(54) 发明名称
一种用于盛水的炭陶容器及其制备方法

(57) 摘要
本发明涉及一种陶土烧制的容器。一种用于盛水的炭陶容器及其制备方法，按总量百分比包括下述组分：耐高温无机抗菌材料 0.05-5%，炭粉 5-55%，粘土 45-90%。该盛水的炭陶容器优点是长时间盛水，泡茶或在潮湿环境中使用后也不会滋生菌斑，净化水质的性能非常好，且通体呈黑色或深灰色。
1. 一种用于盛水的炭容器，其特征在于按总量百分比包括下述组分：
耐高温无机抗菌材料 0.05~5%，炭粉 5~55%，粘土 45~90%。

2. 根据权利要求 1 所述的一种用于盛水的炭容器，其特征在于耐高温无机抗菌材料是耐高温抗变色无机防霉抗菌材料。

3. 根据权利要求 1 所述的一种用于盛水的炭容器，其特征在于所述的炭粉是竹炭粉、木炭粉或者活性炭炭粉中的一种，其粒径在 20 目以下。

4. 根据权利要求 1 所述的一种用于盛水的炭容器，其特征在于所述无机抗菌材料是硝酸镁、氯化钠、氯化铜、氧化锌、氧化钙、氧化铁、氧化钙中的一种。

5. 根据权利要求 1 或 2 所述的一种用于盛水的炭容器，其特征在于按总量百分比还包括 0.1~2%的水玻璃。

6. 根据权利要求 1 或 2 所述的一种用于盛水的炭容器，其特征在于按重量百分比还包括 0.1~5%的麦饭石粉末。

7. 一种用于盛水的炭容器的制备方法，其特征在于依次包括下述步骤：
 (1) 将耐高温无机抗菌材料与水混合搅拌制成含抗菌材料水溶液，加入炭粉，使抗菌材料负载到炭中；
 (2) 将粘土倒入含耐高温无机抗菌材料的炭粉水溶液中，充分搅拌，形成炭陶胚浆；
 (3) 陈腐 24 小时以上，然后脱胚，成型，干燥处理，烧制，自然冷却。

8. 一种用于盛水的炭容器的制备方法，其特征在于依次包括下述步骤：
 (1) 将炭粉和粘土加入水，充分搅拌，形成炭陶胚浆；
 (2) 陈腐 24 小时以上，出胚，成型；
 (3) 将耐高温无机抗菌材料与水混合制成含抗菌材料水溶液，喷洒在胚体表面，干燥处理，烧制，自然冷却。

9. 根据权利要求 7 或 8 所述的一种用于盛水的炭容器的制备方法，其特征在于烧制过程中烧结温度控制在 800~1100 度之间。

10. 根据权利要求 9 所述的一种用于盛水的炭容器的制备方法，其特征在于所述炭粉是粒径在 20 目以下的竹炭粉。
一种用于盛水的炭陶容器及其制备方法

技术领域
[0001] 本发明涉及一种陶土烧制盛水的容器，尤其涉及一种盛水的炭陶容器。

背景技术
[0002] 炭陶是一种含炭粉的陶器，即其烧制的原料中加入了炭粉，炭粉主要是竹炭粉、木炭粉或者活性炭炭粉中的一种。炭陶产品的特点是通体呈黑色或深灰色，破裂面也呈黑色或灰色。炭陶中除了具有普通陶瓷的工艺性和实用性外，特别具有以下物理功能：1. 具有相当的吸附能力，去湿防霉，清除异味，清新空气；2. 用炭陶盛水或将其置于水中，消除开水中的漂白粉味，调节饮用水的酸碱度，使水质趋向弱碱性，使硬水软化，溶出对人体有益的矿物质钾、镁、钙、铁、磷、锰等，供人体吸收，补充人体的微量元素；3. 用来泡茶，泡咖啡及其他冲饮品，可去除苦涩味，味道更清纯，存放时间更长。炭粉与陶土复合后烧制的陶器，孔隙明显增加，使得炭陶具有较强的吸附性能，特别亲有机物，而盛水用的炭陶容器主要是通过吸附功能用于水质净化和吸湿防霉，经常接触到水，在吸附水中的有机物后加上本身的孔道结构，在阴湿的环境下非常适合各类细菌及真菌的生长，例如常见的大肠杆菌、葡萄球菌和一些常见的霉菌。综上所述，现有的盛水炭陶容器存在的不足是在盛水或者非常潮湿的环境下使用容易滋生菌斑。

发明内容
[0003] 为了解决上述现有盛水的炭陶容器存在的盛水、潮湿的环境下使用容易滋生菌斑的缺陷，本发明目的一个发明目的是公开一种不易滋生菌斑的用于盛水的炭陶容器，本发明的另一个发明目的公开另一种不易滋生菌斑的用于盛水的炭陶容器的制备方法。
[0004] 为了实现上述发明目的，本发明采用了以下的技术方案：
[0005] 一种用于盛水的炭陶容器，按重量百分比计包括下述组分：耐高温无机抗菌材料0.05-5%，炭粉5-55%，粘土45-90%。
[0006] 作为优选，所述耐高温无机抗菌材料是耐高温抗变色无机防霉抗菌材料，炭陶容器产品的特点是通体呈黑色或深灰色，破裂面也呈黑色或灰色，加入的耐高温无机抗菌材料为耐高温抗变色无机防霉抗菌材料，保证了其加入之后烧制成的炭陶容器不变色，依旧保持炭陶通体呈黑色或深灰色的特点。
[0007] 作为优选，所述的炭粉是竹炭粉、木炭粉或者活性炭炭粉中的一种，其粒径在20目以下，上述三种炭粉最为常用，粒径在20目以下的炭粉便于与粘土充分的混合，保证了烧制成的炭陶容器通体颜色的均匀性。
[0008] 作为优选，所述无机抗菌材料是硝酸银、氯化锌、氯化铜、氧化锌、氧化铜、氧化钛、氧化钙的任意一种。
[0009] 作为优选，所述按重量百分比还包括0.1-2%的水玻璃，增加炭陶的粘性和牢固。
[0010] 作为优选，所述按重量百分比还包括0.1-5%的麦饭石粉末，可以使酸性水质变成弱碱性。
一种用于盛水的炭陶容器的制备方法，依次包括下述步骤：
(1) 将耐高温无机抗菌材料与水混合搅拌制成含抗菌材料水溶液，加入炭粉，使抗菌材料负载到炭中，具体是炭的孔隙里；
(2) 将粘土倒入含耐高温无机抗菌材料的炭粉水溶液中，充分搅拌，形成炭陶胚浆；
(3) 陈腐 24 小时以上，然后拉胚、成型、干燥处理、烧制、自然冷却。
一种用于盛水的炭陶容器的制备方法，依次包括下述步骤：
(1) 将炭粉和粘土加入水，充分搅拌，形成炭陶胚浆；
(2) 陈腐 24 小时以上，拉胚，成型；
(3) 将耐高温无机抗菌材料与水混合制成含抗菌材料水溶液，喷洒在胚体表面，干燥处理，烧制，自然冷却。
作为优选，所述烧制过程中烧结温度控制在 800-1100 度之间。正常的含炭的陶器烧结温度在 600-1200 度之间。烧结温度高于 1200 度，则炭陶玻化，炭陶的吸水性会很差。烧结温度低于 600 度，作為载体的粘土没有烧结，炭陶的强度不够，就容易破碎。
而作为炭陶容器，其很大程度上用途就是盛放液体，最多就是水，为了保证其最高的有利于净化水质的性能，其烧结温度在 800-1100 度之间最好。
作为优选，所述炭粉是粒径在 20 目以下的竹炭粉，竹炭的吸附、净化水质性能最好，而且竹炭的远红外外功能可以缩小水分子团，饮用后更利于人体吸收，补充人体营养水分。
采用了上述技术方案的一种用于盛水的炭陶容器及其制备方法，其优点是炭陶容器长时间盛水，泡茶或在潮湿环境中使用后也不会滋生细菌，净化水质的性能非常好，且通体呈黑色或深灰色。

具体实施方式
实施例 1
一种用于盛水的炭陶容器，按总量百计包括下述组分：耐高温无机抗菌材料 5%，炭粉 50%，粘土 45%。炭粉为竹炭粉，竹炭粉既是优良的吸附剂，也作为良好的载体，可负载耐高温无机抗菌材料，更好地起到吸附、抑菌和催化分解作用。耐高温无机抗菌材料是耐高温抗变色无机防霉抗菌材料，优选北京有色金属研究所研制的无机防霉抗菌剂。炭陶容器通体呈黑色或深灰色，破裂面也为黑色或灰色炭粉是竹炭粉，其粒径在 20 目以下。
一种用于盛水的炭陶容器的制备方法，步骤如下：
将耐高温无机抗菌材料与水混合搅拌制成含抗菌材料水溶液，加入炭粉，将耐高温无机抗菌材料溶于水，充分搅拌，制成含抗菌材料水溶液，将炭粉与上述溶液混合搅拌、静置，使抗菌材料负载到炭中，具体是炭的孔隙里，炭粉作为载体充分吸收溶液中的抗菌材料，然后在再加入粘土，粘土先经过洗涤筛选或粉碎，充分搅拌，形成炭陶胚浆。陈腐 24 小时以上；手工拉胚；填模灌浆或压胚成型；胚体表面光处理，雕刻；干燥处理，风干或烘干均可；装窑；高温烧制；自然冷却；卸窑；清洗。其中烧结温度控制在 800 度-1100 度之间，此烧结温度烧制的炭陶容器在吸附性尤其是吸水性上性能最为优异，最有利于盛水容器发挥
下述功能：1. 去除水中对人体有害的余氯、农药残留以及铝、镉、汞等重金属污染物，消除开水分的漂白粉味；2. 抑制炭氢在阴湿环境下各类细菌及真菌的生长；3. 调节水的酸碱度，使水质趋向弱碱性，使硬水软化；4. 溶出对人体有益的矿物质钾、镁、钙、铁、磷、锰等，供人体吸收，补充人体的微量元素；5. 最有利于竹炭发挥其远红外功能可以缩小水分子团，饮用后更利于人体吸收，补充人体营养水分。

实施例 2

一种用于盛水的炭陶容器，按总量百计包括下述组分：耐高温无机抗菌材料 0.1%，炭粉 10%，粘土 89.9%。炭粉为竹炭粉。耐高温无机抗菌材料是耐高温抗变色无机防霉抗菌材料，优选北京有色金属研究总院研制的无机防霉抗菌剂。炭陶容器通体呈黑色或深灰色，破裂面也为黑色或灰色，其粒径在 20 目以下。

实施例 3

一种用于盛水的炭陶容器，按总量百计包括下述组分：耐高温无机抗菌材料 0.05%，竹炭粉 40%，粘土 57.95%，水玻璃，水玻璃增加炭陶的粘性和牢度。无机抗菌材料是硝酸银、氯化锌、氯化铜、氧化锌，氧化铜、氧化镍、氧化钙的任意一种。其它与实施例 1 相同。

实施例 4

一种用于盛水的炭陶容器，按总量百计包括下述组分：耐高温无机抗菌材料 3%，竹炭粉 40%，粘土 50%，麦饭石 7%，炭陶容器的主体是茶壶或者茶杯，麦饭石增加了水质中的含钙量，增加水质碱性。其它与实施例 2 相同。

实施例 5

一种用于盛水的炭陶容器，按总量百计包括下述组分：耐高温无机抗菌材料 5%，竹炭粉 35%，粘土 60%。其它与实施例 1 相同。

实施例 6

抗菌材料种类繁多，但大多数尤其是有机抗菌剂不能耐受千度高温，抗菌机理复杂，安全性能不稳定，易产生毒副产物，不适宜于炭陶复合。结合各种条件和要求，选用耐高温无机抗菌材料才能解决耐高温、安全无毒、光谱抗菌的要求，并且耐高温无机抗菌材料机理多为接触式或被动式，适合于炭陶尤其是竹炭陶的抗菌要求。再无机抗菌材料安全性能好对健康无害、无二次污染，最后，耐高温无机抗菌材料具有广谱抗菌、持久，尤其是具有耐水、耐酸碱、耐洗涤的优点，非常适合用于作为容器内使用。上述无机抗菌材料是指利用银、铜、锌、钛等金属以及氧化物的无机抗菌能力，通过物理吸附、离子交换等方法，将银、铜、锌、钛等金属或其离子固定在沸石、硅胶、活性炭、炭质等多孔材料的表面制成的抗菌剂。通过离子交换或物理吸附的方法将银、铜、锌、钛等金属或其离子及抗硫化物负载在竹炭粉、木炭粉或活性炭碳粉的炭微粉中，再将这种具有抗菌能力的功能型炭粉搅拌与粘土混合，烧制得到盛水的炭陶容器。
[0037] 上述用于盛水的炭陶容器可以是水杯、茶具等。上述实施例仅为本专利较好的实施方式，例如炭粉可以是竹炭粉、木炭粉或者活性炭炭粉中的一种，凡采用本技术方案描述的构造、特征及在其精神原理上的变化、修饰均属于本专利的保护范围。