generated for calls to code that changes

memory access permissions is declared invalid, calls to code that changes privilege

levels is declared as potentially invalid, a privilege escalation occurs on a thread

servicing a WAN based user is elevated, changes to the No-Execute policy is declared

invalid, changes the Address Space Layout Randomization (ASLR) policy is declared

invalid, changes the Safe Exception Handling (SEH) policy is declared invalid, calls

to admin specified functions are not handled in accordance with the event associated

with that particular function call, or calls to admin specified system calls are not

handled in accordance with the event associated with that particular system call. In

addition, critical system call operations at 526 to heap memory operations at 534 are

used to update the heap memory envelop at 540. Those regions of memory that are

related to allocation increase the memory envelop size whereas those that de-allocate

free up the targeted region.

WO 2015/038944 PCT/US2014/055469

-21

[0063] Fig. 6 depicts an Event Chain State Machine used to track detected

security events. The Path Validation Engine generates events and tracks the state of

the events in accordance with the event chain state machine shown. The Event Chain

State Machine uses records stored in a Transition Playbook database to track these

events. When a new thread starts, the Event Chain state machine is initialized to Start

State at 602. The Event Management Engine serializes events so that the set of events

on one thread are updated on the state machine for the appropriate thread. As

transitions occur on the thread, the state machine records the target address but stays

in the Start State. When the Path Validation Engine generates a medium or high

severity event, the Event Chain state machine advances to the next state, the Ei,state at

604. This new state continues to record the target address of transitions as they occur.

This process of the state machine updating to a new state on medium and high

severity events and recording transition events continues at 606, 608, and 610 until

the thread reaches the Terminate State at 612. The Security Analyst is notified when

a highest severity level event is triggered and the Event Chain State Machine captures

the forensics when an attack occurs.

[00641 Depending on the modes of the system, there are various remedial actions

that can be taken in response to events. The remedial actions taken are performed in

real-time. One remedial action may consist of shutting down the application. Other

remedial actions may be to unbind or release the socket(s) associated with the threads

on which the threat has appeared, terminate the thread on which a threat has appeared,

and/or blacklisting the user that caused the threat. Another remedial action would be

to unblock all sockets associated with the application server's socket(s). This will

block all users connected at the time. Yet another remedial action may be to ignore

the attack. This may be due to the analyst not considering the attack to be of major

consequence. The most appropriate suggested remedial actions for a given event are

pre-programmed so that if the security analyst has chosen to operate the Analysis

Engine in automatic mode, the remedial action occurs automatically.

[00651 The Path Validation Engine of the Analysis Engine can be run in three

modes: Monitor, Paranoid or Learning mode. The difference between these modes is

how and when to enforce the remedial actions associated with the event(s) received

on a given thread in the application. In the Monitor mode, as runtime information

WO 2015/038944 PCT/US2014/055469

- 22

arrives and is analyzed by the Analysis Engine, it generates notifications that are

directed to the designated security analysts. It is then the security analyst's job to

intervene and choose the most appropriate remedial action. The security analyst may

decide to change an "ignore" type pre-programmed remedial action to a higher impact

remedial action even before the thread has reached the Terminate State. On finalizing

the remedial action, the Analysis Engine implements the remedial action when the

appropriate authority in the enterprise clears the proposed remedial action for a given

thread.

[00661 In the paranoid mode, the programmed (default or user configured)

remedial action is executed automatically without any manual intervention from the

security analyst. In either mode, once the remedial action is ready to be carried out,

the Analysis Engine lets the Resolve Client know which remedial action to carry out.

The Resolve Client then performs the action associated with the remedial action on

the application. Once the remedial action is completed, the Resolve Client sends a

confirmation message back to the Analysis Engine. On receiving the

acknowledgement, the Analysis Engine performs housekeeping including updating

the security analyst.

[0067] In learning mode, the Analysis Engine ignores all events and remedial

actions. In this mode, the application runs in a pristine environment and records all

events and event chains. The security analyst uses this information to build criteria for

when an event should be raised and what remedial action should be associated with

the said event.

[00681 Fig. 7 depicts a high level block diagram of an example Resolve Client and

Analysis Engine infrastructure. This infrastructure may be configured on a various

hardware including computing devices ranging from smartphones, tablets, laptops,

desktops to high end servers. As shown in this figure, data collection performed by

the Resolve Client may be segregated from analysis performed by the Analysis

Engine to improve application performance. The infrastructure provides high

availability to prevent hackers from subverting its protection against malware attacks.

The Resolve Client interacts with an application to gather load time and runtime data.

The infrastructure of the application 701 includes process memory 703, third-party

libraries 704, kernel services 706, and an instruction pipeline 707. The infrastructure

WO 2015/038944 PCT/US2014/055469

- 23

of the Resolve Client 702 includes the Instrumentation & Analysis Engine (IAE) 705,

graphical user interface (GUI) 711, Client Daemon 708, Configuration database 709,

and Streaming and Compression Engine 710, and central processing unit (CPU) 736.

Local or remote users 702 of the application 701 interact with the application either

through devices like keyboards, mice or similar I/O devices or over a network through

a communication channel that may be established by means of pipes, shared memory

or sockets. In response the application process 703 dispatches appropriate sets of

instructions into the instruction pipeline 707 for execution. The application may also

leverage its own or third party libraries 704 such as libc.so (Linux) or msvcrtxx.dll

(Windows). As functionality from these libraries is invoked, appropriate instructions

from these libraries are also inserted into the instruction pipeline for execution 707. In

addition the application may leverage system resources such as memory, file I/O etc.

from the kernel 706. These sequences of instructions from the application, libraries

and the kernel put together in a time ordered sequence deliver the application

functionality desired by a given user.

[0069] As the application's code begins to load into memory, the IAE 705

performs several different load time actions. Once all the modules have loaded up,

the instrumented instructions of the application generate runtime data. The Client

Daemon 708 initializes the Instrumentation and Analysis Engine 705, the Streaming

Engine 710 and the GUI 711 processes in the CPU at 736 by reading one or more

configuration files from the Configuration database 709. It also initializes

intercommunication pipes between the IAE, Streaming Engine, GUI, Analysis Engine

and itself. The Client Daemon also ensures that if any Resolve Client process,

including itself, becomes unresponsive or dies, it will be regenerated. This ensures

that the Resolve Client is a high availability enterprise grade product.

[0070] The Instrumentation and Analysis Engine pushes load and runtime data

collected from the application into the Streaming Engine. The Streaming Engine

packages the raw data from the Resolve Client into the Resolve PDU. Then it pushes

the Resolve PDU over a high bandwidth, low latency communication channel 712 to

the Analysis Engine 711. If the Client and the analyzer are located on the same

machine this channel can be a memory bus. If these entities are located on different

hardware but in the same physical vicinity, the channel can be an Ethernet or Fiber

WO 2015/038944 PCT/US2014/055469

- 24

based transport, which allows remote connections to be established between the

entities to transport the load and runtime data across the Internet.

[00711 The infrastructure of the Analysis Engine includes the Network Interface

Card (NIC) 713, the Packet Pool 714, the Time Stamp Engine 715, the Processor

Fabric 716, the Hashing Engine 717, the TCAM Engine 718, the Application Map

database 719, and the Thread Context database 720. The infrastructure of the

Analysis Engine further includes the Content Analysis Engine 721, the Events and

Event Chains 722, the Event Management Engine 723, the Event Log 724, the

Application Daemon 725, the Analysis Engine Configuration database 726, the

Network Interface 727, the Dashboard 728, the SMS/SMTP Server 729, the OTP

Server 730, the Upgrade Client 731, the Software Upgrade Server 732, Software

Images 733, the Event Update Client 734, and the Event Upgrade Server 735.

[0072] The Resolve PDU together with the protocol headers is intercepted at the

Network Interface Card 713 from where the Resolve PDU is pulled and put into the

Packet Pool 714. The timestamp fields in the Resolve PDU are filled up by the Time

Stamp Engine 715. This helps to make sure that no packet is stuck in the packet Pool

buffer for an inordinately long time.

[0073] The Processor Fabric 716 pulls packets from the packet buffer and the

address fields are hashed and replaced in the appropriate location in the packet. This

operation is performed by the Hashing Engine 717. Then the Processor Fabric starts

removing packets from the packet buffer in the order they arrived. Packets with

information from the load time phase are processed such that the relevant data is

extracted and stored in the Application Map database 719. Packets with information

from the runtime phase are processed in accordance with Figure 5. The efficiency of

the Analysis Engine can be increased or decreased based on the number of processors

in the Processor Fabric.

[0074] The transition target data is saved in the Thread Context database 720

which has a table for each thread. The Processor fabric also leverages the TCAM

Engine 718 to perform transition and memory region searches. Since the processor

fabric performing lookups using hashes, the actual time used is predictable and very

short. By choosing the number of processors in the fabric carefully, per packet

throughput can be suitable altered.

WO 2015/038944 PCT/US2014/055469

- 25

[0075] When the Analysis Engine performs searches, it may, from time to time

find an invalid transition, invalid operation of critical/admin functions or system calls,

or find a memory write on undesirable locations. In each of these cases, the Analysis

Engine dispatches an event of the programmed severity as described by the policy

stored in the Event and Event Chain database 722 to the Event Management Engine

723. The raw event log is stored in the Event Log Database 724. The Dashboard can

also access the Event Log and display application status.

[0076] A remedial action is also associated with every event in the Event and

Event Chain database 722. A user can set the remedial action from a range of actions

from ignoring the event in one extreme to terminating the thread in the other extreme.

A recommended remedial action can be recommended to the analyst using the Event

Update Client 734 and Event Upgrade Server 735. In order to change the

aforementioned recommended action, an analyst can use the Dashboard 728

accordingly. The Dashboard provides a GUI interface that displays the state of each

monitored application and allows a security analyst to have certain control over the

application, such as starting and stopping the application. When an event is

generated, the Event Chain advances from the normal state to a subsequent state. The

remedial action associated with the new state can be taken. If the remedial action

involves a non-ignore action, a notification is sent to the Security Analyst using and

SMS or SMTP Server 729. The SMS/ SMTP address of the security analyst can be

determined using an LDAP or other directory protocol. The process of starting or

stopping an application from the Dashboard requires elevated privileges so the

security analyst must authenticate using an OTP Server 730.

[0077] New events can also be created and linked into the Event and Event Chain

database 722 with a severity and remedial action recommended to the analyst. This

allows unique events and event chains for a new attack at one installation to be

dispatched to other installations. For this purpose, all new events and event chains are

loaded into the Event Upgrade Server 735. The Event Update Client 734 periodically

connects and authenticates to the Event Upgrade Server to retrieve new events and

event chains. The Event Update Client then loads these new events and event chains

into the Events and Events Chain database 722. The Content Analysis Engine 721

WO 2015/038944 PCT/US2014/055469

- 26

can start tracking the application for the new attacks encapsulated into the new event

chains.

[0078] Just as with the Client Daemon, the Appliance Daemon 725 is responsible

for starting the various processes that run on the Analysis Engine. For this purpose, it

must read configuration information from the Analysis Engine Configuration database

726. The daemon is also responsible for running a heartbeat poll for all processes in

the Analysis Engine. This ensures that all the devices in the Analysis Engine

ecosystem are in top working condition at all times. Loss of three consecutive

heartbeats suggests that the targeted process is not responding. If any process has

exited prematurely, the daemon will revive that process including itself.

[0079] From time to time, the software may be upgraded in the Appliance host,

or of the Analysis Engine or of the Client for purposes such as fixing errors in the

software. For this purpose, the Upgrade Client 731 constantly checks with the

Software Upgrade Server 732 where the latest software is available. If the client finds

that the entities in the Analysis Engine or the Client are running an older image, it will

allow the analysts to upgrade the old image with a new image from the Software

Upgrade Server 732. New images are bundled together as a system image 733. This

makes it possible to provision the appliance or the host with tested compatible images.

If one of the images of a subsystem in the Analysis Engine or the Resolve Client does

not match the image for the same component in the System image, then all images

will be rolled to a previous known good system image.

[0080] Fig. 8 illustrates a computer network or similar digital processing

environment in which embodiments of the present invention may be implemented.

[0081] Client computer(s)/devices 50 and server computer(s) 60 provide

processing, storage, and input/output devices executing application programs and the

like. The client computer(s)/devices 50 can also be linked through communications

network 70 to other computing devices, including other client devices/processes 50

and server computer(s) 60. The communications network 70 can be part of a remote

access network, a global network (e.g., the Internet), a worldwide collection of

computers, local area or wide area networks, and gateways that currently use

respective protocols (TCP/IP, Bluetooth@, etc.) to communicate with one another.

Other electronic device/computer network architectures are suitable.

- 27

[0082] Fig. 9 is a diagram of an example internal structure of a computer (e.g.,

client processor/device 50 or server computers 60) in the computer system of Fig. 8.

Each computer 50, 60 contains a system bus 79, where a bus is a set of hardware lines

used for data transfer among the components of a computer or processing system.

The system bus 79 is essentially a shared conduit that connects different elements of a

computer system (e.g., processor, disk storage, memory, input/output ports, network

ports, etc.) that enables the transfer of information between the elements. Attached to

the system bus 79 is an 1/0 device interface 82 for connecting various input and

output devices (e.g., keyboard, mouse, displays, printers, speakers, etc.) to the

computer 50, 60. A network interface 86 allows the computer to connect to various

other devices attached to a network (e.g., network 70 of Fig. 8). Memory 90 provides

volatile storage for computer software instructions 92 and data 94 used to implement

an embodiment of the present invention (e.g., resolve client and analysis engine

elements described herein). Disk storage 95 provides non-volatile storage for

computer software instructions 92 and data 94 used to implement an embodiment of

the present invention. A central processor unit 84 is also attached to the system bus

79 and provides for the execution of computer instructions.

[0083] While this invention has been particularly shown and described with

references to example embodiments thereof, it will be understood by those skilled in

the art that various changes in form and details may be made therein without

departing from the scope of the invention encompassed by the appended claims.

[0084] Throughout this specification and claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" and

"comprising", will be understood to imply the inclusion of a stated integer or step or

group of integers or steps but not the exclusion of any other integer or step or group of

integers or steps.

[0085] The reference in this specification to any prior publication (or information

derived from it), or to any matter which is known, is not, and should not be taken as

an acknowledgment or admission or any form of suggestion that that prior publication

(or information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

1697177.v1

- 28

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method comprising:

as a module of a computer application loads into memory:

disassembling machine code of the module;

examining the disassembled machine code to identify transition

instructions, including direct and indirect transition instructions for

determining a target address, wherein direct transition instructions

determine a target address at load time, and indirect transition

instructions have a runtime dependency preventing determining a

target address until runtime,

for each identified transition instruction,

(i) storing the target address of the identified transition

instruction, if the identified transition instruction is a direct

transition instruction, storing the identified transition

instruction, if the identified transition instruction is an indirect

transition instruction; and

(ii) inserting one or more collection instructions into the

module of the computer application to collect data at runtime;

and

as the module of the computer application executes at runtime:

analyzing the data collected at runtime against the stored target

addresses and stored indirect transition instructions to detect one or

more security events; and

tracking the one or more security events using a state machine.

2. A computer-implemented method comprising:

as a module of a computer application loads into memory:

disassembling machine code of the module;

examining the disassembled machine code to identify transition

instructions, including direct and indirect transition instructions for

1697177.vl

- 29

determining a target address, wherein a direct transition instruction

determines a target address at load time, and an indirect transition

instruction has a runtime dependency preventing determining a target

address until runtime, for each identified transition instruction,

storing the target address of the identified transition instruction,

if the identified transition instruction is a direct transition instruction,

storing the identified transition instruction, if the identified transition

instruction is an indirect transition instruction; and

inserting one or more collection instructions into the module of

the computer application to collect data at runtime.

3. A computer-implemented method comprising:

as a module of a computer application executes at runtime:

analyzing data collected at runtime for a computer application

against stored target addresses and indirect transition instructions of

the computer application to detect one or more security events; and

tracking the one or more security events using a state machine.

4. The method of Claim 1 or 2 wherein disassembling machine code of the

module includes: extracting direct and indirect transition mapping data from

the computer application, extracting memory mapping data from the computer

application, extracting instructions that manipulate memory buffers from the

computer application, extracting instructions that execute program loops from

the computer application, and extracting OS functions and system calls

referenced by the computer application.

5. The method of Claim 1 or 2 wherein disassembling machine code of the

module is accomplished at least in part using a code disassembler.

1697177.vl

- 30

6. The method of Claim 1 or 2 wherein the computer application is in binary or

interpreted format.

7. The method of Claim 1 or 2 further comprising:

checking the computer application for integrity during load time,

optionally wherein checking the computer application for integrity

comprises computing a checksum.

8. The method of Claim 1 or 2 wherein storing the target address or target

instruction includes storing the target address or target instruction in a

database that contains one or more tables for modeling the computer

application.

9. The method of Claim 1 or 2 wherein storing the target address or target

instruction includes storing the target address or target instruction in a

database on a remote system, optionally wherein the method further

comprises:

packaging the target address or target instruction for transmission to the

remote system for storing in the database; and

further optionally, wherein the method comprises:

placing a canary into the transmission to secure the

transmission.

10. The method of Claim I or 2 wherein inserting one or more collection

instructions into the computer application is accomplished at least in part

using a dynamic binary analysis engine or a byte code instrumentation engine.

1697177.vl

-31

11. The method of Claim 1 or 2 further comprising:

packaging the data collected at runtime for transmission to one or more

processes, optionally wherein the one or more processes are on a remote

system or the method further comprises:

placing a canary into the transmission to secure the transmission.

12. The method of Claim 1 or 2 wherein the data collected at runtime comprises

data for one or more threads of the computer application.

13. The method of Claim 1 or 3 wherein analyzing the data collected at runtime

against the stored target addresses and transition instructions comprises one or

more of analyzing transition data, analyzing OS functions, analyzing system

calls, analyzing memory writes, analyzing instructions that manipulate

memory buffers, analyzing instructions that execute program loops.

14. The method of Claim 1 or 3 wherein tracking the one or more security events

comprises correlating the one or more security events based on a predefined

sequence, optionally wherein the predefined sequence is based on an

immutable chain.

15, The method of Claim 1 or 3 wherein tracking the one or more security events

includes capturing forensic data for the events or wherein tracking the one or

more security events comprises the use of severity levels.

16. The method of Claim 1 further comprising taking one or more actions in

response to tracking the one or more security events, optionally wherein the

one or more actions are automatically taken by a system or wherein the one or

more actions are taken by a user or wherein the one or more actions include

1697177.vl

- 32

any of terminating the computer application, include terminating one or more

threads of the computer application, include closing a socket on one or more

threads of the computer application, and generating alerts in response to the

one or more security events or wherein the one or more actions taken in

response to tracking the one or more security events are adjustable.

17. The method of Claim I or 3, further comprising: receiving the data collected at

runtime from a process on a remote system; and/or further comprising

receiving the stored target addresses and transition instructions from a process

on a remote system.

18. A system comprising:

a client configured to:

as a module of a computer application loads into memory:

disassemble machine code of the module;

examine the disassembled machine code to identify transition

instructions, including direct and indirect transition instructions for

determining a target address, wherein a direct transition instruction

determines a target address at load time, and an indirect transition

instruction has a runtime dependency preventing determining a target

address until runtime,

for each identified transition instruction,

(i) store the target address of the identified transition

instruction, if the identified transition instruction is a direction

transition instruction, store the identified transition instruction,

if the identified transition instruction is an indirect transition

instruction;

(ii) insert one or more collection instructions into the

module of the computer application to collect data at runtime;

and

as the module of the computer application executes at runtime:

1697177.vl

- 33

an analysis engine configured to:

analyze the data collected at runtime against the stored target

addresses and indirect transition instructions to detect one or more

security events; and

track the one or more security events using a state machine.

19. An apparatus comprising:

a processor configured to execute a first process and a second process;

as a module of a computer application loads into memory:

the first process configured to

disassemble machine code of the module;

examine the disassembled machine code to identify transition

instructions, including direct and indirect transition instructions

for determining a target address, wherein a direct transition

instruction determines a target address at load time, and an

indirect transition instruction has a runtime dependency

preventing determining a target address until runtime,

for each identified transition instruction,

store the target address of the identified transition

instruction, if the identified transition instruction is a direct

transition instruction, store the identified transition instruction,

if the identified transition instruction is an indirect transition

instruction;

the second process configured to insert one or more collection

instructions into the module of the computer application to collect data

at runtime.

20. An apparatus comprising:

a processor configured to execute a first process and a second process;

the first process configured to analyze data collected at runtime for a

computer application against stored target addresses and indirect transition

1697177.vl

- 34

instructions of the computer application to detect one or more security events,

wherein the model includes transition mapping data from the computer

application; and

the second process configured to track the one or more security events

using a state machine.

1697177.vl

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

