(54) Title: USE OF RNAI INHIBITING PARP ACTIVITY FOR THE MANUFACTURE OF A MEDICAMENT FOR THE TREATMENT OF CANCER

(57) Abstract:
The present invention relates to the use of an agent that inhibits the activity of an enzyme that mediates repair of a DNA strand break in the manufacture of a medicament for the treatment of diseases caused by a defect in a gene that mediates homologous recombination.
USE OF RNAI INHIBITING PARP ACTIVITY FOR THE MANUFACTURE OF A MEDICAMENT FOR THE TREATMENT OF CANCER

The present invention relates to the use of an agent that inhibits the activity of an enzyme that mediates repair of a DNA strand break in the manufacture of a medicament for the treatment of diseases caused by a defect in a gene that mediates homologous recombination.
USE OF RNAI INHIBITING PARP ACTIVITY FOR THE MANUFACTURE OF A MEDICAMENT FOR THE TREATMENT OF CANCER

This invention relates to the use of an agent that inhibits the activity of an enzyme which mediates the repair of DNA strand breaks in the treatment of certain forms of cancer in particular breast cancer.

Homologous recombination (HR) has been shown to play an important role in repair of damage occurring at DNA replication forks in mammalian cells (2). Thus, cells deficient in HR show retarded growth and exhibit higher level of genetic instability. It is believed that genetic instability due to loss of HR repair in human cancers significantly contributes to the development of cancer in these cells (1).

Post transcriptional modification of nuclear proteins by poly(ADP-ribosyl)ation (PARP) in response to DNA strand breaks plays an important role in DNA repair, regulation of apoptosis, and maintenance of genomic stability.

Poly(ADP-ribose) Polymerase (PARP-1) is an abundant nuclear protein in mammalian cells that catalyses the formation of poly(ADP-ribose) (PAR) polymers using NAD$^+$ as substrate. Upon DNA damage, PARP-1 binds rapidly to a DNA strand break (single strand or double strand) and catalyses the addition of negatively charged PAR chains to itself (automodification) and other proteins (see [3, 4] for reviews). The binding of PARP-1 to DNA strand breaks is believed to protect DNA lesions from further processing until PARP-1 is dissociated from the break by the accumulated negative charge resulting from PAR polymers (5,6).

Although PARP-1 has been implicated in several nuclear processes, such as modulation of chromatin structure, DNA replication, DNA repair and transcription, PARP-1 knockout mice develop normally (7). Cells isolated from these mice exhibit a hyper recombination phenotype and genetic instability in the form of increased levels of SCE, micronuclei and tetraploidy (8-10). Genetic instability may also occur in these PARP-1 knockout mice through telomere shortening, increased frequency of chromosome fusion and aneuploidy (11), although all of these results could not be repeated in another set of PARP-1 knock-out mice (12). In the former mice knockout, PARP-1 null mutation rescue impaired V(D)J recombination in SCID mice (13).
These results support the view suggested by Lindahl and coworkers that PARP-1 has a protective role against recombination (5). They proposed that binding of PARP-1 to DNA strand breaks prevents the recombination machinery from recognizing and processing DNA lesions or, alternatively, that the negative charges accumulated following poly ADP-ribosylation repel adjacent recombinogenic DNA sequences. Only the latter model is consistent with inhibition of PARP-1 itself and expression of a dominant negative mutant PARP-1, inducing SCE, gene amplification and homologous recombination (HR [14-18]).

Studies based on treating cells with PARP inhibitors or cells derived from PARP-1 or PARP-2 knockout mice indicate that the suppression of PARP-1 activity increases cell susceptibility to DNA damaging agents and inhibits strand break rejoining (3, 4, 8-11, 19, 20, 47).

Inhibitors of PARP-1 activity have been used in combination with traditional anticancer agents such as radio therapy and chemotherapy (21). The inhibitors were used in combination with methylating agents, topoisomerase poisons and ionising radiations and were found to enhance the effectiveness of these forms of treatment. Such treatments, however, are known to cause damage and death to non cancerous or “healthy” cells and are associated with unpleasant side effects.

There is therefore a need for a treatment for cancer that is both effective and selective in the killing of cancer cells and which does not need to be administered in combination with radio or chemotherapy treatments.

The present inventors have surprisingly found that cells deficient in homologous recombination (HR) are hypersensitive to PARP inhibitors as compared to wild type cells. This is surprising since PARP-1 knockout mice live normally thereby indicating that PARP-1 is not essential for life. Thus, it could not be expected that cells would be sensitive to PARP inhibition.

According to a first aspect of the invention there is provided the use of an agent that inhibits the activity of an enzyme that mediates the repair of DNA strand breaks in the
manufacture of a medicament for the treatment of diseases that are caused by a genetic defect in a gene that mediates homologous recombination.

In a further aspect the invention provides a method of treatment of a disease or condition in a mammal, including human, which is caused by a genetic defect in a gene which mediates homologous recombination, which method comprises administering to the mammal a therapeutically effective amount of an agent which inhibits the activity of an enzyme which mediates repair of DNA strand breaks or other lesions present at replication forks.

In a preferred aspect said enzyme is PARP. In a further preferred aspect said agent is a PARP inhibitor or an RNAi molecule specific to PARP gene.

In a further preferred aspect, the use is in the treatment of cancer.

Preferably the medicament is a pharmaceutical composition consisting of the PARP inhibitor in combination with a pharmaceutically acceptable carrier or diluent.

The specific sensitivity of HR defective tumours to PARP-1 inhibition means that normally dividing cells in the patient will be unaffected by the treatment. Treatment of HR defective cancer cells using a PARP inhibitor also has the advantage that it does not need to be administered as a combination therapy along with conventional radio or chemotherapy treatments thereby avoiding the side effects associated with these conventional forms of treatment.

A genetic defect in a gene which mediates homologous recombination may be due to a mutation in, the absence of, or defective expression of, a gene encoding a protein involved in HR.

In a further aspect, the invention further provides the use of a PARP inhibitor in the manufacture of a medicament for inducing apoptosis in HR defective cells.
In another aspect the invention provides a method of inducing apoptosis in HR defective cells in a mammal which method comprises administering to the mammal a therapeutically effective amount of a PARP inhibitor.

By causing apoptosis in HR defective cells it should be possible to reduce or halt the growth of a tumour in the mammal.

Preferably, the HR defective cells are cancer cells.

Cancer cells defective in HR may partially or totally deficient in HR. Preferably the cancer cells are totally deficient in HR.

The term "cancer" or "tumour" includes lung, colon, pancreatic, gastric, ovarian, cervical, breast or prostate cancer. The cancer may also include skin, renal, liver, bladder or cerebral cancer. In a preferred aspect, the cancer is in a mammal, preferably human.

The cancer to be treated may be an inherited form of cancer wherein the patient to be treated has a familial predisposition to the cancer. Preferably, the cancer to be treated is gene-linked hereditary cancer. In a preferred embodiment of the invention the cancer is gene-linked hereditary breast cancer.

In a preferred aspect, the PARP inhibitor is useful in the treatment of cancer cells defective in the expression of a gene involved in HR. Genes with suggested function in HR include XRCC1, ADPRT (PARP-1), ADPRTL2 (PARP-2), CTPS, RPA, RPA1, RPA2, RPA3, XPD, ERCC1, XPF, MMS19, RAD51, RAD51B, RAD51C, RAD51D, DMC1, XRCC2, XRCC3, BRCA1, BRCA2, RAD52, RAD54, RAD50, MRE11, NBS1, WRN, BLM, Ku70, Ku80, ATM, ATR, chk1, chk2, FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, RAD1, RAD9, FEN-1, Mus81. Emc1, DDS1, BARD (see (2, 3, 5, 22-28) for reviews).

A gene involved in HR may be a tumour suppressor gene. The invention thus provides for the treatment of cancer cells defective in the expression of a tumour suppressor gene. Preferably, the tumour suppressor gene is BRCA1 or BRCA2.
Breast cancer is the most common cancer disease among women in the Western world today. Certain families have strong predisposition for breast cancer, which is often owing to an inherited mutation in one allele of either BRCA1 or BRCA2. However, these patients still maintain one functional allele. Thus, these patients develop normally and have no phenotypic consequence from this mutation. However, in one cell, the functional allele might be lost, making this cell cancerous and at the same time deficient in homologous recombination (HR). This step is critical for the onset of a tumour (1).

The present inventors have surprisingly found that BRCA2 deficient cells are 100 times more sensitive to the cytotoxicity of the PARP inhibitor, NU1025, than wild type cells.

Thus in a preferred aspect, the invention provides the use of a PARP inhibitor in the manufacture of a medicament for the treatment of cancer cells defective in HR, e.g. due to the loss of BRCA1 and/or BRCA2 expression.

The cancer cells to be treated may be partially or totally deficient in BRCA1 or BRCA2 expression. BRCA1 and BRCA2 mutations can be identified using multiplex PCR techniques, array techniques (29, 30) or using other screens known to the skilled person.

PARP inhibitors useful in the present invention may be selected from inhibitors of PARP-1, PARP-2, PARP-3, PARP-4, tankyrase 1 or tankyrase 2 (see 31 for a review).

In a preferred embodiment, the PARP inhibitor useful in the present invention is an inhibitor of PARP-1 activity.

PARP inhibitors useful in the present invention include benzimidazole-carboxamides, quinazolin-4-[3H]-ones and isoquinoline derivatives (e.g. 2-(4-hydroxyphenyl)benzimidazole-4-carboxamide (NU1085), 8-hydroxy-2-methylquinazolin-4-[3H]one (NU1025); 6(5H)phenanthridinone; 3 aminobenzamide; benzimidazole-4-carboxamides (BZ1-6) and tricyclic lactam indoles (TI1-5) [32]. Further inhibitors of PARP may be identified either by design [33] or the novel FlashPlate assay [34].
The PARP inhibitor formulated as a pharmaceutical composition may be administered in any effective, convenient manner effective for targeting cancer cells including, for instance, administration by oral, intravenous, intramuscular, intradermal, intranasal, topical routes among others. Carriers or diluents useful in the pharmaceutical composition may include, but are not limited to saline, buffered saline, dextrose, water, glycerol, ethanol and combinations thereof.

In therapy or as a prophylactic, the active agent may be administered to an individual as an injectable composition, for example as a sterile aqueous dispersion. The inhibitor may be administered directly to a tumour or may be targeted to the tumour via systemic administration.

A therapeutically effective amount of the inhibitor is typically one which is sufficient to achieve the desired effect and may vary according to the nature and severity of the disease condition, and the potency of the inhibitor. It will be appreciated that different concentrations may be employed for prophylaxis than for treatment of an active disease.

For administration to mammals, and particularly humans, it is expected that the daily dosage level of the active agent will be up to 100mg/kg, for example from 0.01mg/kg to 50 mg/kg body weight, typically up to 0.1, 0.5, 1.0, 2.0 5.0, 10, 15, 20 or 30mg/kg body weight. Ultimately, however, the amount of inhibitor administered and the frequency of administration will be at the discretion of a physician.

A therapeutic advantage of using PARP inhibitors to treat cancer cells is that only very low doses are needed to have a therapeutic effect in treating cancer thereby reducing systemic build up of the inhibitors and any associated toxic effects.

A preferred aspect of the invention provides an agent which is an inhibitory RNA (RNAi) molecule.

A technique to specifically ablate gene function is through the introduction of double stranded RNA, also referred to as inhibitory RNA (RNAi), into a cell which results in
the destruction of mRNA complementary to the sequence included in the RNAi molecule. The RNAi molecule comprises two complementary strands of RNA (a sense strand and an antisense strand) annealed to each other to form a double stranded RNA molecule. The RNAi molecule is typically derived from exonic or coding sequence of the gene which is to be ablated.

Preferably said RNAi molecule is derived from the nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of:

a) a nucleic acid sequence as represented by the sequence in Figure 9, 10, 11, 12, 13 or 14 or fragment thereof;

b) a nucleic acid sequence which hybridises to the nucleic acid sequences of Figure 9, 10, 11, 12, 13 or 14 and encodes a gene for PARP;

c) a nucleic acid sequence which comprise sequences which are degenerate as a result of the genetic code to the nucleic acid sequences defined in (a) and (b).

Recent studies suggest that RNAi molecules ranging from 100-1000bp derived from coding sequence are effective inhibitors of gene expression. Surprisingly, only a few molecules of RNAi are required to block gene expression which implies the mechanism is catalytic. The site of action appears to be nuclear as little if any RNAi is detectable in the cytoplasm of cells indicating that RNAi exerts its effect during mRNA synthesis or processing.

More preferably said RNAi molecule according has a length of between 10 nucleotide bases (nb) –1000nb. Even more preferably said RNAi molecule has a length of 10nb; 20nb; 30nb; 40nb; 50nb; 60nb; 70nb; 80nb; 90nb; or 100bp. Even more preferably still said RNAi molecule is 21nb in length.

Even more preferably still the RNAi molecule comprises the nucleic acid sequence aaa agc cau ggu gga gua uga (PARP-1)

Even more preferably still the RNAi molecule consists of the nucleic acid sequence aag acc aau cuc ucc agu uca ac (PARP-2)
Even more preferably still the RNAi molecule consists of the nucleic acid sequence aag acc aac auc gag aac aac (PARP-3)

The RNAi molecule may comprise modified nucleotide bases.

Preferred features of each aspect of the invention are as for each of the other aspects mutatis mutandis.

The present invention will now be described by way of example only with reference to the accompanying figures, wherein:

Figure 1 is a graph demonstrating that HR deficient cells are hypersensitive to the toxic effect caused by inhibition of PARP-1. Colony outgrowth of the Chinese hamster cell lines AA8 (wild-type), irs1SF (deficient in HR[4]), CXR3 (irs1SF complemented with XRCC3 [2]), V79 (wild-type), irs1 (deficient in HR[5]) or irs1X2.2 (irs1 complemented with XRCC2 [1]) upon exposure to 3-AB (A), ISQ (B) or NU1025 (C). The means (symbols) and standard deviation (bars) of at least three experiments are shown. Colony outgrowth assay was used;

Figure 2 is a graph showing cell survival in the presence of PARP inhibitor NU1025 in wt V79 cells, BRCA2 deficient VC-8 cells and VC-8 cells complemented with functional BRCA2 gene (VC-8#13, VC-8+B2). Colony outgrowth assay was used;

Figure 3 is a histogram showing the percentage of the cells in apoptosis following a 72 hour incubation with NU1025;

Figure 4. (a) Western blot analysis of protein lysates isolated from MCF-7 (p53^{wt}) or MDA-MB-231 (p53^{mut}) breast cancer cells following 48 hours transfection with siRNA. (b) Colony outgrowth of siRNA-treated MCF-7 cells or (c) MDA-MB-231 cells following exposure to the PARP inhibitor NU1025. The means (symbols) and standard deviation (bars) of at least three experiments are shown.

Figure 5. BRCA2 deficient cells fail to repair a recombination lesion formed at replication forks by inhibitors of PARP. (a) Visualization of double strand breaks
(DSBs) in BRCA2 proficient or deficient cells following a 24-hour treatment with NU1025 (0.1 mM) by pulse-field gel electrophoresis. Hydroxyurea 2 mM was used as a positive control. (b) Visualisation of γH2Axl foci in untreated V-C8+B2 and V-C8 cells. Number of cells containing γH2Axl foci (c) or RAD51 foci (d) visualised in V-C8+B2 and V-C8 cells following a 24-hour treatment with NU1025 (10 μM). The means (symbols) and standard errors (bars) of three to nine experiments are shown. (e) A suggested model for cell death induced in BRCA2 deficient cells.

Figure 6. PARP-1 and not PARP-2 is important in preventing formation of a recombinogenic lesion, causing death in absence of BRCA2. (a) RT-PCR on RNA isolated from SW480SN.3 cells treated with BRCA2, PARP-1 and PARP-2 siRNA in combinations as shown for 48 hours. (b) Clonogenic survival following 48-hours depletion of BRCA2, PARP-1 and PARP-2. The means (symbols) and standard deviation (bars) of at least three experiments are shown. Two and three stars designate statistical significance in t-test p<0.01 and p<0.001, respectively. (c) Western blot for PARP-1 in SW480SN.3 cells treated with different siRNA.

Figure 7. (a) Visualisation of PAR polymers in untreated and (b) thymidine treated V79 cells (5 mM for 24 hours). (c) Percentage cells containing >10 sites of PARP activity following treatment with hydroxyurea (0.2 mM) and thymidine (5 mM). At least 300 nuclei were counted for each treatment and experiment. (d) Survival of V-C8+B2 cells following co-treatment with hydroxyurea or (e) thymidine and NU1025 (10 μM). (f) The activity of PARP was measured by the level of free NAD(P)H, following treatment with MMS, hydroxyurea (0.5 mM) or thymidine (10 mM). The means (symbol) and standard deviation (error bars) from at least three experiments are depicted.

Figure 8. (a) Visualisation of PAR polymers in untreated V-C8 and (b) V-C8+B2 cells. (c) Quantification of percentage cells containing >10 sites of PARP activity in untreated V-C8 and V-C8+B2 cells. (d) Level of NAD(P)H measured in untreated V-C8 and V-C8+B2 cells. Three stars designate p<0.001 in t-test. (e) Visualization of RAD51 and sites of PARP activity in V79 cells following a 24-hour thymidine
treatment (5 mM). (f) A model for the role of PARP and HR at stalled replication forks.

Figure 9 is the human cDNA sequence of PARP-1;

Figure 10 is the human cDNA sequence of PARP-2;

Figure 11 is the human cDNA sequence of PARP-3;

Figure 12 is the human gDNA sequence of Tankyrase 1;

Figure 13 is the human mRNA sequence of Tankyrase 2;

Figure 14 is the human mRNA sequence of VPARP.

Materials and Methods

Cytotoxicity of PARP inhibitors to HR-defective cells: XRCC2, XRCC3 or BRCA2

Cell culture

The irs1, irs1X2.1 and V79-4 cell lines were a donation from John Thacker [40] and the AA8, irs1SF and CXR3 cell lines were provided by Larry Thompson [41].

The VC-8, VC-8+B2, VC-8#13 were a gift from Malgorzata Zdziejicka [42]. All cell lines in this study were grown in Dulbecco’s modified Eagle’s Medium (DMEM) with 10% Foetal bovine serum and penicillin (100 U/ml) and streptomycin sulphate (100 µg/mL) at 37°C under an atmosphere containing 5% CO₂.

Toxicity assay - colony outgrowth assay

500 cells suspended in medium were plated onto a Petri dish 4 hours prior to the addition of 3-AB, ISQ or NU1025. ISQ and NU1025 were dissolved in DMSO to a final concentration of 0.2% in treatment medium. 7 - 12 days later, when colonies could be observed, these colonies were fixed and stained with methylene blue in
methanol (4 g/l). Colonies consisting of more than 50 cells were subsequently counted.

Apoptosis experiments

0.25x10^6 cells were plated onto Petri dishes and grown for 4 hours before treatment with NU1025. After 72 hours, cells were trypsinized and resuspended with medium containing any floating cells from that sample. The cells were pelleted by centrifugation and resuspended for apoptosis analysis with FITC-conjugated annexin-V and propidium iodide (PI) (ApoTarget, Biosource International) according to manufacturer's protocol. Samples were analysed by flow cytometry (Becton-Dickenson FACSsort, 488 nm laser), and percentage of apoptotic cells was determined by the fraction of live cells (PI-negative) bound with FITC-conjugated annexin-V.

Immunofluorescence

Cells were plated onto coverslips 4 h prior to 24-h treatments as indicated. Following treatments the medium was removed and coverslips rinsed once in PBS at 37°C and fixed as described elsewhere [2]. The primary antibodies and dilutions used in this study were; rabbit polyclonal anti PAR (Trevigen; 1:500), goat polyclonal anti Rad51 (C-20, Santa Cruz; 1:200) and rabbit polyclonal anti Rad51 (H-92, Santa Cruz; 1:1000). The secondary antibodies were Cy-3-conjugated goat anti-rabbit IgG antibody (Zymed; 1:500), Alexa 555 goat anti-rabbit F(ab')2 IgG antibody (Molecular Probes; 1:500), Alexa 546 donkey anti-goat IgG antibody (Molecular Probes; 1:500) and Alexa 488 donkey anti-rabbit IgG antibody (Molecular Probes; 1:500).

Antibodies were diluted in PBS containing 3% bovine serum albumin. DNA was stained with 1 μg/ml To Pro (Molecular Probes). Images were obtained with a Zeiss LSM 510 inverted confocal microscope using planapochromat 63X/NA 1.4 oil immersion objective and excitation wavelengths 488, 546 and 630 nm. Through focus maximum projection images were acquired from optical sections 0.50 μm apart and with a section thickness of 1.0 μm. Images were processed using Adobe PhotoShop (Abacus Inc). At least 300 nuclei were counted on each slide and those containing more than 10 RAD51 foci or sites of PARP activity were classified as positive.
PARP activity assays

A water-soluble tetrazolium salt (5mM WST-8) was used to monitor the amount of NAD(P)H through its reduction to a yellow coloured formazan dye[43]. 5000 cells were plated in at least triplicate into wells of a 96 well plate and cultured in 100µl normal growth media for 4 h at 37°C. CK8 buffer (Dojindo Molecular Technology, Gaithersburg, USA), containing WST-8, was then added either with or without treatment with DNA damaging agents at concentrations indicated. Reduction of WST-8 in the presence of NAD(P)H was determined by measuring visible absorbance (OD450) every 30 min. A medium blank was also prepared containing just media and CK8 buffer. Changes in NAD(P)H levels were calculated by comparing the absorbance of wells containing cells treated with DNA damaging agents and those treated with DMSO alone. Alternately relative levels of NAD(P)H in different cells lines were calculated after 4 h incubation in CK8 buffer.

The ability of NU1025 to inhibit PARP-1 activity was also assayed in permeabilised cells using a modification of the method of Halldorsson et al [44], and described in detail elsewhere [45]. Briefly: 300 µl of NU1025-treated (15 min) permeabilised cells were incubated at 26°C with oligonucleotide (final conc. 2.5 µg/ml), 75 µM NAD + [32 P] NAD (Amersham Pharmacia, Amersham, UK) in a total volume of 400 µl. The reaction was terminated after 5 min by adding ice cold 10%TCA 10%Na Ppi for 60 min prior to filtering through a Whatman GF/C filter (LabSales, Maidstone, UK), rinsed 6x with 1% TCA 1% NaPPI, left to dry and incorporated radioactivity was measured to determine PARP-1 activity. Data are expressed as pmol NAD incorporated/10^6 cells by reference to [32 P] NAD standards.

Pulse-field gel electrophoresis

1.5x10^6 cells were plated onto 100 mm dishes and allowed 4 h for attachment. Exposure to drug was for 18 h after which cells were trypsinsied and 10^6 cells melted into each 1% agarose insert. These inserts were incubated as described elsewhere (8) and separated by pulse-field gel electrophoresis for 24 h (BioRad; 120° angle, 60 to 240 s switch time, 4 V/cm). The gel was subsequently stained with ethidium bromide for analysis.
Predesigned BRCA2 SMARTpool and scrambled siRNAs were purchased (Dharmacon, Lafayette, CO). 10000 cells seeded onto 6 well plates and left over night before transfected with 100nM siRNA using Oligofectamine Reagent (Invitrogen) according to manufacturers instructions. Cells were then cultured in normal growth media for 48 h prior to trypsinisation and replating for toxicity assays. Suppression of BRCA2 was confirmed by Western blotting (as described previously [46]) of protein extracts treated with siRNA with an antibody against BRCA2 (Oncogene, Nottingham, UK).

EXAMPLES

Homologous recombination deficient cells are hypersensitive to PARP-1 inhibition

To investigate the involvement of HR in cellular responses to inhibition of PARP-1, the effects of PARP-1 inhibitors on the survival of HR repair deficient cell lines were studied. It was found that cells deficient in HR (i.e., irs1SF which is defective in XRCC3 or irs1 which is defective in XRCC2 [see Table 1] were very sensitive to the toxic effect of 3-aminobenzamide (3-AB) and to two more potent inhibitors of PARP-1: 1,5-dihydroxyisoquinoline (ISQ; [37]) or 8-hydroxy-2-methylquinazolinone (NU1025 [38, 39]) (Figure 1). The sensitivity in irs1SF cells to 3-AB, ISQ or NU1025 was corrected by the introduction of a cosmid containing a functional XRCC3 gene (CXR3). Similarly, the sensitivity in irs1 cells to 3-AB, ISQ or NU1025 was corrected by the introduction of a cosmid containing a functional XRCC2 gene (irs1X2.2).

BRCA2 deficient cells are hypersensitive to PARP-1 inhibition

The survival of BRCA2 deficient cells (VC8) and wild type cells (V79Z) in the presence of inhibitors of PARP-1 was investigated. It was found that VC8 cells are very sensitive to the toxic effect of NU1025 (Figure 2). The sensitivity in VC8 cells was corrected by the introduction of a functional BRCA2 gene either on chromosome 13 (VC8#13) or on an overexpression vector (VC8+B2). This result demonstrates that the sensitivity to PARP-1 inhibitors is a direct consequence of loss of the BRCA2 function.
To investigate if inhibition of PARP-1 triggers apoptosis in BRCA2 deficient cells, the level of apoptosis 72 hours following exposure to NU1025 was investigated. It was found that NU1025 triggered apoptosis only in VC8 cells, showing that loss of PARP-1 activity in BRCA2 deficient cells triggers this means of death (Figure 3).

BRCA2 deficient breast cancer cells are hypersensitive to PARP-1 inhibition

It was examined whether the MCF7 (wild-type p53) and MDA-MB-231 (mutated p53) breast cancer cell lines displayed a similar sensitivity to NU1025 upon depletion of BRCA2. It was found that PARP inhibitors profoundly reduced the survival of MCF7 and MDA-MB-231 cells only when BRCA2 was depleted with a mixture of BRCA2 siRNA (Figure 4). This shows that BRCA2 depleted breast cancer cells are sensitive to PARP inhibitors regardless of p53 status.

BRCA2 deficient cells die from PARP-1 inhibition in absence of DNA double-strand breaks (DSBs) but in presence of γH2A

HR is known to be involved in the repair of DSBs and other lesions that occur during DNA replication [2]. To determine whether the sensitivity of BRCA2 deficient cells is the result of an inability to repair DSBs following NU1025 treatment, the accumulation of DSBs in V79 and V-C8 cells was measured following treatments with highly toxic levels of NU1025. It was found that no DSBs were detectable by pulsed field gel electrophoretic analysis of DNA obtained from the treated cells (Figure 5A), suggesting that low levels of DSBs or other recombinogenic substrates accumulated following PARP inhibition in HR deficient cells, which trigger γH2A (Figure 5B). The reason why BRCA2 deficient cells die following induction of these recombinogenic lesions is likely to be due to an inability to repair such lesions. To test this, the ability of BRCA2 deficient V-C8 cells and BRCA2 complimented cells to form RAD51 foci in response to NU1025 was determined. It was found that RAD51 foci were indeed induced in V-C8+B2 cells following treatment with NU1025 (statistically significant in t-test, p<0.05; Figure 5D). This indicates that the recombinogenic lesions trigger HR repair in these cells allowing them to survive. In contrast, the BRCA2 deficient V-C8 cells were unable to form RAD51 foci in response to NU1025 treatment (Figure 5D) indicating no HR, which would leave the recombinogenic lesions unrepaiired and thus cause cell death.
PARP-1 and not PARP-2 is important in preventing formation of a recombinogenic lesion

There are two major PARPs present in the nucleus in mammalian cells, PARP-1 and PARP-2 and all reported PARP inhibitors inhibit both. In order to distinguish which PARP was responsible for the effect, we tested if the absence of PARP-1 and/or PARP-2 results in accumulation of toxic lesions, by depleting these and BRCA2 with siRNA in human cells (Figure 6a). We found that the clonogenic survival was significantly reduced when both PARP-1 and BRCA2 proteins were co-depleted from human cells (Figure 6b). Depletion of PARP-2 with BRCA2 had no effect on the clonogenic survival and depletion of PARP-2 in PARP-1 and BRCA2 depleted cells did not result in additional toxicity. These results suggest that PARP-1 and not PARP-2 is responsible for reducing toxic recombinogenic lesions in human cells. The cloning efficiency was only reduced to 60% of control in PARP-1 and BRCA2 co-depleted cells, while no HR deficient cells survived treatments with PARP inhibitors. This is likely to do with incomplete depletion of the abundant PARP-1 protein by siRNA (Figure 6c), which might be sufficient to maintain PARP-1 function in some of the cells.

PARP-1 is activated by replication inhibitors

HR is also involved in repair of lesions occurring at stalled replication forks, which may not involve detectable DSBs [2]. To test if PARP has a role at replication forks, PARP activation in cells treated cells with agents (thymidine or hydroxyurea) that retard or arrest the progression of DNA replication forks was examined. Thymidine depletes cells of dCTP and slows replication forks without causing DSBs. Hydroxyurea depletes several dNTP and block the replication fork, which is associated with the formation of DSBs at replication forks [2]. Both of these agents potently induce HR [2]. V79 hamster cells treated for 24 hours with thymidine or hydroxyurea were stained for PAR polymers. This revealed a substantial increase in the number of cells containing sites of PARP activity (Figure 7C). This result suggests a function for PARP at stalled replication forks. It was also shown that inhibition of PARP with NU1025 enhances the sensitivity to thymidine or hydroxyurea in V-C8+B2 cells (Figure 7D,E). This result suggests that PARP activity is important in
repair of stalled replication forks or alternatively that it prevents the induction of death in cells with stalled replication forks.

PARP is rapidly activated at DNA single-strand breaks (SSB) and attracts DNA repair enzymes [3-6]. Methylmethane sulphonate (MMS) causes alkylation of DNA, which is repaired by base excision repair. PARP is rapidly activated by the SSB-intermediate formed during this repair, which depletes the NAD(P)H levels (Figure 7F). We found that the activation of PARP and reduction of NAD(P)H levels is much slower following thymidine or hydroxyurea treatments. This slow PARP activation can be explained by the indirect action of thymidine and hydroxyurea and the time required to accumulate stalled replication forks as cells enter the S phase of the cell cycle.

PARP-1 and HR have separate roles at stalled replication forks

The number sites of PARP activity in untreated BRCA2 deficient V-C8 cells was determined. It was found that more V-C8 cells contain sites of PARP activity compared to V-C8+B2 cells (Figure 8A,B,C). Also, the V-C8 cells have lower free NAD(P)H levels than the corrected cells (Figure 8D), as a likely result of the increased PARP activity. Importantly these sites of PARP activity do not overlap with RAD51 foci (Figure 8E).

The results herein suggest that PARP and HR have separate roles in the protection or rescue of stalled replication forks (Figure 8F). A loss of PARP activity can be compensated by increased HR while a loss of HR can be compensated by increased PARP activity. However, loss of both these pathways leads to accumulation of stalled replication forks and to death, as in the case of PARP inhibited BRCA2 deficient cells.

As shown in the model outlined in Figure 8F PARP and HR have complementary roles at stalled replication forks. (i) Replication forks may stall when encountering a roadblock on the DNA template. In addition, they may also stall temporarily, due to lack of dNTPs or other replication co-factors. (ii) PARP binds stalled replication forks or other replication-associated damage, triggering PAR polymerization. Resulting negatively charged PAR polymers may protect stalled replication forks, by repelling
proteins that normally would process replication forks (e.g., resolvases), until the replication fork can be restored spontaneously when dNTPs or other co-factors become available. Alternatively, PAR polymers or PARP may attract proteins to resolve the replication block by other means. (iii) In absence of PARP activity, HR may be used as an alternative pathway to repair stalled replication forks. This compensatory model explains the increased level of HR and RAD51 foci found in PARP deficient cells \(^3\) and higher PARP activity found in HR deficient cells (i.e. V-C8). Spontaneous replication blocks/lesions are only lethal in the absence of both PARP and HR.

Table 1. Genotype and origin of cell lines used in this study.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Genotype</th>
<th>Defect</th>
<th>Origin</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA8</td>
<td>Wt</td>
<td>Wt</td>
<td>CHO</td>
<td>[41]</td>
</tr>
<tr>
<td>irs1SF</td>
<td>(XRCC3^-)</td>
<td>XRCC3(^-), deficient in HR</td>
<td>AA8</td>
<td>[41]</td>
</tr>
<tr>
<td>CXR3</td>
<td>(XRCC3^-)</td>
<td>Wt</td>
<td>irs1SF</td>
<td>[41]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ (hXRCC3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V79-4</td>
<td>Wt</td>
<td>Wt</td>
<td>V79</td>
<td>[40]</td>
</tr>
<tr>
<td>irs1</td>
<td>(XRCC2^-)</td>
<td>XRCC2(^-), deficient in HR</td>
<td>V79-4</td>
<td>[40]</td>
</tr>
<tr>
<td>irs1X2.2</td>
<td>(XRCC2^-)</td>
<td>Wt</td>
<td>irs1</td>
<td>[40]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ (hXRCC2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V79-Z</td>
<td>Wt</td>
<td>Wt</td>
<td>V79</td>
<td>[42]</td>
</tr>
<tr>
<td>VC8</td>
<td>(BRCA2^-)</td>
<td>BRCA2(^-), deficient in HR</td>
<td>V79-Z</td>
<td>[42]</td>
</tr>
<tr>
<td>VC8#13</td>
<td>(BRCA2^-)</td>
<td>Wt</td>
<td>VC8</td>
<td>[42]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+(hBRCA2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC8+B2</td>
<td>(BRCA2^-)</td>
<td>Wt</td>
<td>VC8</td>
<td>[42]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+(hBRCA2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES:

Lu, M. Mooney, L. Morgan, Y. Qian, S. Tran, L.R. Williams, Q.Y. Wu, J. Zhang, Y. Zou and V. Kalish Design and synthesis of poly ADP-ribose polymerase-1 inhibitors. 2. Biological evaluation of aza-5[H]-phenanthridin-6-ones as potent, aqueous-soluble compounds for the treatment of ischemic injuries, J Med Chem 46 (2003) 3138-3151.

CLAIMS

1. Use of an agent that inhibits the activity of an enzyme that mediates repair of a DNA strand break in the manufacture of a medicament for the treatment of diseases caused by a defect in a gene that mediates homologous recombination.

2. The use as claimed in claim 1 wherein the enzyme is poly(ADP-ribose) polymerase (PARP).

3. The use as claimed in claim 2 wherein the agent is a PARP inhibitor.

4. The use as claimed in claim 3 wherein the PARP inhibitor is selected from the group consisting of PARP-1, PARP-2, PARP-3, PARP-4, tankyrase 1 and tankyrase 2.

5. The use as claimed in claim 4 wherein the PARP is PARP-1.

6. The use as claimed in claim 1 or claim 2 wherein the agent is an RNAi molecule specific to a PARP gene.

7. The use as claimed in claim 6 wherein the RNAi molecule is derived from a nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of:
 a) a nucleic acid sequence as represented by the sequence in Figure 9, 10, 11, 12, 13 or 14, or a fragment thereof;
 b) a nucleic acid sequence which hybridises to the nucleic acid sequences of Figure 9, 10, 11, 12, 13 or 14, and encodes a gene for PARP; or
 c) a nucleic acid sequence which comprises sequences which are degenerate as a result of the genetic code to the nucleic acid sequences defined in (a) and (b).

8. The use as claimed in claim 6 or 7 wherein the RNAi molecule comprises the nucleic acid sequence aac agc cau ggu gga gua uga.
9. The use as claimed in claim 6 or 7 wherein the RNAi molecule consists of the nucleic acid sequence aag acc aau cuc ucc agu uca ac.

10. The use as claimed in claim 6 or 7 wherein the RNAi molecule consists of the nucleic acid sequence aag acc aac auc gag aac aac.

11. The use as claimed in any preceding claim wherein the defect is a mutation in a gene encoding a protein involved in HR.

12. The use as claimed in any of claims 1 to 10 wherein the defect is the absence of a gene encoding a protein involved in HR.

13. The use as claimed in any of claims 1 to 10 wherein the defect is in the expression of a gene encoding a protein involved in HR.

14. The use as claimed in any preceding claim wherein the gene that mediates HR is selected from the group consisting of XRCC1, ADPRT (PARP-1), ADPRTL2 (PARP-2), CTPS, RPA, RPA1, RPA2, RPA3, XPD, ERCC1, XPF, MMS19, RAD51, RAD51B, RAD51C, RAD51D, DMC1, XRCC2, XRCC3, BRCA1, BRCA2, RAD52, RAD54, RAD50, MRE11, NBS1, WRN, BLM, Ku70, Ku80, ATM, ATR, chk1, chk2, FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, RAD1, RAD9, FEN-1, Mus81, Emel, DSS1 and BARD.

15. The use as claimed in any preceding claim in the treatment of cancer.

16. The use as claimed in claim 15 wherein the cancer is selected from the group consisting of lung, colon, pancreatic, gastric, ovarian, cervical, breast and prostate cancer.

17. The use as claimed in claim 15 or 16 wherein the cancer is in a human.

18. The use as claimed in any of claims 15 to 17 wherein the cancer is gene-linked hereditary cancer.
19. The use as claimed in claim 18 wherein the cancer is breast cancer.

20. The use as claimed in any of claims 15 to 19 wherein the cancer cells to be treated are defective in BRCA1 expression.

21. The use as claimed in any of claims 15 to 19 wherein the cancer cells to be treated are defective in BRCA2 expression.

22. The use as claimed in claim 20 or 21 wherein the cancer cells are partially deficient in BRCA1 and/or BRCA2 expression.

23. The use as claimed in claim 20 or 21 wherein the cancer cells are totally deficient in BRCA1 and/or BRCA2 expression.

24. The use as claimed in any preceding claim wherein the gene that mediates HR is a tumour suppressor gene.

25. The use as claimed in claim 24 wherein the tumour suppressor gene is BRCA1.

26. The use as claimed in claim 24 wherein the tumour suppressor gene is BRCA2.

27. Use of a PARP inhibitor in the manufacture of a medicament for inducing apoptosis in HR defective cells.

28. The use as claimed in claim 27 wherein the HR defective cells are cancer cells.

29. The use as claimed in claim 28 wherein the cancer cells defective in HR are partially deficient in HR.

30. The use as claimed in claim 28 wherein the cancer cells defective in HR are totally deficient in HR.

31. A method of treatment of a disease or condition in a mammal, including human, which is caused by a genetic defect in a gene that mediates homologous
recombination, which method comprises administering to the mammal a therapeutically effective amount of an agent that inhibits the activity of an enzyme that mediates repair of DNA strand breaks.

32. A method of inducing apoptosis in HR defective cells in a mammal which method comprises administering to the mammal a therapeutically effective amount of a PARP inhibitor.
Figure 1.
Figure 2.
Figure 3

- % Annexin V positive cells

NU1025 0.2 μM

<table>
<thead>
<tr>
<th></th>
<th>V-C8</th>
<th>V79Z</th>
<th>V-C8#13</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>18</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>+</td>
<td>45</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

- -: Negative control
- +: NU1025 treatment
Figure 4

a) MCF-7 MDA-MB-231

- control
- scramble siRNA
- BRCA2 siRNA

β-actin

b) Surviving Fraction

Surviving Fraction vs. [NU1025] μM
- control
- scramble siRNA
- BRCA2 siRNA

0.01 0.1 1

0 20 40 60 80 100 120

[NU1025] μM

c) Surviving Fraction

Surviving Fraction vs. [NU1025] μM
- control
- scramble siRNA
- BRCA2 siRNA

0.01 0.1 1

0 20 40 60 80 100 120

[NU1025] μM
Fig. 6
Figure 10

1 ctgaattca ggcgcgctg aatcttagc ggcgcggcgg cgaccggaaca cgcggcgccgg
61 cagggcagca gcattaatg aaagcaaaag agtaaataag gcggacacgg ctccagaga
121 ctctctccct gcacaagaaa ctcgtagatc ccagagacag gatcgcagaa agatgcctgt
181 ggttggagga aagcttaata aggacaggac aagaaagacaa caagatggtga tgccaggaag
241 gctctggcgc aagaaaaagct tctcttgaatgt tgtaaggcgc ttctgcttaa aagggcaaacgc
301 tctctgtgac ccagagatga cagcccaaggt ggggaaggtct catgtgtatt gtgaagagaaa
361 tgtgatctat gatgtcatct caatctccac caatctcagtc ttcaacaaca acaagtaacta
421 ttcgattcag ctattagaaag atgtgacca gacagacgtc agtggtttga tgagatgggg
481 cggagttggc aaaaalgaggga gacagacgctt ggttgggtgt tcagggcaact tcaacaagggc
541 caagggaaact ttccagaaga aatctcttga caaaaagcaac aacataattgag aagatgcgaga
601 aagatttgac aagtggtcctg caaaatagta tatgctctag atggactatg ccaaaactaca
661 tccaggtaaag gcggaaaacc cttctcttataa ttctctctgta acggcagatct
721 gagcctgat cttcggctac aggagttaat aagttgctag tgtaagtctc agggcatggga
781 agcagtaag cttctctatga agtataaatc caagaaagcc cccaactggca agctcagactg
841 gcacaaacacttgtagcagtctctctt ctaagaagattt gaggatgata tgcgggctgg
901 cagagcatgca cggagctctca tggaaacatcg ctaattgatc taaaccagct ttcgggtcatga
961 cttgagactc cggtactctctt ctaatctcgg gccacacagaagaa ctctctctcag aaaaaataaca
1021 attcagtag gcggggggggg cattttgaat tcgatataag gttggttaaaa cagacatcaca
1081 aagcccgaaa caccccaattg accaacaacta tagataactt ctgctgtgcct tcggcccctt
1141 tgcacctgaa agtagatgc tccccagatc tctcaatctta cccatctcctc
1201 ccaacagccc gcataatacct gacgggtcgtt gatgtgggaaga gatgtggtaa
1261 gaagagagcgc gccgggggg gctctacataa caggatgctt cttggtgcct gcggcctgg
1321 gagaattcca gctcatctgt gccgcatgtg gttcggatg ggcggaggggc gcagctctatg
1381 cagaggttag atggctggttt aagggaaacta cttgcgttag atgtctccaa aggggccaa
1441 tcgacggctt gcgtctgtgct ctaaataact gaggagctct ctctctctcctg agggtagctt
1501 agggcttgc atatagactac tagagggcaac tcgatagggc gcaggatgtc gccaaagtt
1561 acatacgacg cggaggctgg gcaagatgct gccagggtcct ttacccgaaataa cctaggtgagcct
1621 ccggggtcgc ggcacccccta gcaccagggatagcagattc ccagtgtgta
1681 taccagcaacc tacaaagataattgata taaccacattt cagggctttaa tgcggctcact
1741 tttaaaggt aggtagtatt ccctcagtct gttggtgtaaggt tcgctcttcct ataatcaggaaga
1801 ggttggttct tcaagacagc aataaagccag cttgtgtctttg gtgaattttg tatttttttaa
1861 tgcataaaaa actgtacagg tctaaaaaa aaaaaaaaaa aaaaaaaaaa
W0 2005/012524

CA 02533423 2006-01-23

PCT/GB2004/003235

15/20

3901 gcacggggtt tcatggttct ccctccatttt atgcaatattat cctaaaggg ttgtatgagc
gacatgcata cataggagag atgttggggc cgggacttt tttgtcgtgaa aacctctccaa
gaaccaacca atatggttcat ggaattggag gagaaccaggg ccagggctcaca cacacgaga
gctcgtgta tactatgctac agacacatgcc tctctctcgg agtgcacccct ggggacatcc
ttctgcagtt tgcacccagt aaaaatggcccc acgcggctcc agggccaccacc tccgtccttg
3201 gtagacccag cgtaactggg ctggcataatgt ctgaatattct catctacaga ggagaacagg
catacaccaga gtatctttac acctaccagaga tctagaaaggg ccagggctcaca cccagaccg
cacacggcc cgacacagag acctactgtga acgcggctgg agaagccagat atccagatctc
gacctggccc tggactacag aggtttgatt tataaatcca catcatattt tctggaccgc
4441 ctgacagcct agaatataagc tgtttgctctt ctataaagca ttgctatagt g
Figure 13

1 cgccggctct cgctagcga aacctgcca gcgctgccgc gcggactgcg ccgccgccccg
61 acgcgctac gtgcgctccg gggctgacg gacgctgcca gcggaggact tgtcatcctc
121 cgccgctgc cgcctcgagcc gcggagctgc gcgcggcgccg gcgcggccggccg
181 ccgccgggg gcggaggcc cgcggagggg cgcgcctggc gcgcggccag gcgcgctgcc
241 gcagcgcggct acacaggagg gcacagccgc gcgcggccctg gcgcgctgccc gcgcgcgggg
301 gcgcgcggcc gcgcgctgc gcgcgctgc cgcgcctggc gcgcgctgcccc gcgcgctgccc
361 gcgcgctgc gcgcgctgc gcgcgctgc gcgcgctgcccc gcgcgctgccc gcgcgctgccc
421 gcgcgctgc gcgcgctgc gcgcgctgc gcgcgctgcccc gcgcgctgccc gcgcgctgccc
481 gcgcgctgc gcgcgctgc gcgcgctgc gcgcgctgcccc gcgcgctgccc gcgcgctgccc
541 gcgcgctgc gcgcgctgc gcgcgctgc gcgcgctgcccc gcgcgctgccc gcgcgctgccc
601 ttaaatgtg cttcagaattc gtgcgaattgc ccaacacagc gatgatgagg gctctttcct
661 cacttctat gcagctgctc cggctctgct cggctctgct cggctctgct cggctctgct
721 cgcagggc ccatctgact ccatctgact ccatctgact ccatctgact ccatctgact
781 agaaaaagc gatttttgcg tttttttttt ggtttttttt ggtttttttt ggtttttttt
841 ttctt
2821 tgtgagagcc caggagcc ca cagcagatgc ttcttcttca ggctcactct gccaataagg
2881 cccttcctcc ggcacagctg tgcacaaatt acttgaggtt ttcagaca ggt tgttcatg
2941 aatgtcttca aggtgaacag aaggtgttcc cagttgagaa aaaaagaggg tccagaggt
3001 agagtattg agaacttcctt catgtttgttg agttgagagag gggccaaaggg acgctgaagga
3061 tgtgagagag cagacatctt tggatgtatt agttgagagag gggccaaaggg acgctgaagga
3121 gattggaatc aatgctctac tgaacagaat cgttgagaaa aaaaagaggg tccagaggt
3181 ctccgccaac caaggtgttac accatattt aaccttgac agcctctgtg gtggagaattt
3241 ttctttgagag aggtggttata gttgagagag gggccaaaggg acgctgaagga
3301 tctcagacaa ggcagcagag atgggtggtta tcaggtttgaa aattctcaaac gtaacacatattt
3361 ttcagagatt cagaaaggttt aatcacaagag aatcagctttc aacgcagagac agatagacattt
3421 agaagatttac gaaagaaac gaaacaagac aatcagctttc aacgcagagac agatagacattt
3481 ttcagagatt cagaaaggttt aatcacaagag aatcagctttc aacgcagagac agatagacattt
3541 ggtgcaagag ggtgcaagag ggtgcaagag ggtgcaagag ggtgcaagag ggtgcaagag
3601 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
3661 gcacagctttc ttctctcttt aatcagtgc acagagagac aacggcccagtt ttctctcttt
3721 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
3781 agactgtttc aatatgtttc tttctttttc tttctttttc tttctttttc tttctttttc
3841 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
3901 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
3961 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
4021 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
4081 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
4141 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
4201 agactgtttc aatatgtttc aatatgtttc aatatgtttc aatatgtttc aatatgtttc
4261 agactgtttc aatatgtttc aatatgtttc aatatgtttc aatatgtttc aatatgtttc
4321 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
4381 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
4441 agacagtgtt tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
4501 ggcagcagag ggtgcaagag ggtgcaagag ggtgcaagag ggtgcaagag ggtgcaagag
4561 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
4621 ggcagcagag ggtgcaagag ggtgcaagag ggtgcaagag ggtgcaagag ggtgcaagag
4681 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
4741 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
4801 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
4861 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
4921 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
4981 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
5041 ggcagcagag ggtgcaagag ggtgcaagag ggtgcaagag ggtgcaagag ggtgcaagag
5101 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
5161 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
5221 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
5281 tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc tttctttttc
5341 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
5401 gggccaaaggg acgctgaagga aacgcagagac aatcagctttc aacgcagagac aatcagctttc
5461 gggccaaaggg acgctgaagga aacgcagagac aatcagctttc aacgcagagac aatcagctttc
5521 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
5581 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
5641 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
5701 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
5761 aagagagag aagagagag aagagagag aagagagag aagagagag aagagagag
18/20
5821 aactgtgtt atttatcta aaccattgct taatgagtgt gtttttccat gaatgaatat
5881 acggtgtgac atatgttagc atggcagcat ttccagatag ctttttttgtt gtggggaagt
5941 tggggttttg gggggagggg gagtattagt acgttc gastric gataagctta ctttaaag
6001 atggggaatgc tttttttttt gttttttttttt gaaagttcaat ttaacctttttt
6061 gtggcagtag tactattta cccatctca gtgtcttaact tgtactgtat caaatccat
6121 accctcattt aatcttaat aaaaactgttc acttgtaaaa aaaaaaaaaa aaaaaaaaaaa
6181 aaaaaaaaaa
1 cgcccccccc gcccgggggg cagggaagcg ctaatattgg gaattaacgc gacgcaaggg
61 ggcggaattgg gggaggttcc gggacgtagc gcaccttcac gccgagttgg tggattgg
121 cttttgaactaat gttggaagt ggataacttt ctctcagcag agaaagaga
181 gtctataact ctactttaata gaacggggg gaaagtcttttattttttaa acctgacagt
241 cacatata atttgatata attcgtatgtg ttcggtgcaatt accacttgaa attctatca
301 aaagaaccac gtctatattg caaacacgag ttttataagg aacatcttacaa gagaagagag
361 actttgagat gtaaaggtat attgacactta taacgctcgtg gacatcacac cccctcctga
421 tcgagagccg aggacggtcgt aagtgtaacc acaaggtctca tgccgagcaagtgcaccaga
481 ggaggaagac acgtgtggggactaactggtt ggtcgagc aagtgtgaaat ttctctcatct
541 tcctcaagag tttgatagtg ccaatttaata actttggag gaaaggggac gaggagggg
601 cgaggaaggt ggtttggaac gacactctag gttgcggcaag tccggggacta gttcttct
661 gagatccctca cactttctcg tttgagatgg acatggagct aagaacagtt tgtatat
721 gaaatcctctgaagctgacca tttataatcttgaacagcag ttaaagctacc
781 aggtacatact ccagaagacat ttgagcatctctcgcacgacg acctgacagcagcag
841 gcaagtacgtg ctcttgggg gaaagatctgta caacaagct caagaactgtc agggactg
901 ttgtagagt gatttgagct gacaggtgcct ggccacactt gaaacacgtc ttcagccgc
961 aggtgcggaggttacgctacag tgggctgttcg aagacgcagagtgctttcctgatgata
1021 gcacagcttg aaaaaagggc caacacgagac caagatcagct gcaaggttttata
1081 cagactgata cctcacaagag gcacaagactc gaaagaaagtc aacttttgagac taacctgct
1141 gagacgagagac ggcacggtgc aataagggc gctgagtcata gcaatttacctt
1201 caacacagcctggctggtgc gcagagtc aggataata cttggtttcctggcacc
1261 gcaactgat aatgttttct cctcagctat tatttaagcttggctgacagt
1321 taagagtgccttgctgagat ctagttgcagtg cagatgagag fuelacagac
1381 gtttttgactc aacatcttagttcttc ttcggtgccttgcttacagc
1441 ctccgggtac ttcatctgtg gattatttttt cccataagtg aatccagact ttcggtgtc
1501 aacagacgac ggcagtgagc gatgtgacag ctattctgctg catactcagcg
1561 taataaggt gcctacggtg gacagacagtt ctcctctgta ctttggtgtatc
1621 agcctggtgc aaagttgtag aatctatgcgattgtggtgc aacagacgac
1681 aggtgctata ctccttggg cttcagaaat tagataatc aactgtgcttct
1741 tgaagtttct gtttctataa aacagCACt aatattattaa taatattc
1801 cattacagt gatgaccttg cttctggta cttctggta ccattttgaaat
1861 gcagatagccttc ttatgtgagc taagagat cttggttgtgattgtc
1921 ttcacagctgt ccaaggccgcg gcgtctccagag ccacggttctgctcagcag
1981 ttcacagcagac aacagaaaactatttatctgtaacacttc tgtggctgt
2041 cattctttg aacgcagagtc gacaattctt tattttg gacagactt
2101 cgctgtgttggt ctcggttgccac gctctggtgcat ttcttggg
2161 gaagagagagac caacagacactgcagctgttgc aggtccttct
2221 gtagttttgagtagagctcttctgg ctactgtttt tatttattt
2281 ttttatcgat tcagtttcagctc gagactacttc tcctggtggtgtt
2341 ctgtgtgtggg ctgggtgctgtgact cttctttcctagacggtc
2401 cagactatactgcttaataggtgct aaccttcactgc ggggggtgccgtttgg
2461 gacatattgg acattgtgttc gtaattcctcggataacgtagcgcactcctgga
2521 gaaacaaagc gacgacgacgaaagtttgctcagagcaacagatgcgtaacc
2581 gagaggtgcttgctg cttctgtttttgg ttaaaacttc taatggagt
2641 cagaagagagac cctcctggtgctgggaggtc gataggcttgctctgca
2701 ttcagtcggtc ccaagctcag cctggtgtagc aaactggtag attttgcttcgctggtaaggag acgctcttccag