0 P O OO

WO 01/10076 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectnal Property Organization
International Bureau

(43) International Publication Date
8 February 2001 (08.02.2001)

PCT

000 00 OO A

(10) International Publication Number

WO 01/10076 A2

HO04L 9/00

(51) International Patent Classification’:

(21) International Application Number: PCT/US00/20736

(22) International Filing Date: 31 July 2000 (31.07.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/146,426 29 July 1999 (29.07.1999) US
(71) Applicant: INTERTRUST TECHNOLOGIES CORP.
[US/US]; 4750 Patrick Henry Drive, Santa Clara, CA

95054 (US).

(72) Inventor: SIBERT, W., Olin; 30 Ingleside Road, Lexing-
ton, MA 02420 (US).

(74) Agents: GARRET, Arthur, S. et al.; Finnegan, Hender-
son, Farabow, Garrett & Dunner, L.L.P.,, 1300 I Street,
N.W., Washington, DC 20005-3315 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS,LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ,PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FL, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,

CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR USING CRYPTOGRAPHY TO PROTECT SECURE AND INSECURE COMPUT-

ING ENVIRONMENTS

~ 502

MAKE LM ANP
SPECIFICATION,S)

|

Provider of
Executables

SUBMIT TOVERIFYING | 504
AUTHORITY
506
Verifyin TEST LM AGAINST r—
ing SPECIFICATION(S)
Authority
GENERATE

NEW
SPECIFICATION(S)?
N RESET

GENERATE

NEW
SPECIFICATION(S)?

GENERATE NEW

SPECIFICATION(S)
516
- 514
DIGITALLY SIGN M TC
INDICATE APPROVAL
512
30— l
REJECT LM &
DETERMINE
DISTRIBUTION ’ RETURN TO PROVIDER

520

(57) Abstract: Computation environments are protected from
bogus or rogue load modules, executables, and other data ele-
ments through use of digital signatures, seals, and certificates
issued by a verifying authority. A verifying authority - which
may be a trusted independent third party - tests the load modules
and/or other items to verify that their corresponding specifica-
tions are accurate and complete, and then digitally signs them
based on a tamper resistance work factor classification. Secure
computation environments with different tamper resistance work
factors use different digital signature authentication techniques
(e.g., different signature algorithms and/or signature verification
keys), allowing one tamper resistance work factor environment
to protect itself against load modules from another tamper re-
sistance work factor environment. The verifying authority can
provide an application intended for insecure environments with
a credential having multiple elements covering different parts of
the application. To verify the application, a trusted element can
issue challenges based on different parts of the authenticated cre-
dential that the trusted element selects in an unpredictable (e.g.,
random) way, and deny service (or take other appropriate action)
if the responses do not match the authenticated credential.

wO 01/10076 A2 I A0 0 O OO R

Published:

For two-letter codes and other abbreviations, refer to the "Guid-
Without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report. ning of each rvegular issue of the PCT Gazette.

10

15

20

25

30

WO 01/10076 PCT/US00/20736

1

SYSTEMS AND METHODS FOR USING CRYPTOGRAPHY TO PROTECT SECURE
AND INSECURE COMPUTING ENVIRONMENTS

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No.
60/146,426, entitled “Systems and Methods for Using Cryptography to Protect Secure
and Insecure Computing Environments,” filed July 29, 1999, and is related to
commonly-assigned U.S. Patent Application No. 08/689,754, entitled “Systems and
Methods Using Cryptography to Protect Secure Computing Environments,” filed
August 12, 1996, each of which is hereby incorporated by reference in its entirety.

COPYRIGHT AUTHORIZATION

A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears
in the Patent and Trademark Office patent file or records, but otherwise reserves all
copyright rights whatsoever.

FIELD OF THE INVENTION

The present invention relates to computer security. More specifically, the
present invention relates to computer security techniques based at least in part on
cryptography, that protect a computer processing environment against potentially
harmful computer executables, programs, and/or data; and to techniques for certifying
load modules such as executable computer programs or fragments thereof as being
authorized for use by secure and/or insecure processing environments.

BACKGROUND OF THE INVENTION

Computers have become increasingly central to business, finance and other
important aspects of our lives. It is now more important than ever to protect
computers from “bad” or harmful computer programs. Unfortunately, since many of
our most critical business, financial, and governmental tasks now rely heavily on
computers, dishonest people have a great incentive to use increasingly sophisticated
and ingenious computer attacks.

Imagine, for example, if a dishonest customer of a major bank could
reprogram the bank's computer so it adds to, instead of subtracts from, the customer's

account — or diverts a penny to the customer's account from anyone else’s bank

10

15

20

25

30

WO 01/10076

PCT/US00/20736

2

deposit in excess of $10,000. If successful, such attacks would not only allow
dishonest people to steal, but could also undermine society’s confidence in the
integrity and reliability of the banking system.

Terrorists can also try to attack us through our computers. We cannot afford
to have harmful computer programs destroy the computers driving the greater San
Francisco metropolitan air traffic controller network, the New York Stock Exchange,
the life support systems of a major hospital, or the Northern Virginia metropolitan
area fire and paramedic emergency dispatch service.

There are many different kinds of “bad” computer programs, including
“Trojan horses” — programs that cause a computer to act in a manner not intended by
its operator, named after the famous wooden horse of Troy that delivered an attacking
army disguised as an attractive gift. Some of the most notorious “bad” computer
programs are so-called "computer viruses" — "diseases" that a computer can “catch”
from another computer. A computer virus can be a computer program that instructs
the computer to do harmful or spurious things instead of useful things — and can
replicate itself to spread from one computer to another. Since the computer does
whatever its instructions tell it to do, it will carry out the bad intent of a malicious
human programmer who wrote the computer virus program, unless the computer is
protected from the computer virus program. Special anti-virus protection software
exists, but it unfortunately is only partially effective — for example, because new
viruses can escape detection until they become widely known and recognized, and
because sophisticated viruses can escape detection by masquerading as tasks the
computer is supposed to be performing.

Computer security risks of all sorts — including the risks from computer
viruses — have increased dramatically as computers have become increasingly
connected to one another over the Internet and by other means. Increased computer
connectivity provides increased capabilities, but also creates a host of computer
security problems that have not been fully solved. For example, electronic networks
are an obvious path for spreading computer viruses. In October 1988, a university
student used the Internet (a network of computer networks connected to millions of
computers worldwide) to infect thousands of university and business computers with

a self-replicating "worm" virus that took over the infected computers and caused them

10

15

20

25

30

WO 01/10076 PCT/US00/20736

3

to execute the computer virus instead of performing the tasks they were supposed to
perform. This computer virus outbreak (which resulted in a criminal prosecution)
caused widespread panic throughout the electronic community.

Computer viruses are by no means the only computer security risk made even
more significant by increased computer connectivity. For example, a significant
percentage of the online electronic community has recently become committed to a
new “portable” computer language called Java™, developed by Sun Microsystems of |
Mountain View, California. Java was designed to allow computers to Interactively
and dynamically download computer program code fragments (called “applets”) over
an electronic network such as the Internet, and to execute the downloaded code
fragments locally. The Java programming language’s “download and execute”
capability is valuable because it allows certain tasks to be performed on local
equipment using local resources. For example, a user’s computer could run a
particularly computationally or data-intensive routine — thus relieving the provider’s
computer from having to run the task and/or eliminating the need to transmit large
amounts of data over the communications path.

While Java’s “download and execute” capability has great potential, it raises
significant computer security concerns. For example, Java applets could be written to
damage hardware, software, or information on the recipient’s computer; to make the
computer unstable by depleting its resources; and/or to access confidential
information on the computer and send it to someone else without first getting the
computer owner’s permission. People have expended large amounts of time and
effort trying to solve Java’s security problems. To alleviate some of these concerns,
Sun Microsystems has developed a Java interpreter providing certain built-in security
features such as:

® aJava verifier that will not let an applet execute until the verifier verifies

that the applet does not violate certain rules;

* alava class loader that treats applets originating remotely differently from

those originating locally; and

* a Java security manager that controls access to resources such as files and

network access.

10

15

20

25

30

WO 01/10076 PCT/US00/20736

4

In addition, Sun has indicated that future Java interpreters may use digital signatures
to authenticate applets.

Numerous security flaws have been found despite the use of these techniques.
Moreover, a philosophy underlying this overall security design is that a user will have
no incentive to compromise the security of her own locally installed Java interpreter —
and that any such compromise is inconsequential from a system security standpoint
because only the user’s own computer (and its contents) are at risk. This philosophy —
which is typical of many security system designs — is seriously flawed in many useful
electronic commerce contexts for reasons described below with reference to
commonly- assigned U.S. Patent No. 5,892,900, entitled “Systems and Methods for
Secure Transaction Management and Electronic Rights Protection,” issued April 6,
1999 (“the ‘900 patent”), which is hereby incorporated by reference in its entirety.

The ‘900 patent describes a “virtual distribution environment”
comprehensively providing overall systems and wide arrays of methods, techniques,
structures and arrangements that enable secure, efficient electronic commerce and
rights management, including on the Internet or other "Information Super Highway."

The ‘900 patent describes, among other things, techniques for providing
secure, tamper-resistant execution spaces within a “protected processing
environment” for computer programs and data. The protected processing
environment described in the ‘900 patent may be hardware-based, software-based, or
a hybrid. It can execute computer code that the ‘900 patent refers to as "load
modules.” (See, for example, Figure 23 of the ‘900 patent and corresponding text).
These load modules — which can be transmitted from remote locations within secure
cryptographic wrappers or “containers” — are used to perform the basic operations of
the virtual distribution environment. Load modules may contain algorithms, data,
cryptographic keys, shared secrets, and/or other information that permits a load
module to interact with other system components (e.g., other load modules and/or
computer programs operating in the same or different protected processing
environment). For a load module to operate and interact as intended, it should
execute without unauthorized modification and its contents may need to be protected

from disclosure.

10

15

20

25

30

WO 01/10076

PCT/US00/20736

5

Unlike many other computer security scenarios, there may be a significant

incentive for an owner of a protected processing environment to attack his or her own

protected processing environment. For example:

the owner may wish to “turn off” payment mechanisms necessary to
ensure that people delivering content and other value receive adequate
compensation; or

the owner may wish to defeat other electronic controls preventing him or
her from performing certain tasks (for example, copying content without
authorization); or

the owner may wish to access someone else’s confidential information
embodied within electronic controls present in the owner’s protected
processing environment; or

the owner may wish to change the identity of a payment recipient indicated
within controls such that they receive payments themselves, or to interfere
with commerce; or

the owner may wish to defeat the mechanism(s) that disable some or all
functions when a budget has been exhausted, or audit trails have not been

delivered.

Security experts can often be heard to say that to competently do their job,

they must “think like an attacker.” For example, a successful home security system

installer must try to put herself in the place of a burglar trying to break in. Only by

anticipating how a burglar might try to break into a house can the installer

successfully defend the house against burglary. Similarly, computer security experts

must try to anticipate the sorts of attacks that might be brought against a presumably

secure computer system.

From this “think like an attacker” viewpoint, introducing a bogus load module

is one of the strongest forms of attack (by a protected processing environment user or

anyone else) on the virtual distribution environment disclosed in the ‘900 patent.

Because load modules have access to internal protected data structures within

protected processing environments and also (at least to an extent) control the results

brought about by those protected processing environments, bogus load modules can

perform almost any action possible in the virtual distribution environment without

10

15

20

25

30

WO 01/10076 PCT/US00/20736

6

being subject to intended electronic controls (putting aside for the moment additional
possible local protections such as addressing and/or ring protection, and also putting
aside system level fraud and other security related checks). Especially likely attacks
may range from straightforward changes to protected data (for example, adding to a
budget, billing for nothing instead of the desired amount, etc.) to wholesale
compromise (for example, using a load module to expose a protected processing
environment's cryptographic keys). For at least these reasons, the methods for
validating the origin and soundness of a load module are critically important.

A variety of techniques can be used to secure protected processing
environments against inauthentic load modules introduced by the computer owner,
user, or any other party, including for example:

¢ Encrypting and authenticating load modules whenever they are shared
between protected processing environments via a communications path
outside of a tamper-resistant barrier and/or passed between different
virtual distribution environment participants;

e Using digital signatures to determine if load module executable content is
intact and was created by a trusted source (i.e., one with a correct
certificate for creating load modules);

e Strictly controlling initiation of load module execution by use of
encryption keys, digital signatures, and/or tags;

» Carefully controlling the process of creating, replacing, updating, or
deleting load modules; and

* Maintaining shared secrets (e.g., cryptographic keys) within a tamper
resistant enclosure that the owner of the electronic appliance cannot easily
tamper with.

SUMMARY OF THE INVENTION

The present invention provides improved techniques for protecting secure
computation and/or execution spaces from unauthorized (and potentially harmful)
load modules or other executables or associated data. In accordance with one aspect
provided by the present invention, one or more trusted verifying authorities validate
load modules or other executables by énalyzing and/or testing them. A verifying

authority digitally signs and certifies the load modules or other executables that it has

10

15

20

25

30

WO 01/10076 PCT/US00/20736

7

verified (using, for example, a public key based digital signature and/or a certificate
based thereon).

Protected execution spaces such as protected processing environments can be
programmed or otherwise conditioned to accept only those load modules or other
executables bearing a digital signature/certificate of an accredited (or particular)
verifying authority. Tamper resistant barriers may be used to protect this
programming or other conditioning. The assurance levels described below are a
measure or assessment of the effectiveness with which this programming or other
conditioning is protected.

A web of trust may stand behind a verifying authority. For example, a
verifying authority may be an independent organization that can be trusted by all
electronic value chain participants not to collaborate with any particular participant to
the disadvantage of other participants. A given load module or other executable may
be independently certified by any number of authorized verifying authority
participants. If a load module or other executable is signed, for example, by five
different verifying authority participants, a user will have (potentially) a higher
likelihood of finding one that they trust. General commercial users may insist on
several different certifiers, and government users, large corporations, and international
trading partners may each have their own unique “web of trust” requirements. This
“web of trust” prevents value chain participants from conspiring to defraud other
value chain participants.

In accordance with another aspect provided by this invention, each load
module or other executable has specifications associated with it describing the
executable, its operations, content, and functions. Such specifications could be
represented by any combination of specifications, formal mathematical descriptions
that can be verified in an automated or other well-defined manner, or any other forms
of description that can be processed, verified, and/or tested in an automated or other
well-defined manner. The load module or other executable is preferably constructed
using a programming language (e.g., a language such as Java or Python) and/or
design/implementation methodology (e.g., Gypsy, FDM) that can facilitate automated

analysis, validation, verification, inspection, and/or testing.

10

15

20

25

30

WO 01/10076 PCT/US00/20736

8

A verifying authority analyzes, validates, verifies, inspects, and/or tests the
load module or other executable, and compares its results with the specifications
associated with the load module or other executable. A verifying authority may
digitally sign or certify only those load modules or other executables having proper
specifications — and may include the specifications as part of the material being
signed or certified.

A verifying authority may instead, or in addition, selectively be given the
responsibility for analyzing the load module and generating a specification for it.
Such a specification could be reviewed by the load module’s originator and/or any
potential users of the load module.

A verifying authority may selectively be given the authority to generate an
additional specification for the load module, for example by translating a formal
mathematical specification to other kinds of specifications. This authority could be
granted, for example, by a load module originator wishing to have a more accessible,
but verified (certified), description of the load module for purposes of informing other
potential users of the load module.

Additionally, a verifying authority may selectively be empowered to modify
the specifications to make them accurate — but may refuse to sign or certify load
modules or other executables that are harmful or dangerous irrespective of the
accuracy of their associated specifications. The specifications may in some instances
be viewable by ultimate users or other value chain participants — providing a high
degree of assurance that load modules or other executables are not subverting the
system and/or the legitimate interest of any participant in an electronic value chain the
system supports.

In accordance with another aspect provided by the present invention, an
execution environment protects itself by deciding — based on digital signatures, for
example — which load modules or other executables it is willing to execute. A digital
signature allows the execution environment to test both the authenticity and the
integrity of the load module or other executables, as well permitting a user of such
executables to determine their correctness with respect to their associated
specifications or other descriptions of their behavior, if such descriptions are included

in the verification process.

10

15

20

25

30

WO 01/10076 PCT/US00/20736

9

A hierarchy of assurance levels may be provided for different protected
processing environment security levels. Load modules or other executables can be
provided with digital signatures associated with particular assurance levels.
Appliances assigned to particular assurance levels can protect themselves from
executing load modules or other executables associated with different assurance
levels. Different digital signatures and/or certificates may be used to distinguish
between load modules or other executables intended for different assurance levels.
This strict assurance level hierarchy provides a framework to help ensure that a more
trusted environment can protect itself from load modules or other executables exposed
to environments with different work factors (e.g., less trusted or tamper resistant
environments). This can be used to provide a high degree of security
compartmentalization that helps protect the remainder of the system should parts of
the system become compromised.

For example, protected processing environments or other secure execution
spaces that are more impervious to tampering (such as those providing a higher
degree of physical security) may use an assurance level that isolates them from
protected processing environments or other secure execution spaces that are relatively
more susceptible to tampering (such as those constructed solely by software executing
on a general purpose digital computer in a non-secure location).

A verifying authority may digitally sign load modules or other executables
with a digital signature that indicates or implies an assurance level. A verifying
authority can use digital signature techniques to distinguish between assurance levels.
As one example, each different digital signature may be encrypted using a different
verification key and/or fundamentally different encryption, one-way hash, and/or
other techniques. A protected processing environment or other secure execution
space protects itself by executing only those load modules or other executables that
have been digitally signed for its corresponding assurance level.

The present invention may use a verifying authority and the digital signatures
it provides to compartmentalize the different electronic appliances depending on their
level of security (e.g., work factor or relative tamper resistance). In particular, a
verifying authority and the digital signatures it provides isolate appliances with

significantly different work factors, thus preventing the security of high work factor

10

15

20

25

30

WO 01/10076 PCT/US00/20736

10

appliances from collapsing into the security of low work factor appliances due to the
free exchange of load modules or other executables.

Encryption can be used in combination with the assurance level scheme
discussed above to ensure that load modules or other executables can be executed
only in specific environments or types of environments. The secure way to ensure
that a load module or other executable cannot execute in a particular environment is to
ensure that the environment does not have the key(s) necessary to decrypt it.
Encryption can rely on multiple public keys and/or algorithms to transport basic
key(s). Such encryption protects the load module or other executable from disclosure
to environments (or assurance levels of environments) other than the one(s) it is
intended to execute in.

In accordance with another aspect provided by this invention, a verifying
authority can digitally sign a load module or other executable with several different
digital signatures and/or signature schemes. A protected processing environment or
other secure execution space may require a load module or other executable to present
multiple digital signatures before accepting it. An attacker would have to “break”
each (all) of the several digital signatures and/or signature schemes to create an
unauthorized load module or other executable that would be accepted by the protected
processing environment or other secure execution space. Different protected
processing environments (secure execution spaces) might examine different subsets of
the multiple digital signatures, so that compromising one protected processing
environment (secure execution space) will not compromise all of them. As an
optimization, a protected processing environment or other secure execution space
might verify only one of the several digital signatures (for example, chosen at random
each time an executable is used), thereby speeding up the digital signature verification
while still maintaining a high degree of security.

In accordance with yet another aspect provided by the present invention(s), a
tamper-resistant mechanism is provided for allowing a trusted element to validate
certifications presented by applications intended to be run or otherwise used, at least
1n part, within an insecure environment. Such techniques can detect whether
applications have been certified and/or modified (i.e., tampered with) in a way that

makes them no longer trustworthy.

10

15

20

25

30

WO 01/10076 PCT/US00/20736

11

Briefly, examples of these techniques provide a credential having multiple
elements covering corresponding parts of the application — and preferably having a
combined overall effect of covering all (or a substantial portion) of the application.
For example, the credential can provide verification information for different byte
ranges, virtual paths, and/or other portions of the application. Sufficient verification
information may be provided to substantially cover the application, or at least those
portions of the application deemed to be the most likely to be tampered with.

To validate the credential, the trusted element first authenticates the credential,
and then issue challenges based on different parts of the authenticated credential that
the trusted element selects in an unpredictable (e.g., random) way. For example, the
trusted element can repeatedly challenge the application or other agent to provide (or
can itself generate) a cryptographic hash value corresponding to application portions
or ranges that the trusted element randomly selects. The trusted element can compare
the responses to its challenges with information the authenticated credential provides,
and deny service or take other appropriate action if the comparison fails. The
challenges may be repeated on an ongoing basis (e.g., during execution of the
application) and/or interleaved with non-predetermined challenges not defined by the
credential, to increase the tamper-resistance of the verification process.

These and other features and advantages of the present invention will be
presented in more detail in the following detailed description and the accompanying
figures which illustrate by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the following detailed
description in conjunction with the accompanying drawings, wherein like reference
numerals designate like structural elements, and in which:

Figure 1 illustrates how defective or bogus load modules can wreak havoc in
the electronic community;

Figure 2 shows an example verification authority that protects the electronic
community from unauthorized load modules;

Figure 3 shows how a protected processing environment can distinguish
between load modules that have been approved by a verifying authority and those that

have not been approved,

10

15

20

25

30

WO 01/10076 PCT/US00/20736

12

Figure 4 shows an example process a verifying authority may perform to
authenticate load modules;

Figure 5 shows how a verifying authority can create a certifying digital
signature;

Figure 6 shows how a protected processing environment can securely
authenticate a verifying authority's digital signature to guarantee the integrity of the
corresponding load module;

Figure 7 shows how several different digital signatures can be applied to the
same load module;

Figure 8 shows how a load module can be distributed with multiple digital
signatures;

Figure 8A shows how key management can be used to compartmentalize
protected processing environments;

Figures 9 shows how a load module can be segmented and each segment
protected with a different digital signature;

Figures 10A, 10B, and 10C show how different assurance level electronic
appliances can be provided with different cryptographic keys for authenticating
verifying authority digital signatures;

Figures 11A, 11B, and 11C show how a verifying authority can use different
digital signatures to designate the same or different load modules as being appropriate
for execution by different assurance level electronic appliances;

Figures 12, 13, and 13A show how assurance level digital signatures can be
used to isolate electronic appliances or appliance types based on work factor and/or
tamper resistance to reduce overall security risks;

Figure 14 shows example overall steps that may be performed within an
electronic system (such as, for example, a virtual distribution environment) to test,
certify, distribute and use executables;

Figure 15 shows an example appliance having both secure and insecure
execution spaces;

Figure 16 shows an example process for certifying applications intended to be
run in insecure execution spaces;

Figure 16A shows an example application including multiple components;

10

15

20

25

30

WO 01/10076

13

Figure 17 shows an example overall credential creation process;

Figure 18 shows an example range hash block;

Figure 19 shows example credential creation from a set of range hash blocks;

Figure 20 shows an example threat model;

Figure 20A shows an example of non-overlapping hash ranges;

Figure 20B shows an example of overlapping hash ranges;

Figure 20C shows an example use of pseudo-random validation paths within
an application;

Figure 21 shows an example simplified credential validation process; and

Figures 22A and 22B show an example more detailed credential validation
process.

DETAILED DESCRIPTION

A detailed description of the present invention is provided below. While the
invention is described in conjunction with several embodiments, it should be
understood that the invention is not limited to any one embodiment, and encompasses
instead, numerous alternatives, modifications and equivalents. While numerous
specific details are set forth in the following description in order to provide a thorough
understanding of the present invention, the present invention may be practiced
without some or all of these details. Moreover, for the purpose of clarity, certain
specifics relating to technical material that is known in the art related to the invention
have not been described in detail in order to avoid unnecessarily obscuring the present
invention.

Figure 1 shows how defective, bogus, and/or unauthorized computer
information can wreak havoc within an electronic system 50. In this example,
provider 52 is authorized to produce and distribute load modules 54 for use by
different users or consumers 56. Figure 1 shows load module 54 as a complicated
looking machine part for purposes of illustration only; the load module preferably
comprises one or more computer instructions and/or data elements used to assist,
allow, prohibit, direct, control or facilitate at least one task performed at least in part
by an electronic appliance such as a computer. For example, load module 54 may

comprise all or part of an executable computer program and/or associated data

PCT/US00/20736

10

15

20

25

30

WO 01/10076

PCT/US00/20736

14

(“executable”), and may constitute a sequence of instructions or steps that bring about

a certain result within a computer or other computation element.

Figure 1 shows a number of electronic appliances 61 such as, for example, a

set top box or home media player 58, a personal computer 60, and a multi-media

player 62. Each of appliances 58, 60, 62 may include a secure execution space. One

particular example of a secure execution space is a protected processing environment

108, such as that described in the ‘900 patent. Protected processing environments 108

provide a secure execution environment in which appliances 58, 60, 62 may securely

execute load modules 54 to perform useful tasks. For example:

Provider 52 might produce a load module 54a for use by the protected
processing environment 108A within set top box or home media player 58.
Load module 54a could, for example, enable the set top box/home media
player 58 to play a movie, concert or other interesting program, charge
users 56a a "pay per view" fee, and ensure that the fee is paid to the
appropriate rights holder (for example, the film studio, concert promoter,
or other organization that produced the program material).

Provider 52 might produce another load module 54b for delivery to
personal computer 60°s protected processing environment 108B. The load
module 54b might enable personal computer 60 to perform a financial
transaction, such as, for example, home banking, a stock trade, or an
income tax payment or reporting.

Provider 52 could produce a load module 54c¢ for delivery to multi-media
player 62’s protected processing environment 108c. This load module 54c
might allow user 56c to view a particular multi-media presentation while
preventing the user from making a copy of the presentation—or it could
control a portion of a transaction (e.g. a meter that records usage, and is
incorporated into a larger transaction involving other load modules
associated with interacting with a multi-media piece). (Load modules
associated with the financial portion of a transaction, for example, may

often be self-contained and independent).

Figure 1 also shows an unauthorized and/or disreputable load module provider

64. Unauthorized provider 64 knows how to make load modules that look a lot like

10

15

20

25

30

WO 01/10076

PCT/US00/20736

15

the load modules produced by authorized load module provider 52, but are defective

or even destructive. Unless precautions are taken, the unauthorized load module 54d

made by unauthorized producer 64 will be able to run on protected processing

environments 108 within appliances 58, 60 and 62, and may cause serious harm to

users 56 and/or to the integrity of system 50. For example:

unauthorized provider 64 could produce a load module 54d that is quite
similar to authorized load module 54a intended to be used by set top box
or home media player 58. The unauthorized load module 54d might allow
protected processing environment 108A within set top box/home media
player 58 to present the very same program material, but divert some or all
of the user’s payment to unauthorized producer 64, thereby defrauding the
rights holders in the program material that the users watch.

Unauthorized provider 64 might produce an unauthorized version of load
module 54b that could, if run by personal computer 60’s protected
processing environment 108B, disclose the user 56b's bank and credit card
account numbers to unauthorized provider 64 and/or divert electronic or
other funds to the unauthorized provider.

Unauthorized provider 64 could produce an unauthorized version of load
module 54c that could damage the protected processing environment 108C
within multi media player 62 — erasing data it needs for its operation and
making it unusable. Alternatively, an unauthorized version of load module
54c¢ could defeat the copy protection provided by multi-media player 62°s
protected processing environment, causing the makers of multi media
programs to lose substantial revenues through unauthorized copying — or
could defeat or alter the part of the transaction provided by the load

module (e.g., billing, metering, maintaining an audit trail, etc.).

Figure 2 shows how a verifying authority 100 can prevent the problems shown

in Figure 1. In this example, authorized provider 52 submits load modules 54 to

verifying authority 100. Verifying authority 100 carefully analyzes the load modules

54 (see 102), testing them to make sure they do what they are supposed to do and do

not compromise or harm system 50. If a load module 54 passes the tests verifying

10

15

20

25

30

WO 01/10076 PCT/US00/20736

16

authority 100 subjects it to, a verifying authority may affix a digital "seal of approval"
(see 104) to the load module.

Protected processing environments 108 can use this digital seal of approval
106 (which may comprise one or more digital signatures) to distinguish between
authorized and unauthorized load modules 54. Figure 3 illustrates how an electronic
protected processing environment 108 can use and rely on a verifying authority's
digital seal of approval 106. In this example, the protected processing environment
108 can distinguish between authorized and unauthorized load modules 54 by
examining the load module to see whether it bears the seal of verifying authority 100.
Protected processing environment 108 will execute the load module 54a with its
processor 110 only if the load module bears a verifying authority's seal 106.
Protected processing environment 108 discards and does not use any load module 54
that does not bear this seal 106. In this way, protected processing environment 108
securely protects itself against unauthorized load modules 54 such as, for example, the
defective load module 54d made by disreputable load module provider 64.

Figure 4 shows the analysis and digital signing steps 102, 104 performed by
verifying authority 100 in this example. Provider 52 may provide, with each load
module 54, associated specifications 110 identifying the load module and describing
the functions the load module performs. In this example, these specifications 110 are
illustrated as a manufacturing tag, but preferably comprise a data file associated with
and/or attached to the load module 54.

Verifying authority 100 uses an analyzing tool(s) 112 to analyze and test load
module 54 and determine whether it performs as specified by its associated
specifications 110 — that is, whether the specifications are both accurate and complete.
Figure 4 illustrates an analysis tool 112 as a magnifying glass; verifying authority 100
may not rely on visual inspection only, but instead preferably uses one or more
computer-based software testing techniques and/or tools to verify that the load
module performs as expected, matches specifications 110, is not a “virus,” and
includes no significant detectable "bugs" or other harmful functionality. (See, for
example, Pressman, “Software Engineering: A Practitioner’s Approach,” 3d ed.,
chapters 18 and 19, pages 595-661 (McGraw-Hill 1992), and the various books and

papers referenced therein). Although it has been said that “testing can show only the

10

15

20

25

30

WO 01/10076 PCT/US00/20736

17

presence of bugs, not their absence,” such testing (in addition to ensuring that the load
module 54 satisfies its specifications 110) can provide added degrees of assurance that
the load module isn’t harmful and will work as it is supposed to.

Verifying authority 100 is preferably a trusted, independent third party such as
an impartial, well respected independent testing laboratory. Therefore, all parﬁcipants
in an electronic transaction involving load module 54 can trust a verifying authority
100 as performing its testing and analysis functions competently and completely
objectively and impartially. As described above, there may be several different
verifying authorities 100 that together provide a “web of trust.” Several different
verifying authorities may each verify and digitally sign the same load module, thus
increasing the likelihood that a particular value chain participant will trust one of
them, and decreasing the likelihood of collusion or fraud. Electronic value chain
participants may rely upon different verifying authorities 100 to certify different types
of load modules. For example, one verifying authority 100 trusted by and known to
financial participants might verify load modules relating to financial aspects of a
transaction (e.g., billing), whereas another verifying authority 100" trusted by and
known to participants involved in using the “information exhaust” provided by an
electronic transaction might be used to verify load modules relating to usage metering
aspects of the same transaction.

Once verifying authority 100 is satisfied with load module 54, it affixes its
digital seal of approval 106 to the load module. Figure 4 illustrates the digital sealing
process as being performed by a stamp 114, but in a preferred embodiment the digital
sealing process is actually performed by creating a digital signature using a well-
known process, such as one or more of the techniques described in Schneier, “Applied
Cryptography,” 2d ed., chapter 20, pages 483-502 (John Wiley & Sons 1996), which
is hereby incorporated by reference. This digital signature, certificate, or seal creation
process is illustrated in Figure 5. For convenience, information on suitable digital
signature techniques has also been set forth in Appendix A hereto.

In the Figure 5 process, load module 54 (along with specifications 110 if
desired) is processed to yield a message digest 116 using one or more one-way hash
functions selected to provide an appropriate resistance to algorithmic attack. For

example, use could be made of the well-known transformation processes discussed in

10

15

20

25

30

WO 01/10076 PCT/US00/20736

18

the Schneier text at chapter 18, pages 429-455, which is hereby incorporated by
reference. A one-way hash function 115 provides a “fingerprint” (message digest
116) that 1s effectively unique to load module 54. The one-way hash function
transforms the contents of load module 54 into message digest 116 based on a
mathematical function. This one-way hash mathematical function has the
characteristic that it is easy to calculate message digest 116 from load module 54, but
it is hard (computationally infeasible) to calculate load module 54 starting from
message digest 116 and it is also hard (computationally infeasible) to find another
load module 54' that will transform to the same message digest 116. There are many
potential candidate functions (e.g., MDS5, SHA, MAC), families of functions (e.g.,
MDS, or SHA with different internal constants), and keyed functions (e.g., message
authentication codes based on block ciphers such as DES) that may be employed as
one-way hash functions in this scheme. Different functions may have different
cryptographic strengths and weaknesses so that techniques which may be developed
to defeat one of them are not necessarily applicable to others.

Message digest 116 may then be encrypted using asymmetric key
cryptography. Figure 5 illustrates this encryption operation using the metaphor of a
strong box 118. The message digest 116 is placed into strong box 118, and the
strongbox is locked with a lock 120 having two key slots opened by different
(“asymmetrical”) keys. A first key 122 (sometimes called the "private" key) is used
to lock the lock. A second (different) key 124 (sometimes called the "public" key)
must be used to open the lock once the lock has been locked with the first key. The
encryption algorithm and key length are selected so that it is computationally
infeasible to calculate first key 122 given access to second key 124, the public key
encryption algorithm, the clear text message digest 116, and the encrypted digital
signature 106. There are many potential candidate algorithms for this type of
asymmetric key cryptography (e.g., RSA, DSA, El Gamal, Elliptic Curve
Encryption). Different algorithms may have different cryptographic strengths and
weaknesses so that techniques which may be developed to defeat one of them are not
necessarily applicable to others.

In this case the first key is owned by verifying authority 100 and is kept highly

secure (for example, using standard physical and procedural measures typically

10

15

20

25

30

WO 01/10076 PCT/US00/20736

19

employed to keep an important private key secret while preventing it from being lost).
Once message digest 116 is locked into strong box 118 using the first key 122, the
strong box can be opened only by using the corresponding second key 124. Note that
other items (e.g., further identification information, a time/date stamp, etc.) can also
be placed within strong box 106.

Figure 6 shows how a protected processing environment 108 authenticates the
digital signature 106 created by the Figure 5 process. Second key 124 and the one-
way hash algorithm are first securely provided to the protected processing
environment. For example, a secure key exchange protocol can be used as described
in connection with Figure 64 of the ‘900 patent. Public key cryptography allows
second key 124 to be made public without compromising first key 122. However, in
this example, protected processing environment 108 preferably keeps the second key
124 (and, if desired, also the one-way hash algorithm and/or its associated key) secret
to further increase security.

Maintaining public verification key 124 as a secret within tamper resistant
protected processing environment 108 greatly complicates the job of generating bogus
digital signatures. If the attacker does not possess second key 124, the difficulty of an
algorithmic attack or cryptanalytic attack on the verification digital signature
algorithm is significantly increased, and the attacker might be reduced to exhaustive
search (brute force) type attacks which would be even less practical because the
search trials would require attempting to present a bogus load module 54 to protected
processing environment 108, which, after a few such attempts, is likely to refuse all
further attempts. Keeping second key 124 secret also necessitates a multi-disciplinary
attack: an attacker must both (A) extract the secret from protected processing
environment 108, and (B) attack the algorithm. It may be substantially less likely
that a single attacker may have expertise in each of these two specialized disciplines.

In addition, maintaining the public key within a tamper-resistant environment
forecloses the significant threat that the owner of protected processing environment
108 may himself attack the environment. For example, if the owner could replace the
appropriate public key 124 with his own substitute public key, the owner could force
the protected processing environment 108 to execute load modules 54 of his own

design, thereby compromising the interests of others in enforcing their own controls

10

15

20

25

30

WO 01/10076 PCT/US00/20736

20

within the owner’s protected processing environment. For example, the owner could
turn off the control that required him to pay for watching, or the control that
prohibited him from copying content. Since protected processing environment 108
can support a “virtual business presence” by parties other than the owner, it is
important for the protected processing environment to be protected against attacks
from the owner.

The load module 54 and its associated digital signature 106 are then delivered
to the protected processing environment 108. (These items can be provided together
at the same time, independently, or at different times.) Protected processing
environment 108 applies the same one way hash transformation on load module 54
that a verifying authority 100 applied. Since protected processing environment 108
starts with the same load module 54 and uses the same one-way hash function 115, it
should generate the same message digest 116'.

Protected processing environment 108 then decrypts digital signature 106
using the second key 124 —i.e., it opens strongbox 118 to retrieve the message digest
116 that a verifying authority 100 placed therein. Protected processing environment
108 compares the version of message digest 116 it obtains from the digital signature
106 with the version of message digest 116" it calculates itself from load module 54
using the one way hash transformation 115. The message digests 116, 116' should be
identical. If they do not match, digital signature 106 is not authentic or load module
54 has been changed, and protected processing environment 108 rejects load module
54.

Figure 7 shows that multiple digital signatures 106(1), 106(2), ... 106(N) can
be created for the same load module 54. For example:

e one digital signature 106(1) can be created by encrypting message digest

116(1) with a private key 122(1);

o another (different) digital signature 106(2) can be created by encrypting
the message digest 116(2) with a different private key 122(2), possibly
employing a different signature algorithm; and

e astill different digital signature 106(N) can be generated by encrypting the
message digest 116(N) using a still different private key 122(N), possibly
employing yet another signature algorithm.

10

15

20

25

30

WO 01/10076 PCT/US00/20736

21

The public key 124(1) corresponding to private key 122(1) acts only to
decrypt (authenticate) digital signature 106(1). Similarly, digital signature 106(2) can
only be decrypted (authenticated) using public key 124(2) corresponding to the
private key 122(2). Public key 124(1) will not "unlock" digital signature 106(2) and
public key 124(2) will not unlock digital signature 106(1).

Different digital signatures 106(1), 106(N) can also be made by using different
one way hash functions 115 and/or different encryption algorithms. As shown in
Figure 8, a load module 54 may have multiple different types of digital signatures 106
associated with it. Requiring a load module 54 to present, to a protected processing
environment 108, multiple digital signatures 106 generated using fundamentally
different techniques decreases the risk that an attacker can successfully manufacture a
bogus load module 54.

For example, as shown in Figure 8, the same load module 54 might be
digitally signed using three different private keys 122, cryptographic aigorithms,
and/or hash algorithms. If a given load module 54 has multiple distinct digital
signatures 106 each computed using a fundamentally different technique, the risk of
compromise is substantially lowered. A single algorithmic advance is unlikely to
result in simultaneous success against both (or multiple) cryptographic algorithms.
The two digital signature algorithms in widespread use today (RSA and DSA) are
based on distinct mathematical problems (factoring in the case of RSA, discrete logs
for DSA). The most currently popular one-way hash functions (MD4/MDS5 and SHA)
have similar internal structures, possibly increasing the likelihood that a successful
attack against one would lead to a success against another. However, hash functions
can be derived from any number of different block ciphers (e.g., SEAL, IDEA, triple-
DES) with different internal structures; one of these might be a good candidate to
complement MD5 or SHA.

Multiple signatures as shown in Figure 8 impose a cost of additional storage
for the signatures 106 in each protected load module 54, additional code in the
protected processing environment 108 to implement additional algorithms, and
additional time to verify the digital signatures (as well as to generate them at
verification time). As an optimization to the use of multiple keys or algorithms, an

appliance 61 might verify only a subset of several signatures associated with a load

10

15

20

25

30

WO 01/10076 PCT/US00/20736

22

module 54 (chosen at random) each time the load module is used. This would speed
up signature verification while maintaining a high probability of detection. For
example, suppose there are one hundred private verification keys, and each load
module 54 carries one hundred digital signatures. Suppose each protected processing
environment 108, on the other hand, knows only a few (e.g., ten) of the corresponding
public verification keys randomly selected from the set. A successful attack on that
particular protected processing environment 108 would permit it to be compromised
and would also compromise any other protected processing environment possessing
and using precisely that same set of ten keys. However, it would not compromise
most other protected processing environments, since they would employ a different
subset of the keys used by verifying authority 100.

Figure 8A shows a simplified example of different processing environments
108(1), ... 108(N) possessing different subsets of public keys used for digital
signature authentication, thereby compartmentalizing the protected processing
environments based on key management and availability. The Figure 8A illustration
shows each protected processing environment 108 having only one public key 124
that corresponds to one of the digital signatures 106 used to sign load module 54. As
explained above, any number of digital signatures 106 may be used to sign the load
module 54, and different protected processing environments 108 may possess any
subset of the corresponding public keys.

Figure 9 shows that a load module 54 may comprise multiple segments 55(1),
55(2), 55(3) signed using different digital signatures 106. For example:

e a first load module segment 55(1) might be signed using a digital signature

106(1);

e asecond load module segment 55(2) might be digitally signed using a

second digital signature 106(2); and

e a third load module segment 55(3) might be signed using a third digital

signature 106(3).

These three signatures 106(1), 106(2), 106(3) could all be affixed by the same
verifying authority 100, or they could be affixed by three different verifying
authorities (providing a “web of trust”). (In another model, a load module is verified

in its entirety by multiple parties — if a user trusts any of them, she can trust the load

10

15

20

25

30

WO 01/10076 PCT/US00/20736

23

module.) A protected processing environment 108 would need to have all three
corresponding public keys 124(1), 124(2), 124(3) to authenticate the entire load
module 54 — or the different load module segments could be used by different
protected processing environments possessing the corresponding different keys
124(1), 124(2), 124(3). Different signatures 106(1), 106(2), 106(3) could be
calculated using different signature and/or one-way hash algorithms to increase the
difficulty of defeating them by cryptanalytic attack.
Assurance Levels

Verifying authority 100 can use different digital signing techniques to provide
different "assurance levels" for different kinds of electronic appliances 61 having
different “work factors” or levels of tamper resistance. Figures 10A-10C show an
example assurance level hierarchy providing three different assurance levels for
different electronic appliance types:

e Assurance level I might be used for an electronic appliance(s) 61 whose
protected processing environment 108 is based on software techniques that
may be somewhat resistant to tampering. An example of an assurance
level I electronic appliance 61A might be a general purpose personal
computer that executes software to create protected processing
environment 108.

e An assurance level Il electronic appliance 61B may provide a protected
processing environment 108 based on a hybrid of software security
techniques and hardware-based security techniques. An example of an
assurance level II electronic appliance 61B might be a general purpose
personal computer equipped with a hardware integrated circuit secure
processing unit (“SPU”) that performs some secure processing outside of
the SPU. (See Figure 10 of the ‘900 patent and associated text). Such a
hybrid arrangement might be relatively more resistant to tampering than a
software-only implementation.

o The assurance level III appliance 61C shown is a general purpose personal
computer equipped with a hardware-based secure processing unit
providing and completely containing protected processing environment

108. (See, for example, Figures 6 and 9 of the ‘900 patent). A silicon-

10

15

20

25

30

WO 01/10076 PCT/US00/20736

24

based special purpose integrated circuit security chip is relatively more
tamper-resistant than implementations relying on software techniques for
some or all of their tamper-resistance.

In this example, verifying authority 100 digitally signs load modules 54 using
different digital signature techniques (for example, different private keys 122) based
on assurance level. The digital signatures 106 applied by verifying authority 100 thus
securely encode the same (or different) load module 54 for use by appropriate
corresponding assurance level electronic appliances 61.

The assurance level in this example may be assigned to a particular protected
processing environment 108 at initialization (e.g., at the factory in the case of
hardware-based secure processing units). Assigning the assurance level at
initialization time facilitates the use of key management (e.g., secure key exchange
protocols) to enforce isolation based on assurance level. For example, since
establishment of assurance level is done at initialization time, rather than in the field
in this example, the key exchange mechanism can be used to provide new keys
(assuming an assurance level has been established correctly).

Within a protected processing environment 108, as shown in Figures 10A-
10C, different assurance levels may be assigned to each separate instance of a channel
(see, e.g., the ‘900 patent, Figure 15) contained therein. In this way, each secure
processing environment and host event processing environment (see, €.g., the ‘900
patent, Figure 10 and associated description) contained within an instance of a
protected processing environment 108 may contain multiple instances of a channel,
each with independent and different assurance levels. The nature of this feature of the
invention permits the separation of different channels within a protected processing
environment 108 from each other, each channel possibly having identical, shared, or
independent sets of load modules for each specific channel limited solely to the
resources and services authorized for use by that specific channel. In this way, the
security of the entire protected processing environment is enhanced and the effect of
security breaches within each channel is compartmentalized solely to that channel.

As shown in Figures 11A-11C, different digital signatures and/or signature
algorithms corresponding to different assurance levels may be used to allow a

particular execution environment to protect itself from particular load modules 54 that

10

15

20

25

30

WO 01/10076 PCT/US00/20736

25

are accessible to other classes or assurance levels of electronic appliances. As shown
in Figures 11A-11C:
e A protected processing environment(s) of assurance level I protects itself
(themselves) by executing only load modules 54 sealed with an assurance
level I digital signature 106(I). Protected processing environment(s) 108
having an associated assurance level I is (are) securely issued a public key
124(1) that can "unlock" the level I digital signature.

e Similarly, a protected processing environment(s) of assurance level II
protects itself (themselves) by executing only the same (or different) load
modules 54 sealed with a level II digital signature 106(II). Such a
protected processing environment 108 having an associated corresponding
assurance level II possesses a public key 124(1I) used to unlock the level II
digital signature.

e A protected processing environment(s) 108 of assurance level III protects

itself (themselves) by executing only load modules 54 having a digital
signature 106(IIT) for assurance level III. Such an assurance level 111
protected processing environment 108 possesses a corresponding
assurance level III public key 124(III). Key management encryption (not
signature) keys can allow this protection to work securely.

In this example, electronic appliances 61 of different assurance levels can
communicate with one another and pass load modules 54 between one another — an
important feature providing a scaleable virtual distribution environment involving all
sorts of different appliances (e.g., personal computers, laptop computers, handheld
computers, television sets, media players, set top boxes, internet browser appliances,
smart cards, mainframe computers, etc.). The present invention uses verifying
authority 100 and the digital signatures it provides to compartmentalize the different
electronic appliances depending on their level of security (e.g., work factor or relative
tamper resistance). In particular, verifying authority 100 and the digital signatures it
provides isolate appliances with significantly different work factors, thus preventing
the security of high work factor appliances from collapsing into the security of low

work factor appliances due to the free exchange of load modules 54.

10

15

20

25

30

WO 01/10076 PCT/US00/20736

26

In one example, verifying authority 100 may digitally sign identical copies of
a load module 54 for use by different classes or assurance levels of electronic
appliances 61. If the sharing of a load module 54 between different electronic
appliances is regarded as an open communications channel between the protected
processing environments 108 of the two appliances, it becomes apparent that there is a
high degree of risk in permitting such sharing to occur. In particular, the extra
security assurances and precautions of the more trusted environment are collapsed
into those of the less trusted environment because an attacker who compromises a
load module within a less trusted environment is then able to launch the same load
module to attack the more trusted environment. Hence, although
compartmentalization based on encryption and key management can be used to
restrict certain kinds of load modules 54 to execute only on certain types of electronic
appliances 61, a significant application in this context is to compartmentalize the
different types of electronic appliances and thereby allow an electronic appliance to
protect itself against load modules 54 of different assurance levels.
Figure 12 emphasizes this isolation using the illustrative metaphor of desert
islands. It shows how assurance levels can be used to isolate and compartmentalize
any number of different types of electronic appliances 61. In this example:
e Personal computer 60(1) providing a software-only protected processing
environment 108 may be at assurance level I;

¢ Media player 400(1) providing a software-only based protected processing
environment may be at assurance level II;

e Server 402(1) providing a software-only based protected processing
environment may be at assurance level III;

e Support service 404(1) providing a software-only based protected
processing environment may be at assurance level IV;

e Personal computer 60(2) providing a hybrid software and hardware
protected processing environment 108 may be at assurance level V;

e Media player 400(2) providing a hybrid software and hardware protected
processing environment may be at assurance level VI;

e Server 402(2) providing a software and hardware hybrid protected

processing environment may be at assurance level VII;

10

15

20

25

30

WO 01/10076 PCT/US00/20736

27

e Support service 404(2) providing a software and hardware hybrid

protected processing environment may be at assurance level VIII; and

e Personal computer 60(3) providing a hardware-only protected processing

environment 108 may be at assurance level 1X;
e Media player 400(3) providing a hardware-only protected processing
environment may be at assurance level X;

e Server 402(3) providing a hardware-only based protected processing
environment may be at assurance level XI;

e Support service 404(3) providing a hardware-only based protected
processing environment may be at assurance level XII.

In accordance with this feature of the invention, verifying authority 100
supports all of these various categories of digital signatures, and system 50 uses key
management to distribute the appropriate verification keys to different assurance level
devices. For example, verifying authority 100 may digitally sign a particular load
module 54 such that only hardware-only based server(s) 402(3) at assurance level XI
may authenticate it. This compartmentalization prevents any load module executable
on hardware-only servers 402(3) from executing on any other assurance level
appliance (for example, support service 404(1) with a software-only based protected
processing environment).

To simplify key management and distribution, execution environments having
significantly similar work factors can be classified in the same assurance level.
Figure 13 shows one example of a hierarchical assurance level arrangement. In this
example, less secure, software-only protected processing environment 108 devices are
categorized as assurance level I, somewhat more secure, software-and-hardware-
hybrid protected processing environment appliances are categorized as assurance
level II, and more trusted, hardware-only protected processing environment devices
are categorized as assurance level II1.

To show this type of isolation, Figure 13 A shows three example corresponding
“desert islands.” Desert island I is “inhabited” by personal computers 61A providing
a software-only protected processing environment. The software-only protected
processing environment based personal computers 61A that inhabit desert island I are

all of the same assurance level — and thus will each authenticate (and may thus each

10

15

20

25

30

WO 01/10076 PCT/US00/20736

28

use) an assurance level I load module 54a. Desert island Il is inhabited by assurance
level II hybrid software and hardware protected processing environment personal
computers 61B. These assurance level II personal computers will each authenticate
(and may thus each execute) an assurance level I load module 54b. Similarly, desert
island III is inhabited by assurance level III personal computers 61C providing
hardware-only protected processing environments. These assurance level III devices
61C may each authenticate and execute an assurance level III load module 54c.

The desert islands are created by the use of different digital signatures on each
of load modules 54a, 54b, 54c. In this example, all of the appliances 61 may freely
communicate with one another (as indicated by the barges — which represent
electronic or other communications between the various devices). However, because
particular assurance level load modules 54 will be authenticated only by appliances 61
having corresponding assurance levels, the load modules cannot leave their associated
desert island, providing isolation between the different assurance level execution
environments. More specifically, a particular assurance level appliance 61 thus
protects itself from using a load module 54 of a different assurance level. Digital
signatures (and/or signature algorithms) 106 in this sense create the isolated desert
islands shown, since they allow execution environments to protect themselves from
“off island” load modules 54 of different assurance levels.

A load module or other executable may be certified for multiple assurance
levels. Different digital signatures may be used to certify the same load module or
other executable for different respective assurance levels. The load module or other
executable could also be encrypted differently (e.g. using different keys to encrypt the
load module) based on assurance level. If a load module is encrypted differently for
different assurance levels, and the keys and/or algorithms that are used to decrypt
such load modules are only distributed to environments of the same assurance level,
an additional measure of security is provided. The risk associated with disclosing the
load module or other executable contents (e.g., by decrypting encrypted code before
execution) in a lower assurance environment does not compromise the security of
higher assurance level systems directly, but it may help the attacker learn how the
load module or other executable works and how to encrypt them — which can be

important in making bogus load modules or other executables (although not in

10

15

20

25

30

WO 01/10076 PCT/US00/20736

29

certifying them — since certification requires keys that would only become available to
an attacker who has compromised the keys of a corresponding appropriate assurance
level environment). Commercially, it may be important for administrative ease and
consistency to take this risk. In other cases, it will not be (e.g. provider sensitivities,
government uses, custom functions, etc.).

Figure 14 shows an example sequence of steps that may be performed in an
overall process provided by these inventions. To begin the overall process, a load
module provider 52 may manufacture a load module and associated specifications
(Figure 14, block 502). Provider 52 may then submit the load module and associated
specifications to verifying authority 100 for verification (Figure 14, block 504).
Verifying authority 100 may analyze, test, and/or otherwise validate the load module
against the specifications (Figure 14, block 506), and determine whether the load
module satisfies the specifications.

If the load module is found to satisfy its specifications, a verifying authority
100 determines whether it is authorized to generate one or more new specifications
for the load module (Figure 14, block 509). If it is authorized and this function has
been requested (“Y” exit from decision block 509), a verifying authority generates
specifications and associates them with the load module (Figure 14, block 514).

If the load module fails the test (“N”’ exit from decision block 508), verifying
authority 100 determines whether it is authorized and able to create new specifications
corresponding to the actual load module performance, and whether it is desirable to
create the conforming specifications (Figure 14, decision block 510). If verifying
authority 100 decides not to make new specifications (“N” exit from decision block
510), verifying authority returns the load module to provider 52 (block 512) and the
process ends. On the other hand, if verifying authority 100 determines that it is
desirable to make new specifications and it is able and authorized to do so, a verifying
authority 100 may make new specifications that conform to the load module (“Y” exit
from decision block 510; block 514).

A verifying authority 100 may then digitally sign the load module 54 to
indicate approvati (Figure 14, block 516). This step 516 may involve applying
multiple digital signatures and/or a selection of the appropriate digital signatures to

use in order to restrict the load module to particular assurance levels of electronic

10

15

20

25

30

WO 01/10076 PCT/US00/20736

30

appliances as discussed above. Verifying authority 100 may then determine the
distribution of the load module (Figure 14, block 518). This “determine distribution”
step may involve, for example, determining who the load module should be
distributed to (e.g., provider 52, support services 404, a load module repository
operated by a verifying authority, etc.) and/or what should be distributed (e.g., the
load module plus corresponding digital signatures, digital signatures only, digital
signatures and associated description, etc.). Verifying authority 100 may then
distribute the appropriate information to a value chain using the appropriate
distribution techniques (Figure 14, block 520).
Certifying Applications Intended For Insecure Environments

Truly secure certification validation is performed in a secure environment such
as within a protected processing environment 108 or other secure, tamper-resistant
space. The secure environment’s tamper-resistance prevents an attacker from
defeating the validation process. However, not all applications are intended to be run
within a secure environment.

For example, some arrangements use a trusted element to perform certain
secure functions, but perform other tasks within an insecure environment. Figure 15
shows an example electronic appliance 61 including a trusted element such as a
secure execution space 108 and an insecure execution space 550. Appliance 61
might, for example, be a personal computer providing trusted element 108 in the form
of a hardware or software tamper-resistant protected processing environment; and
insecure execution space 550 in the form of the personal computer processor’s typical
execution space. It may be desirable to permit an application (e.g., a program) 600
executing within insecure execution space 550 to request services from trusted
element 108. In this scenario, it would be desirable to allow a validation authority
100 to certify the application (e.g., to ensure that the application follows rules for
good application behavior) — and allow the trusted element 108 to validate the
application’s certification before providing any services to it. For example, trusted
element 108 can refuse to provide a requested service if application 600 has not been
certified or if application 600 has been tampered with.

Since insecure execution space 550 does not provide the tamper-resistance

necessary to support truly secure validation of application 600, it would be desirable

10

15

20

25

30

WO 01/10076 PCT/US00/20736

31

to provide a tamper-resistant mechanism for allowing trusted element 108 to validate
certifications presented by applications intended to be run or otherwise used, at least
in part, within an insecure environment.

In accordance with a further presently preferred example embodiment, tamper-
resistant techniques are provided for certifying and validating applications 600
intended to be executed or otherwise used at least in part within insecure
environments 550. Such techniques can detect whether applications 600 have been
certified and/or whether they have been modified (i.e., tampered with) in a way that
makes them no longer trustworthy.

Briefly, examples of these techniques provide a credential having multiple
elements covering corresponding parts of the application — and preferably having a
combined overall effect of covering all (or a substantial portion) of the application
600. For example, the credential can provide verification information for different
byte ranges, virtual paths, and/or other portions of application 600. Sufficient
verification information may be provided to substantially cover the application or at
least the portions of the application most likely to be tampered with.

To validate the credential, the trusted element 108 may authenticate the
credential, and then issue challenges based on different parts of the authenticated
credential that the trusted element selects in an unpredictable (e.g., random) way. For
example, the trusted element 108 can repeatedly challenge application 600 or other
agent to provide (or it can itself generate) a cryptographic hash value corresponding to
application portions the trusted element 108 randomly selects. The trusted element
108 can compare the responses to its challenges with information the authenticated
credential provides, and deny service to application 600 or take other appropriate
action if the comparison fails. The challenges may be repeated on an ongoing basis
(e.g., during execution of application 600) and/or interleaved with non-predetermined
challenges not defined by the credential, to increase the tamper-resistance of the
verification process.

Figure 16 shows an example process for certifying an application 600. In this
example, verifying authority 100 takes application program 600 and performs a

credential generating process 610 to yield a credential 612. As part of a software

10

15

20

25

30

WO 01/10076 PCT/US00/20736

32

manufacturing process 614, the application program 600 and credential 612 are
packaged on a distribution medium 616 and made available for use.

As shown in Figure 16A, application 600 may include different components.
For example application 600 may include one or more read-only application
components such as executable component 601(1), library component 601(2), and/or
other read-only component 601(N). Application program 600 may also include one
or more modifiable (read-write) components 603(1), ..., 603(N). The modifiable
components 603 are typically not certified because of their modifiability; however, it
may be desirable to certify any or all of the read-only components 601 irrespective of
whether they are executable code, data, or a combination or hybrid. The credential
612 created by credential generating process 610 can provide verification information
corresponding to each of these read-only components 601(1), ... 601(N).

Figure 17 shows an example credential generating process 610. In this
example, application 600 is certified by taking each read-only application component
601 and repeatedly applying to it, the overall process 610 shown in Figure 17.

In this Figure 17 example, the verifying authority 100 performs a selection
process to select a portion of application 600 — for example, a random byte range,
virtual path, or other subset of the information contained in the application component
being certified (Figure 17, block 700). The verifying authority 100 applies a
cryptographic hash function to the selected portion to yield a portion hash value
associated with that subset and that component (Figure 17, block 702). Verifying
authority 100 then generates a portion hash block describing that portion (Figure 17,
block 704).

Figure 18 shows an example hash block 740 generated by Figure 17, block
704. In this particular example, portion hash block 740 has the following elements:

e acomponent ID 741 that designates the application (and/or component)

from which the hash value is calculated;

e alower bound field 742 and upper bound field 743 together specifying the

byte range used in the hash calculation; and

e ahash value 744 that is the result of the hash calculation process of Figure

17, block 702.

10

15

20

25

30

WO 01/10076 PCT/US00/20736

33

Referring once again to Figure 17, blocks 700, 702, 704 are repeated enough
times to generate the required quantity of portion hash values. Preferably, enough
hash values are calculated to ensure that every byte in each application component is
represented by more than one hash value. That is, every byte is contained in more
than one hashed portion and thus in more than one associated hash block 740. As
mentioned above, in one example the portions to be hashed are randomly selected to
provide a high degree of unpredictability.

To help explain how many different portions of application 600 to select and
hash, Figure 20 shows an example “threat model” that the disclosed credential
creation process 610 is designed to counter. In this threat model, an attacker tampers
with application 600 by static modification (e.g., patching) by, for example,
substituting the attacker’s critical component 802 for a corresponding critical
component 8§04 within the application. To counter this threat, the credential creation
process 610 selects a sufficient quantity of different application portion hashes to
provide “coverage” for critical component 804. Preferably, enough hash values are
calculated to ensure that critical component 804 is represented by more than one hash
value. Since it may be desirable to protect substantial portions (or the entire)
application 600, not all hash ranges will necessarily cover any given critical
component 804.

The hash ranges selected by Figure 17, block 700 may be disjoint (see Figure
20A), or they may overlap arbitrarily (see Figure 20B). It is even possible that a
selection process of Figure 17, block 700 will randomly select precisely the same
portion of application 600 twice.

Although a straightforward way to specify portions of application 600 is in
terms of byte ranges defined between upper and lower bounds (see Figure 18), other
ways to specify portions are also possible. For example, Figure 20C shows
application portion selection based on pseudo-random validation paths within
application 600. In this example, the Figure 17, block 700 “select application
component portion” step selects application 600 portions to be hashed based on
execution or other data traversal access paths defined within application 600. Figure
20C shows two such paths 850(1) and 850(2). Each of paths 850(1), 850(2) in this

example passes through critical component 804 — and the resulting hash values thus

10

15

20

25

30

WO 01/10076 PCT/US00/20736

34

each protect the critical component. Any number of such paths 850(N) can be
selected.

Once the required quantity of hash values has been calculated (Figure 17,
block 708), the resulting hash blocks 740(1), ... 740(N) are organized in one or more
groups 745 (see Figure 19). Each group 745 may contain one or more range block
740. . A digital signature process 751 is then performed on the information in each
group, yielding a digital signature 746 (Figure 17, block 712; see Figure 19). In one
example, these steps may be performed, for example, by cryptographically hashing
the hash block set 745, and then digitally signing the resulting hash with a global
credential signing key 761 (Figure 17, blocks 710, 712).

The digital signature process 751 may be performed with a public key
(asymmetrical) algorithm using global credential signing key 761. As is typical for
digital signatures, the digital signature process 751 may involve first calculating a
cryptographic hash function over the set 745, and then creating a digital signature
representing the hash. A secret key authentication (Message Authentication Code)
process may be used in place of signature process 751 — although this may reduce
resistance to attacks during the certification generation process.

The global credential signing key 761 may be chosen from a set of global
signing keys, such that the corresponding credential validation key 1s guaranteed to be
available to the validator where application 600 will be used. The identity of signing
key 761 is preferably incorporated within credential 612. Different signing keys 761
can be used to distinguish among applications 600 suitable for different types or
classes of electronic appliances 61 distinguished by different validators. Multiple
signatures 746 can be calculated using different credential signing keys 761 to permit
an application 600 to be validated with different credential validation keys.

In this particular example, an encryption process 752 is then applied to the
combination of set 745 and its digital signature 746 to yield a credential part 747
(Figure 17, block 714; see Figure 19). Encryption process 752 may be performed
using an asymmetric (public key) algorithm employing a global credential encryption
key 762. The encryption process 752 may involve first generating a random key for a
symmetric (secret key) algorithm, using the symmetric algorithm for encryption of the
credential data, and using the symmetric algorithm for encrypting the random key. A

10

15

20

25

30

WO 01/10076 PCT/US00/20736

35

secret key encryption process may be substituted for encryption process 752 (such
substitution may reduce the resistance against attacks on the credential creation
process).

Encryption key 762 may be chosen from a set of global credential encryption
keys, such that the corresponding decryption key 1s guaranteed to be present at the
trusted element 108 where the application 600 will be used. Different encryption keys
762 can be used to distinguish among applications suitable for different environments,
as described above. The signature process 751 and encryption process 752 may be
applied in any order and to any arbitrary selection or subsets 745 of hash blocks 740
such that the result protects the contents of hash blocks from disclosure and/or
modification.

In this example, all resulting encrypted credential parts 747 are combined to
produce credential 612 (Figure 17, block 716). Credential 612 may also include (in
signed encrypted form) additional information about application 600 including, for
example, the number of components in the application, the size and location of each
component, information about the identity of the application and/or its manufacturer,
information allowing verifying authority 100 to specify a set or subset of secure
operations that the application is permitted to access, and/or other information.

Figure 21 shows an overall example credential validation process 900
performed by appliance 61. In this example, appliance 61 includes a trusted element
108 (e.g., a protected processing environment) providing a validator function 920. In
this example, validation process 900 takes information from distribution medium 616
(which may have been copied to other media) and presents it to appliance 61 for
validation by validator 920 within trusted element 108. Thus, in this example, it is
trusted element 108, not application 600, that is trusted — and the trusted element is
responsible for validating the application before the trusted element will provide any
services to the application.

In this particular example, when appliance 61 begins to use or execute
application 600, trusted element 108 performs a validation process in which credential
612 is presented to validator 920 along with data calculated by a “select” process
based on application 600. The validator 920 determines whether credential 612 is a

valid representation of application 600.

10

15

20

25

30

WO 01/10076 PCT/US00/20736

36

Figures 22A and 22B show a more detailed example validation process 900.
In this example, application 600 presents its encrypted credential 612 and requests
authorization (Figure 22A, block 950). Validation process 900 decrypts the credential
612 using the global credential decryption key 763 corresponding to the global
credential encryption key 762 used at creation time (Figure 22A, block 952; see
Figure 22B). Validation process 900 then validates the digital signature 746 for any
credential part 747 that it uses, using global signature validation key 764 that
corresponds to the credential signing key 761 used when the credential 612 was
created (Figure 22A, block 954). Steps 952, 954 may be performed on individual
table entries, or sets 745, or they may be performed on the entire credential 612.

Assuming the digital signature 746 is valid, validation process 900 validates
the application 600 by repeatedly selecting or choosing portions of application 600,
issuing challenges to compute cryptographic hashes corresponding to the selected
portions, and checking responses to ensure they correctly correspond to information
within credential 612. In more detail, validation process 900 in this example initially
chooses whether or not to select, for its next iteration, a portion of application 600
predetermined by credential 612 (e.g., a portion for which there is a corresponding
hash block 745 within the credential) (Figure 22A, decision block 956). If validation
process 900 chooses to use a predetermined portion (i.e., a “yes” exit from decision
block 956), it randomly selects one of the hash blocks 745 from credential 612 and
determines the component ID 741 and portion definition (e.g., address lower bound
742 and upper bound 743) from the selected range hash block (Figure 22A, block
958). The validation process 900 then issues a challenge to compute the
cryptographic hash corresponding to the selected address range in the selected
component (Figure 22A, block 960).

In one example, the validation process 900 challenges the application 600
itself to compute the cryptographic hash. In this example, application 600 thus
includes an executable routine that accepts a component ID/portion definition as an
input parameter, and returns the corresponding cryptographic hash of that conponent
ID/portion. Application 600 calculates a cryptographic hash of the selected address
range in response to the challenge, and returns the response for receipt by validating

process 900 (Figure 22 A, block 962).

10

15

20

25

30

WO 01/10076 PCT/US00/20736

37

The cryptographic hash can be computed in alternate ways that do not require
application 600 itself to respond to the challenge. For example, when running under
an operating system that supports shared memory (e.g., Microsoft Windows NT or
Windows 95), validation process 900 may map one or more regions of its own
address space to correspond to the application’s read only components 601(1), ...,
601(N), and make the required checksum (hash) calculation itself. Alternatively,
validation process 900 can employ and request an agent, surrogate, or service process
to make the necessary mapping(s) to share the address space of application 600 and
enable and perform the checksum calculation. Some operating systems may require
the cooperation of application 600 to allow regions of its memory to be shared with
validation process 900 and/or its agent — but failure of an attempt to establish such
sharing can be considered clear evidence that application 600 is not certified.

Using shared memory to allow the validator 920 or its trusted agent to
calculate cryptographic hashes directly significantly increases the difficulty of a
“copy” or “‘substitution” attack. Thus, using shared memory mapping in this manner
increases tamper-resistance because it becomes less feasible for the application 600 to
provide known answers to the challenge. Further, using shared memory to facilitate
process 900 allows the challenge-response process to be performed without any
interference with or effect on application 600. Because application 600 is not even
aware of the challenges and corresponding response in the shared-memory scenario, it
is not able to intercept them in order to supply misleading answers. This makes it
possible to perform validation 900 at arbitrary instants during the operation of
application 600, as well as making it infeasible for application 600 to detect the
challenge actions and substitute its own misleading responses.

Validating process 900 then determines whether the computed hash value
equals the hash value 744 from the hash block 745 supplied by credential 612 (Figure
22A, decision block 964). If the returned value does not match, validating process
900 refuses to accept application 600, returning a “false” result (Figure 22A, block
960).

One purpose of blocks 968-974 shown in Figure 22A is to conceal the portions
of application 600 that are actually predefined by credential 612. Thus, if validating

process 900 chooses to use a portion that is not predefined (i.e., a “no” exit from

10

15

20

25

30

WO 01/10076 PCT/US00/20736

38

decision block 956), the process randomly chooses a component ID and address lower
bound and upper bound (or other suitable portion definition) and then issues a
challenge to compute the corresponding cryptographic hash (Figure 22 A, blocks 968,
970). As before, application 600 or another agent returns the calculated
corresponding hash value (Figure 22A, block 972). In this case, however, validating
process 900 has nothing to compare the response to, and in this example, it simply
ignores it (Figure 22A, block 974). If the “no” exit from decision block 956 is chosen
often, most challenges will not be meaningful, and it will be difficult for an adversary
to collect a table of all the necessary responses in order to falsify an application’s
response.

In this example, blocks 956-976 are repeated a random number of times
sufficient to provide a reasonable probability that the application 600 is providing
correct answers and has not been modified (as tested for by Figure 22A, decision
block 976). Preferably, blocks 956-976 should be repeated until all bytes in the
application 600 have been checked at least once against a real hash value supplied by
a credential 612 hash block 745. Complete coverage is desirable because tampering
may require modifying only a few bytes in application 600.

The validation process 900 shown in Figure 22A may be performed repeatedly
at initialization and/or during operation of application 600. Validation challenges
occurring during normal operation may be more difficult to tamper with than those
that occur at the well-defined point of initialization.

Attacks on Validation Process

The forms of tampering countered by validation process 900 include:

(1) static substitution of an entire program for a certified application;

(2) static modification (e.g., patching) of a certified application; and

(3) use of a modified credential corresponding to a different or modified
application.

Any of these forms of tampering would require that the application 600 be
able to construct, interpret, or simulate credentials 612. Construction and
interpretation is countered by the secrecy of keys. Simulation is countered by the use
of many different ranges, and by false ranges; if a malicious program wanted to

provide the “correct” response in order to appear as if it were a different “certified”

10

15

WO 01/10076 PCT/US00/20736

39

program, it would have to record all the possible challenges and responses. Because
the challenges for any one validation are a small, randomly selected subset of all those
in the credential, collecting them all would be time-consuming and expensive.

A “correct” response can be simulated by calculating it from a complete copy
of a certified program, while running a malicious program. That is probably the
simplest technical attack that will defeat this arrangement. Other simulation attacks
are significantly more difficult, requiring that challenges and responses be recorded
and replayed. As described above, use of shared memory increases the difficulty of a
“copy” or “substitution” attack.

Although the foregoing invention has been described in some detail for
purposes of clarity, it will be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. It should be noted that there are
many alternative ways of implementing both the processes and apparatuses of the
present invention. Accordingly, the present embodiments are to be considered as
illustrative and not restrictive, and the invention is not to be limited to the details
given herein, but may be modified within the scope and equivalents of the appended

claims.

WO 01/10076 PCT/US00/20736

40

APPENDIX A

There exist many well-known processes for creating digital signatures. One
example is the Digital Signature Algorithm (DSA). DSA uses a public-key signature
scheme that performs a pair of transformations to generate and verify a digital value

5 called a “signature.” DSA uses the parameters, p, ¢, g, x, and y, such that:
p = a prime number L bits long, wherein L ranges from 512 to 1024

and is a multiple of 64;

g = a 160-bit prime factor of p — 1;

g=h"~" mod p, where & is any number less than p — 1 such that W
10 " mod p is greater than 1;

x = a number less than g; and

y=g modp.

The algorithm also makes use of a one-way hash function, H(m), such as, for

example, the Secure Hash Algorithm. The first three parameters, p, ¢, and g, are
15 public and may be shared across a network of users. The private key is x; the public
key is y. To sign a message, m, using DSA, a signer generates a random number, &,
less than ¢g. The signer also generates:
r= (gk mod p) mod g, and
s = (k” (H(m) + xr)) mod ¢
20 The parameters r and s comprise the signer’s signature, which may be sent to a

recipient or distributed across a network. A recipient verifies the signature by

computing:
w=s" mod q;
W, = (H(m) * w) mod g,
25 u, = (rw) mod g, and

v=((g" * y*) mod p) mod g.
If v = r, the signature 1s verified.
There exist multiple variations of DSA. A In one such variant, for example, the
signer does not compute k-1. Instead, using the same parameters as in DSA, the
30 signer generates two random numbers, k£ and d, both less than g. The signature

comprises:

r= (gk mod p) mod q;

10

15

20

25

30

WO 01/10076 PCT/US00/20736

41

s = (H(m) + xr) - d mod q, and
t=kd mod q.
A recipient verifies the signature by computing:
w = t/s mod q;
u, = (H(m) * w) mod q; and

u, = (rw) mod q.

If = ((g%1 - y"2) mod p) mod g, then the signature is verified.
In other variants, the signer may generate a random number, £, less than ¢g. The

signature then comprises:
r= (gk mod p) mod q; and

s=k* (H(m)+ xr)"1 mod q

A recipient verifies the signature by computing u; and u,, such that:
u; = (H(m) * s) mod q
u, = (sr) mod ¢

If » = ((g"1 - y42) mod p) mod ¢, then the signature is verified.

Yet another variant of DSA uses a prime number generation scheme that
embeds ¢ and the parameters used to generate the primes within p. Using this
method, the values of C and S used to generate p and g are embedded within p and do
not need to be stored, thereby minimizing the amount of memory used. This variant
may be described as follows:

1) Choose, S, arbitrary sequence of at least 160 bits; g is the
length of S in bits;

2) Compute U = SHA(S) + SHA ((S + 1) mod 28), where SHA is
the Secure Hash Algorithm;

3) Let ¢ = U with the most significant bit and the least significant
bit of U set to 1;

4) Check whether ¢ is prime;

(5) Let p be the concatenation of ¢, S, C, and SHA(S), C is set to

32 zero bits;

(6) p=p-(pmodg)+1;

10

15

20

25

30

WO 01/10076 ‘ PCT/US00/20736

42

7 pr=r+tg

(8) If the C in p 1s 0 x 7{ffffff, go to step (1);
9 Check whether p is prime; and

(10) If p is composite, go to step (7).

Still another variant of DSA is the Russian digital signature standard, officially
known as GOST R 34-10-94. The algorithm is very similar to DSA, and uses the
following parameters:

p = a prime number, either between 509 and 512 bits long, or between

1020 and 1024 bits long;

q = a 254- to 256-bit prime factor of p— 1;

a = any number less than p - 1 such that a4 mod p=1;
X = a number less than q; and

y =aX mod p.

This algorithm also uses a one-way hash function, H(x), such as, for example,
GOST R 34.11-94, a function based on the GOST symmetric algorithm. The first
three parameters, p, ¢, and a, are public and may be distributed across a network of
users. The private key is x, the public key is y.

To sign a message, m, using GOST DSA, a signer generates a random number,

k, less than ¢, and generates » = (ak mod p) mod ¢ and s = (xr + k(H(m))) mod ¢q. If

H(m) mod g = 0, then set it equal to 1. If » = 0, then choose another k and start again.

2256

The signature is comprised of two numbers: » mod 2%%and s mod 2*°. A sender

transmits these two numbers to a recipient, who verifies the signature by computing:
v =H(m)? > mod g,
z! = (sv) mod g;
7> =((g -) * v) mod ¢; and
u=((a% *y?22)ymod p) mod q.
If u = r, then the signature is verified.
Many signature schemes are very similar. In fact, there are thousands of
general digital signature schemes based on the Discrete Logarithm Problem, like

DSA. Additional information on the digital signature standard can be found in

WO 01/10076 PCT/US00/20736

43

National Institute of Standards and Technology (NIST) FIPS Pub. 186, “Digital
Signature Standard,” U.S. Dept. of Commerce, May 1994.

10

15

20

25

30

WO 01/10076 PCT/US00/20736

44

WHAT IS CLAIMED IS:

1. A method for verifying an electronic item, the method including;:

(a) presenting a secure credential, the credential comprising predefined plural
subsets of the electronic item and corresponding cryptographic hashes; and

(b) randomly selecting one of the predefined plural subsets;

(c) computing a cryptographic hash of a portion of the electronic item
corresponding to the selected predefined subset; and

(d) testing whether the computed cryptographic hash corresponds to a

corresponding cryptographic hash within the presented credential.

2. A method as in claim 1, including performing steps (b)-(d) multiple times.

3. A method as in claim 1, further including:

randomly selecting a second portion of the electronic item that does not
correspond to one of the predefined plural subsets; and

requiring computation of a cryptographic hash of said second portion of the
electronic item.

4. A method as in claim 1, wherein step (c) includes challenging the
electronic item to compute said cryptographic hash.

5. A method as in claim 1, wherein step (c) includes accessing the electronic
item via shared memory.

6. A method as in claim 1, wherein steps (b) and (c) are performed during
execution of the electronic item.

7. In a computer system including an insecure computing arrangement for
using an application, a trusted element for verifying the application comprising:

a decryptor that decrypts a credential associated with the application;

a validator that validates at least one digital signature corresponding to the
credential;

a challenge generator that selects, based at least in part on the credential, at
least one predetermined portion of the application, and issues a challenge requesting a
response providing a computation of at least one value based on the selected
predetermined portion of the application; and

a response checker that checks the response against the credential.

10

15

20

25

30

WO 01/10076 PCT/US00/20736

45

8. A trusted element as in claim 7, wherein the challenge generator randomly
selects the predetermined portion from plural predetermined portions defined by the
credential.

9. A trusted element as in claim 7, wherein the challenge generator issues the
challenge during execution of the application by the insecure computing arrangement.

10. A trusted element as in claim 7, wherein the challenge generator issues the
challenge to the application to compute the value.

11. A trusted element as in claim 7, wherein the challenge generator requests
the application to compute a cryptographic hash of the selected predetermined
portion.

12. A trusted element as in claim 7, wherein the challenge generator selects a
virtual path within the application.

13. A trusted element as in claim 7, wherein the challenge generator selects a
byte range within the application.

14. A method for certifying an electronic item comprising:

(a) randomly selecting plural portions of the electronic item;

(b) computing at least one cryptographic value corresponding to each of the
selected plural portions; and

(c) specifying a credential defining each of the randomly selected plural
portions and the corresponding computed cryptographic values.

15. A method as in claim 14, wherein computing step (b) comprises
computing a cryptographic hash value corresponding to each of the selected plural
portions.

16. A method as in claim 14, wherein selecting step (a) comprises randomly
selecting plural byte ranges within the electronic item.

17. A method as in claim 14, wherein selecting step (a) comprises randomly
selecting plural virtual paths within the electronic item.

18. A method as in claim 14, further including the step of digitally signing the
credential.

19. A method as in claim 14, further including the step of encrypting the
credential.

20. A device for certifying an electronic item comprising:

10

15

20

25

WO 01/10076 PCT/US00/20736

46

means for randomly selecting plural portions of the electronic item;

means for computing at least one cryptographic value corresponding to each
of the selected plural portions; and

means for specifying a credential defining at least one randomly-selected
portion and the corresponding computed cryptographic value.

21. A device for certifying an electronic item comprising:

a selector that randomly selects plural portions of the electronic item;

a computer that computes at least one cryptographic value corresponding to
each of the selected plural portions; and

a credential formatter that formats one or more credentials defining at least
one randomly-selected portion and the corresponding computed cryptographic value.

22. A device as in claim 21, wherein the computer computes a cryptographic
hash value corresponding to each of the selected plural portions.

23. A device as in claim 21, wherein the selector randomly selects plural byte
ranges within the electronic item.

24. A device as in claim 21, wherein the selector randomly selects plural
virtual paths within the electronic item.

25. A device as in claim 21, further including a digital signer that digitally
signs the one or more credentials.

26. A device as in claim 21, further including an encryptor that encrypts the
one or more credentials.

27. A method for tampering with a credential verification process, the method

including:

predicting portions of a credentialed electronic item specified in repetitive

challenges, and

supplying corresponding cryptographic hash values based on the predicted

portions.

PCT/US00/20736

WO 01/10076

FIG. 1 Defective or "Bogus” Load Modules Can Cause Problems

1 / 28

PCT/US00/20736

WO 01/10076

31Na0wW
avon

ao
Qo

SSINPOW peot buikjuapy 2)14

2 / 28

PCT/US00/20736

WO 01/10076

Ot
H0SS3004d

3SN OL AVMO S.L!
SNVIW FHNLYNDIS

asn
LNod

LNIWNOHIANT DNISSTO0Hd d3193.L04d

3ISN LNOM |
- JHNLVNDIS ON

L]

s

Paljiap uaag sey s|npoly peo j| aag oy sysayy
H '3INPO peoT y sasq juawuoiiaug Buissasoly pajosjoid alojag e -

D14

3 / 28

WO 01/10076 PCT/US00/20736

54

Executable No. X5198
created 6/26/96 by
David Van Wie of
Intertrust Technologies
Corp.does the following: 112
T~ 112

1. o~~~ —__ 110
2, e~
3. A~
4, ~o~~—— L

104

FIG. 4

Certifying Load Module by
Checking it Against its Documentation

4 / 28

WO 01/10076 PCT/US00/20736

LOAD MODULE ™[

——54

—_115

y

MESSAGE DIGEST
R i e W)

N QQ\LZ‘?
{(\ Mfﬁuﬁ 118

e
4

PRIVATE
KEY

—__116

FIG. 5

Creating a Certifying
Digital Signature

5/ 28

PCT/US00/20736

WO 01/10076

alnjeufis jeyfiig e Gueayuayiny 9 "'HId

llllllllllllllllllll

153910 3DVvSSIN

/

Stk

37NAOW avo

—

2%

oL 801 - INFWNOHIANT DNISSIOOHd A3L93LOHd
/ A 2178nd

~ =

6 / 28

PCT/US00/20736

WO 01/10076

PSS T~

3INAOW avo

(190!} (Wvzt

(ors —] VAN _

o o (1St

sanbjuyaay Jualapig yum paubig
9g uej S[npoly peayawes 7)|

7 / 28

WO 01/10076 PCT/US00/20736

ria. .dme L0da MOouuie Lan ol
pistributed with Multiple Signatur

Fig. 8

F1G. 8A Diferent Processing Environments Can Have
Different Subsets of Keys

108(1) 108(N)

1 0 O 0 0 1 O 1 o i o
)

124(1 " ; 24(N)

000 [O O {0 O [1 (O S {10 | | {0 1 O | I A

8 / 28

WO 01/10076 PCT/US00/20736

FIG. 9 Load Module Can Have Several
Independently Signed Portions

54

106(1)

55(3)

9 / 28

WO 01/10076 PCT/US00/20736

BIAT — 7-

- d
2
FI1G. 10A Assurance Level |
Software-Based
Protected Processing Environment 0
v O]

61B

FIG. 10B Assurance Level Il
Software and Hardware-Based
Protected Processing Environment 0

61C

FIG. 10C Assurance Level lll

Hardware-Based
Protected Processing Environment 0 108

10 / 28

WO 01/10076 PCT/US00/20736

FIG. 11A _Levell
Digital Signature

FIG. 11B Levelll
Digital Signature

FIG. 11C Levellll
Digital Signature

106(11)
[

0

11 / 28

PCT/US00/20736

WO 01/10076

SI9AIT dduBInSSY Jualaylq Buizieluawpedwog Jo4 sanjeufiig jeybig buisn 2 L "1

€)vov

4

>

A

12 / 28

s|ana asueanssy ajduiny €1 "E)[

WO 01/10076 PCT/US00/20736

<
™
0
u,

14 / 28

WO 01/10076

PCT/US00/20736

Provider of :
Executables 502 - FIG . 14
MAKE LM AND
SPECIFICATION:S)
SUBMIT TO VERIFYING 504
AUTHORITY
Ay 506
Verifying TEST LM AGAINST
Authority SPECIFICATION(S)
GENERATE
NEW
SPECIFICATION(S)?
N RESET
GENERATE
NEW %

SPECIFICATION(S)?

520 O\

\]
GENERATE NEW '

SPECIFICATION(S)

516 | T

514

DIGITALLY SIGNLMTO

INDICATE APPROVAL
512

Ny

REJECT LM &

DETERMINE
DISTRIBUTION RETURN TO PROVIDER

518

~

DISTRIBUTE I

END
15 / 28

PCT/US00/20736

WO 01/10076

3IVdS NOILNIIXT IHNIISNI NI WYH90Hd
NOLLYOIddY DNILNI3XT IONVITddY TdAVXT G L "B

801
30VdS
NOILNO3X3
34N03s

S301AY3S

STW0

059

+9 JONVIddV

009
NOLLYDddy
TOVaS

NOILNO3X3
3FHNOISNI

16 / 28

WO 01/10076 PCT/US00/20736

APPLICATION .
600 N GENERATE
VQENTIAL
y
CREDENTIAL
\ . 612
MANUFACTURE
614
5
DISTRIBUTION
MEDIUM 616

600 612

APPLICATION I CREDENTIAL ,

FIG. 1 6 EXAMPLE APPLICATION CERTIFICATION PROCESS

17 / 28

WO 01/10076 PCT/US00/20736

READ-ONLY
COMPONENT READ-WRITE
s01 COMPONENT
(603(1)
-
READ-WRITE 3
'COMPONENT
603(N)
-
EXECUTABLE LIBRARY
COMPONENT COMPONENT
601(1) 601(2)
=
600
APPLICATION
T

FIG. 16A EXAMPLE APPLICATION PROGRAM AND COMPONENTS

18 / 28

WO 01/10076 PCT/US00/20736

SELECT APPLICATION 700
COMPONENT PORTION

Y

' HASH BYTES IN SELECTED 702
PORTION TO YIELD HASH VALLE
j 704
GENERATE HASH BLOCK
DESCRIBING EACH CALCULATED
PORTION HASH VALUE

708

N
(REPEAT)

RANGE HASHES CALCULATED?

710
HASH SET OF
HASH BLOCKS
y 712
DIGITALLY SIGN THE HASH l/

A

ENCRYPT SET.OF HASH 74
BLOGKS AND DIGITE® SIGNATURE
TO CREATE CREDENTIAL PART
COMBINE CREDENTIAL PARTS 716
T0 PRODUCE GREDENTIAL

FIG. 17 EXAMPLE CREQENTIAL CREATION PROCESS

WO 01/10076 PCT/US00/20736

740

COMPONENT ID 741

LOWER BOUND 742

UPPER BOUND 743

HASH VALUE 744

FIG. 18 EXAMPLE HASH BLOCK

20 / 28

WO 01/10076 PCT/US00/20736

GLOBAL CREDENTIAL CREDENTIAL
SIGNING KEY 761 ENCRYFTION
. KEY 762
740(1) _.-T40(1))
il et ™
FooozozIo
£IIIIIIoo)
; :
[PR)
T40(2) , o)
Czozoozo
Lo}
SIGNER ; i -
?— 751 o |
_J) CREDENTIA
= . PART
CIIIIIIIo NCRYPTOR 747
b : 752
i ,
{ G J
740(N) *T40(N)
SIGNATURE
=~ 746 L
OTHER
INFO

FIG. 19 EXAMPLE CREDENTIAL CREATION

21 / 28

PCT/US00/20736

WO 01/10076
VALIDATION
RANGES
APPLICATION -
600 L1 o
~ 0K
(304 J
_—
CRITICAL —1—FAL
COMPONENT /[,“_ FAIL
0K
802
ATTACKER'S
CRIMCAL F
COMPONENT
64

FIG. 20 EXAMPLE ATTACK ON APPLICATION

22 / 28

WO 01/10076 PCT/US00/20736

COMPONENT
BYTE RANGES RANGE HASH
(VALUES

i ‘ (

READ —_—
ONLY L
APPLICATION
COMPONENT 8

601(1) S ———

[T

READ
ONLY
APPLICATION

COMPONENT | L_ >_>

601(2)

READ :
- ———
ONLY {

APPLICATION |
COMPONENT | —
601(N) i
_} SELECT HASH
PROCESS PROCESS

FIG. 20A BEXAMPLE NON-OVERLAPPING HASH RANGES

23 / 28

WO 01/10076 PCT/US00/20736

COMPONENT BYTE RANGES
110

|

APPLICATION }
COMPONENT |
601(K)

|

SELECT PROCESS

FIG. 20B £XAMPLE OF OVERLAPPING HASH RANGES

24 / 28

WO 01/10076 PCT/US00/20736

APPLICATION 600

, PATH 1

850(1)

850(2)

W

/ 8
PATH 2
6 CRITICAL
COMPONENT

R N
o

FIG. 20C PSEUDO-RANDOM VALIDATION PATHS IN APPLICATION

25 / 28

PCT/US00/20736

WO 01/10076

$S300Hd NOILYQIYA TYIINIAIHI F1dNYX3

]
103138
026 ,
HOLYQIYA
219 009
TVIIN3IQ3H) NOILYIddY
INIW3T3 a3Lsnul WNIG3w
D) 919 39VHOLS
80}
19 JONVIddV -
006

26 / 28

WO 01/10076 PCT/US00/20736

950

PLICATION PRESENT:

eI O el T
A
EXAMPLE CREDENTIAL 300
VALIDATION PROCESS 952 /
954
VALIDATE SIGNATURE
NO
4’ g58 | l 968
ELECT RANDOM RANGE CHOOSE
HASH BLOGK RANDOM RANGE
9 J 970
ISSUE CHALLENGE TO 4
COMPUTE CRYPTOGRAPHIC
HASH CORRESPONDING TO ISSUE CHALLENGE
RANGE
’ 962 ' /,/—972
RECEIVE mﬁé @ESPONSE
966
974
964 v
(IGNORE
NO
YES

g76

NO DONE

ENOUGH?

27 / 28

PCT/US00/20736

WO 01/10076
(INPUT)
v
CREDENTIAL 5p(a
GLOBAL CREDENTIAL
DECRYPTION KEY 763 > DECRYPTOR
/ 7452~ 7450N)— N\
745(1) HASH HASH HASH 746
“———1{BLOCK | |BLOCK | *" | BLOCK —
GLOBAL CREDENTIAL
VALIDATION KEY 764
745(1) - _ -
APPLICATION \ VALIDATED | [VALIDATED | [VALIDATED
600 BLOCK BLOTK ‘| BLOCK
\ 74572) 145W))
CHALLENGE | |CHALLENGE | . | CHALLENGE
N 4

APPLICATION
VALIDATOR

y

RESULT

APPLICATION
HASH CALCULATOR

A

—

RESPONSE
[1

RESPZONSE

. FIESPNDNSE

FIG. 22B EXAMPLE CREDENTIAL VALIDATION

28 / 28

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

