The present invention relates to certain amide derivatives that have the ability to inhibit 11-β-hydroxysteroid dehydrogenase type 1 (11B-HSD-1) and which are therefore useful in the treatment of certain disorders that can be prevented or treated by inhibition of this enzyme. In addition the invention relates to the compounds, methods for their preparation, pharmaceutical compositions containing the compounds and the uses of these compounds in the treatment of certain disorders. It is expected that the compounds of the invention will find application in the treatment of conditions such as non-insulin dependent type 2 diabetes mellitus (NIDDM), insulin resistance, obesity, impaired fasting glucose, impaired glucose tolerance, lipid disorders such as dyslipidemia, hypertension and as well as other diseases and conditions.
FIELD OF THE INVENTION

The present invention relates to bicyclic heterocyclic amide derivatives that have the ability to inhibit 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-I) and which are therefore useful in the treatment of certain disorders that can be prevented or treated by inhibition of this enzyme. In addition the invention relates to the compounds, methods for their preparation, pharmaceutical compositions containing the compounds and the uses of these compounds in the treatment of certain disorder. It is expected that the compounds of the invention will find application in the treatment of conditions such as non-insulin dependent type 2 diabetes mellitus (NIDDM), insulin resistance, obesity, impaired fasting glucose, impaired glucose tolerance, lipid disorders such as dyslipidemia, hypertension and as well as other diseases and conditions.

BACKGROUND OF THE INVENTION

Glucocorticoids are stress hormones with regulatory effects on carbohydrate, protein and lipid metabolism. Cortisol (or hydrocortisone in rodent) is the most important human glucocorticoid. 11-beta hydroxyl steroid dehydrogenase or 11 beta-HSD1 (11β-HSD-I) is a member of the short chain dehydrogenase super-family of enzymes which converts functionally inert cortisone to active Cortisol locally, in a pre-receptor manner. Given that the enzyme is abundantly expressed in metabolically important tissues, such as adipose, muscle, and liver, that become resistant to insulin action in Type 2 Diabetes, inhibition of 11β-HSD-I offers the potential to restore the glucose lowering action of insulin in these tissues without impacting the central HPA. Another important 11-beta hydroxyl steroid dehydrogenase, namely Type 2 11-beta-HSD (1^β-HSD-2), which converts Cortisol into cortisone, is a unidirectional dehydrogenase mainly located in kidney and protects mineralocorticoid receptors from illicit activation by glucocorticoids.

Multiple lines of evidence indicate that 11β-HSD-I-mediated intracellular Cortisol production may have a pathogenic role in Obesity, Type 2 Diabetes and its co-morbidities.

In humans, treatment with non-specific inhibitor carbenoxolone improves insulin sensitivity in lean healthy volunteers and people with type 2 diabetes (Walker B R et al (1995)). Likewise, 11β-HSD-I activity was decreased in liver and increased in the adipose tissue of obese individuals. Similarly 11β-HSD-I mRNA was found to be increased in both visceral and subcutaneous adipose tissue of obese patients (Desbriere R et al (2006)) and was positively related to BMI and central obesity in Pima Indians, Caucasians and Chinese
youth (Lindsay RS et al (2003), Lee ZS et al (1999)). Adipose tissue I\(\iota\)\(\beta\)-HSD-I and Hexose-6-Phosphate Dehydrogenase gene expressions have also been shown to increase in patients with type 2 diabetes mellitus (Uckaya G et al (2008)). In human skeletal muscle 11\(\beta\)-HSD-1 expression was found to be positively associated with insulin resistance (Whorwood CB et al (2002)). Increased I\(\iota\)\(\beta\)-HSD-I expression was also seen in diabetic myotubes (Abdallah BM et al (2005)).

Various studies have been conducted in rodent models to substantiate the role of 11\(\beta\)-HSD-1 in diabetes and obesity. For example, over-expression of I\(\iota\)\(\beta\)-HSD-I specifically in adipose tissue causes development of metabolic syndrome (glucose intolerance, obesity, dyslipidemia and hypertension) in mice (Masuzaki H et al (2001)). Conversely, when 11\(\beta\)-HSD-1 gene was knocked out, the resulting mice showed resistance to diet induced obesity and improvement of the accompanying dysregulation of glucose and lipid metabolism (Kotelevtsev Y et al (1997), Morton NM et al (2001), Morton NM et al (2004)). In addition, treatment of diabetic mouse models with specific inhibitors of 11\(\beta\)-HSD-1 caused a decrease in glucose output from the liver and overall increase in insulin sensitivity (Alberts P et al (2003)).

The results of the preclinical and early clinical studies suggest that the treatment with a selective and potent inhibitor of I\(\iota\)\(\beta\)-HSD-I will be an efficacious therapy for type 2 diabetes, obesity and metabolic syndrome.

The role of I\(\iota\)\(\beta\)-HSD-I as an important regulator of liver glucocorticoid level and thus of hepatic glucose production is well substantiated. Hepatic insulin sensitivity was improved in healthy human volunteers treated with the non-specific I\(\iota\)\(\beta\)-HSD-I inhibitor carbenoxolone (Walker BR (1995)). Many in vitro and in vivo (animal model) studies showed that the mRNA levels and activities of two key enzymes (PEPCK and G6PC) in gluconeogenesis and glycogenolysis were reduced by reducing I\(\iota\)\(\beta\)-HSD-I activity. Data from these models also confirm that inhibition of 11\(\beta\)-HSD-I will not cause hypoglycemia, as predicted since the basal levels of PEPCK and G6Pase are regulated independently of glucocorticoids (Kotelevtsev Y (1997)).

In the pancreas Cortisol is shown to inhibit glucose induced insulin secretion as well as increase stress induced beta cell apoptosis. Inhibition of I\(\iota\)\(\beta\)-HSD-I by carbenoxolone in isolated murine pancreatic beta-cells improves glucose-stimulated insulin secretion (Davani B et al (2000)). Recently, it was shown that I\(\iota\)\(\beta\)-HSD-I within alpha cells regulates glucagon secretion and in addition may act in a paracrine manner to limit insulin secretion from beta
Levels of 11β-HSD-I in islets from ob/ob mice were shown to be positively regulated by glucocorticoids and were lowered by a selective 11β-HSD-I inhibitor and a glucocorticoid receptor antagonist. Increased levels of 11β-HSD-I were associated with impaired GSIS (Ortsater H et al (2005)). In Zucker diabetic rats, troglitazone treatment improved metabolic abnormalities with a 40% decline in expression of 11β-HSD-I in the islets (Duplomb L et al (2004)). Cortisol inhibition may lead to an increase in the insulin gene transcription and a normalization of first phase insulin secretion (Shinozuka Y et al (2001)).

In human skeletal muscle 11β-HSD-I expression is positively associated insulin resistance and increased expression of 11β-HSD-I was also reported in type 2 diabetic myotubes (Abdallah BM et al (2005)). Recently the contribution of Cortisol in muscle pathology is being considered for modulating its action. Very recently it has been demonstrated that targeted reduction or pharmacological inhibition of 11β-HSD-I in primary human skeletal muscle prevents the effect of cortisone on glucose metabolism and palmitate oxidation (Salehzadeh F et al (2009)). Over activity of Cortisol in muscle leads to muscle atrophy, fibre type switch and poor utilization of glucose due to insulin resistance. Cortisol might have a direct role in reducing muscle glucose uptake.

Obesity is an important factor in Metabolic syndrome as well as in the majority (>80%) of type 2 diabetics, and omental (visceral) fat appears to be of central importance. 11β-HSD-I activity is increased in the both visceral and subcutaneous adipose tissue of obese individual (Lindsay RS et al (2003)). Cortisol activity in adipose is known to increase the adipogenic program. Inhibition of 11β-HSD-I activity in pre-adipocytes has been shown to decrease the rate of differentiation into adipocytes (Bader T et al (2002)). This is predicted to result in diminished expansion (possibly reduction) of the omental fat depot, i.e., reduced central obesity (Bujalska IJ et al (1997) and (2006)). Intra-adipose Cortisol levels have been associated with adipose hypertrophy, independent of obesity (Michailidou Z et al (2006)).

Cortisol in coordination with adrenergic signalling is also known to increase lipolysis which leads to increase in plasma free fatty acid concentrations which, in turn, is the primary cause of many deleterious effects of obesity (Tomlinson JW et al (2007)).

Adrenalectomy attenuates the effect of fasting to increase both food intake and hypothalamic neuropeptide Y expression. This supports the role of glucocorticoids in promoting food intake and suggests that inhibition of 11β-HSD-I in the brain might increase satiety and therefore reduce food intake (Woods SC (1998)). Inhibition of 11β-HSD-I by a
small molecule inhibitor also decreased food intake and weight gain in diet induced obese mice (Wang SJY et al (2006)).

The effects discussed above therefore suggest that an effective I1 β-HSD-1 inhibitor would have activity as an anti-obesity agent.

Cortisol in excess can also trigger triglyceride formation and VLDL secretion in liver, which can contribute to hyperlipidemia and associated dyslipidemia. It has been shown that 11P-HSD-1/- transgenic mice have markedly lower plasma triglyceride levels and increased HDL cholesterol levels indicating a potential atheroprotective phenotype (Morton NM et al (2001)). In a diet-induced obese mouse model, a non-selective inhibitor of I1 β-HSD-1 reduced plasma free fatty acid as well as triacylglycerol (Wang SJ et al (2006)). Over-expression of I1 β-HSD-1 in liver increased liver triglyceride and serum free fatty acids with the up regulation of hepatic lipogenic genes (Paterson JM et al (2004). It has been illustrated that inhibition of 11β-HSD-1 improves triglyceridemia by reducing hepatic VLDL-TG secretion, with a shift in the pattern of TG-derived fatty acid uptake toward oxidative tissues, in which lipid accumulation is prevented by increased lipid oxidation (Berthiaume M et al (2007)).

Atherosclerotic mouse model (APOE -/-) which are susceptible to atheroma when fed high fat diet, are protected against development of atherosclerosis when treated with 11β-HSD-1 inhibitors (Hermanowski-Vostaka A et al, (2005)).

Inhibition of 11p-HSD-1 in mature adipocytes is expected to attenuate secretion of the plasminogen activator inhibitor 1 (PAI-1)– an independent cardiovascular risk factor (Halleux CM et al (1999)). Furthermore, there is a clear correlation between glucocorticoid activity and cardiovascular risk factor suggesting that a reduction of the glucocorticoid effects would be beneficial (Walker BR et al (1998), Fraser R et al (1999)).

The association between hypertension and insulin resistance might be explained by increased activity of Cortisol. Recent data show that the intensity of dermal vasoconstriction after topical application of glucocorticoids is increased in patients with essential hypertension (Walker BR et al (1998)). Glucocorticoid was shown to increase the expression of angiotensin receptor in vascular cell and thus potentiating the renin-angiotensin pathway (Ullian ME et al (1996)), (Sato A et al (1994)). Role of Cortisol in NO signalling and hence vasoconstriction has been proved recently (Liu Y et al (2009)). These findings render 11β-HSD-1 a potential target for controlling hypertension and improving blood-flow in target tissues.
In the past decade, concern on glucocorticoid-induced osteoporosis has increased with the widespread use of exogenous glucocorticoids (GC). GC-induced osteoporosis is the most common and serious side-effect for patients receiving GC. Loss of bone mineral density (BMD) is greatest in the first few months of GC use. Mature bone-forming cells (osteoblasts) are considered to be the principal site of action of GC in the skeleton. The whole differentiation of mesenchymal stem cell toward the osteoblast lineage has been proven to be sensitive to GC as well as collagen synthesis (Kim CH et al (1999)). The effects of GC on this process are different according to the stage of differentiation of bone cell precursors. The presence of intact GC signalling is crucial for normal bone development and physiology, as opposed to the detrimental effect of high dose exposure (Pierotti S et al (2008), Cooper MS et al (2000)). Other data suggest a role of 1\(^1\)\(\beta\)-HSD-I in providing sufficiently high levels of active glucocorticoid in osteoclasts, and thus in augmenting bone resorption (Cooper M S et al (2000)). The negative effect on bone nodule formation could be blocked by the non-specific inhibitor carbenoxolone suggesting an important role of 1\(\pi\)-HSD-1 in the glucocorticoid effect (Bellows C G et al (1998)).

Stress and glucocorticoids influence cognitive function (de Quervain DJ et al (1998)). The enzyme 1\(\Pi\)\(\beta\)-HSD-I controls the level of glucocorticoid action in the brain also known to contributes to neurotoxicity (Rajan V et al (1996)). It has been also suggested that inhibiting 1\(\Pi\)\(\beta\)-HSD-I in the brain may result in reduced anxiety (Tranche F et al (1999)). Thus, taken together, the hypothesis is that inhibition of 1\(\Pi\)\(\beta\)-HSD-I in the human brain would prevent reactivation of cortisone into Cortisol and protect against deleterious glucocorticoid-mediated effects on neuronal survival and other aspects of neuronal function, including cognitive impairment, depression, and increased appetite.

Recent data suggest that the levels of the glucocorticoid target receptors and the 11\(\beta\)-HSD-I enzymes determine the susceptibility to glaucoma (Stokes, J. et al. (2000)). Ingestion of carbenoxolone, a non-specific inhibitor of 11\(\beta\)-HSD-I, was shown to reduce the intraocular pressure by 20% in normal subjects. There are evidences that 11\(\beta\)-HSD-I isozyme may modulate steroid-regulated sodium transport across the NPE, thereby influencing intraocular pressure (IOP). 1\(\pi\)-HSD-1 is suggested to have a role in aqueous production, rather than drainage, but it is presently unknown if this is by interfering with activation of the glucocorticoid or the mineralocorticoid receptor, or both (Rauz S et al (2001; 2003)).

The multitude of glucocorticoid action is exemplified in patients with prolonged increase in plasma glucocorticoids, so called "Cushing's syndrome". These patients have
prolonged increase in plasma glucocorticoids and exhibit impaired glucose tolerance, type 2 diabetes, central obesity, and osteoporosis. These patients also have impaired wound healing and brittle skin. Administration of glucocorticoid receptor agonist (RU38486) in Cushing’s syndrome patients reverses the features of metabolic syndrome (Neiman LK et al (1985)).

Glucocorticoids have been shown to increase risk of infection and delay healing of open complications wounds. Patients treated with glucocorticoids have 2-5-fold increased risk of lesions when undergoing surgery. Glucocorticoids influence wound healing by interfering with production or action of cytokines and growth factors like IGF, TGF-beta, EGF, KGF and PDGF (Beer HD et al (2000)). TGF-beta reverses the glucocorticoid-induced wound-healing deficit in rats by PDGF regulation in macrophages (Pierce GF et al (1989)). It has also been shown that glucocorticoids decrease collagen synthesis in rat and mouse skin in vivo and in rat and human fibroblasts (Oishi Y et al, 2002).

Glucocorticoids have also been implicated in conditions as diverse as polycystic Ovaries Syndrome, infertility, memory dysfunction, sleep disorders, myopathy (Endocrinology. 2011 Jan; 152(1):93-102. Epub 2010 Nov 24.PMID: 21106871) and muscular dystrophy. As such the ability to target enzymes that have an impact on glucocorticoid levels is expected to provide promise for the treatment of these conditions:

Based on patent literature and company press releases, there are many compound tested for 11β-HSD-I inhibition in the different stages of drug discovery pipeline.

Incyte Corporation's INCB13739 has proceeded furthest to phase lib stage of clinical trial. The results of phase IIa trial for type 2 diabetes (28-days, placebo-controlled, two-step hyperinsulinemic clamp studies) showed that it was safe and well tolerated without any serious side effects and hypoglycemia.

Though this molecule significantly improved hepatic insulin sensitivity there was no appreciable improvement in plasma glucose levels. The molecule appeared to be having positive effects on risk factors for cardiovascular disease including reduction of LDL, total cholesterol and triglycerides as well as more modest increases in HDL. INCB13739 is currently being studied in a dose ranging phase II b trials in T2D patients whose glucose levels are not controlled by metformin monotherapy.
In the pre-clinical stage, Incyte's lead inhibitor 1NCB13739 was tested in rhesus monkey and was shown to inhibit adipose 11P-HSD-1 (INCB013739, a selective inhibitor of 11β-Hydroxysteroid Dehydrogenase Type 1 (11βHSD1) improves insulin sensitivity and lowers plasma cholesterol over 28 days in patients with type 2 diabetes mellitus.

The evidence therefore strongly suggests that compounds that are inhibitors of 11β-Hydroxysteroid Dehydrogenase would be useful in the treatment of a number of clinical conditions associated with the expression of this enzyme. In addition it would be desirable if the inhibitors were selective inhibitors so as not to interfere with the functioning of closely related enzymes such as 11β-HSD-2 which is known to provide a protective effect in the body.

OBJECTS OF INVENTION

The principal object of the invention is to provide compounds that are inhibitors of 11β-Hydroxysteroid Dehydrogenase. These compounds would be expected to be useful in the treatment of 11β-Hydroxysteroid Dehydrogenase related conditions as discussed above.

A further object is to provide a pharmaceutical composition containing a compound that is an inhibitor of 11β-Hydroxysteroid Dehydrogenase and a pharmaceutically acceptable excipient, diluent or carrier.

A further object is to provide a method of prevention or treatment of a condition associated with 11β-Hydroxysteroid Dehydrogenase activity in a mammal.

STATEMENT OF INVENTION

The present invention provides compounds of Formula (I):

![Formula (I)](image_url)

wherein:
each R^1 and R'^1 is independently selected from the group consisting of H, halogen, OH, NO$_2$, CN, SH, NH$_2$, CF$_3$, OCF$_3$, optionally substituted C$_1$-C$_{12}$alkyl, optionally substituted C$_1$-C$_{12}$haloalkyl optionally substituted C$_2$-C$_{12}$alkenyl, optionally substituted C$_2$-C$_{12}$alkynyl, optionally substituted C$_2$-C$_{12}$heteroalkyl, optionally substituted C$_3$-C$_{12}$cycloalkyl, optionally substituted C$_3$-C$_{12}$cycloalkenyl, optionally substituted C$_2$-C$_{12}$heterocy cloalkenyl, optionally substituted C$_6$-C$_{12}$aryl, optionally substituted C$_1$-C$_{12}$heteroaryl, optionally substituted C$_1$-C$_{12}$alkyloxy, optionally substituted C$_2$-C$_{12}$alkenlyloxy, optionally substituted C$_2$-C$_{12}$alkynlyloxy, C$_3$-C$_{12}$cycloalkenlyloxy, optionally substituted C$_3$-C$_{12}$cycloalkynlyloxy, optionally substituted C$_3$-C$_{12}$heterocy cloalkenlyloxy, optionally substituted C$_6$-C$_{12}$aryloxy, optionally substituted C$_1$-C$_{12}$aryloxy, optionally substituted C$_1$-C$_{12}$alkylamino, SR$_2$, S$_2$O, S$_2$N$_2$R$_2$, S$_2$R$_2$, SNOR$_2$R$_2$, SOR$_2$, COR$_2$, COOH, COOR$_2$, CONR$_2$R$_3$, NR$_2$COR$_3$, NR$_2$COOR$_3$, NR$_2$S0$_2$R$_3$, NR$_2$CNR$_2$R$_3$, NR$_2$R$_3$, and acyl, or any two R^1 on adjacent carbon atoms may be joined to form a cyclic moiety, or any two R^1 on the same carbon when taken together may form a group of the formula =O or =NR$_2$, and the two R'^1 may be joined to form a double bond:

Ar is an optionally substituted C$_r$C$_{12}$heteroaryl group;

A is selected from the group consisting of S, SO, SO$_2$, O, and -CR$_4$R$_4$R$_4$;

B is a group of the formula -(CR$_5$R$_5$)$_n$;

wherein each R^a, R^b, R^c and R^d is independently selected from the group consisting of H, halogen, OH, NO$_2$, CN, SH, NH$_2$, CF$_3$, OCF$_3$, optionally substituted C$_1$-C$_{12}$alkyl, optionally substituted C$_2$-C$_{12}$heteroalkyl, optionally substituted C$_3$-C$_{12}$heteroaryl, optionally substituted C$_6$-C$_{12}$aryl, optionally substituted C$_1$-C$_{12}$heteroaryl; SR$_2$, S$_2$O, S$_2$N$_2$R$_2$, S$_2$R$_2$, SNOR$_2$R$_2$, SOR$_2$, COR$_2$, COOH, COOR$_2$, CONR$_2$R$_3$, NR$_2$COR$_3$, NR$_2$COOR$_3$, NR$_2$S0$_2$R$_3$, NR$_2$CNR$_2$R$_3$, NR$_2$R$_3$, and acyl,

or any two R^a, R^b, R^c and R^d on the same carbon atom when taken together may form a cycloalkyl group or a substituent of the formula:

\[\text{R}^a \]
wherein each R^2 and R^3 is independently selected from the group consisting of H, optionally substituted d-C^a-alkyl, optionally substituted CrC^h-heteroalkyl, optionally substituted CrC_{12}-haloalkyl, optionally substituted C_3-C_{12}cycloalkyl, optionally substituted C_6-C_{18}aryl, and optionally substituted C_1-C_{18}heteroaryl;

R^4 is selected from the group consisting of O, S, and NR^5;

R^6 is selected from the group consisting of H, OR^6, optionally substituted C_1-C_{12}alkyl, optionally substituted C_1-C_{12}haloalkyl optionally substituted C_2-C_{12}alkenyl, optionally substituted C_2-C_{12}alkynyl, optionally substituted $CI-C_{12}$alkyloxy, optionally substituted C_1-C_{12}haloalkyloxy, optionally substituted C_2-C_{12}heteroalkyl, optionally substituted C_3-C_{12}cycloalkyl, optionally substituted C_3-C_{12}cycloalkenyl, optionally substituted C_2-C_{12}heterocycloalkyl, optionally substituted C_3-C_{12}heterocycloalkenyl, optionally substituted C_6-C_{18}aryl, and optionally substituted d-C^a-heteroaryl;

R^6 is selected from the group consisting of H, optionally substituted C_1-C_{12}alkyl, optionally substituted C_2-C_{12}heteroalkyl, optionally substituted C_3-C_{12}cycloalkyl, optionally substituted C_6-C_{18}aryl, and optionally substituted d-C^a-heteroaryl,

or any two or more R^4, R^6, R^6 and R^4 may join together to form a multiple bond between adjacent carbon atoms such as a double or triple bond, or a cyclic moiety connecting the carbon atoms to which they are attached;

W^1 and W^2 are selected such that one is N and the other is $(CR^1)_2$;

the bond from the carbonyl carbon is joined to whichever of W^1 or W^2 is N;

D is O or $(CR^1)_2$;

n is an integer selected from the group consisting of 0, 1, 2, 3, and 4;

a is an integer selected from the group consisting of 0, 1, and 2;

b is an integer selected from the group consisting of 0, 1, 2, 3, 4, 5, 6, 7, and 8;

c is an integer selected from 0, 1, and 2;
or a pharmaceutically acceptable salt, N-oxide, or prodrug thereof.

As with any group of structurally related compounds which possess a particular utility, certain embodiments of variables of the compounds of the Formula (I), are particularly useful in their end use application.

In some embodiments A is S. In some embodiments A is SO. In some embodiments A is SO₂. In some embodiments A is O. In some embodiments A is CR²R⁺.

In some embodiments R⁰ and R⁰ are each independently selected from the group consisting of H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, (CH₂)₂CH₃, Cl, Br, F, I, OH, N0₂, NH₂, CN, S0₃H, OCH₃, OCH₂CH₂CH₃, CF₃, and OCF₃. In some embodiments R⁰ is H. In some embodiments R⁰ is H. In some embodiments R⁰ and R⁰ are different such that the carbon is a chiral carbon. In some embodiments one of R⁰ and R⁰ is H and the other is an optionally substituted alkyl.

B is a group of the formula -(CR²R⁺)ₙ-. In some embodiments n is 0. In some embodiments n is 1. In some embodiments n is 2.

In some embodiments R⁰ and R⁰ are each independently selected from the group consisting of H, CH₃, CH₂CH₃, CH₂CH₂CH₃, CH(CH₃)₂, (CH₂)₂CH₃, Cl, Br, F, I, OH, N0₂, NH₂, CN, S0₃H, OCH₃, OCH₂CH₂CH₃, CF₃, and OCF₃. In some embodiments both R⁰ and R⁰ are H such that B is CH₂.

In some embodiments any two or more R⁰, R⁺, R⁻ and R⁰ may join together to form a multiple bond between adjacent carbon atoms such as a double or triple bond, or a cyclic moiety connecting the carbon atoms to which they are attached.

In some embodiments two of R⁰, R⁺, R⁻ and R⁰ on adjacent carbon atoms are joined to form a double bond. In some embodiments four of R⁰, R⁺, R⁻ and R⁰ on adjacent carbon atoms are joined to form a triple bond.

In some embodiments one of R⁰ and R⁺ and one or R⁻ and R⁰ when taken together with the carbon atoms to which they are attached form a cyclic moiety. Examples of cyclic moieties that may be formed include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
In some embodiments \(n = 2 \) and one of \(R^a \) and \(R^b \) and one or \(R^c \) and \(R^d \) on the carbon atom two carbons removed (on the beta carbon) when taken together with the carbon atoms to which they are attached and the alpha carbon atom form a cyclic moiety. Examples of cyclic moieties that may be formed include cyclobutyl, cyclopentyl and cyclohexyl.

In some embodiments \(A \) is \(CR^aR^b \) and \(B \) is \(CH_2 \), this provides compounds of formula (II):

\[
\begin{array}{c}
\text{Formula (II)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{wherein } R^1, R^{1a}, R^a, R^b, Ar, W^1, W^2, D, a, b \text{ and } c \text{ are as defined above.}
\end{array}
\]

In some embodiments \(D \) is \(O \). In some embodiments \(D \) is \((CR_1^2) \).

In some embodiments \(A \) is \(CR^aR^b \), \(B \) is \(CH_2 \) and \(D \) is \(O \), this provides compounds of formula (IIa):

\[
\begin{array}{c}
\text{Formula (IIa)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{wherein } R^1, R^{1a}, R^a, R^b, Ar, W^1, W^2, a, b \text{ and } c \text{ are as defined above.}
\end{array}
\]
In some embodiments A is CR²R⁰, B is CH₂ and D is (CR¹)₂, this provides compounds of formula (IIIb):

\[
\text{Formula (IIIb)}
\]

wherein R¹, R¹a, R², R⁰, Ar, W¹, W², a, b and c are as defined above.

In some embodiments c is 0 and the ring containing W¹ and W² is a 5 membered ring.

In some embodiments c is 1 and the ring containing W¹ and W² is a 6 membered ring. In some embodiments c is 2 and the ring containing W¹ and W² is a 7 membered ring.

In some embodiments A is CR²R⁰, B is CH₂, D is O and c is 1, this provides compounds of formula (IVa):

\[
\text{Formula (IVa)}
\]

wherein R¹, R¹a, R², R⁰, Ar, W¹, W², a, and b are as defined above.

In some embodiments A is CR²R⁰, B is CH₂, D is (CR¹)₂ and c is 1, this provides compounds of formula (IVb):
wherein R, R^a, R^b, Ar, W, W^2, a and b are as defined above.

5 In some embodiments W^1 is N and W^2 is $(CR_{1,2})$. In some embodiments W^1 is $(CR_{1,2})$, and W^2 is N.

10 This provides compounds of formula (Va):

wherein R^1, R^{1a}, R^3, R^b, Ar, a, and b are as defined above.

In some embodiments A is CR^aR^b, B is CH_2, D is O, c is 1, W^1 is N and W^2 is $(CR_{1,2})$, this provides compounds of formula (Vb).
wherein \(R^1, R^{1a}, R^a, R^b, Ar, a \) and \(b \) are as defined above.

In some embodiments \(A \) is \(CR^a R^b \), \(B \) is \(CH_2 \), \(D \) is \(O \), \(c \) is 1, \(W^1 \) is \((CR^{1a})_2 \), and \(W^2 \) is \(N \) this provides compounds of formula (Vc):

wherein \(R^1, R^{1a}, R^a, R^b, Ar, a \), and \(b \) are as defined above.

In some embodiments \(A \) is \(CR^a R^b \), \(B \) is \(CH_2 \), \(D \) is \((CR^{1a})_2 \), \(c \) is 1, \(W^1 \) is \(N \) and \(W^2 \) is \((CR^{1a})_2 \), this provides compounds of formula (Vd).
wherein R_{1a}, R_a, R, Ar, a and b are as defined above.

The group Ar may be any optionally substituted C$_7$-C$_9$ heteroaryl moiety. Suitable heteroaryl groups include thiophene, benzothiophene, benzo[2,3-b]thiophene, furan, isindolizine, xanthene, phenoxtine, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, tetrazole, indole, isoindole, 1H-indazole, purine, quinoline, isoquinoline, phthalazine, naphthyridine, quinoxaline, cinnoline, carbazole, phenanthridine, acridine, phenazine, thiazole, isothiazole, phenothiazine, oxazole, isoxazole, furazane, phenoazole, pyridyl, quinolyl, isoquinolinyl, indolyl, and thieryl. In each instance where there is the possibility of multiple sites of substitution on the heteroaryl ring all possible attachment points are contemplated. Merely by way of example if the heteroaryl is a pyridyl moiety it may be a 2-pyridyl, a 3-pyridyl or a 4-pyridyl.

In some embodiments Ar is a group of the formula VI:

\[
\text{(VI)}
\]

wherein each V^1, V^2, V^3, V^4, V^5 and V^6 is independently selected from the group consisting of N and CR$_2^2$;

U is selected from the group consisting of NR$_8^8$, O, S and CR$_2^2$.

5

10

15

20

25
wherein each R^7 is independently selected from the group consisting of each R^3 is independently selected from the group consisting of H, halogen, OH, NO$_2$, CN, SH, NH$_2$, CF$_3$, OCF$_3$, optionally substituted C$_1$-C$_{12}$alkyl, optionally substituted C$_1$-C$_{12}$haloalkyl, optionally substituted C$_2$-C$_{12}$alkenyl, optionally substituted C$_2$-C$_{12}$alkynyl, optionally substituted C$_2$-C$_{12}$heteroalkyl, optionally substituted C$_3$-C$_{12}$cycloalkyl, optionally substituted C$_3$-C$_{12}$heterocycloalkyl, optionally substituted C$_2$-C$_{12}$heterocycloalkenyl, optionally substituted C$_6$-C$_{18}$aryl, optionally substituted C-C_{18}heteroaryl, optionally substituted C$_1$-C$_{12}$alkyloxy, optionally substituted C$_2$-C$_{12}$alkenyloxy, optionally substituted C$_2$-C$_{12}$alkynloxy, optionally substituted C$_3$-C$_{12}$cycloalkyloxy, optionally substituted C$_3$-C$_{12}$heterocycloalkyloxy, optionally substituted C$_2$-Cl$_2$ heterocycloalkyloxy, optionally substituted C$_2$-Cl$_2$ heterocycloalkenyloxy, optionally substituted C$_6$-C$_{18}$aryloxy, optionally substituted Ci-d heteroaryloxy, optionally substituted C$_1$-C$_{12}$alkylamino, SR9, SO_3H, S0_2NR9R10, S0_2R9, SONR9R10, SOR9, COR9, COOH, COOR9, CONR9R10, NR9COR10, NR9COOR10, NR9S0_2R10, NR9CONR9R10, NR9R10, and acyl;

wherein R^9 is selected from the group consisting of H, optionally substituted C$_1$-C$_{12}$alkyl, optionally substituted C$_2$-C$_{12}$alkenyl, optionally substituted C$_2$-C$_{12}$alkynyl, optionally substituted C$_2$-Cl$_2$ heteroalkyl, optionally substituted C$_3$-Cl$_2$cycloalkyl, optionally substituted C$_2$-C$_{12}$heterocycloalkyl, optionally substituted C$_6$-C$_{18}$arylamino, SR^9, SO_3H, S0_2NR9R10, S0_2R9, SONR9R10, SOR9, COR9, COOH, COOR9, and CONR9R10;

wherein each R^9 and R10 is independently selected from the group consisting of H, optionally substituted C$_1$-C$_{12}$alkyl, optionally substituted C$_2$-C$_{10}$heteroalkyl, optionally substituted C$_1$-C$_{12}$haloalkyl, optionally substituted C$_3$-C$_{12}$cycloalkyl, optionally substituted C$_6$-C$_{18}$aryl, and optionally substituted C$_1$-C$_{18}$heteroaryl.

In some embodiments Ar is selected from the group consisting of:
wherein R is as defined above; e is an integer selected from the group consisting of 0, 1, 2, 3 and 4; f is an integer selected from the group consisting of 0, 1, 2, and 3.

In some embodiments A is CR^aR^b, B is CH_2, D is $(CR^1)_2$, c is 1, W^1 is N, W^2 is $(CR^1)_2$ and Ar is a group of formula VIa, this provides compounds of formula (Vila):
Formula (Vila)

wherein R^1, R^{1a}, R^{a}, R^p, R^7, R^8, a, b and e are as defined above.

In some embodiments A is CR^aR^b, B is CH_2, D is (CR^1_2), c is 1, W^1 is N, W^2 is (CR^1_2) and Ar is a group of formula Vlb, this provides compounds of formula (Vllb):

Formula (Vllb)

wherein R^1, R^{1a}, R^{a}, R^p, R^7, R^8, a, b and f are as defined above.

In some embodiments A is CR^aR^b, B is CH_2, D is (CR^1_2), c is 1, W^1 is N, W^2 is (CR^1_2) and Ar is a group of formula Vic, this provides compounds of formula (Vile):
wherein R^1, R^{1a}, R^a, R^b, R^7, R^8, a, b and e are as defined above.

In some embodiments A is CR^aR^b, B is CH_2, D is $(CR^1)_2$, c is 1, W^1 is N, W^2 is $(CR^1)_2$ and Ar is a group of formula Vld, this provides compounds of formula (Vlld):

wherein R^1, R^{1a}, R^a, R^b, R^7, a, b and e are as defined above.

In some embodiments A is CR^aR^b, B is CH_2, D is $(CR^1)_2$, c is 1, W^1 is N, W^2 is $(CR^1)_2$ and Ar is a group of formula Vle, this provides compounds of formula (Vlle):
wherein $R^1, R^{1a}, R^a, R^b, R^7, a, b$ and e are as defined above.

In some embodiments A is $CR^a R^b$, B is CH_2, D is (CR^{1a}), c is 1, W^1 is N, W^2 is (CR^{1a}) and Ar is a group of formula VIf, this provides compounds of formula (VIIf):

wherein $R^1, R^{1a}, R^a, R^b, R^7, R^8, a, b$ and e are as defined above.

In some embodiments A is $CR^a R^b$, B is CH_2, D is (CR^{1a}), c is 1, W^1 is IM, W^2 is (CR^{1a}) and Ar is a group of formula VIg, this provides compounds of formula (VIIg):
wherein R₁, R₁ᵃ, R₂, R₇, a, b and e are as defined above.

As can be seen many of the compounds of the present invention contain a quinoline or isoquinoline moiety as shown below. In order to assist the reader in determining substitution patterns on these moieties the accepted ring atom numbering is shown below.

In some embodiments of the compounds described above R¹ is selected from the group consisting of H, methyl, CONHC(CH₃)₃, OH, CO₂H, CO₂CH₃, CO₂CH₂CH₃, phenyl, CH₂OH, CH₂CO₂H, CN and OCH₃. In some embodiments R¹ is CO₂H.

In some embodiments a is 0. In some embodiments a is 1. In some embodiments a is 2. In some embodiments a is 3.
In some embodiments b is 0. In some embodiments b is 1. In some embodiments b is 2. In some embodiments b is 3. In some embodiments b is 4. In some embodiments b is 5. In some embodiments b is 6. In some embodiments b is 7. In some embodiments b is 8.

In the compounds of the invention where there is a non H value for R1, the substituent may be present on any available carbon atom. In some embodiments the substituent is located at the 4 position of the isoquinoline or quinoline ring. In some embodiments the substituent is located at the 5 position of the the isoquinoline or quinoline ring.

In some embodiments of the compounds described above R1a is selected from the group consisting of H, methyl, CONHC(CH3)3, OH, CO2H, CO2CH3, CO2C6H4CH3, phenyl, CH2OH, CN and OCH3.

In some embodiments of the compounds of the invention containing an R2 group, the R2 group is selected from H and d-C^aalkyl. In some embodiments R2 is H. In some embodiments R2 is methyl.

In some embodiments of the compounds of the invention containing an R3 group, the R3 group is selected from H and d-C^aalkyl. In some embodiments R3 is H. In some embodiments R3 is methyl.

In some embodiments of the compounds of the invention containing an R4 group, the R4 group is selected from O and S. In some embodiments R4 is O. In some embodiments R4 is S.

In some embodiments of the compounds of the invention containing an R5 group, the R5 group is selected from H and C₁-C₁₂alkyl. In some embodiments R5 is H. In some embodiments R5 is methyl.

In some embodiments e is 1. In some embodiments e is 2. In some embodiments e is 3. In some embodiments e is 4. In circumstances where e is 1 the R⁷ group may be located at either the 4, 5, 6, or 7 position on the six membered ring. In some embodiments where e is 1 the R⁷ substituent is located at the 4 position on the ring. In some embodiments where e is 1 the R⁷ substituent is located at the 5 position on the ring. In some embodiments where e is 1 the R⁷ substituent is located at the 6 position on the ring. In some embodiments where e is 1 the R⁷ substituent is located at the 7 position on the ring.
In some embodiments f is 1. In some embodiments f is 2. In some embodiments f is 3. In some embodiments where f is 1 the R^7 substituent is located at the 4 position on the ring. In some embodiments where f is 1 the R^7 substituent is located at the 5 position on the ring. In some embodiments where f is 1 the R^7 substituent is located at the 6 position on the ring. In some embodiments where f is 1 the R^7 substituent is located at the 7 position on the ring.

R^7 may be selected from a wide range of possible substituents as discussed above. In some embodiments each R^7 is independently selected from the group consisting of H, halogen, OH, N0_2, CN, optionally substituted C_1-C_4 alkyl, optionally substituted C_3-C_12 cycloalkyl CrC_12 haloalkyl, optionally substituted, optionally substituted C_6-C_18 aryl, optionally substituted CrC_18 heteroaryl, optionally substituted C_2-C_16 heterocycloalkyl, C_1-C_12 alkoxyl, and C_1-C_12 haloalkoxyl. Exemplary R^7 substituents include CH_3, CH_2CH_3, CH_2CH_2CH_3, CH(CH_3)_2, (CH_2)_3CH_3, cyclopropyl, isopropoxy, I, Br, F, Cl, OH, N0_2, NH_2, CN, S0_3H, OCH_3, OCH_2CH_2CH_3, CF_3, OCF_3, thiophen-2-yl, 5-fluoro-thiophen-2-yl, furan-2-yl, 5-methyl-furan-2-yl, pyridine-2-yl, 3-fluoropyridine-2-yl, 3-methyl-isoxazol-5-yl, 3-fluoro-phenyl, 4-fluoro-phenyl, 1-methyl pyrrol-2-yl, 5-fluoro-furan-2-yl, 5-cyano-furan-2-yl, and 5-carboxy-furan-2-yl.

R^8 may be selected from a wide range of possible substituents as discussed above. In some embodiments each R^8 is independently selected from the group consisting of H, halogen, OH, N0_2, CN, C_1-C_12 alkyl, C_1-C_12 haloalkyl, C_1-C_12 alkoxy, and C_1-C_12 haloalkoxy. Exemplary R^8 substituents include CH_3, CH_2CH_3, CH_2CH_2CH_3, CH(CH_3)_2, (CH_2)_3CH_3, I, Br, F, I, OH, N0_2, NH_2, CN, S0_3H, OCH_3, OCH_2CH_2CH_3, CF_3, and OCF_3.

Many if not all of the variables discussed above may be optionally substituted. If the variable is optionally substituted then in some embodiments each optional substituent is independently selected from the group consisting of halogen, =0, =S, -CN, -N0_2, -CF_3, -OCF_3, alkyl, alkenyl, alkynyl, halogenalkylnyl, haloalkynyl, heteroalkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, heteroaryl, cycloalkylalkyl, heterocycloalkylalkyl, heteroaryalkylalkyl, aryalkylalkyl, cycloalkylalkenyl, heteroaryalkylalkenyl, cycloalkylheteroalkyl, heterocycloalkylheteroalkyl, arylheteroalkyl, heteroarylheteroalkyl, hydroxy, hydroxyalkyl, alkoxy, alkoxyalkyl, alkoxyalkoxylalkyl, alkoxyalkyoxyalkyl, alkoxyalkyloxycycloalkyl, alkoxyheteroalkyl, alkoxyheteroaryl, alkoxyxocarbonyl, alkylaminocarbonyl, alkenyl, alkenyloxyl, cycloalkyloxyl, cycloalkenyl, heterocycloalkylxoy, heterocycloalkenylxoy, aryl, phenoxy, benzyloxy, heteroaryloxy, arylalkyloxyl, amino, alkylaminocarbonyl, aminoalkyl, aminoalkyl, sulfonlamino,
sulfinylamino, sulfonyl, alkylsulfonyl, arylsulfonyl, aminosulfonyl, sulfinyl, alkylsulfinyl,
aryl sulfynyl, aminosulfinylaminoalkyl, -C(=0)OH, -C(=0)R°, -C(=0)OR°, C(=0)NR°R',
C(=NOH)R°, C(=NR°)NR°R°, NR°R', NR°C(=0)R°, NR°C(=0)OR°, NR°C(=0)NR°R°,
NR°C(=NR°)NR°R°, NR°S0₂R°, -SR°, S0₂NR°R°, -OR°, OC(=0)NR°R°, OC(=0)R° and acyl,

wherein R°, R'°, R° and R° are each independently selected from the group consisting of:
H, C₁₋₁₂ alkyl, C₁₋₁₂ haloalkyl, C₂₋₁₂ alkenyl, C₂₋₁₂ alkynyl, C₃₋₁₂ cycloalkyl,
C₂₋₁₂ cycloalkenyl, Cl-C₂ heterocycloalkyl, Cl-C₂ heterocycloalkenyl, C₆₋₁₂ heteroaryl,
C₁₈ ary1, CrC₄ heteroaryl, and acyl, or any two or more of R°, R°, R° and R°, when taken
together with the atoms to which they are attached form a heterocyclic ring system with 3 to
12 ring atoms.

In some embodiments each optional substituent is independently selected from the

group consisting of: F, Cl, Br, =O, =S, -CN, =NO₂, alkyl, alkenyl, heteroalkyl, haloalkyl, alkynyl,
aryl, cycloalkyl, heterocycloalkyl, heteroaryl, hydroxy, hydroxyalkyl, alkoxy, alkylamino,
aminoalkyl, acylamino, phenoxy, alkoxycarbonyl, benzhydryl, alkylsulfonyl, aminosulfonyl,
aminomethyl, -C(=0)OR°, COOH, SH, and acyl.

In some embodiments each optional substituent is independently selected from the

group consisting of: F, Br, Cl, =O, =S, -CN methyl, trifluoro-ethyl, ethyl, 2,2,2-trifluoroethyl,
isopropyl, propyl, 2-ethyl-propyl, 3,3-dimethyl-propyl, butyl, isobutyl, 3,3-dimethyl-butyl,
2-ethyl-butyl, pentyl, 2-methyl-pentyl, pent-4-enyl, hexyl, heptyl, octyl, phenyl, NH₂, -NO₂,
phenoxy, hydroxy, methoxy, trifluoro-methoxy, ethoxy, and methylenedioxy.

Alternatively, two optional substituents on the same moiety when taken together may
be joined to form a fused cyclic substituent attached to the moiety that is optionally
substituted. Accordingly the term optionally substituted includes a fused ring such as a
cycloalkyl ring, a heterocycloalkyl ring, an aryl ring or a heteroaryl ring.

In addition to compounds of formula I, the embodiments disclosed are also directed to
pharmaceutically acceptable salts, pharmaceutically acceptable N-oxides, pharmaceutically
acceptable prodrugs, and pharmaceutically active metabolites of such compounds, and
pharmaceutically acceptable salts of such metabolites.

The invention also relates to pharmaceutical compositions including a compound of
the invention and a pharmaceutically acceptable carrier, diluent or excipient.
In a further aspect the present invention provides a method of prevention or treatment of a condition in a mammal, the method comprising administering an effective amount of a compound of the invention. In one embodiment the condition is a condition that can be treated by inhibition of 11β-HSDI.

In yet an even further aspect the invention provides the use of a compound of the invention in the preparation of a medicament for the treatment of a condition in a mammal. In one embodiment the condition is a condition that can be treated by inhibition of 11β-HSDI.

In yet an even further aspect the invention provides the use of a compound of the invention in the treatment of a condition in a mammal. In one embodiment the condition is a condition that can be treated by inhibition of 11β-HSDI.

In some embodiments the condition is selected from the group consisting of is selected from the group consisting of diabetes, hyperglycemia, low glucose tolerance, hyperinsulinemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, dyslipidemia, obesity, abdominal obesity, glaucoma, hypertension, atherosclerosis and its sequelae, retinopathy and other ocular disorders, nephropathy, neuropathy, myopathy, osteoporosis, osteoarthritis, dementia, depression, neurodegenerative disease, psychiatric disorders, Polycystic ovaries syndrome, infertility, Cushing’s Disease, Cushing’s syndrome, viral diseases, and inflammatory diseases.

In some embodiments the condition is diabetes. In some embodiments the condition is type II diabetes.

In some embodiments the compound is administered in combination with an adjuvant. In some embodiments the adjuvant is selected from the group consisting of dipeptidyl peptidase-IV (DP-IV) inhibitors; (b) insulin sensitizing agents; (c) insulin and insulin mimetics; (d) sulfonylureas and other insulin secretagogues; (e) alpha-glucosidase inhibitors; (f) GLP-1,

GLP-1 analogs, and GLP-1 receptor agonists; and combinations thereof.

In one other embodiment the compound is administered as a substitute for monotherapy or combination therapy, in an event of failure of treatment by agent selected from the group consisting of dipeptidyl peptidase-IV (DP-IV) inhibitors; (b) insulin sensitizing agents; (c) insulin and insulin mimetics; (d) sulfonylureas and other insulin secretagogues; (e) alpha-glucosidase inhibitors; (f) GLP-1, GLP-1 analogs, and GLP-1 receptor agonists; and combinations thereof.
In one embodiment the insulin sensitizing agent is selected from the group consisting of (i) PPAR-gamma-agonists, (ii) PPAR-alpha-agonists, (iii) PPAR-alpha/gamma-dual agonists, (iv) biguanides, and combinations thereof.

These and other teachings of the invention are set forth herein.

DETAILED DESCRIPTION OF THE INVENTION

In this specification a number of terms are used which are well known to a skilled addressee. Nevertheless for the purposes of clarity a number of terms will be defined.

As used herein, the term "unsubstituted" means that there is no substituent or that the only substituents are hydrogen.

The term "optionally substituted" as used throughout the specification denotes that the group may or may not be further substituted or fused (so as to form a condensed polycyclic system), with one or more non-hydrogen substituent groups. In certain embodiments the substituent groups are one or more groups independently selected from the group consisting of halogen, =0, =S, -CN, -N=0, -CF, -OCF, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, heteroalkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, heteroaryl, cycloalkylalkyl, heterocycloalkylalkyl, heteroarylalkyl, aryalkyl, cycloalkylalkenyl, heterocycloalkylalkenyl, arylalkenyl, heteroarylalkenyl, cycloalkylheteroaryl, heterocycloalkylheteroaryl, ary1heteroaryl, heteroary1heteroaryl, hydroxy, hydroxyalkyl, alkoxy, alkoxyalkyl, alkoxyalkenyl, alkoxyacyclicalkyl, alkoxyheteroaryl, alkoxyacylcarbonyl, alkylaminocarbonyl, alkenyloxy, alkynlyloxy, cycloalkyloxy, cycloalkenylxoy, heterocycloalkyloxy, heterocycloalkenylxoy, arlyloxy, phenoxy, benzyloxy, heteroaryloxy, alylalkyloxy, amino, alkyllamino, acylamino, alylamino, sulfonamido, sulfinylamido, sulfonamido, alkylsulfonyl, ary1sulfonyl, aminosulfonyl, sulfinyl, alkylsulfinyl, alylsulfinyl, aminosulfonylaminoalkyl, -C(=0)OH, -C(=0)R, -C(=0)OR, C(=0)NR, C=N0H)R, C=N(R=NR)NR=R, NR=NR, NR=NC=CN=0, R=NR, NR=NR, NR=NR, NR=S2R, -SR, S2R, NR=SR, -OR, NR=0, OC=0, and acyl,

wherein R, R and R are each independently selected from the group consisting of H, Cl-C alkyl, Cl-C alkenyl, C-C alkynyl, Cl-C alkenynyl, Cl-C heteroalkynyl, Cl-C cycloalkyl, Cl-C cycloalkenyl, C-C heterocycloalkyl, C-C heterocycloalkenyl, Cl-C phenyl, d-C heteroaryl, and acyl, or any two or more of R, R and R, when taken
together with the atoms to which they are attached form a heterocyclic ring system with 3 to 12 ring atoms.

In some embodiments each optional substituent is independently selected from the group consisting of: halogen, =O, =S, =CN, =N\(^{0,2}\), -CF\(_{3}\), -OCF\(_{3}\), alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, heteroalkyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, heteroaryl, hydroxy, hydroxyalkyl, alkylxoy, alklyoxyalkyl, alkoxyaryl, alkoxyheteroaryl, alkenyloxy, alkynyloxy, cyloalkyloxy, cycloalkenyloxy, heterocycloalkyloxy, heterocycloalkenyloxy, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, arylalkyloxy, amino, alkylamino, acylamino, aminoalkyl, arylamino, sulfonyl, alkylsulfonyl, arylsulfonyl, aminosulfonfyl, aminoalkyl, =COOH, =SH, and acyl.

Examples of particularly suitable optional substituents include F, Cl, Br, I, CH\(_3\), CH\(_2\)CH\(_3\), OH, OCH\(_3\), CF\(_3\), OCF\(_3\), N\(^{0,2}\), NH\(_2\), and CN.

In the definitions of a number of substituents below it is stated that "the group may be a terminal group or a bridging group". This is intended to signify that the use of the term is intended to encompass the situation where the group is a linker between two other portions of the molecule as well as where it is a terminal moiety. Using the term alkyl as an example, some publications would use the term "alylene" for a bridging group and hence in these other publications there is a distinction between the terms "alkyl" (terminal group) and "alylene" (bridging group). In the present application no such distinction is made and most groups may be either a bridging group or a terminal group.

"Acyll" means an R-C(=0)- group in which the R group may be an alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl group as defined herein. Examples of acyl include acetyl and benzoyl. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the carbonyl carbon.

"Acylamino" means an R-C(=0)-NH- group in which the R group may be an alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl group as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the nitrogen atom.

"Alkenyl" as a group or part of a group denotes an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be straight or branched preferably having 2-12 carbon atoms, more preferably 2-10 carbon atoms, most preferably 2-
6 carbon atoms, in the normal chain. The group may contain a plurality of double bonds in
the normal chain and the orientation about each is independently E or Z. The alkenyl group is
preferably a 1-alkenyl group. Exemplary alkenyl groups include, but are not limited to,
ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl and nonenyi. The group may
be a terminal group or a bridging group.

"Alkenyloxy" refers to an alkenyl-O- group in which alkenyl is as defined herein. Preferred alkenyloxy groups are d-Cealkenyloxy groups. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the
molecule through the oxygen atom.

"Alkyl" as a group or part of a group refers to a straight or branched aliphatic hydrocarbon group, preferably a C₁⁻C₁₂ alkyl, more preferably a C₁⁻C₁₀ alkyl, most preferably C₁⁻C₆ unless otherwise noted. Examples of suitable straight and branched CrCealkyl
substituents include methyl, ethyl, n-propyl, 2-propyl, n-butyl, sec-butyl, t-butyl, hexyl, and the like. The group may be a terminal group or a bridging group.

"Alkylamino" includes both mono-alkylamino and dialkylamino, unless specified. "Mono-alkylamino" means an Alkyl-NH- group, in which alkyl is as defined herein. "Dialkylamino" means a (alkyl)₂N- group, in which each alkyl may be the same or different and are each as defined herein for alkyl. The alkyl group is preferably a C₁⁻C₆ alkyl group. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the nitrogen atom.

"Alkylaminocarbonyl" refers to a group of the formula (Alkyl)ₓ(H)ᵧNC(=0)- in which alkyl is as defined herein, x is 1 or 2, and the sum of X+Y =2. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the carbonyl carbon.

"Alkylxy" refers to an alkyl-O- group in which alkyl is as defined herein. Preferably the alkoxy is a C₁⁻C₆ alkoxy. Examples include, but are not limited to, methoxy and ethoxy. The group may be a terminal group or a bridging group.

"Alkoxyalky" refers to an alkoxy-alkyl group in which the alkoxy and alkyl
moieties are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the alkyl group.
"Alkylxyaryl" refers to an alkyloxy-aryl- group in which the alkyloxy and aryl moieties are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the aryl group.

"Alkylxyoxycarbonyl" refers to an alkyl-0-C(=0)- group in which alkyl is as defined herein. The alkyl group is preferably a C1-C6 alkyl group. Examples include, but are not limited to, methoxycarbonyl and ethoxycarbonyl. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the carbonyl carbon.

"Alkylxyoxycycloalkyl" refers to an alkyloxy-cycloalkyl- group in which the alkyloxy and cycloalkyl moieties are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the cycloalkyl group.

"Alkylxyoxyheteroaryl" refers to an alkyloxy-heteroaryl- group in which the alkyloxy and heteroaryl moieties are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the heteroaryl group.

"Alkylxyoxyheterocycloalkyl" refers to an alkyloxy-heterocycloalkyl- group in which the alkyloxy and heterocycloalkyl moieties are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the heterocycloalkyl group.

"Alkylxyxulfinyi" means an alkyl-S-(=0)- group in which alkyl is as defined herein. The alkyl group is preferably a C1-C6 alkyl group. Exemplary alkylxulfinyi groups include, but not limited to, methylxulfinyi and ethylxulfinyi. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the sulfur atom.

"Alkylxyxofonyi" refers to an alkyl-S(=0)2- group in which alkyl is as defined above. The alkyl group is preferably a C1-C6 alkyl group. Examples include, but not limited to methylxofonyi and ethylxofonyi. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the sulfur atom.
"Alkynyl" as a group or part of a group means an aliphatic hydrocarbon group containing a carbon-carbon triple bond and which may be straight or branched preferably having from 2-12 carbon atoms, more preferably 2-10 carbon atoms, more preferably 2-6 carbon atoms in the normal chain. Exemplary structures include, but are not limited to, ethynyl and propynyl. The group may be a terminal group or a bridging group.

"Alkynyloxy" refers to an alkynyl-O- group in which alkynyl is as defined herein. Preferred alkynyloxy groups are C1-C6 alkynyloxy groups. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the oxygen atom.

"Aminosulfonyl" means an NH2-S(=0)Hal group. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the sulfur atom.

"Aryl" as a group or part of a group denotes (i) an optionally substituted monocyclic, or fused polycyclic, aromatic carbocycle (ring structure having ring atoms that are all carbon) preferably having from 5 to 12 atoms per ring. Examples of aryl groups include phenyl, naphthyl, and the like; (ii) an optionally substituted partially saturated bicyclic aromatic carbocyclic moiety in which a phenyl and a C9-C17 cycloalkyl or C5-C7 cycloalkenyl group are fused together to form a cyclic structure, such as tetrahydronaphthyl, indenyl or indanyl. The group may be a terminal group or a bridging group. Typically an aryl group is a C6-C16 aryl group.

"Arylalkeny1" means an aryl-alkenyl- group in which the aryl and alkenyl are as defined herein. Exemplary arylalkenyl groups include phenylallyl. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the alkenyl group.

"Arylalkyl" means an aryl-alkyl- group in which the aryl and alkyl moieties are as defined herein. Preferred arylalkyl groups contain a C1-salkyl moiety. Exemplary arylalkyl groups include benzyl, phenethyl, 1-naphthalenemethyl and 2-naphthalenemethyl. The group
may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the alkyl group.

"Arylalkyloxy" refers to an aryl-alkyl-O- group in which the alkyl and aryl are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the oxygen atom.

"Arylamino" includes both mono-arylamino and di-arylamino unless specified. Mono-arylamino means a group of formula arylNH-, in which aryl is as defined herein. Di-arylamino means a group of formula (aryl)₂N- where each aryl may be the same or different and are each as defined herein for aryl. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the nitrogen atom.

"Arylheteroalkyl" means an aryl-heteroalkyl- group in which the aryl and heteroalkyl moieties are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the heteroalkyl group.

"Aryloxy" refers to an aryl-O- group in which the aryl is as defined herein. Preferably the arylxy is a C₆H₅O₂-aryloxy, more preferably a C₆H₅O₂-aryloxy. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the oxygen atom.

"Arylsulfonyl" means an aryl-S(=O)₂- group in which the aryl group is as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the sulfur atom.

A "bond" is a linkage between atoms in a compound or molecule. The bond may be a single bond, a double bond, or a triple bond.

"Cycloalkenyl" means a non-aromatic monocyclic or multicyclic ring system containing at least one carbon-carbon double bond and preferably having from 5-10 carbon atoms per ring. Exemplary monocyclic cycloalkenyl rings include cyclopentenyl, cyclohexenyl or cycloheptenyl. The cycloalkenyl group may be substituted by one or more substituent groups. A cycloalkenyl group typically is a C₂-C₁₂ alkenyl group. The group may be a terminal group or a bridging group.
"Cycloalkyl" refers to a saturated monocyclic or fused or spiro polycyclic, carbocycle preferably containing from 3 to 9 carbons per ring, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, unless otherwise specified. It includes monocyclic systems such as cyclopropyl and cyclohexyl, bicyclic systems such as decalin, and polycyclic systems such as adamantane. A cycloalkyl group typically is a C₁-C₁₂ alkyl group. The group may be a terminal group or a bridging group.

"Cycloalkylalkyl" means a cycloalkyl-alkyl- group in which the cycloalkyl and alkyl moieties are as defined herein. Exemplary monocycloalkylalkyl groups include cyclopropylmethyl, cyclopentylmethyl, cyclohexylmethyl and cycloheptylmethyl. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the alkyl group.

"Cycloalkylalkenyl" means a cycloalkyl-alkenyl- group in which the cycloalkyl and alkenyl moieties are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the alkenyl group.

"Cycloalkylheteroalkyl" means a cycloalkyl-heteroalkyl- group in which the cycloalkyl and heteroalkyl moieties are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the heteroalkyl group.

"Cycloalkyloxy" refers to a cycloalkyl-O- group in which cycloalkyl is as defined herein. Preferably the cycloalkyloxy is a C₁-C₆cycloalkyloxy. Examples include, but are not limited to, cyclopropanoxy and cyclobutanoxy. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the oxygen atom.

"Cycloalkenyloxy" refers to a cycloalkenyl-O- group in which the cycloalkenyl is as defined herein. Preferably the cycloalkenyloxy is a C_rC_ccycloalkenyloxy. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the oxygen atom.

Failure of treatment can be defined as condition in which a non-fasting blood glucose level of less than 200 mg/dl and a blood glucose level during fasting (deprived of food for at
least 8 hr) of less than 126 mg/dl are retained after administration of the agent in its recommended dose.

"Haloalkyl" refers to an alkyl group as defined herein in which one or more of the hydrogen atoms has been replaced with a halogen atom selected from the group consisting of fluorine, chlorine, bromine and iodine. A haloalkyl group typically has the formula \(\text{C}_n\text{H}_{2n+1}^- \) where each \(X \) is independently selected from the group consisting of F, Cl, Br and I. In groups of this type \(n \) is typically from 1 to 10, more preferably from 1 to 6, most preferably 1 to 3. \(m \) is typically 1 to 6, more preferably 1 to 3. Examples of haloalkyl include fluoromethyl, difluoromethyl and trifluoromethyl.

"Haloalkenyl" refers to an alkenyl group as defined herein in which one or more of the hydrogen atoms has been replaced with a halogen atom independently selected from the group consisting of F, Cl, Br and I.

"Haloalkynyl" refers to an alkynyl group as defined herein in which one or more of the hydrogen atoms has been replaced with a halogen atom independently selected from the group consisting of F, Cl, Br and I.

"Halogen" represents chlorine, fluorine, bromine or iodine.

"Heteroalkyl" refers to a straight- or branched-chain alkyl group preferably having from 2 to 12 carbons, more preferably 2 to 6 carbons in the chain, in which one or more of the carbon atoms (and any associated hydrogen atoms) are each independently replaced by a heteroatomic group selected from S, O, P and NR' where R' is selected from the group consisting of H, optionally substituted \(\text{C}_1\text{C}_2 \) alkyl, optionally substituted \(\text{C}_3\text{C}_5 \) cycloalkyl, optionally substituted \(\text{C}_6\text{C}_{10} \) aryl, and optionally substituted \(\text{C}_1\text{C}_2 \) heteroary1. Exemplary heteroalkyls include alkyl ethers, secondary and tertiary alkyl amines, amides, alkyl sulfides, and the like. Examples of heteroalkyl also include hydroxy\(^\text{a} \) alkyl, Cealkyloxy, Cealkyl, aminoCealkyl, dCealkylaminoCealkyl, and dKCl-CealkyOaminodCealkyl. The group may be a terminal group or a bridging group.

"Heteroalkyloxy" refers to a heteroalkyl-O- group in which heteroalkyl is as defined herein. Preferably the heteroalkyloxy is a Cealkyloxy. The group may be a terminal group or a bridging group.
"Heteroaryl" either alone or part of a group refers to groups containing an aromatic ring (preferably a 5 or 6 membered aromatic ring) having one or more heteroatoms as ring atoms in the aromatic ring with the remainder of the ring atoms being carbon atoms. Suitable heteroatoms include nitrogen, oxygen and sulphur. Examples of heteroaryl include thiophene, benzothiophene, benzo furan, benzimidazole, benzoazole, benzothiazole, benzisothazole, naphtho[2,3-b]thiophene, furan, isoindolizine, xanthene, pheno xatine, pyrrole, imidazole, pyrazole, pyridine, pyrimidine, pyridazine, tetrazole, indole, isoindole, 1H-indazole, purine, quinoline, isoquinoline, phthalazine, naphthyridine, quinoxaine, cinnoline, carbazole, phenanthridine, acridine, phenazine, thiazole, isothiazole, phenothiazine, oxazole, isoxazole, furazane, phenoxazine, 2-, 3- or 4- pyridyl, 2-, 3-, 4-, 5-, or 8- quinolyl, 1-, 3-, 4-, or 5- isoquinolinyl 1-, 2-, or 3- indolyl, and 2-, or 3-thienyl. A heteroaryl group is typically a C1-C18 heteroaryl group. The group may be a terminal group or a bridging group.

"Heteroaryllalkyl" means a heteroaryl-alkyl group in which the heteroaryl and alkyl moieties are as defined herein. Preferred heteroaryllalkyl groups contain a lower alkyl moiety. Exemplary heteroaryllalkyl groups include pyridylmethyl. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the alkyl group.

"Heteroaryllkenyl" means a heteroaryl-alkenyl- group in which the heteroaryl and alkenyl moieties are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the alkenyl group.

"Heteroarylheteroalkyl" means a heteroaryl-heteroalkyl- group in which the heteroaryl and heteroalkyl moieties are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the heteroalkyl group.

"Heteroaryloxy" refers to a heteroaryl-O- group in which the heteroaryl is as defined herein. Preferably the heteroaryloxy is a C1-C18 heteroaryloxy. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the oxygen atom.

"Heterocyclic" refers to saturated, partially unsaturated or fully unsaturated monocyclic, bicyclic or polycyclic ring system containing at least one heteroatom selected
from the group consisting of nitrogen, sulfur and oxygen as a ring atom. Examples of heterocyclic moieties include heterocycloalkyl, heterocycloalkenyl and heteroaryl.

"Heterocycloalkenyl" refers to a heterocycloalkyl group as defined herein but containing at least one double bond. A heterocycloalkenyl group typically is a C_2-C_{12} heterocycloalkenyl group. The group may be a terminal group or a bridging group.

"Heterocycloalkyl" refers to a saturated monocyclic, bicyclic, or polycyclic ring containing at least one heteroatom selected from nitrogen, sulfur, oxygen, preferably from 1 to 3 heteroatoms in at least one ring. Each ring is preferably from 3 to 10 membered, more preferably 4 to 7 membered. Examples of suitable heterocycloalkyl substituents include pyrrolidyl, tetrahydrofuryl, tetrahydrothiofuranyl, piperidyl, piperazyl, tetrahydropyranyl, morpholino, 1,3-diazaabicyclo[5.1.0]octane, 1,4-diazaabicyclo[5.1.0]octane, 1,4-oxazepane, and 1,4-oxathiapane. A heterocycloalkyl group typically is a C_2-C_{12} heterocycloalkyl group. The group may be a terminal group or a bridging group.

"Heterocycloalkylalkyl" refers to a heterocycloalkyl-alkyl- group in which the heterocycloalkyl and alkyl moieties are as defined herein. Exemplary heterocycloalkylalkyl groups include (2-tetrahydrofuryl)methyl, (2-tetrahydrothiofuranyl) methyl. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the alkyl group.

"Heterocycloalkylalkenyl" refers to a heterocycloalkyl-alkenyl- group in which the heterocycloalkyl and alkenyl moieties are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the alkenyl group.

"Heterocycloalkylheteroalkyl" means a heterocycloalkyl-heteroalkyl- group in which the heterocycloalkyl and heteroalkyl moieties are as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the heteroalkyl group.

"Heterocycloalkyloxy" refers to a heterocycloalkyl-O- group in which the heterocycloalkyl is as defined herein. Preferably the heterocycloalkyloxy is a C_1-C_3 heterocycloalkyloxy. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the oxygen atom.
"Heterocycloalkenyloxy" refers to a heterocycloalkenyl-O- group in which heterocycloalkenyl is as defined herein. Preferably the Heterocycloalkenyloxy is a C₁-C₆ Heterocycloalkenyloxy. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the oxygen atom.

"Hydroxyalkyi" refers to an alkyl group as defined herein in which one or more of the hydrogen atoms has been replaced with an OH group. A hydroxyalkyi group typically has the formula C_nH(2n+1-x)(OH)_x. In groups of this type n is typically from 1 to 10, more preferably from 1 to 6, most preferably 1 to 3. x is typically 1 to 6, more preferably 1 to 3.

"Sulfonyl" means an R-S(=0)- group in which the R group may be OH, alkyl, cycloalkyl, heterocycloalkyl; aryl or heteroaryl group as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the sulfur atom.

"Sulfinylamino" means an R-S(=0)-NH- group in which the R group may be OH, alkyl, cycloalkyl, heterocycloalkyl; aryl or heteroaryl group as defined herein. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the nitrogen atom.

"Sulfonylamino" means an R-S(=0)₂-NH- group. The group may be a terminal group or a bridging group. If the group is a terminal group it is bonded to the remainder of the molecule through the nitrogen atom.

It is understood that included in the family of compounds of Formula (I) are isomeric forms including diastereoisomers, enantiomers, tautomers, and geometrical isomers in "E" or "Z" configurational isomer or a mixture of E and Z isomers. It is also understood that some isomeric forms such as diastereomers, enantiomers, and geometrical isomers can be separated by physical and/or chemical methods and by those skilled in the art. For those compounds where there is the possibility of geometric isomerism the applicant has drawn the isomer that the compound is thought to be although it will be appreciated that the other isomer may be the correct structural assignment.
Some of the compounds of the disclosed embodiments may exist as single stereoisomers, racemates, and/or mixtures of enantiomers and/or diastereomers. All such single stereoisomers, racemates and mixtures thereof, are intended to be within the scope of the subject matter described and claimed.

Additionally, Formula (I) is intended to cover, where applicable, solvated as well as unsolvated forms of the compounds. Thus, each formula includes compounds having the indicated structure, including the hydrated as well as the non-hydrated forms.

The term "pharmaceutically acceptable salts" refers to salts that retain the desired biological activity of the above-identified compounds, and include pharmaceutically acceptable acid addition salts and base addition salts. Suitable pharmaceutically acceptable acid addition salts of compounds of Formula (I) may be prepared from an inorganic acid or from an organic acid. Examples of such inorganic acids are hydrochloric, sulfuric, and phosphoric acid. Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, heterocyclic carboxylic and sulfonic classes of organic acids, examples of which are formic, acetic, propanoic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, fumaric, maleic, alkyl sulfonic, aroylsulfonic. Additional information on pharmaceutically acceptable salts can be found in Remington's Pharmaceutical Sciences, 19th Edition, Mack Publishing Co., Easton, PA 1995. In the case of agents that are solids, it is understood by those skilled in the art that the inventive compounds, agents and salts may exist in different crystalline or polymorphic forms, all of which are intended to be within the scope of the present invention and specified formulae.

"Prodrug" means a compound that undergoes conversion to a compound of formula (I) within a biological system, usually by metabolic means (e.g. by hydrolysis, reduction or oxidation). For example an ester prodrug of a compound of formula (I) containing a hydroxyl group may be convertible by hydrolysis in vivo to the parent molecule. Suitable esters of compounds of formula (I) containing a hydroxyl group, are for example acetates, citrates, lactates, tartrates, malonates, oxalates, salicylates, propionates, succinates, fumarates, maleates, methylene-bis^*-hydroxynaphthoates, gestisates, isethionates, di-p-toluoyltartrates, methanesulphonates, ethanesulphonates, benzenesulphonates, p-toluenesulphonates, cyclohexylsulphamates and quinates. As another example an ester prodrug of a compound of formula (I) containing a carboxy group may be convertible by hydrolysis in vivo to the parent molecule. (Examples of ester prodrugs are those described by F.J. Leinweber, Drug Metab. Res., 18:379, 1987). Similarly, an acyl prodrug of a compound of formula (I)
containing an amino group may be convertible by hydrolysis \textit{in vivo} to the parent molecule. (Many examples of prodrugs for these and other functional groups, including amines, are described in Prodrugs: Challenges and Rewards (Parts 1 and 2); Ed V. Stella, R. Borchardt, M. Hageman, R. Oliyai, H. Maag and J Tilley; Springer, 2007).

The term "therapeutically effective amount" or "effective amount" is an amount sufficient to effect beneficial or desired clinical results. An effective amount can be administered in one or more administrations. An effective amount is typically sufficient to palliate, ameliorate, stabilize, reverse, slow or delay the progression of the disease state.

Specific compounds of the invention include the following:
The compounds have the ability to inhibit 11β-HSD1. The ability to inhibit 11β-HSD1 may be a result of the compounds acting directly and solely on the 11β-HSD1 to modulate/potentiate biological activity. However, it is understood that the compounds may also act at least partially on other factors associated with 11β-HSD1 activity.

The inhibition of 11β-HSD1 may be carried out in any of a number of ways known in the art. For example if inhibition of 11β-HSD1 in vitro is desired an appropriate amount of the compound may be added to a solution containing the 11β-HSD1. In circumstances where it is desired to inhibit 11β-HSD1 in a mammal, the inhibition of the 11β-HSD1 typically involves administering the compound to a mammal containing the 11β-HSD1.

Accordingly the compounds may find a multiple number of applications in which their ability to inhibit 11β-HSD1 enzyme of the type mentioned above can be utilised.

Accordingly compounds of the invention would be expected to have useful therapeutic properties especially in relation to diabetes, hyperglycemia, low glucose tolerance, hyperinsulinemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, dyslipidemia, obesity, abdominal obesity, glaucoma, hypertension, atherosclerosis and its sequelae,
retinopathy and other ocular disorders, nephropathy, neuropathy, myopathy, osteoporosis, osteoarthritis, dementia, depression, neurodegenerative disease, psychiatric disorders, Polycystic ovaries syndrome, infertility, Cushing's Disease, Cushing's syndrome, virus diseases, and inflammatory diseases.

Administration of compounds within Formula (I) to humans can be by any of the accepted modes for enteral administration such as oral or rectal, or by parenteral administration such as subcutaneous, intramuscular, intravenous and intradermal routes. Injection can be bolus or via constant or intermittent infusion. The active compound is typically included in a pharmaceutically acceptable carrier or diluent and in an amount sufficient to deliver to the patient a therapeutically effective dose. In various embodiments the activator compound may be selectively toxic or more toxic to rapidly proliferating cells, e.g. cancerous tumours, than to normal cells.

In using the compounds of the invention they can be administered in any form or mode which makes the compound bioavailable. One skilled in the art of preparing formulations can readily select the proper form and mode of administration depending upon the particular characteristics of the compound selected, the condition to be treated, the stage of the condition to be treated and other relevant circumstances. We refer the reader to Remingtons Pharmaceutical Sciences, 19th edition, Mack Publishing Co. (1995) for further information.

The compounds of the present invention can be administered alone or in the form of a pharmaceutical composition in combination with a pharmaceutically acceptable carrier, diluent or excipient. The compounds of the invention, while effective themselves, are typically formulated and administered in the form of their pharmaceutically acceptable salts as these forms are typically more stable, more easily crystallised and have increased solubility.

The compounds are, however, typically used in the form of pharmaceutical compositions which are formulated depending on the desired mode of administration. As such in some embodiments the present invention provides a pharmaceutical composition including a compound of Formula (I) and a pharmaceutically acceptable carrier, diluent or excipient. The compositions are prepared in manners well known in the art.

The invention in other embodiments provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. In such a pack or kit can be found a container having a unit
dosage of the agent(s). The kits can include a composition comprising an effective agent either as concentrates (including lyophilized compositions), which can be diluted further prior to use or they can be provided at the concentration of use, where the vials may include one or more dosages. Conveniently, in the kits, single dosages can be provided in sterile vials so that the physician can employ the vials directly, where the vials will have the desired amount and concentration of agent(s). Associated with such container(s) can be various written materials such as instructions for use, or a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

The compounds of the invention may be used or administered in combination with one or more additional drug(s) for the treatment of the disorder/diseases mentioned. The components can be administered in the same formulation or in separate formulations. If administered in separate formulations the compounds of the invention may be administered sequentially or simultaneously with the other drug(s).

In addition to being able to be administered in combination with one or more additional drugs, the compounds of the invention may be used in a combination therapy. When this is done the compounds are typically administered in combination with each other. Thus one or more of the compounds of the invention may be administered either simultaneously (as a combined preparation) or sequentially in order to achieve a desired effect. This is especially desirable where the therapeutic profile of each compound is different such that the combined effect of the two drugs provides an improved therapeutic result.

Pharmaceutical compositions of this invention for parenteral injection comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstitution into sterile injectable solutions or dispersions just prior to use. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils (such as olive oil), and injectable organic esters such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
These compositions may also contain adjuvants such as preservative, wetting agents, emulsifying agents, and dispersing agents. Prevention of the action of micro-organisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents such as sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents that delay absorption such as aluminium monostearate and gelatin.

If desired, and for more effective distribution, the compounds can be incorporated into slow release or targeted delivery systems such as polymer matrices, liposomes, and microspheres.

The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions that can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.

Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.

Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.

The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in
the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes.

5

The active compounds can also be in microencapsulated form, if appropriate, with one or more of the above-mentioned excipients.

Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethyl formamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.

Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.

Suspensions, in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminium metahydroxide, bentonite, agar-agar, and tragacanth, and mixtures thereof.

Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.

Dosage forms for topical administration of a compound of this invention include powders, patches, sprays, ointments and inhalants. The active compound is mixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives, buffers, or propellants which may be required.
The amount of compound administered will preferably treat and reduce or alleviate the condition. A therapeutically effective amount can be readily determined by an attending diagnostician by the use of conventional techniques and by observing results obtained under analogous circumstances. In determining the therapeutically effective amount a number of factors are to be considered including but not limited to, the species of animal, its size, age and general health, the specific condition involved, the severity of the condition, the response of the patient to treatment, the particular compound administered, the mode of administration, the bioavailability of the preparation administered, the dose regime selected, the use of other medications and other relevant circumstances.

A preferred dosage will be a range from about 0.01 to 300 mg per kilogram of body weight per day. A more preferred dosage will be in the range from 0.1 to 100 mg per kilogram of body weight per day, more preferably from 0.2 to 80 mg per kilogram of body weight per day, even more preferably 0.2 to 50 mg per kilogram of body weight per day. A suitable dose can be administered in multiple sub-doses per day.

The compound of the invention may also be administered in combination with (or simultaneously or sequentially with) an adjuvant to increase compound performance. Suitable adjuvants may include (a) dipeptidyl peptidase-IV (DP-IV) inhibitors; (b) insulin sensitizing agents; (iv) biguanides; (c) insulin and insulin mimetics; (d) sulfonylureas and other insulin secretagogues; (e) alpha-glucosidase inhibitors; and (f) GLP-1, GLP-1 analogs, and GLP-1 receptor agonists. The adjuvants may be part of the same composition, or the adjuvants may be administered separately (either simultaneously or sequentially). The order of the administration of the composition and the adjuvant will generally be known to the medical practitioner involved and may be varied.

SYNTHESIS OF COMPOUNDS OF THE INVENTION

The agents of the various embodiments may be prepared using the reaction routes and synthesis schemes as described below, employing the techniques available in the art using starting materials that are readily available. The preparation of particular compounds of the embodiments is described in detail in the following examples, but the artisan will recognize that the chemical reactions described may be readily adapted to prepare a number of other agents of the various embodiments. For example, the synthesis of non-exemplified compounds may be successfully performed by modifications apparent to those skilled in the art, e.g. by appropriately protecting interfering groups, by changing to other suitable reagents known in the art, or by making routine modifications of reaction conditions. A list of suitable protecting groups in organic synthesis can be found in T.W. Greene's *Protective Groups in
Organic Synthesis, 3rd Edition, John Wiley & Sons, 1991. Alternatively, other reactions disclosed herein or known in the art will be recognized as having applicability for preparing other compounds of the various embodiments.

Reagents useful for synthesizing compounds may be obtained or prepared according to techniques known in the art.

The symbols, abbreviations and conventions in the processes, schemes, and examples are consistent with those used in the contemporary scientific literature. Specifically but not meant as limiting, the following abbreviations may be used in the examples and throughout the specification.

- g (grams)
- L (liters)
- Hz (Hertz)
- mol (moles)
- RT (room temperature)
- min (minutes)
- MeOH (methanol)
- CHCl₃ (chloroform)
- DCM (dichloromethane)
- DMSO (dimethylsulfoxide)
- EtOAc (ethyl acetate)
- mg (milligrams)
- mL (milliliters)
- psi (pounds per square inch)
- mM (millimolar)
- MHz (megahertz)
- h (hours)
- TLC (thin layer chromatography)
- EtOH (ethanol)
- CDCl₃ (deuterated chloroform)
- HCl (hydrochloric acid)
- DMF (N, N-dimethylformamide)
- THF (tetrahydro furan)
- K₂CO₃ (potassium carbonate)
• Na₂SO₄ (sodium sulfate)
• RM (Reaction Mixture)

Unless otherwise indicated, all temperatures are expressed in °C (degree centigrade).

All reactions conducted at room temperature unless otherwise mentioned.

All the solvents and reagents used are commercially available and purchased from Sigma Aldrich, Fluka, Acros, Spectrochem, Alfa Aesar, Avra, Quaiigens, Merck, Rankem and Leonid Chemicals.

¹H NMR spectra were recorded on a Bruker AV 300. Chemical shifts are expressed in parts per million (ppm, δ units). Coupling constants are in units of hertz (Hz). Splitting patterns describe apparent multiplicities and are designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), or br (broad).

Mass spectra were obtained on single quadruple 6120 LCMS from Agilent technologies, using either atmospheric chemical ionization (APCI) or Electrospray ionization (ESI) or in the combination of these two sources.

All samples were run on SHIMADZU system with an LC-20 AD pump, SPD-M20A diode array detector, SIL-20A auto sampler.
SYNTHETIC SCHEME 1

One scheme for making certain compounds of the invention is shown in scheme 1 below.

A 100mL Rb flask fitted with magnetic stirrer was charged with Starting Material 1 (4.0g, 34mmol), Starting Material 2 (4.92, 34 mmol) and Starting Material 3 (3g, 68mmol) in 75mL of acetonitrile. The resulting solution was stirred at room temperature overnight. After completion of the reaction (reaction monitored by TLC), the solvent was removed under reduced pressure, and the resulting crude compound was purified by column chromatography on silica gel (230-400 mesh) using Petroleum ether (60-80) and ethyl acetate as eluent. The product (intermediate 1) was obtained as a brown liquid (2.51 g). LC-MS (M-H)^+ = 286.

Synthesis of 5-[1-(1 H-indol-3-yl)ethyl]-2,2-dimethyl-1,3-dioxane-4,6-dione (Intermediate-1):

A 100 mL RB flask fitted with magnetic stirrer was charged with intermediate-1 (2.5g, 8.7 mmol) in 50mL of pyridine and 8 ml of ethanol. To this mixture copper powder (0.4g, 5 mol%) was added. Then the resulting reaction mass was refluxed at 110° for 3 hours. After completion of the reaction (reaction monitored by TLC), solvent was removed from the reaction mass and the reaction mass was diluted with 100mL of ethyl acetate, washed with 50mL 1.5N HCl (2X25mL) and brine solution. Then the organic layer was dried over anhydrous MgSO₄. The solvent was removed under reduced pressure, and the resulting crude compound was purified by column chromatography on silica gel (230-400 mesh) using.
Petroleum ether (60-80) and ethyl acetate as eluent. The product (intermediate 2) was obtained as a brown liquid. (0.380g). LC-MS (M+H)⁺ = 232.

Synthesis of ethyl 3-(1H-indol-3-yl)butanoic acid (Intermediate-3):

A 50 mL RB flask fitted with magnetic stirrer was charged with 6mL of methanol and 2 mL of water. To the stirred solvent intermediate-2 (0.145g, 0.62mmol) and KOH (0.098g, 2.54mmol) was added. Then the resulting reaction mass was refluxed at 70°C for 3 hours. After completion of the reaction (reaction monitored by TLC), solvent was removed from the reaction mass and the reaction mass was diluted with 20mL of water. The resulting aqueous layer was then washed with 20 mL of diethyl ether. The aqueous layer was acidified by 1NHCl to pH 5.5 and product was extracted with ethyl acetate and the solvent was removed under reduced pressure. The product (intermediate 3) was obtained as a brown liquid (0.115g). The product obtained above was directly taken for next step without any purification.

EXAMPLE 1: Compound (1): 3-(1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one:

![Chemical Structure](image)

Synthetic Scheme-2

Synthesis of Compound (1): A 100mL RB flask fitted with magnetic stirrer was charged with intermediate-3 (0.115g, 0.56mmol), Starting Material 4 (0.078g, 0.56mmol), EDCI (0.162g, 0.84mmol), HOBt (0.104g, 0.69mmol) in 8mL of dichloromethane and it was cooled to 0°C. Then to the stirred solution triethylamine (0.301mL, 2.0mmol) was added. The resulting solution was stirred at room temperature overnight. After completion of the reaction (reaction monitored by TLC), the reaction mass was diluted with 20mL of water and organic
layer was separated. The Solvent was removed under reduced pressure, and the resulting crude compound was purified by 60-120 silical-gel chromatography by using petether ethylacetate as eluent. The final product obtained was pale yellow gummy solid (0.110 g). 1H NMR (300MHz,CDCl3) : δ 7.89(s,1H), 7.59-7.61 (m,1 H), 7.27-7.30(d,1 H), 7.00-7.13(m,2H), 6.94-6.95(d,1H), 4.41-4.60(m,1 H), 3.49-3.61 (m,2H), 2.46-2.91 (m,3H), 0.98-1.71 (m,16H). LC-MS (M+H)$^+$ = 325.2; HPLC purity: 92.84%.

EXAMPLE 2: Compound (2): 2-methyl-2-(1-methyl-1N-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one

Synthetic Scheme-2

Synthesis of methyl 1W-indol-3-ylacetate (Intermediate-4): A 100 mL RB flask fitted with magnetic stirrer was charged with 15 mL of Methanol. To the stirred solvent Starting Material-5 (2.0 g, 11.41mmol) was added. The resulting mixture was cooled to zero degrees to which concentrated H_2SO_4 (0.5 mL) was added. The mixture was then stirred at ambient temperatures for 1 hour. After completion of the reaction (reaction monitored by TLC), the solvent from the reaction mass was removed under reduced pressure. The resulting crude mass was taken in Ethyl acetate (100 mL) and was washed with water (50 mL), Sodium bicarbonate solution (100 mL X 2) saturated brine solution (50 mL) and the organic layer dried over anhydrous sodium sulphate. Then the solvent was removed under reduced pressure. The product was obtained as brown syrup. (2.1 g). LC-MS (M+H)$^+$ = 190.2.
Synthesis of methyl 2-methyl-2-(1-methyl-1H-indol-3-yl)propanoate (Intermediate-5):
A 100 mL 3 neck RB flask fitted with magnetic stirrer was charged with 10mL of dry THF. To the stirred solvent, diisopropyl amine (401.12 mg, 3.964mmol) was added and the resulting solution was cooled to -78 degrees. Further n-BuLi (2.5 mL, 3.964mmol) was added to it and stirred for 1 hour at 0 °C. Once again the resulting solution was cooled to -78 degrees to which Intermediate-4 (150 mg, 0.7928 mmol) was added and stirred for 1 hour. Then Methyl iodide was added and the resulting mass was stirred at ambient temperature for 15 hours. After completion of the reaction (reaction monitored by TLC), the reaction mass was quenched with saturated ammonium chloride and was extracted using EtOAc (100 ml_X3). The combined organic layer washed with brine was dried and the solvent was removed under reduced pressure. The resulting crude compound was purified by column chromatography on silica gel (120 meshes) using Petroleum ether (60-80) and ethyl acetate as eluent. The product was obtained as brown syrup. (150mg). LC-MS (M+H)+ = 232.2.

Synthesis of 2-methyl-2-(1-methyl-1H-indol-3-yl)propanoic acid (Intermediate-6):
A 100 mL RB flask fitted with magnetic stirrer was charged with THF 5 mL. To the stirred solvent Intermediate-5 (150 mg, 0.6485 mmol) was added which was followed by the addition of NaOH (77.82 mg; 1.945 mmol), and water-methanol mixture (1 mL, 1:1). The resulting mass was heated at 70 °C for 4 hours. After completion of the reaction, the solvent from the reaction mass was removed under reduced pressure. The crude mass was treated with water and washed with ether (50 mL X 3). The resulting aqueous solution was acidified to pH = 1 to 2 by using 1N HCl and extracted with DCM (50 mL X 3). The combined DCM layers were washed with brine, dried over anhydrous Na2SO4 and the solvent was removed under reduced pressure to give Intermediate-6 as brown solid (85mg). LC-MS (M+H)+ = 218.2.

Synthesis of Compound (2): Compound (2) was synthesized by following the procedure used to make compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified using silica gel column where Petroleum ether: Ethyl acetate was used as an eluent to obtain Compound (2). 1H NMR (300MHz,CDCl3) : δ 7.43-7.48(m,1 H), 7.18-7.21(d,1 H), 7.09-7.14(t,1 H), 6.92-6.97(t,1 H), 6.75-6.80(d,1 H), 4.50-4.75(m,1 H), 3.57-3.98(m,4H), 2.28-2.45(m,1 H), 1.47-1.58(m,8H), 1.37-1.40(m,6H), 0.94-1.09(m,5H). LC-MS (M+H)+ = 339.2; HPLC purity: 98.09%.
EXAMPLE 3: 3-(5-methyl-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (3)

Starting Material 6 Intermediate 7 Intermediate 8 Intermediate 9

Synthesis of ethyl (2E)-3-(5-methyl-1H-indol-3-yl)prop-2-enoate (Intermediate-7):
Triethylphosphenoacetate (9.4 mmol) was taken in THF (20 mL) to which NaH (60%) was added portion wise at -5°C. The reaction mass thus obtained was maintained at same temperature for 45 min. To this the Starting Material-6 (750 mg, 4.7 mmol) was added and the resulting reaction mass was stirred at RT for 24 hours. Then reaction mass was diluted with ethyl acetate and the organic layer was separated and the separated organic layer was washed with saturated NaHCO₃, dried over anhydrous Na₂SO₄ and concentrated. The crude product thus obtained was purified by 60-120 silica gel by using hexanes: EtOAc as eluent to give Intermediate 7 (490 mg). LC-MS (M+H)⁺ = 230.

Synthesis of ethyl 3-(5-methyl-1H-indol-3-yl)propanoate (Intermediate-8):
Intermediate-7 (1.31 g, 5.6 mmol) was taken in MeOH (25 mL) to which 10%Pd/C (150 mg) was added. The resulting reaction mass was stirred under H₂ atmosphere (25 psi) for 10 hours. Further the reaction mass thus obtained was filtered through celite bed and concentrated to give Intermediate-8 (820 mg). LC-MS (M+H)⁺ = 232.

Synthesis of 3-(5-methyl-1H-indol-3-yl)propanoic acid (Intermediate-9):
Intermediate-8 (600 mg, 2.5mmol) was taken in MeOH (8 mL) to which KOH (500 mg, 9.0 mmol) and 1mL of water was added. Resulting reaction mixture was refluxed for 3 hours. The reaction mixture was concentrated and then diluted with water. The resulting mixture was acidified (pH = 1 to 2) with 1N HCl, extracted with EtOAc and then concentrated to give Intermediate-9 (430 mg). LC-MS (M+H)⁺ = 204.
Synthesis of (3): Compound (3) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (3). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 7.90(s,1 H), 7.31-7.34(d,1H), 7.15-7.18(m,1H), 6.92-6.95(m,2H), 4.30-4.40(m,1 H), 3.30-3.60(m,1 H), 2.45-3.06(m,5H), 2.38-2.39(d,3H), 1.18-1.77(m,13H). LC-MS (M+H)\(^+\) = 325.2; HPLC purity: 95.93%.

EXAMPLE 4: 3-(5-fluoro-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one ((4)

\[\text{Synthetic Scheme-5}\]

Synthesis of 3-(5-fluoro-1W-indol-3-yl)propanoic acid (Intermediate-10): Intermediate-10 was synthesized by following the procedure used to make Intermediate-9 (Scheme 4).

Synthesis of Compound (4): Compound (4) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (4). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 8.55(s,1 H), 7.17-7.18(d,2H), 6.96(s,1 H), 6.80-6.85(t,1H), 4.43-4.57(m,1 H), 3.41-3.58(m,1H), 2.44-3.03(m,5H), 0.99-1.94(m, 13 H). LC-MS (M+H)\(^+\) = 329.1 ; HPLC purity: 96.44%.
EXAMPLE 5: 2-(1W-indol-3-ylsulfanyl)-1-(octahydroquinolin-1(2H)-yl)ethanone (5)

Synthetic Scheme-6

Starting Material 1 → Intermediate 11 → Intermediate 12 → Intermediate 13

Synthesis of 1W-indole-3-thiol (Intermediate-11): A stirred solution of Starting Material-1 (2.93 g, 25.0 mmol) and thiourea (1.9 g, 25.0 mmol) in methanol (50 ml) was treated with a mixture of iodine (6.35 g, 25.0 mmol) and KI (4.17 g, 25.0 mmol) in water (25 ml), stirred for 1 hour, filtered through a cotton plug, concentrated in vacuo to remove methanol and 1/3 of water, and filtered concentrated solution again. The tan solid filter cake is heated with 2M NaOH (50 ml) at 85°C for 30 min, cooled and filtered. The filtrate is acidified with cone. HCl to pH= 1 and filtered. This filter cake is dried under a nitrogen stream to obtain the Intermediate-11 as cream-colored solid (900 mg).

Synthesis of methyl (1H-indol-3-ylsulfanyl)acetate (Intermediate-12): Anhydrous potassium carbonate (2.1 g, 15.9 mmol) was added to a solution of Intermediate-11 (0.8 g, 5.3 mmol) and ethyl 2-chloroacetate (0.96 ml, 5.3 mmol) in acetonitrile (30 ml_). The resulting mixture was heated to reflux under argon for 18 hours. The cooled mixture was filtered and concentrated under vacuo. Water was added to the reaction mass and extracted with ethyl acetate. Combined organic extracts were dried over (MgSO_4_) and concentrated to a crude gummy material, which was purified by column chromatography using hexane : ethyl acetate (1:9) to give Intermediate-12 (300 mg).

Synthesis of (1W-indol-3-ylsulfanyl)acetic acid (Intermediate-13): A mixture of (1H-Intermediate-12 (0.30g, 1.27 mmol), 10% aqueous sodium hydroxide solution (5 ml) and methanol (8 mL) were stirred at room temperature over-night. Reaction was monitored by TLC and LC-MS. Then reaction mixture was concentrated under reduced pressure. Aqueous
layer was washed twice with DCM to remove organic impurities and was then acidified with concentrated HCl. A white solid thus formed was isolated by extraction and the solvent was removed under high vacuum. The crude reaction mass was purified by column chromatography using ethylacetate:hexane (1:1) as eluent to give Intermediate-13 (170 mg).

Synthetic Scheme-7

![Synthetic Scheme-7](image)

Synthesis of Compounds (5): Compound (5) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (5). 1H NMR (300MHz,CDCl3) : δ 8.78-8.96(d,1H), 7.73-7.76(m,1H), 7.37(s,2H), 7.00-7.06(m,2H), 4.23-4.64(m,1H), 3.41-3.85(m,3H), 2.26-3.41 (m,3H), 1.25-1.72(m,11H). LC-MS (M+H)$^+$ = 329.1; HPLC purity: 98.84%.

EXAMPLE 6: 3-(5-chloro-1Windol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (6)

![EXAMPLE 6](image)

Synthetic Scheme-8

![Synthetic Scheme-8](image)
Synthesis of 3-(5-chloro-1H-indol-3-yl)propanoic acid (Intermediate-14):
Intermediate-14 was synthesized by following the procedure used to make Intermediate-9 (Scheme 4).

Synthesis of Compound (6): Compound (6) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (6). ¹H NMR (300MHz,CDCl₃): δ 8.05(s,1 H), 7.48-7.51 (m,1 H), 7.17-7.21 (m,1H), 7.03-7.08(m,1 H), 6.99(s,1 H), 4.43-4.61 (m,1H), 3.45-3.59(m,1H), 2.96-3.04(m,2H), 2.45-2.93(m,3H), 1.21-1.66(m,13H). LC-MS (M+H)⁺ = 345.2; HPLC purity: 89.78%.

EXAMPLE 7: 3-(5-methoxy-1H-indol-3-yl)-1-(octahydroquinolin-1(2AV)-yl)propan-1-one (7)

Synthesis of 3-(5-methoxy-1H-indol-3-yl)propanoic acid (Intermediate-15):
Intermediate-15 was synthesized by following the procedure used to make Intermediate-9 (Scheme 4).

Synthesis of Compound (7): Compound (7) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum
ether: Ethyl acetate as eluent to obtain Compound (7). \(^1\)H NMR (300MHz,CDCI\(_3\)) : \(\delta\) 8.19(s,1H), 7.22-7.25(m,1H), 7.04-7.05(d,1H), 6.98(s,1H), 6.82-6.86(m,1H), 4.48-4.75(m,1H), 3.82(s,3H), 3.48-3.72(m,1H), 3.04-3.13(m,2H), 2.74-2.95(m,1H), 2.56-2.72(m,3H), 1.55-1.79(m,6H), 1.20-1.49(m,6H). LC-MS (M+H)\(^+\) = 341.2; HPLC purity: 98.01%.

EXAMPLE 8: \((\text{2E})\)-3-(1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)prop-2-en-1-one (8)

![Synthetic Scheme-10](image)

Synthetic Scheme-10

Synthesis of ethyl (2E)-3-(1H-indol-3-yl)prop-2-en-1-enoate (Intermediate-16): Intermediate-16 was synthesized by following the procedure used to make Intermediate-7 (Scheme 4).

Synthesis of (2E)-3-(1H-indol-3-yl)prop-2-en-1-enoic acid (Intermediate-17): Intermediate-17 was synthesized by following the procedure used to make Intermediate-9 (Scheme 4).

Synthesis of Compound (8): Compound (8) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (8). \(^1\)H NMR (300MHz,CDCI\(_3\)) : \(\delta\) 8.50(s,1H), 7.80-7.88(m,3H), 7.34-7.38(m,2H), 6.78-6.89(m,2H), 4.55-4.76(m,1H), 3.89-4.18(m,1H), 3.05-3.48(m,1H), 2.06-2.71(m,1H), 1.29-1.81(m,12H). LC-MS (M+H)\(^+\) = 309.1; HPLC purity: 98.83%.
EXAMPLE 9: 2-(1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)ethanone (9)

Synthesis of Compound (9): Compound (9) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (9). H NMR (300MHz,CDCl3) : δ 8.20 (s,1 H), 7.61-7.63(d,1 H), 7.34-7.36(d,1 H), 7.05-7.21 (m,3H), 4.57-4.73(m,1 H), 3.69-3.88(m,3H), 3.10-3.50(m,1 H), 2.60-3.00(m,1 H), 1.01-1.90(m,12H). LC-MS (M+H)+ = 297.3; HPLC purity: 98.39%.

EXAMPLE 10: 2-(5-fluoro-1H-indol-3-yl)-1-(octahydroquinolin-1(2W)-yl)ethanone (10)

Synthesis of Compound (10): Compound (10) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (10). H NMR (300MHz,CDCl3) : δ 8.45(s,1 H), 7.20-7.30(m,2H), 7.00-7.15(d,1 H), 6.95(m,1 H), 4.53-4.73(m,1 H), 3.64-3.91 (m,2H), 2.60-3.03(m,1 H), 1.29-1.84(m,14H). LC-MS (M+H)+ = 315.1; HPLC purity: 89.32%.
EXAMPLE 11: 4-(1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (11)

\[
\begin{align*}
\text{Starting material} & \quad \text{Starting material} \\
\text{Synthetic Scheme-12} & \\
\text{Starting material 8} & \quad \text{Starting material 4} & \xrightarrow{\text{HOBr, EDCI, TEA, DCM}} & \text{Compound (11)}
\end{align*}
\]

\textbf{Synthesis of Compound (11):} Compound (11) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (11). \(^1\)H NMR (300MHz,CDCl\(3\)) : \(\delta\) 8.04 (s, 1H), 7.59-7.62 (d, 1H), 7.34-7.36 (d, 1H), 7.07-7.20 (m, 2H), 7.00 (s, 1H), 4.48-4.75 (m, 1H), 3.48-3.62 (m, 1H), 2.88-3.15 (m, 1H), 2.80-2.85 (m, 2H), 2.31-2.52 (m, 2H), 2.02-2.11 (m, 2H), 1.51-1.80 (m, 7H), 1.23-1.38 (m, 6H). LC-MS (M+H)\(^+\) = 325.2; HPLC purity: 91.10%.

EXAMPLE 12: 3-(1W-indol-3-yl)-1-(4-methyloctahydroquinolin-1(2W)-yl)propan-1-one (HS_A_287) (12)

\[
\begin{align*}
\text{HS_A_287} & \\
\text{(12)}
\end{align*}
\]
Synthesis of 4-methyldecahydroquinoline (Intermediate-18): To a solution of Starting Material-9 (1 g, 6.9 mmol) in 15 mL of acetic acid, PtO₂ (0.793 g, 3.5 mmol) was added under N₂ atmosphere. N₂ gas was purged for 5 min and then was degassed (two times). This reaction mixture as then kept under hydrogen atmosphere at 60 psi for 12 hours. The mixture was filtered and basified with 10% NaOH solution, extracted with EtOAc and concentrated to give Intermediate-18 (700mg).

Synthesis of Compound (12): Compound (12) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (12). ¹H NMR (300MHz,CDCl₃) : δ 8.03(s,1H), 7.61-7.63(d,1H), 7.34-7.37(d,1H), 7.09-7.21 (m,2H), 7.04(s,1H), 4.00(m,1H), 3.1-3.16(t,2H), 2.97(m,1H), 2.61-2.81 (m,2H), 1.28-1.84(m,13H), 1.1-1.13(d,3H). LC-MS (M+H)+ = 325.2; HPLC purity: 99.15%.

EXAMPLE 13: 3-(1-methyl-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (13)
Synthesis of (13): 18-crown-6 ether (30 mg) and potassium tertiary butyl oxide (0.9 mmol) was taken in benzene at 4 °C. To this mixture (96) (250 mg, 0.8 mmol) was added. The reaction mass was then stirred at room temperature for 15 minutes and was further cooled to 0 °C. To this, Methyl iodide (1.2 mmol) dissolved in benzene was added. This reaction mixture was then stirred at room temperature for 15 hours. The mixture was filtered through celite and concentrated. Resulted crude material was purified by using silica gel column chromatography eluting with hexanes: EtOAc to give (13) (156 mg).

1H NMR (300 MHz, CDCl3): δ 7.48-7.52 (m, 1H), 6.97-7.18 (m, 3H), 6.78 (s, 1H), 4.42-4.60 (m, 1H), 3.60 (s, 3H), 3.37-3.54 (m, 1H), 2.99-3.05 (m, 2H), 2.49-2.74 (m, 3H), 0.99-1.52 (m, 13H). LC-MS (M+H)* = 325.2; HPLC purity: 98.37%.

EXAMPLE 14: 3-(1W-indol-2-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (14)
Synthesis of 3-(1H-indol-2-yl)propanoic acid (Intermediate-19):
Intermediate-19 was synthesized by following the procedure used to make Intermediate-9 (Scheme 4).

Synthesis of Compound (14):
Compound (14) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (14).

1H NMR (300MHz,CDCl3) δ

- 9.28(s, 1H),
- 7.41 - 7.43 (d, 1H),
- 7.21 - 7.24 (d, 1H),
- 6.92 - 7.03 (m, 2H),
- 6.11 (s, 1H),
- 4.50 - 4.63 (m, 1H),
- 3.43 - 3.63 (m, 1H),
- 2.50 - 3.02 (m, 5H),
- 1.16 - 1.67 (m, 13H).

LC-MS (M+H)$^+$ = 311.2; HPLC purity: 99.23%.

EXAMPLE 15: 3-(5-hydroxy-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (15)

Synthetic Scheme-16

Synthesis of 3-(5-methoxy-1H-indol-3-yl)propanoic acid (Intermediate-20):
Intermediate-20 was synthesized by following the procedure used to make Intermediate-9 (Scheme 4).

Synthesis of 3-(5-methoxy-1H-indol-3-yl)-1-(octahydroquinolin-1(2W)-yl)propan-1-one (Intermediate-21):
Intermediate-21 was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Intermediate-21.
layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Intermediate-21.

Synthesis of Compound (15): A 100mL RB flask fitted with magnetic stirrer was charged with 5 mL of DCM. Intermediate-21 (80 mg, 0.23 mmol) was then added to the stirred solvent. The resulting solution was cooled to -78 °C to which 1M solution of BBr₃ (188.6 mg, 0.74 mmol) in DCM was added. The reaction mass was further stirred at room temperature for 20 hours. After completion of the reaction (reaction monitored by TLC), reaction mass was diluted with 10mL of water and extracted with DCM (2X10mL). The DCM layer was dried over of anhydrous Na₂SO₄. Solvent was removed under reduced pressure. Crude material was purified by silica gel column chromatography eluting with hexanes: EtOAc to give Compound (15) (55 mg). ¹H NMR (300MHz,CDCl₃): δ 7.79(s,1H), 7.11-7.15(m,1H), 6.93-6.97(m,2H), 6.68-6.73(m,1H), 5.21(s,1H), 4.44-4.62(m,1H), 3.45-3.59(m,1H), 2.94-3.03(m,1H), 2.66-2.91(m,1H), 2.53-2.63(m,2H), 1.63-1.76(m,6H), 1.25-1.35(m,7H). LC-MS (M+H)+ = 327.2; HPLC purity: 87.98%.

EXAMPLE 16: 3-(5-fluoro-2-methyl-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (16)

![Chemical Structure](image)

Synthetic Scheme-17

Synthesis of 3-(5-fluoro-2-methyl-1H-indol-3-yl)propanoic acid (Intermediate-22): Intermediate-22 was synthesized by following the procedure used to make Intermediate-9 (Scheme 4).
Synthesis of Compound (16): Compound (16) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (16). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 7.81 (s,1H), 7.1 0-7.1 8(m,2H), 6.81-6.88(m,1 H), 4.49-4.68(m,1 H), 3.47-3.53(m,1 H), 2.94-3.11 (m,2H), 2.48-3.1 1(m,3H), 2.37(s,3H), 1.30-1.78(m,13H). LC-MS (M+H)\(^+\) = 343.2; HPLC purity: 90.88%.

EXAMPLE 17: 3-(2-methyl-1W-indol-3-yl)-1-(octahydroquinolin -1(2H)-yl)propanoic acid (Intermediate-23): Intermediate-23 was synthesized by following the procedure used to make Intermediate-9 (Scheme 4).

Synthesis of Compound (17): Compound (17) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (17). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 7.89(s,1H), 7.40-7.44(m,1 H), 7.1 7-7.1 9(t,1 H), 6.98-7.05(m,2H), 4.43-4.62(m,1 H), 3.38-3.47(m,1H), 2.94-3.04(m,2H), 2.68-2.86(m,1H), 2.51-2.66(m,2H), 2.29(s,3H), 1.52-1.70(m,6H), 1.21-1.34(m,7H). LC-MS (M+H)\(^+\) = 325.2; HPLC purity: 94.48%.
EXAMPLE 18: 3-(1H-indol-1-yl)-1-(octahydropyrimidin-1(2H)-yl)propan-1-one (18)

Synthesis of 3-(1W-indol-1-yl)propanoic acid (Intermediate-25): A 100ml RB flask fitted with magnetic stirrer was charged with 10 ml of DMF. To the stirred solvent Starting Material-1 (1.0g, 8.53 mmol) followed by Sodium hydride (400 mg, 10.24 mmol) were added. The resulting solution was stirred at room temperature for 1 hour. To the above solution methyl-3-bromo-propionate (2.13 g, 12.79 mmol) was added and stirred at room temperature for 24 hours. After completion of the reaction (reaction monitored by TLC), reaction mass was diluted with 30mL of ice cold water and washed with ether. Aqueous portion was acidified with 1N HCl (pH =2) and was then extracted with EtOAc and concentrated to give Intermediate-24 (900mg).

Synthesis of Compound (18): Compound (18) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (18). 1H NMR (300MHz,CDCl3) : δ 7.38-7.43(t,1H), 7.16-7.28(m,1H), 7.01 - 7.1 0(m,1H), 6.84-6.90(m,2H), 6.43-6.52(m,1 H), 4.40-4.77(m,1H), 4.30-4.35(t,2H), 3.14-3.35(m,3H), 2.42-2.78(m,2H), 1.57-1.61(t,4H), 1.28-1.49(m,3H), 1.06-1.16(m,5H). LC-MS (M+H) $^+$ = 311.1 ; HPLC purity: 98.08%.
EXAMPLE 19: 1-(5-chloro-1 W-indol-3-yl)-3-(octahydroquinolin-1 (2AV)-yl)propane-1,3-
dione (19)

Synthesis of ethyl 3-(5-chloro-1 W-indol-3-yl)-3-oxopropanoate (Intermediate-25): To a
50mL two neck RB 10mL of dichloromethane was added. To this solvent, ethylmalonylchloride (1.0mL, 8.24mmol) was added and the reaction mixture thus obtained was cooled to 0 °C. To the cooled reaction mixture, TiCl₄ (0.9ml, 8.24mmol) was slowly added and the mixture was stirred at room temperature for 20min. The reaction mixture was once again cooled to 0 °C and to the cooled mixture Starting Material-1 (0.5g, 3.29mmol) dissolved in 2mL of dichloroethane was added and stirred at room temperature for 3 hours. The reaction mass was quenched with 1N HCl solution and extracted with ethyl acetate. Organic layers were concentrated, purified by silica-gel column chromatography eluting with hexanes: EtOAc to give Intermediate-25 (566 mg).

Synthesis of ethyl 3-(5-chloro-1 W-indol-3-yl)-3-oxopropanoic acid (Intermediate-26):
Intermediate was synthesized by following the procedure used to make intermediate-3 (1)
(Scheme 1).

Synthesis of Compound (19): Compound (19) was synthesized by following the procedure
used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the
organic layer under reduced pressure and was purified by silica gel column using Petroleum
ether: Ethyl acetate (1:4) as eluent to obtain Compound (19). ¹H NMR (300MHz,CDCl₃) : δ
10.58(s,1 H), 8.22(s,1 H), 7.96(s,1H), 7.10(m,2H), 4.00-4.58(m,1 H), 3.31-3.84(m,3H), 2.50-
3.10(m, 1H), 1.16-1.82(m,1 3H). LC-MS (M+H)⁺ = 359.1 ; HPLC purity: 90.09%.
EXAMPLE 20: 3-(4-methyl-1«-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (20)

Synthetic Scheme-21

Synthesis of 4-methyl-1 W-indole (Intermediate-27): A 100 mL RB flask fitted with magnetic stirrer and reflux condenser was charged with 60 mL of DMF. To the stirred solvent Starting Material-12 (5 g, 33 mmol) was added followed by addition of Dimethyl formamide dimethyl acetal (13.1 mL, 99.2 mmol). To this reaction mixture Pyrrolidine (3.2 mL, 39.6 mmol) was added and it was heated at 120°C under Nitrogen atmosphere for 21 hours. After completion of the reaction the mixture was cooled to room temperature and solvent was removed under reduced pressure. The resulting crude mass was taken in ether (250 mL) and was washed with water (50 mLx3) and saturated brine solution (50 mL) and the organic layer was dried over anhydrous sodium sulphate and concentrated. Resulted crude material was taken in Ethyl acetate (50 mL). To this 10%Pd/C (1.0 g, 10% w/w) was added and hydrogenated in a parr shaker for 2 hours. After completion of the reaction (reaction monitored by TLC), the mixture was filtered through celite bed. Filtrate was concentrated to give crude product, which was purified by column chromatography on silica gel (120 meshe) using Petroleum ether (60-80) and ethyl acetate as eluent to give Intermediate-27 (1.2 g).

Synthesis of 3-(4-methyl-1W-indol-3-yl)propanoic acid (Intermediate-28): A 100 mL RB flask fitted with magnetic stirrer was charged with 2.5 mL of acetic acid. To the stirred solvent acetic anhydride 2.0 mL was added followed by addition of acrylic acid (1.8 mL, 27.4 mmol). To this stirred mixture, Intermediate-27 (1.2 g, 9.15mmol) was added and the reaction mixture was further stirred at room temperature for 1 week. After completion of the reaction (reaction
was monitored by TLC, reaction mass was basified using 5N NaOH (5 mL) and washed with Ethyl acetate (100 ml_x2). The aqueous layer was acidified with Concentrated HCl (3ML) and was extracted using Ethyl acetate (100 ml_x3). The combined ethyl acetate layer was washed with brine solution and concentrated to give Intermediate-28 (350 mg).

Synthesis of Compound (20): Compound (20) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (20). ¹H NMR (300MHz,CDCl₃) : δ 8.23(s,1H), 7.08-7.11(t,1H), 6.93-6.99(m,1H), 6.88-6.89(d,1H), 6.73-6.77(t,1H), 4.46-4.50(m,1H), 3.53-3.60(m,1H), 3.46-3.51(m,2H), 2.71-2.92(m,1H), 2.45-2.87(m,6H), 1.71-1.77(m,5H), 1.29-1.39(m,7H). LC-MS (M+H)⁺ = 325.2; HPLC purity: 96.28%.

EXAMPLE 21: 3-(1-(octahydro-4H-1,4-benzoxazin-4-yl)-1-(octahydroisoquinolin-2(1H)-yl)propan-1-one (21)

Synthesis of Compound (21): Compound (21) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (21). ¹H NMR (300MHz,CDCl₃) : δ 8.59(s,1H), 7.49-7.52(d,1H), 7.24-7.26(d,1H), 6.98-7.10(m,2H), 6.90(s,1H), 4.44-4.66(m,1H), 3.40-3.70(m,1H), 3.01-3.06(m,2H), 1.99-2.81(m,4H), 0.44-1.63(m,12H). LC-MS (M+H)⁺ = 311.0; HPLC purity: 96.03%.

EXAMPLE 22: 1-(octahydro-4W-1,4-benzoxazin-4-yl)-3-(1 W-pyrrolo[2,3-Jt)pypyridin-3-yl)butan-1-one (22)
Synthesis of 3,4-dihydro-2H-1,4-benzoxazine (Intermediate-29): A solution of Starting Material-1 (5 g, 33.5 mmol) in tetrahydrofuran (50 mL) was slowly added to a suspension of lithium aluminum hydride (3.18 g, 83.8 mmol) under N₂ atmosphere at 0 °C. The reaction mixture was refluxed for 16 h. The reaction mixture was diluted with EtOAc, quenched with 15% aqueous sodium hydroxide solution at 0 °C, and extracted with ether, and concentrated to give Intermediate-29 as brown liquid (4.3 g).

Synthesis of octahydro-2H-1,4-benzoxazine (Intermediate-30): To a solution of Intermediate-29 (1.5 g, 11.1 mmol) in 20 mL of acetic acid, 10% PtO₂ (252 mg) was added, and hydrogenated at 60 psi for 5 h. The mixture was filtered and basified with 10% NaOH solution, extracted with diethyl ether, dried over sodium sulphate and concentrated to give Intermediate-30 as brown liquid (520 mg).

Synthesis of 3-(1H-pyrrolo[2,3-b]pyridin-3-yl)butanoic acid (Intermediate-31): Intermediate-31 was synthesized by following the procedure used to make Intermediate-3 (Scheme 1).

Synthesis of Compound (22): Compound (22) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (22). ¹H NMR (300MHz,DMSO-d₆) : δ 11.31 (s,1H), 8.15-8.17(m,1H), 7.95-7.99(m,1H), 7.25-7.29(d,1H), 6.98-7.04(m,1H), 3.99-4.10(m,1H), 3.43-3.74(m,4H), 2.63-3.10(m,3H), 1.15-1.99(m,12H). LC-MS (M+H)⁺ = 328.2; HPLC purity: 95.42%.
EXAMPLE 23: W-ferf-butyl-2-[3-(1H-indol-3-yl)propanoyl] decahydroisoquinoline-3-carboxamide (23)

Synthetic Scheme-23

Synthesis of Compound (23): Compound (23) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate (1:4) as eluent to obtain Compound (23). 1H NMR (300MHz,CDCl3) : δ 7.99(s,1H), 7.48-7.55(m,1H), 7.28-7.30(d,1H), 7.03-7.15(m,2H), 6.97(s,1H), 5.57-5.72(d,1H), 4.95(s,1H), 3.24-4.33(m,3H), 3.05-3.37(m,1H), 2.09-2.86(m,3H), 1.15-1.56(m,20H). LC-MS (M-H)$^+$ = 408.2; HPLC purity: 98.47%.
EXAMPLE 24: 3-(5-hydroxy-1-methyl-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (24)

\[
\begin{align*}
\text{(24)}
\end{align*}
\]

Synthesis of Compound (24): Compound (24) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (24). \(^1\)H NMR (300MHz,CDCI\(_3\)) \(\delta\) 6.95-7.02(m,2H), 6.76-6.79(d,1H), 6.70-6.79(d,1H), 4.44-4.62(m,1H), 3.56-3.57(d,3H), 3.41-3.50(m,1H), 2.91-3.06(m,2H), 2.67-2.84(m,1H), 2.48-2.65(m,2H), 1.57-1.71(m,4H), 1.46-1.47(d,2H), 1.18-1.34(m,7H). LC-MS (M+H)\(^+\) = 341.2; HPLC purity: 97.31%.

EXAMPLE 25: 2-(1H-indol-3-yloxy)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (25)

\[
\begin{align*}
\text{(25)}
\end{align*}
\]

Synthetic Scheme-24

\[
\begin{align*}
\text{Starting material 16} & \rightarrow \text{Intermediate 32} & \rightarrow \text{Intermediate 33} & \rightarrow \text{Intermediate 34} \\
\text{Starting material 4} & \rightarrow \text{Intermediate 35}
\end{align*}
\]
Synthesis of 2-[(carboxymethyl)amino]benzoic acid (Intermediate-32): To a 500mL 2-neck RB flask fitted with magnetic stirrer, Starting Material-16 (20g, 145 mmol) was added lot wise to a stirred solution of K₂CO₃ (83 g, 602 mmol) in water (140 mL) followed by chloroacetic acid (13.7g, 145 mmol) under N₂ atmosphere at room temperature for about 30 minutes. Then reaction mass was heated at 90°C for 16 hours. After the reaction was cooled to room temperature the reaction mass pH was adjusted to 4-5 using citric acid. The solid material was then filtered and dried under vacuum oven at 70°C for 12 hours to give Intermediate-32 (23 g) as brownish solid.

Synthesis of 1-acetyl-1H-indol-3-yl acetate (Intermediate-33):
To a 500mL 2-neck RB flask fitted with magnetic stirrer, acetic anhydride (110 mL, 1200 mmol) was added slowly at 0°C to a stirred solution of triethylamine (170 mL, 1242 mmol) and Intermediate-32 (23g, 117 mmol) under N₂ atmosphere. Reaction mass was stirred at room temperature for 5 hours and was further heated at 80°C for 16 hours. Then the reaction was cooled to room temperature and was extracted with ethyl acetate (4 x 150 mL). Organic layer was washed with brine solution, dried over Na₂SO₄ and concentrated. Crude material was purified by silica gel column eluting with hexanes: EtOAc to give Intermediate-33 (5.5 g) as brown solid.

Synthesis of 1-(3-hydroxy-1H-indol-1-yl)ethanone (Intermediate-34):
To a 50mL 2-neck RB flask fitted with magnetic stirrer, ethanol and water was added. To the solvent, the stirred mixture of Intermediate-33 (5 g, 23 mmol), Na₂SO₄ (1.6 g, 426 mmol) was added. The reaction mixture was heated at 80°C for 12 hours. After completion of reaction (reaction monitored by TLC), reaction mass was quenched with water and extracted with Ethyl Acetate (3x100 mL). The organic layer was washed with saturated brine solution (15mL), dried over anhydrous Na₂SO₄, and concentrated. The crude product was purified by silica gel column eluting with hexanes: EtOAc to give Intermediate-34 (1.5 g) as pink solid.

Synthesis of 2-chloro-1-(octahydroquinolin-1(2H)-yl)propan-1-one (Intermediate-35): To a 50mL 2-neck RB flask fitted with magnetic stirrer containing reaction mixture of Starting Material-4 (0.7g, 5 mmol), EDCI (1.17g, 6.3 mmol) and 1-hydroxy benzothioazole (0.762g, 5.6
mmol) in DCM at 0°C, triethylamine (1.3 mL, 9.9 mmol), was added followed by addition of 2-chloropropanoic acid (0.543g, 5 mmol). Resulted reaction mixture was stirred at room temperature for 16 hours. After completion of reaction (reaction monitored by TLC), reaction mass was quenched with water and extracted with DCM (3x25 mL). The organic layer was washed with saturated brine solution (15mL), dried over anhydrous Na₂SO₄, and concentrated. The crude product was purified by silica gel column eluting with hexanes: EtOAc to give Intermediate-35 (0.5g) as liquid material.

Synthesis of 2-[(1-acetyl-1H-indol-3-yl)oxy]-1-(octahydroquinolin-1(2H)-yl)propan-1-one (Intermediate-36):

To a 50mL 2 neck RB flask fitted with magnetic stirrer Intermediate-34 (0.05g, 0.28 mmol) and DMSO (3ml) were added at 0°C under nitrogen atmosphere. To this Potassium t-Butoxide (0.05g, 0.46 mmol) was added and stirred for 1 hour, then Intermediate-35 (0.065g, 0.28 mmol) was added. Resulting mixture stirred at room temperature for 16 hours. After reaction (reaction monitored by TLC), quenched with water and extracted with ethyl acetate (3x10 mL). The organic layer was washed with saturated brine solution (10mL), dried over anhydrous Na₂SO₄, and concentrated to give Intermediate-36 (100 mg).

Synthesis of Compound (25):

To a stirred solution of Intermediate-36 (0.1g, 0.27 mmol) in methanol and water was added K₂CO₃ (0.15g, 1.0 mmol), and stirred at room temperature for 3 hours. After completion of the reaction (reaction monitored by TLC), quenched with water and extracted with ethyl acetate (3x10 mL). The organic layer was washed with saturated brine solution (15mL), and concentrated. The crude product was purified by silica gel column eluting with hexanes: EtOAc to give Compound (25) (6 mg) as a sticky solid. ¹H NMR (300MHz,CDCI3) : δ 7.55-7.58(d,2H), 7.19-7.22(d,1H), 7.08-7.013(t,1H), 6.98-7.02(t,1H), 6.67-6.68(d,1H), 4.75-4.85(m,1H), 4.10-4.56(m,2H), 2.52-2.96(m,1H), 1.18-1.60(m,16H). LC-MS (M+H)⁺ = 327.2; HPLC purity: 99.99%.

EXAMPLE 26: 1-[3-(1H-indol-3-yl)propanoyl]octahydroquinolin-4(1H)-one (26)
Synthetic Scheme-25

Synthesis of 1-(cyclohex-1-en-1-yl)-3-(dimethylamino)propan-1-one (Intermediate-37):
Starting Material-17 (5g, 40.3mmol), dimethyl amine hydrochloride (3.62g, 44.3mmol), paraformaldehyde (2.42g, 80.5mmol), 37% aqueous HCl (0.2 mL, 40.3mmol) were combined in ethanol (5ml). The resultant mixture was heated to reflux in a sealed tube for 20 hours. The reaction was then concentrated, basified with aq. NaOH and extracted with CHCl₃. The combined organic layers were dried over Na₂SO₄, concentrated to give Intermediate-37 (4.78 g) as light orange oily material.

Synthesis of tert-butyl 4-oxooctahydroquinoline-1(2H)-carboxylate (Intermediate-38):
Intermediate-37 (4.2 g, 23.2mmol), was taken in 1,4-dioxane (3 mL), and concentrated NH₄OH (5 mL) in a sealed tube. The vessel was sealed and then heated in an oil bath at 120°C for 18 hours. Then reaction mixture was cooled to room temperature, and concentrated. The residue was taken up in CHCl₃, dried over Na₂S0₄ and concentrated to give crude material (3.35 g). This crude material was treated with Boc₂O (4.8g, 29.8mmol), in presence of TEA (9 mL, 64.5mmol), in THF (10 mL) at room temperature for 16 hours. After completion of reaction, the reaction mixture was diluted with water, extracted with EtOAc and concentrated to give crude material, which is purified by silica gel column chromatography eluting with hexanes: EtOAc to give Intermediate-38 (1.34 g).

Synthesis of octahydroquinolin-4(1H)-one trifluoroacetic acid salt (Intermediate-39): At 0°C, Trifluoro acetic acid (0.162g, 1.42 mmol) was added drop wise to a solution of Intermediate-38 (0.3g, 1.18mmol) in DCM (3 mL), under nitrogen atmosphere. Resultant mixture was stirred at RT for 16 h. After completion the reaction mixture was concentrated to give Intermediate-39 (352 mg).
Synthesis of Compound (26): Compound (26) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (26). \(^1\)H NMR (300MHz,CDC\(_3\)) : \(\delta\) 8.05(s,1 H), 7.53-7.58(t,1 H), 7.27-7.29(d, 1H), 7.02-7.19(m,2H), 6.98(s,1 H), 4.60-4.92(m,1 H), 3.69-3.83(m,1 H), 306-3.37(m,3H), 2.63-2.92(m,2H), 1.35-2.25(m,1 H). LC-MS (M+H)^+ = 325.2; HPLC purity: 93.87%.

EXAMPLE 27: 3-(1,4-dimethyl-1 H-indol-3-yl)-1-(octahydroquinolin-1 (2H)-yl)propan-1-one (27)

\[
\text{Synthetic Scheme-26}
\]

Synthesis of Compound (27): Under N\(_2\) atmosphere to a stirred solution of (20) (70 mg 0.2157 mmol) in 5 mL of dry THF, sodium hydride (22 mg, 0.5394 mmol) was added, and stirred for 30 minutes at room temperature. To this reaction mixture methyl iodide (77 mg, 0.5394 mmol) was added at 0 °C. The mixture was stirred at room temperature for 3 hours. The mixture was quenched with crushed ice and extracted with ethyl acetate, and concentrated. Resulting crude material was purified by silica-gel column chromatography eluting with hexanes: EtOAc to give Compound (27) (55 mg). \(^1\)H NMR (300MHz,CDC\(_3\)) : \(\delta\) 6.98-7.03(m,2H), 6.76-6.78(m,2H), 3.47-4.63(m,1 H), 3.62-3.63(d,3H), 3.15-3.20(m,2H), 2.63-2.92(m,4H), 2.46-2.60(m,2H), 1.23-1.93(m,14H). LC-MS (M+H)^+ = 339.2; HPLC purity: 99.79%.
EXAMPLE 28: 3-(1-cyclopropyl-4-methyl-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (28)

Synthesis of Compound (28): Compound (28) was synthesized by following the procedure used to make Compound (27) (Scheme 26). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (28).

1H NMR (300MHz,CDCl3): δ 6.96-7.04 (m, 2H), 6.80-6.81 (m, 1H), 6.64-6.67 (m, 1H), 5.34-5.41 (m, 1H), 4.49-4.63 (m, 1H), 3.49-3.63 (m, 1H), 3.18-3.22 (m, 2H), 2.64-2.74 (m, 4H), 2.46-2.60 (m, 2H), 1.23-1.80 (m, 17H). LC-MS (M+H)$^+$ = 365.3; HPLC purity: 98.79%.

EXAMPLE 29: 3-[1-(cyclopropylmethyl)-4-methyl-1H-indol-3-yl]-1-(octahydroquinolin-1(2H)-yl)propan-1-one (29)

Synthesis of Compound (29): Compound (29) was synthesized by following the procedure used to make Compound (27) (Scheme 26). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (29).

1H NMR (300MHz,CDCl3): δ 7.08-7.10 (d, 1H), 6.97-7.02 (d, 1H), 6.91-6.93 (d, 1H), 6.75 (m, 1H), 4.45-4.63 (m, 1H), 3.81-3.83 (d, 2H), 3.45-3.58 (m, 1H), 3.16-3.21 (m, 2H), 2.49-2.77 (m, 6H), 1.23-1.97 (m, 14H), 0.51-0.54 (m, 2H), 0.26-0.27 (m, 2H). LC-MS (M+H)$^+$ = 379.3; HPLC purity: 99.43%.
EXAMPLE 30: 1-(4-methyl-1 H-indol-3-yl)-3-(octahydroquinolin-1 (2W)-yl)propane-1,3-dione (30)

Synthesis of Compound (30): Compound (30) was synthesized by following the procedure used to make Compound (19) (Scheme 20). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (30). \(^1 \)H NMR (300MHz,CDCI3) : \(\delta \) 9.25-9.31 (d,1 H), 8.26-8.30(m,1 H), 7.06-7.1 5(m,2H), 6.95-6.97 (d,1 H), 4.1 2-4.60(m,1 H), 3.90(s,2H), 3.59-4.1 6(m,1 H), 2.52-3.06(m,1 H), 2.75-2.76(d,3H), 1.93-2.30(m,1 H), 1.26-1.98(m,12H). LC-MS (M+H)\(^+\) = 339.2; HPLC purity: 98.52%.

EXAMPLE 31: (2£)-3-(1 H-indol-3-yl)-2-(octahydroquinolin-1 (2H)-yl carbonyl)prop-2-enenitrile (31)

Synthetic Scheme-27

Synthesis of tert-butyl 3-[(1 Z)-2-cyano-3-ethoxy-3-oxoprop-1 -en-1 -yl]-l H-indole-1 -carboxylate (Intermediate-40): A 50mL RB flask fitted with magnetic stirrer was charged with isoproponol (10mL) and Starting Material-18. To this ethyl cyano acetate (0.255g, 2.2mmol) and potassium hydroxide (0.12g, 2.2mmol) were added at 0 \(^\circ \) C and was stirred for
1 hour. After completion of the reaction (reaction monitored by TLC), reaction mixture was quenched with Ice-Water 350mL and extracted with ethyl acetate. The organic layer was washed with brine solution and dried by anhydrous sodium sulphate and concentrated to give Intermediate-40 (600 mg).

Synthesis of (2Z)-2-cyano-3-(1H-indol-3-yl)prop-2-ehoic acid (Intermediate-41): A 100mL RB flask fitted with magnetic stirrer was charged with 5 ml. of Ethanol and Intermediate-40 (0.6g, 1.7mmol). To this NaOH (0.20g, 2.4mmol) in 0.5mL of water was added and the reaction mixture was stirred at room temperature for 3 hours. After completion of the reaction (reaction monitored by TLC), the reaction mixture was concentrated. The resulted crude was acidified with 1N HCl (pH 1-2), and extracted with ethyl acetate. Organic layers were washed with brine solution and dried by anhydrous sodium sulphate and concentrated to give Intermediate-41 (400 mg).

Synthesis of Compound (31): Compound (31) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (31). \(^1\)H NMR (300MHz,CDCl3) : \(\delta 8.94(8,1H), 8.44(8,1H), 8.13(s,1H), 7.68-7.71(d,1H), 7.37-7.40(d,1H), 7.21-7.26(m,2H), 4.30-4.48(m,1H), 3.90-4.08(m,1H), 2.75-3.18(m,1H), 1.30-1.86(m,13H). \)

LC-MS (M+H) + = 334.2; HPLC purity: 94.91%.

EXAMPLE 32: 1-[3-(4-methyl-1W-indol-3-yl)propanoyl] octahydroquinolin-4(1/7)-one (32)

![32](image)

Synthesis of Compound (32): Compound (32) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (32). \(^1\)H NMR (300MHz,CDCl3) : \(\delta 7.92(s,1H), 7.11-7.14(d,1H), 6.95-6.99(m,2H), 6.79(s,1H), 4.62-4.94(m,1H), 4.04-4.06(d,3H), 3.57-3.87(m,1H), 3.25-3.39(m,2H), 2.57-2.66(m,4H), 1.43-2.26(m,10H). \)

LC-MS (M+H) + = 339.2; HPLC purity: 92.86%.
EXAMPLE 33: 3-(1-ethyl-4-methyl-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (33)

Synthesis of Compound (33): Compound (33) was synthesized by following the procedure used to make Compound (27) (Scheme 26). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (33). 1H NMR (300MHz,CDCl3) : δ 6.98-7.08(m,2H), 6.83-6.84(d,1H), 6.75-6.77(m,1 H), 4.45-4.63(m,1 H), 3.98-4.05(m,2H), 3.47-3.57(m,1 H), 3.16-3.20(t,2H), 2.50-2.92(m,6H), 1.23-1.76(m,16H). LC-MS (M+H)^+ = 353.3

EXAMPLE 34: 1-(4-hydroxy-4-methyloctahydroquinolin-1 (2H)-yl)-3-(1 W-indol-3-yl)propan-1-one (34)

Synthetic Scheme-28
Synthesis of ferf-butyl 4-hydroxy-4-methyloctahydroquinoline-1 (2H)-carboxylate (Intermediate-42): In a 50 mL-2 neck-RB flask fitted with magnetic sitter, a 3.0 M solution of methyl magnesium iodide in ether (1.45 mL, 4.4 mmol) was added drop wise at -20 °C to a stirred solution of Intermediate-38 (0.55 g, 2.2 mmol) in 5 ml of dry THF under N₂ atmosphere. Resulting mixture was stirred at room temperature for 16 hours. After completion of the reaction (monitored by TLC), the reaction mixture was quenched with ice water and extracted with ethyl acetate (3 x 15 ml). Organic layer was washed with brine solution and dried over Na₂S₀₄ and concentrated. Crude material was purified by silica-gel column chromatography eluting with hexanes: EtOAc to give Intermediate-42 (82 mg) as gummy solid. LC-MS (M+H)+ = 270.1.

Synthesis of -methyldecahydroquinolin-4-ol trifluoroacetic acid salt (Intermediate-43): Intermediate-43 was synthesized by following the procedure used to make Intermediate-39 (Scheme 25).

Synthesis of Compound (34): Compound (34) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (34). ¹H NMR (300MHz,CDCI3) : δ 7.95(s,1 H), 7.54-7.56(d,1 H), 7.27-7.29(d,1 H), 7.02-7.14(m,2H), 6.97(s,1 H), 4.38-4.53(m,1 H), 3.39-3.42(m,1 H), 3.06-3.08(m,2H), 2.51-2.77(m,2H), 0.86-2.10(m,16H). LC-MS (M+H)+ = 341.2; HPLC purity: 80.53%.

EXAMPLE 35: 3-(4-methyl-1 tf-indol-3-yl)-1-(2-methyloctahydroquinolin-1 (2H)-yl)propan-1-one (35)

Synthesis of Compound (35): Compound (35) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (35). ¹H NMR (300MHz,CDCI3) : δ 7.90(s,1 H), 7.10-7.13(d,1 H), 6.92-7.01 (m,2H), 6.79(m,1 H), 4.48-4.71 (m,1 H), 3.48-
3.94 (m, 1 H), 3.19-3.24 (t, 2H), 2.48-2.79 (m, 6H), 1.09-1.77 (m, 15H). LC-MS (M+H)^+ = 339.3; HPLC purity: 98.23%.

EXAMPLE 36: 3-(1 H-indol-3-yl)-1-[(4E)-4-(methoxyimino)decahydronaphthalen-1-yl]propan-1-one (36)

![Chemical structure of compound 36]

Synthetic Scheme-29

Synthesis of ferf-butyl (4E)-4-(methoxyimino)octahydroquinoline-1 (2H)-carboxylate (Intermediate-44): In a 50 mL-2 neck-RB flask fitted with magnetic sitter, pyridine (0.45 ml, 3 vol) was added to a stirred solution of Intermediate-38 (150 mg, 0.596 mmol) in ethanol (1.5 ml, 8 vol). To this O-methoxylamine hydrochloride (250 mg, 2.96 mmol) was added. The resulting mass was refluxed at 90°C for 3 hours. After completion of reaction (monitored by TLC), the solvent was completely removed from the reaction mass under vacuum. Crude was portioned between water and ethyl acetate. The organic layer was separated and the aqueous layer thus obtained was washed with ethyl acetate and concentrated. Resulted crude material was purified by silica-gel column chromatography eluted with hexanes: EtOAc to give Intermediate-44 (150 mg) as pale greenish liquid material.

Synthesis of (4E)-A/-methoxyoctahydroquinolin-4(1 H)-imine trifluoroacetic acid salt (Intermediate-45): Intermediate-45 was synthesized by following the procedure used to make Intermediate-39 (Scheme 25).
Synthesis of Compound (36): Compound (36) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (36). 1H NMR (300MHz,CDCl3): δ 7.95(s,1H), 7.52-7.54(m,1H), 7.27-7.30(m,1H), 7.02-7.15(m,2H), 6.97(s,1H), 4.10-4.67(m,1H), 3.76(d,3H), 3.18-3.59(m,1H), 3.04-3.17(m,2H), 2.54-2.86(m,3H), 1.35-2.26(m,11H). LC-MS (M+H)$^+$ = 354.2; HPLC purity: 88.00%.

EXAMPLE 37: 3-(1W-indol-3-yl)-1-(3-methyloctahydroquinolin-1(2H)-yl)propan-1-one (37)

![Chemical Structure of 37](image)

Synthesis of Compound (37): Compound (37) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (37). 1H NMR (300MHz,DMSO-d6): δ 10.76(s,1H), 7.49-7.52(d,1H), 7.30-7.33(d,1H), 7.02-7.12(m,2H), 6.94-6.99(1,1H), 4.00-4.60(m,1H), 3.37-3.66(m,1H), 3.01-3.19(m,1H), 2.87-2.95(m,2H), 2.54-2.78(m,2H), 0.30-1.98(m,15H). LC-MS (M+H)$^+$ = 325.2; HPLC purity: 97.66%.

EXAMPLE 38: 3-(1H-indol-3-yl)-1-(2-methyloctahydroquinolin-1(2H)-yl)propan-1-one (38)

![Chemical Structure of 38](image)

Synthesis of Compound (38): Compound (38) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (38). 1H NMR (300MHz,CDCl3): δ
EXAMPLE 39: 3-(6-fluoro-1AWndol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (39)

Synthesis of Compound (39): Compound (39) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate (1:4) as eluent to obtain Compound (39). \(^1H \) NMR (300MHz,CDCl3) : \(\delta
7.92(s,1H), 7.41-7.47(m,1H), 6.94-6.98(m,2H), 6.78-6.84(m,1H), 4.30-4.60(m,1H), 3.30-3.60(m,1H), 3.10-3.30(m,3H), 2.49-2.68(m,2H), 1.16-1.66(m,13H). \)

LC-MS (M+H)^+ = 325.2; HPLC purity: 98.14%.

EXAMPLE 40: 3-(6-fluoro-1W-indol-3-yl)-1-(2-methyl-octahydroquinolin-1(2H)-yl)propan-1-one (40)

Synthesis of Compound (40): Compound (40) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (40). \(^1H \) NMR (300MHz,CDCl3) : \(\delta
7.98(s,1H), 7.41-7.47(m,1H), 6.94-6.98(d,2H), 6.78-6.84(m,1H), 4.47-4.71 (m,1H), 3.37-3.90(m,1H), 3.02-3.07(t,2H), 2.46-2.77(m,2H), 0.91-1.82(m,16H). \)

LC-MS (M+H)^+ = 343.22; HPLC purity: 97.64%.
EXAMPLE 41: 3-(1H-indol-3-yl)-1-(octahydro-1H-indol-1-yl)propan-1-one (41)

Synthesis of octahydro-1H-indole (Intermediate-46): Intermediate-46 was synthesized by following the procedure used to make Intermediate-18 (Scheme 13).

Synthesis of Compound (41): Compound (41) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (41). 1H NMR (300MHz,CDCl₃) : δ 8.02(s,1H), 7.53-7.56(d,1H), 7.27-7.30(d,1H), 7.02-7.14(m,2H), 6.96(s,1H), 3.29-4.03(m,3H), 3.03-3.23(m,2H), 2.49-2.70(m,2H), 0.88-2.07(m,11H). LC-MS (M+H)$^+$ = 297.22; HPLC purity: 99.0%.

EXAMPLE 42: 3-(1H-indol-3-yl)-1-(octahydro-2H-isouindol-2-yl)propan-1-one (42):
Synthesis of Compound (42): Compound (42) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (42). 1H NMR (300MHz,CDCl3) : δ 7.98(8H), 7.53-7.56(d,1H), 7.27-7.30(d,1H), 6.99-7.13(m,3H), 3.28(s,2H), 3.13(m,3H), 2.94(s,1H), 2.63-2.68(t,2H), 2.24(s,3H), 2.02(s,2H), 1.31(m,5H). LC-MS (M+H)$^+$ = 297.2; HPLC purity: 97.66%.

EXAMPLE 43: 1-[3-(6-fluoro-1H-indol-3-yl)propanoyl] octahydroquinolin-4(1H)-one (43)

![Image](image_url)

Synthesis of Compound (43): Compound (43) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate (1:4) as eluent to obtain Compound (43). 1H NMR (300MHz,CDCl3) : δ 8.14(s,1H), 7.42-7.43(m,1H), 6.95(s,1H), 6.67-6.84(m,2H), 4.62-4.91 (m,1H), 3.71-3.81 (m,1H), 2.78-3.42(m,4H), 2.69(m,2H), 1.28-2.47(m,10H). LC-MS (M+H)$^+$ = 343.2; HPLC purity: 96.03%.

EXAMPLE 44: 3-(4-fluoro-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (44)

![Image](image_url)

Synthesis of Compound (44): Compound (44) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (44). 1H NMR (300MHz,DMSO-d6) : δ 11.07(s,1H), 7.14-7.17(m,2H), 6.99-7.01 (m,1H), 6.66-6.75(m,1H), 4.29-4.48(m,1H), 3.63-
3.76(m,1H), 2.95-2.97(m,2H), 2.56-2.76(m,3H), 1.66-1.75(m,5H), 1.52-1.61(m,2H), 1.28-1.45(m,6H). LC-MS (M+H)^+ = 329.3; HPLC purity: 97.26%.

EXAMPLE 45: 3-(1H-indol-3-yl)-1-(2-methyloctahydro-1H-indol-1-yl)propan-1-one (45)

![Chemical Structure of Compound 45](image)

Synthesis of Compound (45): Compound (45) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (45). ^1H NMR (300MHz,CDCl3) : δ 8.00(s,1H), 7.54-7.56(d,1H), 7.28-7.30(d,1H), 7.02-7.14(m,2H), 6.97(s,1H), 3.86-4.10(m,1H), 3.29-3.65(m,1H), 3.01-3.20(m,2H), 2.57-2.72(m,2H), 2.04(s,3H), 1.72-1.86(m,2H), 1.55-1.66(m,3H), 1.03-1.35(m,6H). LC-MS (M+H)^+ = 311.2; HPLC purity: 99.27%.

EXAMPLE 46: {3-[[3-(octahydroquinolin-1(2H)-yl)-3-oxopropyl]-1 H-indol-1-yl]acetic acid (46)

![Chemical Structure of Compound 46](image)
Synthesis of ethyl [3-[3-(octahydroquinolin-1(2H)-yl)-3-oxopropyl]-1W-indol-1-yl]acetate (Intermediate-47): Intermediate-47 was synthesized by following the procedure used to make Intermediate-24 (Scheme 19).

Synthesis of Compound (46): Compound (46) was synthesized by following the procedure used to make Intermediate-3 (Scheme 1). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (46). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 7.46-7.50(t,1H), 7.02-7.18(m,3H), 6.80(s,1H), 4.66(s,2H), 4.39-4.58(m,1H), 3.47-3.60(m,1H), 2.93-3.01 (m,2H), 2.44-2.85(m,4H), 1.25-1.65(m,13H). LC-MS (M+H)+ = 369.22; HPLC purity: 93.09%.

EXAMPLE 47: 3-(4-fluoro-1-methyl-1H-indol-3-yl)-1-(octahydroquinolin-1(2A)-yl)propan-1-one (47)

Synthesis of Compound (47): Compound (47) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (47). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 7.20-7.23(d,1H), 7.14(s,1H), 7.05-7.11(m,1H), 6.71-6.79(s,1H), 4.29-4.48(m,1H), 3.62-3.79(m,4H), 2.92-2.98(m,2H), 2.61-2.72(m,3H), 1.35-1.75(m,13H). LC-MS (M+H)+ = 343.3; HPLC purity: 98.84%.
EXAMPLE 48: 1-(3,4,5,6,7,8-hexahydroquinolin-1(2«)-yl)-3-(1«-indol-3-yl)propan-1-one (48)

Synthesis of Compound (48): Compound (48) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (48). 1H NMR (300MHz,CDCl3): δ 8.00(s,1H), 7.51-7.54(d,1H), 7.26-7.29(d,1H), 7.01 -7.18(m,2H), 6.94(s,1H), 3.37(s,2H), 3.03-3.08(t,2H), 2.65-2.70(t,2H), 2.30-2.39(m,1H), 1.87(s,3H), 1.79(s,2H), 1.53-1.59(m,6H). LC-MS (M+H)$^+$ = 309.25; HPLC purity: 85.06%.

EXAMPLE 49: methyl 1-[3-(1H-indol-3-yl)propanoyl]decahydroquinoline-4-carboxylate (49)

Synthetic Scheme-32
Synthesis of decahydroquinoline-4-carboxylic acid (Intermediate-48): Intermediate- was synthesized by following the procedure used to make Intermediate-18 (Scheme 13).

Synthesis of methyl decahydroquinoline-4-carboxylate (Intermediate-49): To a stirred solution of Intermediate-48 (800 mg, 4.3656 mmol) in methanol (30 mL) thionyl chloride (0.48 mL, 6.5483 mmol) was added under nitrogen atmosphere at 0°C. The mixture was stirred at room temperature for 16 hours. After completion of the reaction, the reaction mixture was concentrated to give Intermediate-49 (775 mg).

Synthesis of Compound (49): Compound (49) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (49). \(^1\)H NMR (300MHz,CDCl\(_3\)) : \(\delta\) 7.97(s,1 H), 7.54-7.56(d,1 H), 7.27-7.30(d,1 H), 7.02-7.14(m,2H), 6.97(s,1H), 3.73-4.08(m,1H), 3.59(s,3H), 3.28-3.53(m,1H), 3.04-3.09(t,2H), 2.46-2.74(m,3H), 0.91-2.03(m,12H). LC-MS (M+H)\(^+\) = 369.2; HPLC purity: 96.44%.

EXAMPLE 50: 1-[3-(1 W-indol-3-yl)propanoyl]decahydroquinoline-4-carboxylic acid (50)

Synthetic Scheme-33

Synthesis of Compound (50): Compound (50) was synthesized by following the procedure used to make Intermediate-3 (Scheme 1). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using
Petroleum ether: Ethyl acetate as eluent to obtain Compound (50). 1H NMR (300MHz,DMSO-d6) : δ 12.26(s,1H), 10.77(s,1H), 7.50-7.52(d,1H), 7.30-7.33(d,1H), 7.13(s,1H), 6.94-7.07(m,2H), 3.69-4.53(m,1H), 2.89-2.94(t,2H), 2.42-2.74(m,3H), 1.27-1.91(m,13H). LC-MS (M+H)+ = 355.2.

EXAMPLE 51: 1-(octahydroquinolin-1(2H)-yl)-3-[1-(phenylsulfonyl)-1H-indol-3-yl]propan-1-one (51)

\[
\text{Synthetic Scheme-34}
\]

Synthesis of Compound (51): A 100 mL RB flask fitted with magnetic stirrer was charged with 60% NaH (77.26 mg, 1.932 mmol). To this 10 mL of THF was added at 0°C under nitrogen atmosphere. (96) (200 mg, 0.644 mmol) in THF was then added to the solvent and stirred at this temperature for 30 minutes. Phenyl sulfonyl chloride (170.61 mg, 0.966 mmol) was added and stirred at room temperature for 15 hours. After completion of reaction (reaction monitored by TLC), the reaction mass was quenched with crushed ice, extracted with ether (100 mLX3). The combined ether layer was washed with water (100 mLX3), brine, dried over anhydrous Na₂SO₄, and concentrated. Crude material was purified by silica-gel column chromatography eluting with hexanes: EtOAc to give (170 mg) as yellow sticky solid. 1H NMR (300MHz,CDCl₃) : δ 7.89-7.92(d,1H), 7.77-7.81(m,2H), 7.42-7.46(m,2H), 7.13-7.36(m,5H), 4.42-4.60(m,1H), 3.45-3.57(m,1H), 2.22-2.43(m,5H), 1.54-1.76(m,6H), 1.49(s,2H), 1.27-1.34(m,5H). LC-MS (M+H)+ = 451.2; HPLC purity: 93.06%.
EXAMPLE 52: 3-(1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (Peak-1)

(52)

Synthesis of Compound (52) (Peak-1): Compound (96) mixture of isomers was separated by reverse phase column to give Compound (52) (Peak-1). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 8.13(s, 1H), 7.52-7.55(d, 1H), 7.26-7.28(d, 1H), 7.01-7.12(m, 2H), 6.92-6.93(d, 1H) m , 3.66-3.68(m,1H), 2.73-3.09(m,5H), 1.94(s,2H), 3.12-1.66(m,12H). LC-MS (M+H)\(^+\) = 311.2; HPLC purity: 99.86% (Column: Zorbax eclipse XDB-C18, RT = 16.83 min, mobile phase: H\(_2\)O : MeCN =55: 45).

EXAMPLE 53: 3-(1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (Peak-2)

(53)

Synthesis of Compound (53) (Peak 2): Compound (96) mixture of isomers was separated by reverse phase column to give compound, Compound (53) (peak 2). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 7.89(s,1H), 7.53-7.58(t,1H), 7.26-7.31 (t,1H), 7.02-7.14(m,2H), 6.98(s,1 H), 4.45-4.62(m,1 H), 3.47-3.58(m,1H), 3.01-3.09(m,2H), 2.50-2.91 (m,3H), 1.27-1.67(m,13H). LC-MS (M+H)\(^+\) = 311.1 ; HPLC purity: 99.80% (Column: Zorbax eclipse XDB-C18, RT = 17.87 min, mobile phase: H\(_2\)O : MeCN =55: 45).
EXAMPLE 54: 1-(decahydro-1H-1-benzazepin-1-yl)-3-(1H-indol-3-yl)propan-1-one (54)

Synthesis of Compound (54): Compound (54) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (54). 1H NMR (300MHz,CDCl$_3$) : δ 7.93(s,1H), 7.53-7.57(t,1H), 7.27-7.30(d,1H), 7.02-7.14(m,2H), 6.97(s,1H), 4.13-4.70(m,1H), 3.35-3.62(m,1H), 3.05-3.17(m,2H), 2.53-2.81(m,3H), 1.29-1.81(m,15H). LC-MS (M+H)$^+$ = 325.2; HPLC purity: 98.41%.

EXAMPLE 55: 3-(1W-indol-3-yl)-1-(4a-methyloctahydroquinolin-1(2W)-yl)propan-1-one Peak-1 (55)

Synthesis of Compound (55) (Peak 1): Mixture of isomers were separated by silica gel column chromatography eluting with hexanes: EtOAc to give Compound (55) (peak 1). 1H NMR (300MHz,CDCl$_3$): δ 7.92(s,1H), 7.53-7.55(d,1H), 7.28-7.31(d,1H), 7.04-7.15(m,2H), 6.97(s,1H), 4.25-4.54(m,1H), 3.24-3.52(m,1H), 3.03-3.08(m,2H), 2.58-2.76(m,3H), 0.83-1.94(m,15H). LC-MS (M+H)$^+$ = 325.2; HPLC purity: 91.22%; Column: Zorbax eclipse XDB-C$_{18}$, RT = 17.43 min, mobile phase: H_2O : MeCN: TFA (0.01 %) gradient.
EXAMPLE 56: 3-(1 H-indol-3-yl)-1-(4a-methyloctahydroquinolin-1 (2H)-yl)propan-1-one
Peak-2 (56)

Synthesis of Compound (56) (Peak 2): Mixture of isomers were separated by silica gel column chromatography eluting with hexanes: EtOAc to give Compound (56) (Peak-2). 1H NMR (300MHz,CDCl3) : δ 7.93(s,1 H), 7.53-7.55(d,1 H), 7.27-7.30(d,1 H), 7.01-7.14(m,2H), 6.96(s,1H), 3.80-4.61 (m,1 H), 3.25-3.60(m,1 H), 2.99-3.05(m,2H), 2.59-2.78(m,4H), 0.83-1.93(m,14H). LC-MS (M+H)$^+$ = 325.2; HPLC purity: 97.45%; Zorbax eclipse XDB-C18, RT = 18.36 min, mobile phase: H20: MeCN: TFA (0.01%) gradient.

EXAMPLE 57: 2-(1H-indol-3-ylsulfonyl)-1-(octahydroquinolin-1(2H)-yl)ethanone (57)

Synthetic Scheme-35

Synthesis of Compound (57): To a stirred solution of (5) (100 mg, 0.30 mmol) in DCM (5 mL) was added m-CPBA (78 mg, 0.45 mmol) and stirred at rt for 16 hours. After completion of reaction (reaction monitored by TLC), the reaction mixture was quenched with saturated NaHCO$_3$ solution, extracted with DCM and concentrated. The crude product was purified by
silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (57) (50 mg) as yellow solid. 1H NMR (300MHz,CDCl3): δ 9.95(s,1H), 7.81-7.84(d,1H), 7.49(s,1H), 7.10-7.15(m,3H), 3.85-4.43(m,3H), 2.56-3.28(m,1H), 1.16-1.86(m,14H). LC-MS (M+H)$^+$ = 361.1; HPLC purity: 98.60%.

EXAMPLE 58: 3-methyl-3-(1-methyl-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (58)

![Chemical Structure](58)

Synthetic Scheme-36

Example 58: 3-methyl-3-(1-methyl-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (58)

Synthesis of 2-methyl-2-(1-methyl-1H-indol-3-yl)propan-1-ol (Intermediate-50):

A 250 mL RB flask fitted with magnetic stirrer was charged with Lithium aluminum hydride (0.983 g, 25.951 mmol) and THF (20 mL) was added to it at 0°C. To this resulting suspension Intermediate-5 (2.0 g, 8.65mmol) in THF (20 mL) was added and the resulting mixture was stirred at room temperature for 2 hours. After completion of the reaction, the reaction mixture was diluted with EtOAc (50 mL) and was quenched with Na$_2$SO$_4$ (5g) and the resulting slurry was stirred at room temperature for 1 hour, filtered through celite washed with ethyl acetate. The resulting filtrate was concentrated to give Intermediate-50 (0.9 g). 1H NMR
\[(300\text{MHz}, \text{DMSO-d}_6) : \delta 7.65-7.68(\text{d},1\text{H}), 7.34-7.36(\text{d},1\text{H}), 7.07-7.12(\text{t},1\text{H}), 7.03(\text{s},1\text{H}), 6.94-6.99(\text{t},1\text{H}), 4.53-4.57(\text{t},1\text{H}), 3.71(\text{s},3\text{H}), 3.54-3.56(\text{d},2\text{H}), 1.31(\text{s},6\text{H}).\]

Synthesis of 2-methyl-2-(1-methyl-1W-indol-3-yl)propanal (Intermediate-51):

A 100 mL RB flask fitted with magnetic stirrer was charged with 30 mL DCM and Pyridinium chloro chrome (2.466 g, 11.419 mmol) was added followed by the addition of Intermediate-50 (1.55 g, 7.627 mmol) in 10 mL of DCM. The resulting mixture was stirred at room temperature for 2 hours. After completion of the reaction, the solvent from the reaction mass was removed under reduced pressure to yield the crude compound. Crude mass was purified by column chromatography using 60-120 silica gel and 8% of ethyl acetate in Pet ether as eluent to give Intermediate-51 (0.79 g). \(^1\)H NMR (300MHz, DMSO-d6) : \(\delta 9.39(\text{s},1\text{H}), 7.40-7.44(\text{t},1\text{H}), 7.32(\text{s},1\text{H}), 7.13-7.18(\text{t},1\text{H}), 6.98-7.03(\text{t},1\text{H}), 3.77(\text{s},3\text{H}), 1.46(\text{s},\text{H}).\)

Synthesis of 3-[(3→4)-methoxy-2-methylbut-3-en-2-yl]-1-methyl-1W-indole (Intermediate-52):

A 100 mL RB flask fitted with magnetic stirrer was charged with 20 mL of dry THF and Methoxy methyl triphenyl phosphonium chloride (2.566 g, 7.487 mmol) was added followed by addition of Pot tert butoxide (2.295 g, 20.451 mmol). The resulting mixture was stirred at room temperature for 2 hours and then cooled to 0°C. Intermediate-51 (1.37 g, 6.807 mmol) in 10 mL of THF was added to the above reaction mass and was stirred at room temperature for 2 hours. After completion of the reaction (by TLC) reaction mass was diluted with 10 mL of water and was extracted with ethyl acetate (100 mL X 3) and the combined organic layers were washed with brine solution and was dried over anhydrous sodium sulfate concentrated. Crude product was purified by column chromatography using 60-120 silica gel and 6% of ethyl acetate in Pet ether as eluent to give Intermediate-52. Yield: 1.12 g (71.8%). \(^1\)H NMR (300MHz, CDCI3) : \(\delta 7.73-7.80(\text{m},1\text{H}), 7.33(\text{s},1\text{H}), 7.16-7.21(\text{t},1\text{H}), 7.03-7.08(\text{t},1\text{H}), 6.81(\text{s},1\text{H}), 5.79-6.34(\text{m},1\text{H}), 4.58-5.15(\text{m},1\text{H}), 3.73-3.74(\text{d},3\text{H}), 3.49-3.53(\text{d},3\text{H}), 1.55(\text{s},6\text{H}).\)

Synthesis of 3-methyl-3-(1-methyl-1W-indol-3-yl)butanal (Intermediate-53):

A 100 mL RB flask fitted with magnetic stirrer was charged with 50.4 mL of 1.4 dioxane and 12.76 mL of water. To this Intermediate-52 (1.12 g, 4.884 mmol) followed by p-toluene sulphonic acid (0.0424 g, 0.2232 mmol) was added. The resulting mass was heated at 60°C for 16 hours. After completion of the reaction, the reaction mixture was quenched with 10 mL of water and extracted with ethyl acetate (100 mL X 3) and the combined organic layer was washed with saturated sodium bicarbonate solution followed by brine solution and was dried over anhydrous sodium sulfate and concentrated. Crude product was purified by column chromatography using 60-120 silica gel and 8% of ethyl acetate in Pet ether as eluent to give
Intermediate-53. ¹H NMR (300MHz,DMSO-d6) : δ 9.47-9.49(t,1 H), 7.73-7.76(d, 1H), 7.37-7.40(d,1 H), 7.1 1-7.1 6(t,1 H), 7.1 0(s,1 H), 6.99-7.04(t,1 H) 3.72(s,3H), 2.78(s,2H), 1.49(s,6H).

Synthesis of 3-methyl-3-(1-methyl-1H-indol-3-yl)butanoic acid (Intermediate-54):

A 50 mL RB flask fitted with magnetic stirrer was charged with 10 mL of THF and was cooled to -78 °C to which 2- methyl 2 butene (3 mL) was added and stirred for 15 minutes. Another 100 mL RB flask fitted with magnetic stirrer was charged with Intermediate-53 (557 mg, 2.59mmol) and tert butanol (15 mL) and was stirred at RT and the above prepared THF solution was added to it. Then the resulting mass was cooled to 0 °C to which NaH₂PO₄ (1.42 g) in water was added followed by addition of NaClO₂ (0.35g) in water. The resulting mixture was stirred at 0 °C for 20 minutes and quenched with water and pH adjusted to 1-2 using 1N HCl and extracted with ethyl acetate and concentrated to give Intermediate-54 (480 mg). ¹H NMR (300MHz,DMSO-d6) : δ 11.82(s,1 H), 7.69-7.71 (d, 1H), 7.35-7.38(d, 1H), 7.09-7.1 4(t,1 H), 7.05(s,1 H), 6.96-7.01 (t,1 H), 3.71 (s,3H), 2.66(s,2H), 1.48(s,6H).

Synthesis of Compound (58): Compound (58) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (58). ¹H NMR (300MHz,CDCl₃) : δ 7.72-7.74(d,1 H), 7.20-7.23(d,1 H), 7.11-7.1 6(t,1 H), 7.03(s,1 H), 6.76(s,1 H), 4.34-4.53(m,1 H), 3.65(s,1 H), 3.07-3.29(,.2H), 2.75-2.84(m,2H), 2.75-2.84(m,2H), 2.27-2.39(m,4H), 1.54-1.56(d,6H), 1.38-1.43(m,3H), 1.07(m,2H), 0.09(m,2H), 0.37-0.65(m,2H). LC-MS (M+H)⁺ = 353.3; HPLC purity: 92.52%.

EXAMPLE 59: 3-methyl-3-(1-methyl-1H-indol-3-yl)-1-(4a-methyloctahydroquinolin-1(2H)-yl)butan-1-one (59)

![Chemical Structure](image)
Synthesis of 3-(1-methyl-2-oxocyclohexyl)propanenitrile (Intermediate-55): To a stirred solution of Starting Material-20 (5g, 44.6 mmol) in 15 mL of DMF, Triton-B (40% solution of Binzyl trimethylammonium hydroxide) (20.5 mL, 49.0 mmol) was added in 10 mL of DMF drop wise at 0°C under nitrogen atmosphere. The mixture was stirred at RT for 30 minutes. To this acrylonitrile (2.6 g, 49.0 mmol) in 15 mL of DMF was added and stirred for 16 hours. Then reaction mixture was poured in water and extracted with ethyl acetate, and concentrated. The crude material was purified by column chromatography using hexanes: ethyl acetate as eluent to give Intermediate-55 (975 mg).

Synthesis of 4a-methyldecahydroquinoline (Intermediate-56): A solution of Intermediate-55 (500 mg, 3.0261 mmol) in 25 mL of methanol was added to 10% of Pd/C (100 mg, 20% W/W) under N\textsubscript{2} atmosphere. N\textsubscript{2} gas was purged 5 min and then the reaction mixture was kept under hydrogen atmosphere at 60 psi for 16 h. After reaction, the catalyst was filtered and the solvent was concentrated to give Intermediate-56 (287 mg).

Synthesis of Compound (59): Compound (59) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (59). 1H NMR (300MHz,CDC\textsubscript{3}) : \textdelta 7.70-7.73(m,1H), 7.18-7.21 (m,1H), 7.02-7.14(m,1H), 7.00-7.02(m,1H), 6.75-6.76(m,1 H), 4.10-4.40(m,1H), 3.63-3.64(d,3H), 2.62-3.00(m,5H), 1.64-1.66(m,3H), 1.52-1.55(m,6H), 0.62-1.46(m,11H). LC-MS (M+H)+ = 367.3; HPLC purity: 96.39%.
EXAMPLE 60: 3-(1,4-dimethyl-1H-indol-3-yl)-1-(octahydro-4W-1,4-benzoxazin-4-yl)propan-1-one (60)

Synthesis of Compound (60): Compound (60) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (60). 1H NMR (300MHz,CDCl3) : δ 6.99-7.05(m,2H), 6.76-6.78(m,2H), 4.16-4.34(m,1H), 3.70-3.88(m,1H), 3.63-3.64(d,3H), 3.16-3.43(m,5H), 2.83-2.97(m,1H), 2.47-2.73(m,4H), 0.90-1.90(m,9H). LC-MS (M+H)+ = 341.2; HPLC purity: 98.03%.

EXAMPLE 61: 3-(1H-indol-3-yl)-1-[(trans-4a,8a)-octahydro-4W-1,4-benzoxazin-4-yl]propan-1-one (61)

Synthetic Scheme-38
Synthesis of 2-chloro-W-[trans-(1,2)-2-hydroxycyclohexyl]acetamide (Intermediate-57):
Starting Material (1 g, 6.6 mmol) was suspended in DCM (10 mL) and triethylamine (1.94 mL, 13.9 mmol) was added at -10°C. To this chloroacetyl chloride (0.53 mL, 6.6 mmol) was added slowly and the mixture was stirred at RT for 16 hours. After reaction was completed the reaction mixture was diluted with saturated aqueous sodium hydrogen carbonate and extracted with 5 percent IPA in ethyl acetate, and concentrated to give Intermediate-57 (570 mg) as brown oil.

Synthesis of (trans-4a,8a)-hexahydro-2W-1,4-benzoxazin-3(4H)-one (Intermediate-58):
To a stirred solution of Intermediate-57 (570 mg, 2.974 mmol) in THF (10 mL) at 0°C under N2 atmosphere, sodium hydride (60 percent in mineral oil) (131 mg, 3.271 mmol) was added carefully and the mixture was stirred for 16h at room temperature. After completion of the reaction, the reaction mixture was quenched with 1N HCl and extracted with DCM and concentrated. The crude material was purified by chromatography on a silica gel column chromatography eluting with DCM: MeOH afforded Intermediate-58 (300 mg).

Synthesis of (trans-4a,8a)-octahydro-2W-1,4-benzoxazine (Intermediate-59):
Intermediate-58 (250 mg, 1.61 14 mmol) in tetrahydrofuran (10 mL) was slowly added to a suspension of lithium aluminum hydride (153 mg, 4.0286 mmol) at 0°C. Then reaction mixture was refluxed for 16 hours. After completion of the reaction, the reaction mixture was quenched with 15% sodium hydroxide solution and the insoluble solids were removed by filtration. The aqueous layer was extracted with diethyl ether. Organic layers were dried by sodium sulfate and concentrated to give Intermediate-59 (170 mg) as pale brown oil.

Synthesis of Compound (61): Compound (61) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (61). 1H NMR (300MHz,CDCl3) : δ 8.00(s,1 H), 7.52-7.55(d,1 H), 7.27-7.30(d,1 H), 7.02-7.14(m,2H), 6.95(s,1 H), 3.67-3.73(m,3H), 3.32-3.44(m,3H), 3.05-3.10(m,2H), 2.87-2.90(m,1 H), 2.45-2.66(m,4H), 2.15(s,1 H), 1.81-1.84(m,2H), 1.60-1.64(m,2H). LC-MS (M+H)+ = 313.2; HPLC purity: 94.77%.
EXAMPLE 62: 3-(1,4-dimethyl-1H-indol-3-yl)-1-[(trans-4a,8a)-octahydro-4W-1,4-benzoxazin-4-yl]propan-1-one (62)

![Chemical Structure](image)

Synthesis of (62): Compound (62) was synthesized by following the procedure used to make (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain. 1H NMR (300MHz,CDCl3) : δ 6.99-7.06(m,2H), 6.75-6.77(d,2H), 3.68-3.86(m,3H), 3.63(s,3H), 3.35-3.48(m,2H), 3.12-3.29(m,3H), 2.64(s,3H), 2.50-2.61(m,2H), 1.05-2.14(m,8H). LC-MS (M+H)$^+$ = 341.2; HPLC purity: 94.06%.

EXAMPLE 63: 3-(1-methyl-1H-indol-3-yl)-1-[(trans-4a,8a)-octahydro-4W-1,4-benzoxazin-4-yl]propan-1-one (63)

![Chemical Structure](image)

Synthesis of Compound (63): Compound (63) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (63). 1H NMR (300MHz,CDCl3) : δ 7.51-7.53(d, 1H), 7.12-7.23(m, 2H), 7.01-7.06(t,1H), 6.81 (s,1H), 3.68-3.76(m,3H), 3.67(s,3H), 3.22-3.48(m,4H), 3.03-3.08(t,2H), 2.51-2.69(m,2H), 1.05-2.12(m,7H). LC-MS (M+H)$^+$ = 327.2; HPLC purity: 96.13%.
EXAMPLE 64: 3-(4-methyl-1H-indol-3-yl)-1-(octahydro-4W-1,4-benzoxazin-4-yl)propan-1-one (64)

Synthesis of Compound (64): Compound (64) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (64). 1H NMR (300MHz,CDCl3) : δ 7.94(s,1H), 7.10-7.14(m,1H), 6.90-7.02(m,2H), 6.76-6.80(1,1H), 4.1 1-4.35(m,1H), 3.66-3.87(m,1H), 3.13-3.49(m,5H), 2.47-2.99(m,6H), 0.91-1.97(m,8H). LC-MS (M+H)$^+$ = 327.2; HPLC purity: 98.86%.

EXAMPLE 65: 3-(1,4-dimethyl-1W-indol-3-yl)-1-[trans-(4a,8a)-octahydro-4W-1,4-benzoxazin-4-yl]propan-1-one (Peak-1) (65)

Synthesis of Compound (65) (Peak-1): Mixture of isomers of Compound (60) was separated by reverse phase column chromatography to give Compound (65) (Peak-1). 1H NMR (300MHz,CDCl3) : δ 6.99-7.06(m,2H), 6.75-6.77(d,2H), 3.68-3.76(m,3H), 3.63(s, 3H), 3.40-3.48(m,2H), 3.08-3.35(m,3H), 2.64(s,3H), 2.45-2.61(m,2H), 1.05-2.14(m,8H). LC-MS (M+H)$^+$ = 341.2; HPLC purity: 97.63% % (column: Zorbax eclipse XDB-C18, RT = 15.84 min, mobile phase: 0.01%TFA:MeCN gradient).
EXAMPLE 66: 3-(1,4-dimethyl-1H-indol-3-yl)-1-[cis-(4a,8a)-octahydro-4H-1,4-benzoxazin-4-yl]propan-1-one Peak-2 (66)

Synthesis of Compound (66) (Peak-2): Mixture of isomers of Compound (60) was separated by reverse phase column chromatography to give Compound (66) (Peak-2). 1H NMR (300MHz,CDCI3) : δ 6.98-7.06(m,2H), 6.76-6.78(m,2H), 4.16-4.34(m,1H), 3.69-3.87(m,1H), 3.63(d,3H), 3.07-3.43(m,5H), 2.81-2.97(m,1H), 2.43-2.73(m,5H), 0.91-1.94(m,8H). LC-MS (M+H)$^+$ = 341.2; HPLC purity: 96.84%(column: Zorbax eclipse XDB-C18, RT = 16.19 min, mobile phase: 0.01%TFA:MeCN gradient).

EXAMPLE 67: 3-(1H-indol-3-yl)-1-(octahydro-4H-1,4-benzoxazin-4-yl)propan-1-one (67)

Synthesis of Compound (67): Compound (67) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (66). 1H NMR (300MHz,CDCI3) : δ 8.02(s,1H), 7.53-7.56(m,1H), 7.27-7.30(m,1H), 7.02-7.15(m,2H), 6.96(s,1H), 4.13-4.32(m,1H), 3.61-3.84(m,1H), 3.03-3.47(m,5H), 2.47-2.93(m,3H), 0.94-2.12(m,8). LC-MS (M+H)$^+$ = 313.2; HPLC purity: 98.01%.
EXAMPLE 68: 1-(2,2-dimethyloctahydro-4«-1,4-benzoxazin-4-yl)-3-(4-methyl-1 H -indol-3-yl)propan-1-one (68)

Synthetic Scheme-39

Starting material 22 Intermediate-60 Intermediate-61 Intermediate-62

Synthesis of 2-bromo-W-(2-hydroxyphenyl)-2-methylpropanamide (Intermediate-60):
Intermediate-60 was synthesized by following the procedure used to make Intermediate-57 (Scheme 38).

Synthesis of 2,2-dimethyl-2 H-1,4-benzoxazin-3(4W)-one (Intermediate-61):
Intermediate-61 was synthesized by following the procedure used to make Intermediate-58 (Scheme 38).

Synthesis of 2,2-dimethyl-3,4-dihydro-2H-1,4-benzoxazine (Intermediate-62):
Intermediate-62 was synthesized by following the procedure used to make Intermediate-29 (Scheme 22).
Synthesis of 2,2-dimethyloctahydro-2H-1,4-benzoxazine (Intermediate-63):
Intermediate-63 was synthesized by following the procedure used to make Intermediate-30 (Scheme 22).

Synthesis of Compound (68): Compound (68) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (68). 1H NMR (300MHz,CDCl3) : δ 7.93(s,1 H), 7.10-7.1 3(d,1 H), 6.91-7.02(m,2H), 6.76-6.81(m,1 H), 4.04-4.40(m,1 H), 3.39-3.80(m,1H), 2.96-3.31(m,4H), 2.51 -2.81 (m,6H), 1.65-1.93(m,3H), 1.04-1.41 (m,10H). LC-MS (M+H)$^+$ = 355.22; HPLC purity: 94.97%.

EXAMPLE 69: 3-(1,4-dimethyl-1H-indol-3-yl)-1-(2-methyloctahydro-4W-1,4-benzoxazin-4-yl)propan-1-one (69)

Synthetic Scheme-40

Synthesis of Intermediate-64 (2-methyloctahydro-2W-1,4-benzoxazine):
Intermediate-64 was synthesized by following the procedure used to make Intermediate-63 (Scheme 39).
Synthesis of Compound (69): Compound (69) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (69). 1H NMR (300MHz,CDCl$_3$) : δ 6.99-7.06(m,2H), 6.77-6.79(d,2H), 3.86-4.31(m,1H), 3.63(s,3H), 3.29-3.44(m,2H), 3.16-3.13(m,3H), 3.04-3.12(m,1H), 2.68-2.75(m,1H), 2.64(s,3H), 2.42-2.61 (m,2H), 1.80-2.24(m,1H), 1.63-1.76(m,3H), 1.29-1.43(m,2H), 1.11-1.13(d,1H), 1.01-1.07(m,2H), 0.92-0.98(m,1H). LC-MS (M+H)$^+$ = 355.2; HPLC purity: 95.0%.

EXAMPLE 70: 3-(1,4-dimethyl-1H-indol-3-yl)-1-(2,2-dimethyloctahydro-4H-1,4-benzoxazin-4-yl)propan-1-one (70)

1H NMR (300MHz,CDCl$_3$) : δ 6.99-7.06(m,2H), 6.76-6.78(m,2H), 4.03-4.39(m,1H), 3.62-3.63(d,3H), 3.41(m,1H), 2.95-3.29(m,4H), 2.47-2.80(m,5H), 0.99-1.93(m,14H). LC-MS (M+H)$^+$ = 369.2; HPLC purity: 98.90%.

EXAMPLE 71: 3-methyl-3-(1-methyl-1H-indol-3-yl)-1-(octahydro-4W-1,4-benzoxazin-4-yl)butan-1-one (71)

Synthesis of Compound (71): Compound (71) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum
ether: Ethyl acetate as eluent to obtain Compound (71). 1H NMR (300MHz,CDCl3) δ 7.70-7.79(m,1H), 7.35-7.40(t,1 H), 7.03-7.11 (m,3H), 4.04-4.11 (m,1H), 3.70(m,3H), 3.50(m,3H), 2.00-3.40(m,5H), 0.83-1.70(m,14H). LC-MS (M+H)^+ = 355.3; HPLC purity: 88.82%.

EXAMPLE 72: 3-(4-fluoro-1H-indol-3-yl)-1-(octahydro-4H-1,4-benzoxazin-4-yl)propan-1-one (72)

Synthesis of 3-(4-fluoro-1H-indol-3-yl)propanoic acid (Intermediate-65): Intermediate-65 was synthesized by following the procedure used to make Intermediate-28 (Scheme 21).

Synthesis of Compound (72): Compound (72) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (72). 1H NMR (300MHz,CDCl3) : 8.12(s,1 H), 6.99-7.08(m,2H), 6.95(s,1H), 6.64-6.74(m,1 H), 4.15-4.20(m,1 H), 3.66-3.85(m,1H), 3.12-3.43(m,4H), 2.65-2.97(m,3H), 1.18-2.10(m,9H). LC-MS (M+H)^+ = 331.2; HPLC purity: 97.15%.
EXAMPLE 73: 2-(1,3-benzothiazol-2-ylsulfanyl)-1-(octahydroquinolin-1(2H)-yl)ethanone (73)

Synthesis of ethyl (1,3-benzothiazol-2-ylsulfanyl)acetate (Intermediate-66): To a 100mL RB flask fitted with magnetic stirrer was charged 10 mL of dimethylformamide. To this Starting Material-25 (1.0 g, 5.979 mmol) followed by potassium carbonate (2.477 g, 17.925 mmol) were added and stirred at room temperature for 30 minutes. Then ethylbromoacetate (1.997 g, 11.958 mmol) was added. The resulting solution was stirred at room temperature for 15 hours. After completion of the reaction (reaction monitored by TLC), the reaction mixture was concentrated. The resulting crude was taken in ethyl acetate (100 mL) and washed with water (100 mL X 3), brine (100mL) and concentrated to give Intermediate-66 (2.6 g).

Synthesis of (1,3-benzothiazol-2-ylsulfanyl)acetic acid (Intermediate-67): To a 100mL RB flask fitted with magnetic stirrer was charged 15 mL of tetrahydrofuran, 0.5 mL water, 0.5mL methanol. To this Intermediate-66 (2.6g, 10.262 mmol), followed by lithium hydroxide (738.9 mg, 30.788 mmol) were added at 0 °C. Then the reaction mixture was stirred at room temperature for 7 hours. After completion of the reaction (reaction monitored by TLC), reaction mass was diluted with 10mL of water and washed with 20mL dichloro methane DCM (2 X 10mL). Then aqueous layer was acidified with 1N HCl (pH = 2), and the resulted solids were filtered and dried to give Intermediate-67 (1.17g).
Synthesis of Compound (73): Compound (73) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (73). 1H NMR (300MHz,CDCl$_3$) : δ 7.69-7.73 (m, 1H), 7.58-7.60 (d, 1 H), 7.21-7.28 (m, 1 H), 7.11-7.16 (t, 1 H), 4.33-4.40 (m, 1 H), 4.19-4.29 (m, 2H), 3.78-3.82 (m, 1 H), 2.47-3.05 (m, 1 H), 1.56-1.77 (m, 5H), 1.42 (s, 2H), 1.14-1.33 (m, 6H). LC-MS (M+H)$^+$ = 347.1 ; HPLC purity: 97.01 %.

EXAMPLE 74: 2-(1,3-benzothiazol-2-ylsulfanyl)-2-methyl-1-(octahydroquinolin-1(2H)-yl)propan-1-one (74)

![Chemical Structure](image)

Synthesis of 2-(1,3-benzothiazol-2-ylsulfanyl)-2-methylpropanoic acid (Intermediate-68): Intermediate-68 was synthesized by following the procedure used to make Intermediate-67 (Scheme 42).

Synthesis of Compound (74): Compound (74) was synthesized by following the procedure used to make 1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (77). 1H NMR (300MHz,CDCl$_3$) : δ 7.86-7.89 (d, 1 H), 7.68-7.71 (m, 1 H), 7.33-7.38 (m, 1 H), 7.23-7.29 (m, 1 H), 4.58-4.62 (m, 2H), 2.69-
EXAMPLE 75: 3-(1,3-benzothiazol-2-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (75)

3.05(m,1 H), 1.63-1.72(m,1 2H), 1.42-1.45(m,1 H), 1.22-1.40(m,6H). LC-MS (M+H)⁺ = 375.1; HPLC purity: 91.48%.

Synthesis of 3-(1,3-benzothiazol-2-yl)propanoic acid (Intermediate-69):
Starting material-27 (3.97 mmol) in benzene was added drop wise to the solution of Starting Material-26 (3.97 mmol) in benzene. The resulting solution was heated to reflux for 2 hours. After 2 hours the reaction mass was cooled to room temperature and extracted with 10% sodium hydroxide solution. The aqueous layer was acidified using Conc.HCl (3ml) at 0°C. The resulting solids were filtered and dried at room temperature to get Intermediate-69 (660mg).

Synthesis of Compound (75): Compound (75) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (75). ¹H NMR (300MHz,CDC13) : δ 7.93-7.97(m,1 H), 7.81 - 7.84(d,1 H), 7.41 - 7.46(m,1 H), 7.31 - 7.36(m,1 H), 4.49-4.67(m,1 H), 3.65-3.83(m,1 H), 3.44-3.51(m,2H), 2.61 -3.10(m,3H), 1.71 -1.78(m,6H), 1.30-1.42(m,7H). LC-MS (M+H)⁺ = 329.1; HPLC purity: 98.13%.
EXAMPLE 76: 3-(1,3-benzothiazol-2-yl)-1-(2-methyloctahydroquinolin-1(2H)-yl)propan-1-one (76)

\[
\begin{align*}
&\text{Synthesis of Compound (76):} \text{ Compound (76) was synthesized by following the procedure } \\
&\text{used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the} \\
&\text{organic layer under reduced pressure and was purified by silica gel column using Petroleum} \\
&\text{ether: Ethyl acetate as eluent to obtain Compound (76).} \text{ } ^1\text{H NMR (300MHz,CDCl}_3\text{)}: \delta 7.86-7.89(1\text{H}), \text{ } 7.75-7.77(1\text{H}), \text{ } 7.34-7.39(1\text{H}), \text{ } 7.24-7.29(1\text{H}), \text{ } 4.45-4.70(2\text{H}), \text{ } 3.67-4.08(1\text{H}), \text{ } 3.40-3.45(2\text{H}), \text{ } 2.94-3.05(1\text{H}), \text{ } 2.77-2.85(1\text{H}), \text{ } 1.58-1.76(3\text{H}), \text{ } 1.20-1.23(7\text{H}). \text{ } \text{LC-MS (M+H)}^+ = 343.1; \text{ HPLC purity: 95.24%}.
\end{align*}
\]

EXAMPLE 77: methyl 1-[3-(1,3-benzothiazol-2-yl)propanoyl] decahydroquinoline-4-carboxylate (80)

\[
\begin{align*}
&\text{Synthesis of Compound (77):} \text{ Compound (77) was synthesized by following the procedure } \\
&\text{used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the} \\
&\text{organic layer under reduced pressure and was purified by silica gel column using Petroleum} \\
&\text{ether: Ethyl acetate as eluent to obtain Compound (77).} \text{ } ^1\text{H NMR (300MHz,CDCl}_3\text{)}: \delta 7.86-7.89(1\text{H}), \text{ } 7.75-7.77(1\text{H}), \text{ } 7.35-7.39(1\text{H}), \text{ } 7.25-7.30(1\text{H}), \text{ } 3.86-4.32(2\text{H}), \text{ } 3.61(1\text{H}), \text{ } 3.61(1\text{H}), \text{ } 3.39-3.44(2\text{H}), \text{ } 2.55-3.01(2\text{H}), \text{ } 0.90-2.24(14\text{H}). \text{ } \text{LC-MS (M+H)}^+ = 387.2; \text{ HPLC purity: 95.28%}.
\end{align*}
\]
EXAMPLE 78: 3-(1,3-benzothiazol-2-yl)-1-(4a-methyloctahydroquinolin-1(2H)-yl)propan-1-one (78)

![Chemical structure of 78]

Synthesis of Compound (78): Compound (78) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (78).

1H NMR (300MHz,CDCl3) : δ 7.85-7.89(m,1H), 7.74-7.77(d,1H), 7.34-7.39(t,1H), 7.24-7.29(t,1H), 4.23-4.50(m,1H), 3.64(m,3H), 2.54-3.09(m,3H), 0.84-1.96(m,15H). LC-MS (M+H)$^+$ = 343.2; HPLC purity: 97.13%.

EXAMPLE 79: 3-(1,3-benzothiazol-2-yl)-1-[trans-(4a,8a)-octahydro-4H-1,4-benzoxazin-4-yl]propan-1-one (79)

![Chemical structure of 79]

Synthesis of Compound (79): Compound (79) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (79).

1H NMR (300MHz,CDCl3) : δ 7.86-7.89(d,1H), 7.75-7.77(d,1H), 7.35-7.39(t,1H), 7.25-7.30(t,1H), 3.80-3.93(m,2H), 2.78-2.96(m,2H), 1.18-2.22(m,9H). LC-MS (M+H)$^+$ = 331.22; HPLC purity: 96.52%.
EXAMPLE 80: 3-(1,3-benzothiazol-2-yl)-1-(octahydro-4H-1,4-benzoxazin-4-yl)propan-1-one (80)

Synthesis of Compound (80): Compound (80) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (80). 1H NMR (300MHz,CDCl₃) : δ 7.85-7.89 (m,1H), 7.75-7.77 (d,1H), 7.34-7.40 (m,1H), 7.25-7.30 (m,1H), 4.11-4.31 (m,1H), 3.80-3.91 (m,1H), 3.31-3.57 (m,5H), 2.68-3.04 (m,2H), 1.66-2.24 (m,6H), 1.32-1.44 (m,3H). LC-MS (M+H)$^+$ = 331.2; HPLC purity: 94.03%.

EXAMPLE 81: 3-(1,3-benzothiazol-2-yl)-1-(octahydro-1W-indol-1-yl)propan-1-one (81)

Synthesis of Compound (81): Compound (81) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (81). 1H NMR (300MHz,CDCl₃) : δ 7.89-7.91 (d,1H), 7.75-7.77 (d,1H), 7.36-7.41 (t,1H), 7.26-7.31 (t,1H), 3.64-4.03 (m,1H), 3.32-3.52 (m,3H), 2.71-2.97 (m,2H), 0.95-2.24 (m,12H). LC-MS (M+H)$^+$ = 315.1; HPLC purity: 95.99%.
EXAMPLE 82: 3-(1,3-benzothiazol-2-yl)-1-(octahydro-2H-isoindol-2-yl)propan-1-one (82)

<chemistry></chemistry>

Synthesis of Compound (82): Compound (82) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (82). 1H NMR (300MHz,CDCl3) : δ 7.91-7.94(d,1H), 7.75-7.78(d,1H), 7.37-7.42(t,1H), 7.27-7.32(t,1H), 3.22-3.47(m,6H), 2.81-2.91(m,2H), 2.10-2.21(m,2H), 1.89(s,1H), 1.30-1.40(m,7H). LC-MS (M+H)$^+$ = 315.2; HPLC purity: 98.47%.

EXAMPLE 83: 3-(1,3-benzothiazol-2-yl)-1-(2-methyloctahydro-1H-isoindol-1-yl)propan-1-one (83)

<chemistry></chemistry>

Synthesis of Compound (83): Compound (83) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (83). 1H NMR (300MHz,CDCl3) : δ 7.87-7.90(d,1H), 7.75-7.77 (d,1H), 7.35-7.40(t,1H), 7.25-7.30(t,1H), 3.86-4.13(m,1H), 3.62-3.69(m,1H), 3.34-3.52(m,2H), 2.68-2.97(m,2H), 1.80-2.14(m,4H), 1.00-1.67(m,10H). LC-MS (M+H)$^+$ = 329.2; HPLC purity: 97.23%.
EXAMPLE 84: 1-(octahydroquinolin-1(2H)-yl)-3-(1 H-pyrrolo[2,3-d]pyridin-3-yl)propan-1-one (84)

Intermediate 70 was synthesized by following the procedure used to make Intermediate-9 (Scheme 4).

Synthesis of 3-(1 H-pyrrolo[2,3-d]pyridin-3-yl)propanoic acid (Intermediate-70):

Synthesis of Compound (84): Compound (84) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (84). \[^1\text{H} \text{NMR (300MHz,CDCl}_3\text{):} \delta 9.77-9.80(1\text{H}), \quad 8.29-8.30(1\text{H}), \quad 7.93-7.96(1\text{H}), \quad 7.16-7.18(1\text{H}), \quad 7.05-7.11(1\text{H}), \quad 4.50-4.68(1\text{H}), \quad 3.57-3.65(1\text{H}), \quad 3.07-3.15(2\text{H}), \quad 2.56-2.95(4\text{H}), \quad 1.25-1.87(12\text{H}).\] LC-MS (M+H\(^+\)) = 312.3; HPLC purity: 95.95%.
Synthesis of Compound (85): Compound (85) was synthesized by following the procedure used to make (51) (Scheme 34). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (85). 1H NMR (300MHz,CDCl3) : δ 8.34-8.36(t,1H), 8.09-8.13(t,2H), 7.78-7.81(d,1H), 7.37-7.49(m,4H), 7.08-7.14(m,1H), 4.42-4.59(m,1H), 3.48-3.60(m,1H), 2.89-2.97(m,2H), 2.47-2.75(m,3H), 1.25-1.74(m,13H). LC-MS (M+H)$^+$ = 452.2; HPLC purity: 99.87%.
EXAMPLE 86: 1-(2-methyloctahydroquinolin-1(2H)-yl)-3-(1 H-pyrrolo[2,3-b]pyridin-3-yl)propan-1-one (86)

5 Synthesis of Compound (86): Compound (86) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (86). 1H NMR (300MHz,CDCl3) : δ 9.48 (s,1H), 8.21-8.23(d,1 H), 7.86-7.90(m,1 H), 6.98-7.09(m,2H), 4.46-4.70(m,1H), 3.47-3.90(m,1H), 3.03-3.08(m,2H), 2.49-2.77(m,2H), 1.07-1.86(m,16H). LC-MS (M+H)$^+$ = 326.2; HPLC purity: 97.13%.

EXAMPLE 87: 3-(1-methyl-1H-pyrrolo[2,3-b]pyridin-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (87)

Synthesis of Compound (87): Compound (87) was synthesized by following the procedure used to make Compound (27) (Scheme 26). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (87). 1H NMR (300MHz,CDCl3) : δ 8.25(s,1H), 7.82-7.84(m,1H), 6.94-7.00(m,2H), 4.43-4.61(m,1H), 3.77(s,1H), 3.38-3.62(m,1H), 2.98-3.05(m,2H), 2.45-2.92(m,4H), 1.18-1.66(m,16H). LC-MS (M+H)$^+$ = 326.3; HPLC purity: 98.68%.
EXAMPLE 88: 3-(1H-indazol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (88)

Starting Material-28 (42mmol) in DMF (50ml) was cooled to 0 °C. Then potassium hydroxide (84.6mmol) was added which was followed by the addition of iodine (42mmol). The reaction mixture was maintained at room temperature for 2 hours. Then the reaction mixture was diluted with ice cooled water and extracted with ethyl acetate. The organic layer was dried over anhydrous MgSO₄, and evaporated to give Intermediate-71 (8g, pale yellow solid).

Synthesis of 3-iodo-1 W-indazole (Intermediate-71):

Synthesis of fert-butyl 3-ido-1 W-indazole-1-carboxylate (Intermediate-72):

DMAP (16.37mmol) was added to Intermediate-71 (39 mmol) in acetonitrile (50ml). The reaction mixture was then cooled to 0 °C. BOC anhydride (39.9mmol) was added to the cooled reaction mixture. The reaction was carried out at room temperature for 16 hours. Then the reaction mixture was diluted with water (100ml) and extracted with ethyl acetate. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to obtain Intermediate-72 (7g, pale yellow solid).
Synthesis of tert-butyl 3-[(1£)-3-ethoxy-3-oxoprop-1-en-1-yl]-1 W-indazole-1-carboxylate (Intermediate-73):
To Triethylamine (3ml), Intermediate-72 (5.8mmol) was added to which methyl acrylate (5.8mmol) was further added. The reaction mixture was purged with argon for 10 minutes. The (II) acetate (0.5mmol) and tri-o-toly phosphine (0.5mmol) was added to the reaction mixture. The reaction was carried out for 16 hours at room temperature. Then the reaction mixture was filtered through celite, the filtrate was diluted with ethyl acetate (250ml) and washed with NaHCO₃ (50ml) and brine solution. The organic layer was dried over anhydrous MgSO₄, and obtained the crude product by evaporating the organic layer under reduced pressure. The crude product was purified using silica gel column using Hexane and Ethyl acetate as the eluent, to obtain Intermediate-73 (500mg, pale yellow liquid). ¹H NMR (300 MHz, DMSO-d₆): δ 8.24-8.27(d, 1H), 8.13-8.16(d, 1H), 7.85-7.90 (d, 1H), 7.65-7.71 (t, 1H), 7.45-7.50(t, 1H), 6.96-7.02(d, 1H), 3.80(s, 3H), 1.67(s, 9H).

Synthesis of tert-butyl 3-[(ethoxy-3-oxopropyl)-1 W-indazole-1-carboxylate (Intermediate-74):
Intermediate-73 (1.58mmol) dissolved in EtOAc (10ml) was taken in a par shaker flask. To this reaction mixture 10% Pd-C (20% W7W) was added. The resulting reaction mixture was stirred under hydrogen atmosphere (50 psi) for 5 hours at room temperature. After 5 hours the reaction mixture was filtered through celite. The filtrate was further concentrated to give Intermediate-74 (200mg, pale yellow liquid). ¹H NMR (300 MHz, DMSO-d₆): δ 7.99-8.02(d, 1H), 7.62-7.65(d, 1H), 7.44-7.47 (t, 1H), 7.21 -7.26(t, 1H), 3.63 (s,3H) , 3.21 -3.26(t,2H), 2.84-2.89((2H), 1.65(s, 9H).

Synthesis of 3-(1 W-indazol-3-yl) propanoic acid (Intermediate-75):
Intermediate 74 (0.6mmol) is added to a solvent (equal ratio of the solvents THF (2ml) and MeOH (2ml)) to which LiOH (3.4mmol) solution in 1ml water is further added. The reaction was allowed for 16 hours at room temperature. After 16 hours the reaction mixture was concentrated, and acidified with 1N HCl (pH = 2). The reaction mixture was then extracted with ethyl acetate. The organic layer was dried over anhydrous MgSO₄, and evaporated to obtain Intermediate-75(100mg, pale yellow liquid).

Synthesis of Compound (88): Compound (88) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (88). ¹H NMR (300MHz,CDCI3) : δ 7.72-7.74(d,1 H), 7.36-7.47(m,2H), 7.11-7.16(m,1 H), 4.42-4.61 (m,1 H), 3.57-3.74(m,1 H), 3.10-
EXAMPLE 89: 3-(1-methyl-1H-indazol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (89)

Synthesis of ethyl 3-(1H-indazol-3-yl)propanoate (Intermediate-76):
Intermediate-74 (1.7 mmol) in DCM (5ml) was cooled to 0 °C, followed by the addition of TFA (5.1 mmol). The reaction was allowed for 3 hours at room temperature. After 3 hours the reaction mixture was concentrated and diluted with ethyl acetate (50ml). Further washed with NaHCO₃ solution (20ml), the organic layer was dried over anhydrous MgSO₄, and evaporated to obtain Intermediate-76 (250mg, pale yellow liquid).

Synthesis of 3-(1-methyl-1H-indazol-3-yl)propanoic acid (Intermediate-77):
Intermediate-76 (1.2mmol) was added to dry THF (5ml) and was cooled to 0 °C. Then to the reaction mixture, NaH (2.4mmol) was added. After 15 minutes, Mel (1.8mmol) was added to the reaction mixture. The reaction was allowed for 3 hours at room temperature. After 3 hours the reaction mixture was quenched with 1N HCl and extracted with ethyl acetate. The organic layer was dried over anhydrous MgSO₄, and evaporated to obtain Intermediate-77 (100mg, pale yellow liquid).

Synthesis of Compound (89): Compound (89) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the
organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (89). ¹H NMR (300MHz,CDCl₃) : δ 7.64-7.67(d,1H), 7.24-7.33(m,2H), 7.03-7.11(m,1H), 4.44-4.62(m,1H), 3.93-3.95(d,3H), 3.57-3.70(m,1H), 3.21 -3.26(m,2H), 2.42-2.93(m,3H), 1.21 -1.68(m,1H). LC-MS (M+H)⁺ = 326.3; HPLC purity: 96.80%.

EXAMPLE 90: 3-(1-W-benzotriazol-1-yl)-1-(4a-methyloctahydroquinolin-1(2W)-yl)propan-1-one (90)

Starting material 29

Intermediate 78

Intermediate 79

Synthetic Scheme-49

Synthesis of ethyl 3-(1 H-benzotriazol-1-yl)propanoate (Intermediate -78):
The starting material-29 (4.1 mmol) in dry THF (5ml) was cooled to 0 °C, followed by the addition of NaH (6.0mmol). The reaction mixture was gradually warmed to room temperature and allowed to react for 20 minutes. The reaction mixture was again cooled to 0 °C, followed by the drop wise addition of ethyl 3-bromopropanoate (4.6mmol) in THF (2.5ml). The reaction was allowed for 12 hours at room temperature. After 12 hours the reaction mixture was quenched with ice cooled water and extracted with ethyl acetate. The organic layer was dried over anhydrous MgSO₄, and concentrated to obtain Intermediate-78 (70mg). ¹H NMR (300MHz, CDCl₃) : δ 7.98-8.01 (1H,d), 7.55-7.58(d,1H), 7.41 -7.46(t,1H), 7.28-7.33(t,1H), 4.82-4.87 (t,2H), 4.00-4.07(t,2H), 3.00-3.05(t,2H), 1.08-1.1(t,3H).

Synthesis of 3-(1 H-benzotriazol-1 -yl)propanoic acid (Intermediate -79):
At 0°C, LiOH (1.5mmol) in water (1ml) was added to Intermediate-78 in the solvent THF: MeOH (1:1, 3ml each). The reaction was allowed for 12 hours at room temperature. After 12
hours the reaction mixture was concentrated, further acidified with 1N HCl (pH = 2). The reaction mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous MgSO₄, and evaporated under reduced pressure to obtain Intermediate-79 (60mg). 1H NMR (300MHz, CDCl₃): δ 7.29-8.00(4H,m), 4.82-4.87(t,2H), 3.09-3.14(t,2H).

Synthesis of Compound (90): Compound (90) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (90). 1H NMR (300MHz,CDCl₃) : δ 7.96-7.99(m,1H), 7.60-7.62(m,1H), 7.42-7.47(m,1H), 7.28-7.33(m,1H), 4.88-4.94(m,2H), 4.10-4.50(m,1H), 3.20-3.30(m,1H), 2.40-3.20(m,3H), 0.70-1.94(m,15H). LC-MS (M+H)⁺ = 327.2; HPLC purity: 99.10%.

EXAMPLE 91: 3-(1H-benzotriazol-1-yl)-1-(octahydro-4H-1,4-benzoxazin-4-yl)propan-1-one (91)

![Structure of Compound 91](image1)

Synthesis of Compound (91): Compound (91) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (91). 1H NMR (300MHz,CDCl₃) : δ 7.96-7.99(m,1H), 7.57-7.61(m,1H), 7.41-7.46(t,1H), 7.27-7.33(t,1H), 4.89-4.94(m,2H), 3.77-4.11(m,2H), 2.90-3.31(m,5H), 1.18-1.88(m,9H). LC-MS (M+H)⁺ = 315.2; HPLC purity: 92.32%.

EXAMPLE 92: 3-(5-fluoro-1W-indol-3-yl)-1-(2-methyloctahydroquinolin-1(2H)-yl)butan-1-one (92)

![Structure of Compound 92](image2)
Synthesis of Compound (92): Compound (92) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (92). 1H NMR (300MHz,CDCl3) : δ 8.00(s,1H), 7.29(m,2H), 6.98(s,1H), 6.82(t,1H), 4.40-4.70(m,1H), 2.61-3.58(m,5H), 1.59(m,9H), 1.35-1.43(t,6H), 1.02(m,3H). LC-MS (M+H)$^+$ = 357.2; HPLC purity: 82.80%.

EXAMPLE 93: 3-(1α-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)propan-1-one (93)

![Chemical Structure](image)

Synthesis of Compound (93): Compound (93) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (93). 1H NMR (300MHz,DMSO-d6) : δ 10.75(s,1H), 7.48-7.52(t,1H), 7.30-7.33(m,1H), 7.12(s,1H), 6.93-7.07(m,2H), 4.29-4.48(m,1H), 3.60-3.71(m,1H), 2.43-2.96(m,5H), 1.23-1.70(m,13H). LC-MS (M+H)$^+$ = 311.1; HPLC purity: 97.67%.

EXAMPLE 94: 3-(1-methyl-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (94)

![Chemical Structure](image)

Synthesis of Compound (94): Compound (94) was synthesized by following the procedure used to make Compound (27) (Scheme 26). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (94). 1H NMR (300MHz,CDCl3) : δ 7.57(m,1H), 7.10-7.28(m,2H), 6.98-7.03(m,1H), 6.78-6.80(d,1H), 4.43-4.60(m,1H), 3.65(m,3H), 3.51-3.59(m,2H), 2.37-2.87(m,3H), 0.90-1.63(m,16H). LC-MS (M+H)$^+$ = 339.2; HPLC purity: 91.90%.
EXAMPLE 95: 3-(1-indol-3-yl)-4-methyl-1-(octahydroquinolin-1(2H)-yl)pentan-1-one (95)

\[
\begin{align*}
\text{Synthesis of Compound (95):} & \quad \text{Compound (95) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (95).} \\
\text{1H NMR (300MHz,CDCl\textsubscript{3})}: & \quad \delta 8.51-8.55(d,1H), 7.53-7.61(m,1H), 7.22-7.25(d,1H), 6.94-7.06(m,2H), 6.84(d,1H), 4.32-4.47(m,1H), 3.35-3.65(m,1H), 3.02-3.20(m,1H), 2.28-2.92(m,3H), 0.78-1.99(m,20H). \\
\text{LC-MS (M+H)}^+ = \text{353.3; HPLC purity: 88.81\%}.
\end{align*}
\]

EXAMPLE 96: Ai-[3-(1''-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)-1-oxopropan-2-yl]acetamide (96)

\[
\begin{align*}
\text{Synthesis of Compound (96):} & \quad \text{Compound (96) was synthesized by following the procedure used to make Compound (1) (Scheme 1). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (96).} \\
\text{1H NMR (300MHz,DMSO-d\textsubscript{6})}: & \quad \delta 10.78-10.85(m,1H), 8.19-8.22(m,1H), 7.52-7.58(m,1H), 7.30-7.33(m,1H), 6.97-7.11(m,3H), 5.06(m,1H), 4.20(m,1H), 2.86-3.07(m,3H), 0.96-1.83(m,17H). \\
\text{LC-MS (M+H)}^+ = \text{368.1; HPLC purity: 94.46\%}.
\end{align*}
\]
EXAMPLE 97: [2-(1-methyl-1H-indol-3-yl)cyclopropyl] (octahydroquinolin-1(2H)-yl)methanone (97)

Synthesis of 1-benzyl-1H-indole-3-carbaldehyde (Intermediate-80): To a 250ml 3 neck RBF was charged 40ml of THF. To the stirred solution NaH (1.24g,31.0mmol) was added followed by addition of Starting Material-30 (3g,20.6mmol). The reaction mixture was stirred at RT for 30 min. Then benzyl bromide (2.7ml, 22.6mmol) was added to the mixture at 0°C. Resulted reaction mixture was stirred at RT for 12 h. After completion of reaction, the reaction mixture was quenched with ice and extracted with ethylacetate and concentrated. Crude Material was purified by silica gel column chromatography eluting with hexanes: EtOAc to give Intermediate-80 (4.25 g).

Synthesis of ethyl (2E)-3-(1-benzyl-1H-indol-3-yl)prop-2-enoate (Intermediate-81): Intermediate-81 was synthesized by following the procedure used to make Intermediate-7 (Scheme 4). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Intermediate-81 (3.85 g)

Synthesis of ethyl 2-(1-benzyl-1H-indol-3-yl)cyclopropanecarboxylate (Intermediate-82): To a 250ml 3 neck RB was charged 40ml of DMSO. To this Intermediate-81 (3.5g, 11.4mmol),
TMSOI (2.7g, 12.6mmol), and then KOH (55mg, 0.98mmol) was added. Resulting reaction mixture was stirred at RT for 12 hours. After reaction was completed (monitored by TLC) the reaction mixture was quenched with water and extracted with ethyl acetate, and concentrated. Crude material was purified by silica gel column chromatography eluting with hexanes: EtOAc to give Intermediate-82 (655mg).

Synthesis of 2-(1-benzyl-1H-indol-3-yl)cyclopropanecarboxylic acid (Intermediate-83): Intermediate-83 was synthesized by following the procedure used to make Intermediate-79 (Scheme 49).

Synthesis of [2-(1-benzyl-1H-indol-3-yl)cyclopropyl](octahydroquinolin-1(2H)-yl)methanone (Intermediate-84): Intermediate-84 was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Intermediate-84 (275 mg).

Synthesis of [2-(1H-indol-3-yl)cyclopropyl](octahydroquinolin-1(2H)-yl)methanone (Intermediate-85): 5ml of DMSO was taken in a 25ml single neck RB. To this Intermediate-84 (275mg, 0.66mmol) followed by potassium-t-butoxide (525mg, 4.66mmol) in THF was added and stirred at rt for 3 hours. After reaction quenched with NH4Cl solution and extracted with ethyl acetate. The combined organic layers were washed with DM water and brine solution and concentrated. The crude product was obtained purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Intermediate-85 (18 mg).

Synthesis of Compound (97): Compound (97) was synthesized by following the procedure used to make Intermediate-77 (Scheme 48). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (97). ¹H NMR (300MHz,CDCl3) : δ 7.52-7.58(m,1 H), 7.13-7.22(m,2H), 7.01-7.06(m,1 H), 6.65-6.78(m,1 H), 4.41-4.66(m,1H), 3.84-4.06(m,1 H), 3.70(s,3H), 2.98-3.33(m,1 H), 2.42-2.76(m,2H), 1.52-1.86(m,9H), 1.26-1.45(m, 6H). LC-MS (M+H)⁺ = 337.2; HPLC purity: 96.48%.
EXAMPLE 98: 2-(1H-indol-3-ylmethyl)-3-(octahydroquinolin-1(2H)-yl)-3-oxopropanenitrile (98)

Synthesis of Compound (98): Compound (98) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (98). 1H NMR (300MHz,CDCl3) : δ 8.11 (s, 1H), 7.48-7.55 (m, 1H), 7.31-7.34 (d, 1H), 7.09-7.13 (m, 3H), 4.36-4.59 (m, 1H), 3.82-4.03 (m, 1H), 3.26-3.48 (m, 3H), 2.51-2.85 (m, 1H), 2.15-2.30 (m, 1H), 1.93-2.01 (m, 1H), 1.52-1.64 (m, 1H). LC-MS (M+H)⁺ = 336.2; HPLC purity: 92.84%.

EXAMPLE 99: 2-(1H-indol-3-yloxy)-1-(octahydroquinolin-1(2H)-yl)ethanone (99)

Synthesis of Compound (99): Compound (99) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (99). 1H NMR (300MHz,CDCl3) : δ 7.53-7.58 (t, 1H), 7.50 (s, 1H), 7.20-7.23 (d, 1H), 7.09-7.14 (t, 1H), 6.98-7.03 (t, 1H), 6.76-6.77 (t, 1H), 4.57-4.72 (m, 2H), 4.35-4.52 (m, 1H), 3.82-4.02 (m, 1H), 2.54-3.07 (m, 1H), 1.26-1.78 (m, 13H). LC-MS (M+H)⁺ = 313.2; HPLC purity: 96.80%.
EXAMPLE 100: 2-[(1-methyl-1H-indol-3-yl)oxy]-1-(octahydroquinolin-1(2H)-yl)propan-1-one (100)

\[
\text{(100)}
\]

Synthesis of Compound (100): Compound (100) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (100). 1H NMR (300MHz,CDCl3) : δ 7.53-7.55(m,1H), 7.14-7.18(m,2H), 6.97-6.99(m,1H), 6.53-6.55(t,1H), 4.71-4.79(m,1H), 4.08-4.58(m,2H), 3.58(d,3H), 2.47-2.95(m,1H), 1.18-1.68(m,16H). LC-MS (M+H)$^+$ = 341.2; HPLC purity: 98.96%.

EXAMPLE 101: methyl 1-[3-(1W-indol-3-yl)-4-methylpentanoyl]deeahydroquinoline-4-carboxylate (101)

\[
\text{(101)}
\]

Synthesis of Compound (101): Compound (101) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (101). 1H NMR (300MHz,CDCl3) : δ 8.02(s,1H), 7.56-7.59(d,1H), 7.23-7.26(m,1H), 7.06-7.11(t,1H), 6.97-7.04(t,1H), 6.91-6.92(d,1H), 4.00-4.09(m,1H), 3.66-3.67(d,1H), 3.56(s,3H), 3.45-3.49(d,1H), 3.17-3.24(m,1H), 2.66-2.81(m,2H), 2.24-2.28(m,1H), 1.97-2.15(m,1H), 1.07-1.78(m,1H), 0.93-0.96(d,3H), 0.77-0.80(d,3H). LC-MS (M+H)$^+$ = 411.3; HPLC purity: 94.17%.
EXAMPLE 102: methyl 1-[3-(1H-indol-3-yl)butanoyl]decahydroquinoline-4-carboxylate (102)

Synthesis of Compound (102): Compound (102) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (102). 1H NMR (300MHz,CDCl3) : δ 7.99(s,1H), 7.59-7.65(m,1H), 7.25-7.28(d,1H), 6.97-7.12(m,2H), 6.94-6.95(d,1H), 4.00-4.23(m,1H), 3.52-3.65(m,4H), 2.69-2.79(m,1H), 2.43-2.57(m,1H), 2.37(s,1H), 0.95-2.01 (m,16H). LC-MS (M+H)$^+$ = 383.3; HPLC purity: 95.38%.

EXAMPLE 103: 1-t3-(1«-indol-3-yl)butanoyl]octahydroquinolin-4(1H)-one (103)

Synthesis of Compound (103): Compound (103) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (103). 1H NMR (300MHz,CDCl3) : δ 8.08(s,1H), 7.57-7.67(m,1H), 7.24-7.30(m,1H), 6.97-7.11(m,3H), 4.45-4.85(m,1H), 3.62-3.67(m,3H), 1.1-3.31 (m,16H). LC-MS (M+H)$^+$ = 339.2; HPLC purity: 81.37%.
EXAMPLE 104: 1-[3-(1 H-indol-3-yl)-4-methylpentanoyl] octahydroquinolin-4(1 H)-one (104)

Synthesis of Compound (104): Compound (104) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (104). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 7.94(s,1 H), 7.55-7.61(m,1 H), 7.23-7.25(m,1 H), 6.95-7.09(m,3H), 4.44-4.84(m,1 H), 3.63-3.70(m, 1H), 3.14-3.24(m,1 H), 1.94-2.98(m,1 5H), 1.06- 1.08(d,3H), 1.00-1.01 (d,3H). LC-MS (M+H)\(^+\) = 367.3; HPLC purity: 96.24%.

EXAMPLE 105: 1-[3-(1 W-indol-3-yl)-4-methylpentanoyl] decahydroquinoline-4-carboxylic acid (105)

Synthesis of methyl 1-[3-(1 W-indol-3-yl)-4-methylpentanoyl] decahydroquinoline-4-carboxylate (Intermediate-86): Intermediate-86 was synthesized by following the procedure used to make (49) (Scheme 32).
Synthesis of Compound (105): Compound (105) was synthesized by following the procedure used to make Intermediate-3 (Scheme 1). 1H NMR (300MHz,CDCl3) : δ 7.97-8.00(d,1H), 7.56-7.59(d,1H), 7.23-7.25(d,1H), 6.97-7.11(m,2H), 6.92-6.93(d,1H), 4.04-4.21 (m,1H), 3.37-3.64(m,1H), 3.07-3.19(m,1H), 2.63-2.90(m,2H), 1.34-2.28(m,14H), 0.94-0.96,(3H), 0.75-0.80(d,3H)

LC-MS (M+H)$^+$ = 397.2; HPLC purity: 97.21%.

EXAMPLE 106: 1-(4-hydroxyoctahydroquinolin-1(2H)-yl)-3-(1H-indol-3-yl)butan-1-one (106)

Synthesis of Compound (106): Compound (106) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (106). 1H NMR (300MHz,CDCl3) : δ 7.91 (s,1H), 7.60-7.62 (d,1H), 7.27(m,1H), 7.01-7.13(m,2H), 6.95(s,1H), 3.89-4.51 (m,1 H), 3.56-3.61 (m,2H), 3.12-3.29(m,2H), 1.53-2.76(m,13H), 1.36-1.40(m,3H). LC-MS (M+H)$^+$ = 341.3; HPLC purity: 89.75%.

EXAMPLE 107: 1-[3-(1H-indol-3-yl)-4-methylpentanoyl] decahydroquinoline-4-carboxylic acid sodium salt (107)
Synthesis of Compound (107): To the stirred solution of Compound (105) (25 mg, 0.063 mmol) in THF, MeOH and water, NaHCO₃ (0.063 mmol) was added at 0°C. The reaction mixture was stirred at RT for 30 minutes. After completion of the reaction, the reaction mixture was concentrated. Resulted crude material was triturated with ether to give Compound (107) (24 mg) as white solid. \(^1\)H NMR (300MHz, DMSO-d₆): \(\delta\) 10.90(s,1H), 7.44-7.52(m,1H), 7.28-7.31(d,1H), 6.92-7.05(m,3H), 4.17(m,1H), 3.70-3.90(m,1H), 3.165-3.21(m,4H), 2.64-2.67(m,2H), 1.40-2.31(m,11H), 0.80-0.90(m,6H). LC-MS (M+H)\(^+\) = 397.2; HPLC purity: 89.15%.

EXAMPLE 108: 4,4,4-trifluoro-3-hydroxy-3-(1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (108)

Synthesis of Compound (108): Compound (108) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (108). \(^1\)H NMR (300MHz,CDCl₃): \(\delta\) 8.15(s,1H), 7.70(m,1H), 7.29-7.37(m,3H), 7.08-7.12(m,1H), 4.25-4.43(m,1H), 3.51-3.62(m,1H), 3.29-3.37(m,1H), 2.76-3.05(m,1H), 1.30-1.82(m,14H). LC-MS (M+H)\(^+\) = 395.1; HPLC purity: 97.32%.
EXAMPLE 109: 2-(1W-indol-3-yl)-4-(octahydroquinolin-1(2H)-yl)-4-oxobutane nitrile (109)

Synthesis of Compound (109): Compound 109 was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (109). ^1H NMR (300MHz,CDCl3) : δ 8.15(s,1H), 7.61-7.66(t,1 H), 7.32-7.36(m,1 H), 7.20-7.25(m,2H), 7.08-7.17(m,1H), 4.66-4.72(m,1 H), 4.40-4.62(m,1H), 3.37-3.48(m,1 H), 2.48-3.13(m,3H), 1.30-1.84(m,13H). LC-MS (M+H)^+ = 336.1; HPLC purity: 98.95%.

EXAMPLE 110: 3-(1H-indol-3-yl)-3-methyl-2-(octahydroquinolin-1(2H)-ylcarbonyl)butanenitrile (110)

Synthesis of Compound (110): Compound (110) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (110). ^1H NMR (300MHz,CDCl3) : δ 8.08(s,1H), 7.61-7.72(m,1H), 7.30-7.33(m,1 H), 7.01-7.16(m,3H), 4.35-4.40(m,1H), 3.00-3.20(m,1 H), 2.25-2.41 (m,2H), 1.07-1.78(m,19H). LC-MS (M-H)^+ = 362.4; HPLC purity: 95.88%.
EXAMPLE 111: 3-(4-fluoro-1H-indol-3-yl)-4-methyl-1-(octahydroquinolin-1(2H)-yl)pentan-1-one (111)

![Structure of 111]

5 Synthesis of Compound (111): Compound (111) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (111). 1H NMR (300MHz,CDCl3) : δ 8.19-8.23(d,1H), 7.09-7.12(d,1H), 7.05(m,1H), 6.97(m,1H), 6.73-6.81(m,1H), 4.36-4.50(m,1H), 3.59-3.79(m,1H), 3.00-3.30(m,1H), 2.60-2.96(m,2H), 2.10-2.45(m,1H), 1.00-1.48(m,14H), 0.75-0.88(m,6H). LC-MS (M+H)$^+$ = 371.2; HPLC purity: 99.54%.

EXAMPLE 112: 3-(4-fluoro-1H-indol-3-yl)-4-methyl-1-(4a-methyloctahydroquinolinyl)pentan-1-one (112)

![Structure of 112]

15 Synthesis of Compound (112): Compound (112) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (112). 1H NMR (300MHz,CDCl3) : δ 8.28-8.34(d,1H), 7.07-7.12(d,1H), 6.95-7.04(m,2H), 6.68-6.76(m,1H), 4.12-4.43(m,1H), 3.58-3.67(m,1H), 3.25-3.39(m,1H), 2.92-3.00(m,1H), 2.68-2.87(m,2H), 2.43-2.56(m,1H), 1.21-2.03(m,12H), 0.77-1.04(m,9H). LC-MS (M+H)$^+$ = 385.3; HPLC purity: 98.01%.
EXAMPLE 113: 3-(1-methyl-1H-indol-3-yl)-1-(4a-methyloctahydroquinolin-1(2H)-yl)butan-1-one (113)

Synthesis of Compound (113): Compound (113) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (113). ^1H NMR (300MHz,CDCI3) : δ 7.56-7.60(m,1H), 7.20-7.22(m,1H), 7.11-7.16(t,1H), 6.99-7.04(t,1H), 6.80-6.82(d,1H), 3.80-3.83(m,1H), 3.66-3.73(m,3H), 3.53-3.62(m,1H), 2.64-2.82(m,4H), 2.49-2.59(m,2H), 1.52-2.15(m,1OH), 1.34-1.42(m,6H). LC-MS (M+H)^+ = 353.3; HPLC purity: 88.46%.

EXAMPLE 114: 3-(4-fluoro-1H-indol-3-yl)-1-(4a-methyloctahydroquinolin-1(2H)-yl)butan-1-one (114)

Synthesis of Compound (114): Compound (114) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain (114). ^1H NMR (300MHz,CDCI3) : δ 8.13(s,1H), 6.96-7.07(m,2H), 6.92-6.93(m,1H), 6.65-6.73(m,1H), 4.20-4.48(m,1H), 3.38-3.65(m,2H), 2.80-2.97(m,1H), 2.37-2.59(m,1H), 1.14-1.97(m,16H), 0.76-0.79(m,3H). LC-MS (M+H)^+ = 357.3; HPLC purity: 98.46%.
EXAMPLE 115: 3-(4-fluoro-1H-indol-3-yl)-4-methyl-1-(4a-methyloctahydroquinolin-1(2H)-yl)pentan-1-one, peak-1) (115)

5 Synthesis of Compound (115) (Peak-1): Mixture of isomers of compound (112) was separated by reverse phase HPLC to give Compound (115) (peak 1). 1H NMR (300MHz,CDCl3): δ 8.31 (d, 1H), 7.02-7.05 (d, 1H), 6.92-6.99 (m, 1H), 6.85 (s, 1H), 6.62-6.68 (t, 1H), 4.05-4.36 (m, 1H), 3.17-3.57 (m, 2H), 2.85-2.95 (m, 2H), 2.66-2.68 (m, 1H), 1.58-2.63 (m, 13H), 0.69-0.96 (m, 9H). LC-MS (M+H)$^+$ = 385.3; HPLC purity: 99.62%. Column: Zorbax eclipse XDB-C18, 4.6X150mm, 5µM; RT = 16.97 min; Mobile phase: MeCN:H2O (6:4).

EXAMPLE 116: 3-(4-fluoro-1H-indol-3-yl)-4-methyl-1-(4a-methyloctahydroquinolin-1(2H)-yl)pentan-1-one peak-2) (116)

10 Synthesis of Compound (116) (Peak-2): Mixture of isomers of compound (112) was separated by reverse phase HPLC to give Compound (116) (peak-2). 1H NMR (300MHz,CDCl3): δ 8.47 (s, 1H), 7.02-7.05 (d, 1H), 6.87-6.98 (m, 2H), 6.85 (s, 1H), 6.60-6.88 (t, 1H), 4.04-4.37 (m, 1H), 3.24-3.60 (m, 1H), 2.85-2.95 (m, 1H), 2.65-2.76 (m, 2H), 1.58-2.46 (m, 13H), 0.69-0.96 (m, 9H). LC-MS (M+H)$^+$ = 385.3; HPLC purity: 98.53%. Column: Zorbax eclipse XDB-C18, 4.6X150mm, 5µM; RT = 17.70 min; Mobile phase: MeCN:H2O (6:4).
EXAMPLE 117: 3-(1-W-indol-3-yl)-4-methyl-1-(octahydroquinolin-1 (2H)-yl)pentan-1-one (120)

(117 peak 1)

5 Synthesis of Compound (117) (peak-1): Mixture of isomers of compound (95) was separated by using reverse phase preparative HPLC to give Compound (117) (peak-1). 1H NMR (300MHz,CDCl3) : δ 7.92(s,1H), 7.55-7.63(m,1H), 7.25-7.28(d,1H), 7.00-7.10(m,2H), 6.91-6.93(m,1H), 4.31-4.47(m,1H), 3.34-3.49(m,1H), 3.04-3.22(m,1H), 2.52-2.86(m,1H), 2.33-2.37(m,2H), 1.08-2.28(m,14H), 0.90-1.00(m,6H). LC-MS (M+H)+ = 353.3; HPLC purity: 97.76%. Column: Zorbax eclipse XDB-C18, 4.6X150mm, 5µM; RT = 18.77 min; Mobile phase: MeCN: 0.01% TFA in H2O, runtime: 30 minutes.

EXAMPLE 118: 3-(1-«-indol-3-yl)-4-methyl-1-(octahydroquinolin-1(2H)-yl)pentan-1-one (peak-2) (118)

(118 peak 2)

15 Synthesis of Compound (118) (peak-2): Mixture of isomers of compound (95) was separated by using reverse phase preparative HPLC to give Compound (118) (peak-2). 1H NMR (300MHz,CDCl3) : δ 7.91 (s,1H), 7.56-7.59(m,1H), 7.24-7.27(d,1H), 6.97-7.09(m,2H), 6.92-6.94(m,1H), 4.31-4.46(m,1H), 3.34-3.64(m,1H), 3.17-3.26(m,1H), 2.67-2.87(m,2H), 2.03-2.41(m,1H), 1.08-2.28(m,14H), 0.91-0.94(m,6H). LC-MS (M+H)+ = 353.3; HPLC purity: 97.40%. Column: Zorbax eclipse XDB-C18, 4.6X150mm, 5µM; RT = 19.07 min; Mobile phase: MeCN: 0.01% TFA in H2O, runtime: 30 minutes.
EXAMPLE 119: 3-(1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (peak-1)

(119)

Synthesis of Compound (119) (Peak-1): Mixture of isomers of compound (1) was separated by using reverse phase preparative HPLC to give Compound (119) (peak-1). δ 7.92(s,1 H), 7.58-7.65(m,1 H), 7.27-7.30(d,1H), 7.00-7.13(m,2H), 6.93-6.96(m,1H), 4.30-4.60(m,1H), 3.50-3.58(m,1 H), 2.60-2.90(m,1 H), 2.30-2.55(m,2H), 0.78-1.67(m,17H). LC-MS (M+H)+ = 325.3; HPLC purity: 99.59%. Column: Zorbax eclipse XDB-C18, 4.6X150mm, 5 µM; RT = 13.37 min; Mobile phase: MeCN: H2O (50:50).

EXAMPLE 120: 3-(1W-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (peak-2)

(120)

Synthesis of Compound (120) (peak-2): Mixture of isomers of compound (1) was separated by using reverse phase preparative HPLC to give Compound (120) (peak-2). 1H NMR (300MHz,CDC3) : δ 7.90(s,1H), 7.59-7.63(m,1 H), 7.26-7.30(d,1 H), 7.00-7.13(m,2H), 6.94-6.95(m,1H), 4.30-4.60(m,1H), 3.56-3.65(m,1H), 2.43-2.89(m,3H), 0.79-1.64(m,17H). LC-MS (M+H)+ = 325.2; HPLC purity: 98.57%. Column: Zorbax eclipse XDB-C18, 4.6X150mm, 5 µM; RT = 14.37 min; Mobile phase: MeCN: H2O (50:50).
EXAMPLE 121: 3-(4-fluoro-1W-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (121)

Synthesis of Compound (121): Compound (121) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (121). 1H NMR (300MHz,CDCl3): δ 8.85-8.88(d,1H), 6.98-7.08(m,1H), 6.92-6.97(m,1H), 6.85(s,1H), 6.62-6.72(m,1H), 4.41-4.59(m,1H), 3.54-3.79(m,2H), 2.37-3.04(m,3H), 1.52-1.63(m,6H), 1.46-1.47(m,2H), 1.37(s,5H), 1.32-1.34(m,3H). LC-MS (M+H)+ = 343.2; HPLC purity: 96.57%.

EXAMPLE 122: 3-(4-fluoro-1W-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (peak-1) (122)

Synthesis of Compound (122) (peak-1): Compound (122) (peak-1) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (122) (peak-1). 1H NMR (300MHz,CDCl3): δ 8.10(s,1H), 6.96-7.07(m,2H), 6.93(d,1H), 6.67-6.75(m,1H), 4.45-4.59(m,1H), 3.55-3.69(m,2H), 2.41-2.96(m,3H), 0.76-1.60(m,16H). LC-MS (M+H)+ = 343.2; HPLC purity: 97.18%.
EXAMPLE 123: 3-(4-fluoro-1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (peak-2) (123)

5 Synthesis of Compound (123) (peak-2): Compound (123) (peak-2) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (123) (peak-2). 1H NMR (300MHz,CDCl3) : δ 8.08(s,1H), 6.96-7.07(m,2H), 6.93-6.94(d,1H), 6.65-6.75(m,1H), 4.40-4.59(m,1H), 3.55-3.69(m,2H), 2.41-2.96(m,3H), 0.76-1.60(m,16H). LC-MS (M+H)$^+$ = 343.2; HPLC purity: 95.41%.

EXAMPLE 124: 3-(1H-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (peak-1) (124)

10 Synthesis of Compound (124) (peak-1): Compound (124) (peak-1) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (124) (peak-1). 1H NMR (300MHz,CDCl3) : δ 7.93(s,1H), 7.59-7.65(m,1H), 7.27-7.30(d,1H), 7.00-7.13(m,2H), 6.95(s,1H), 4.40-4.61(m,1H), 3.46-3.65(m,2H), 2.37-2.92(m,4H), 1.61-1.64(m,6H), 1.36-1.47(m,5H), 1.26-1.29(m,4H). LC-MS (M+H)$^+$ = 325.2; HPLC purity: 93.69%.
EXAMPLE 125: 3-(1«-indol-3-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (peak-2) (125)

Synthesis of (125) (peak-2): Compound (125) (peak-2) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (125) (peak-2).

\[\text{H NMR (300MHz,CDCl}_3) \delta 7.94(s,1H), 7.59-7.65(m,1H), 7.27-7.30(d,1H), 7.02-7.13(m,2H), 7.00(s,1H), 4.40-4.61(m,1H), 3.46-3.64(m,2H), 2.42-2.97(m,4H), 1.64-1.91(m,6H), 1.41-1.47(m,5H), 1.36(m,4H). \]

LC-MS (M+H)\(^+\) = 325.2; HPLC purity: 94.79%.

EXAMPLE 126: 3-(4-chloro-1H-indol-3-yl)-1-[trans-(4a,8a)-octahydroquinolin-1(2H)-yl]butan-1-one (126)

Synthesis of Compound (126): Compound (126) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (126).

\[\text{H NMR (300MHz,CDCl}_3) \delta 8.32(s,1H), 7.12(s,1H), 6.99-7.04(m,3H), 3.68-4.16(m,1H), 2.98-3.22(m,2H), 2.25-2.85(m,1H), 0.65-1.85(m,18H). \]

LC-MS (M+H)\(^+\) = 359.2; HPLC purity: 84.27%.
EXAMPLE 127: ethyl 1-[3-(4-chloro-1H-indol-3-yl)butanoyl] octahydroquinoline-4a(2H)-carboxylate (127)

Synthesis of Compound (127): Compound (127) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (127). 1H NMR (300MHz,CDCl3) : δ 8.06(s,1H), 6.99-7.02(m,4H), 3.99-4.10(m,5H), 2.66-3.08(m,2H), 1.74-2.50(m,13H), 1.33-1.36(m,6H). LC-MS (M+H)$^+$ = 431.2; HPLC purity: 94.82%.

EXAMPLE 128: 3-(4-chloro-1H-indol-3-yl)-1-(4a-phenyloctahydroquinolin-1(2H)-yl)butan-1-one (128)

Synthesis of (128): Compound (128) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (128). 1H NMR (300MHz,CDCl3) : δ 8.01(s,1H), 7.60-7.62(d,2H), 7.11-7.19(m,3H), 7.02(m,1H), 6.98(d,3H), 3.80-4.21 (m,2H), 3.17-3.23(m,1 H), 2.80-2.92(m,2H), 2.41-2.49(m,2H), 0.78-2.15(m,14H). LC-MS (M+H)$^+$ = 435.2; HPLC purity: 88.09%.
EXAMPLE 129: 1-[3-(4-chloro-1H-indol-3-yl)butanoyl]octahydroquinoline-4a(2H)-
carboxylic acid (129)

\[\text{\begin{empheq}[left={\text{(129)}}]{alignat=2}
\text{Cl} & \quad \text{N} \quad \text{C} \quad \text{O} \\
\text{O} & \quad \text{N} \quad \text{C}
\end{empheq}} \]

Synthesis of (129): Compound (129) was synthesized by following the procedure used to
make Compound (1) (Scheme 2). The crude product was obtained by evaporating the
organic layer under reduced pressure and was purified by silica gel column using Petroleum
ether: Ethyl acetate as eluent to obtain Compound (129). \(^1\)H NMR (300MHz,DMSO-d6) : \(\delta \)
12.24(s,1H), 11.15(s,1H), 7.24-7.31(m,2H), 6.97-7.01(m,2H), 3.92-3.95(m,1H), 3.26(m,2H),
2.72-2.76(m,2H), 1.21-2.40(m,16H). LC-MS (M+H)\(^+\) = 403.2; HPLC purity: 99.09%.

EXAMPLE 130: 3-(4-chloro-1W-indol-3-yl)-1-[4a-(hydroxymethyl) octahydroquinolin-
1(2H)-yl]butan-1-one (130)

\[\text{\begin{empheq}[left={\text{(130)}}]{alignat=2}
\text{Cl} & \quad \text{N} \quad \text{C} \quad \text{O} \\
\text{O} & \quad \text{N} \quad \text{C}
\end{empheq}} \]

Synthesis of (130): Compound (130) was synthesized by following the procedure used to
make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic
layer under reduced pressure and was purified by silica gel column using Petroleum ether:
Ethyl acetate as eluent to obtain Compound (130). \(^1\)H NMR (300MHz,CDC\(\text{I}_3\)) : \(\delta \)
7.16(m,1H), 7.02-7.03(d,1H), 6.98-7.00(m,2H), 3.87-4.00(m,1H), 3.46-3.71(m,1H), 2.79-
2.98(m,3H), 2.44-2.52(m,1H), 1.37-1.81(m,17H). LC-MS (M+H)\(^+\) = 389.2; HPLC purity:
93.28%.
EXAMPLE 131: 1-[4a-(hydroxymethyl)octahydroquinolin-1 (2H)-yl]-3-(1 H-indol-3-yl)butan-1-one (131)

\[\text{(131)} \]

Synthesis of (131): Compound (131) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (131). \(^1\)H NMR (300MHz,CDCl\(_3\)) : δ 7.94(s,1H), 7.60-7.63(d,1H), 7.27-7.30(d,1H), 7.01-7.13(m,2H), 6.96-6.97(m,1H), 3.32-3.76(m,3H), 2.79-2.84(m,3H), 2.44-2.62(m,2H), 1.62-1.96(m,12H), 1.36-1.38(d,3H). LC-MS (M+H)\(^+\) = 355.2; HPLC purity: 97.69%.

EXAMPLE 132: 1-(4a-hydroxyoctahydroquinolin-1(2H)-yl)-3-(4-methyl-1 H-indol-3-yl)butan-1-one (132)

\[\text{(132)} \]

Synthesis of Compound (132): Compound (132) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (132). \(^1\)H NMR (300MHz,CDCl\(_3\)) : δ 7.96(s,1H), 7.10-7.13(m,1H), 6.94-7.01(m,2H), 6.76-6.83(d,1H), 4.40-4.53(m,1H), 3.86-3.95(m,1H), 3.41-3.66(m,1H), 2.71-3.01(m,2H), 2.66-2.68(m,3H), 2.28-2.60(m,2H), 1.31-1.99(m,14H). LC-MS (M+H)\(^+\) = 355.2; HPLC purity: 91.85%.
EXAMPLE 133: 3-(1«-indol-3-yl)-4-methyl-1-(octahydro-4H-1,4-benzoxazin-4-yl)pentan-1-one (133)

Synthesis of Compound (133): Compound (133) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (133). 1H NMR (300MHz,CDCl3) : δ 7.98(s,1H), 7.56-7.58(d,1H), 7.26-7.28(d,1H), 6.97-7.11(m,2H), 6.92-6.93(d,1H), 4.01-4.22(m,1H), 3.29-3.57(m,3H), 3.10-3.25(m,2H), 2.64-2.94(m,2H), 1.99-2.39(m,1H), 1.67-1.84(m,1H), 1.15-1.21(m,5H), 0.95-0.99(m,4H), 0.76-0.83(m,5H). LC-MS (M+H)$^+$ = 355.2; HPLC purity: 98.87%.

EXAMPLE 134: 4-methyl-3-(1-methyl-1H-indol-3-yl)-1-(octahydro-4H-1,4-benzoxazin-4-yl)pentan-1-one (134)

Synthesis of Compound (134): Compound (134) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (134). 1H NMR (300MHz,CDCl3) : δ 7.53-7.56(d,1H), 7.19-7.21(d,1H), 7.08-7.13(t,1H), 6.95-7.02(m,1H), 6.77(s,1H), 3.76-4.16(m,1H), 3.66(s,3H), 3.47-3.55(m,1H), 3.27-3.42(m,2H), 3.09-3.20(m,2H), 2.62-2.92(m,3H), 2.24-2.35(m,1H), 1.94-2.17(m,2H), 1.51-1.80(m,6H), 0.93-0.97(m,3H), 0.76-0.80(m,3H). LC-MS (M+H)$^+$ = 369.3; HPLC purity: 91.33%.
EXAMPLE 135: 3-(4-fluoro-1H-indol-3-yl)-4-methyl-1-(octahydro-4H-1,4-benzoxazin-4-yl)pentan-1-one (135)

\[\text{135} \]

Synthesis of Compound (135): Compound (135) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (135). 1H NMR (300MHz,CDCl3) : δ 8.22(s,1H), 6.98-7.13(m,3H), 6.70-6.76(m,1H), 4.07-4.22(m,1H), 3.10-3.83(m,3H), 2.70-2.88(m,2H), 2.04-2.13(m,1H), 1.66-1.86(m,3H), 0.77-1.33(m,14H). LC-MS (M+H)$^+$ = 373.2; HPLC purity: 94.76%.

EXAMPLE 136: 3-(4-fluoro-1H-indol-3-yl)-1-(octahydro-4H-1,4-benzoxazin-4-yl)butan-1-one (136)

\[\text{136} \]

Synthesis of Compound (136): Compound (136) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (136). 1H NMR (300MHz,CDCl3) : δ 8.08(s,1H), 6.96-7.12(m,3H), 6.68-6.77(m,1H), 3.87-4.28(m,1H), 3.24-3.87(m,2H), 2.64-2.96(m,2H), 2.42-2.56(m,1H), 2.21-2.30(m,1H), 1.32-2.02(m,13H). LC-MS (M+H)$^+$ = 345.2; HPLC purity: 94.02%.
EXAMPLE 137: 3-(4-fluoro-1H-indol-3-yl)-1-(octahydro-4«-1,4-benzoxazin-4-yl)butan-1-one (peak-1) (137)

5

Synthesis of Compound (137) (peak-1): Mixture of isomers of Compound (136) was separated by using preparative reverse phase HPLC column to give Compound (137) (peak-1). 1H NMR (300MHz,CDCl3) : δ 8.26-8.33(d,1 H), 6.91-7.10(m,3H), 6.65-6.76(m,1 H), 4.11-4.29(m,1H), 3.58-3.78(m,1H), 3.54-3.58(m,1H), 3.29-3.42(m,2H), 3.08-3.15(m,1H), 2.77-3.03(m,2H), 2.34-2.55(m,2H), 1.78-1.91(m,1H), 1.52-1.67(m,3H), 1.32-1.41(m,6H). LC-MS (M+H)$^+$ = 345.2; HPLC purity: 97.60%; Column: Zorbax eclipse XDB-C18, Mobile phase: MeCN: H2O, 40:60, RT = 14.93 min.

EXAMPLE 138: 3-(4-fluoro-1H-indol-3-yl)-1-(octahydro-4«-1,4-benzoxazin-4-yl)butan-1-one (peak-2) (138)

15

Synthesis of Compound (138) (peak-2): Mixture of isomers of Compound (136) was separated by using preparative reverse phase HPLC column to give Compound (138) (peak-2). 1H NMR (300MHz,CDCl3) : δ 8.14(s,1H), 6.93-7.12(m,3H), 6.65-6.74(m,1 H), 4.13-4.28(m,1H), 3.44-3.86(m,2H), 3.18-3.38(m,2H), 2.57-2.88(m,2H), 2.43-2.52(m,1 H), 1.84-2.33(m,2H), 1.56-1.88(m,4H), 1.33-1.40(m,6H). LC-MS (M+H)$^+$ = 345.2; HPLC purity: 96.43%; column: Zorbax eclipse XDB-C18, Mobile phase: MeCN: H2O, 40:60, RT = 15.46 min.
EXAMPLE 139: 3-(4-fluoro-1H-indol-3-yl)-1-[cis-(4a,8a)-octahydro-4H,4-benzoxazin-4-yl]butan-1-one (peak-1) (139)

5 Synthesis of Compound (139) (peak-1): Compound (139) (peak-1) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (139) (peak-1). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 8.03(s,1H), 6.92-7.10(m,3H), 6.72-6.77(m,1H), 4.10-4.30(m,1H), 3.54-3.76(m,2H), 2.46-3.27(m,7H), 1.67-1.79(m,4H), 1.33-1.41(m,6H). LC-MS (M+H)\(^+\) = 345.2; HPLC purity: 96.25%.

EXAMPLE 140: 3-(4-fluoro-1H-indol-3-yl)-1-[cis-(4a,8a)-octahydro-4H,4-benzoxazin-4-yl]butan-1-one (peak-2) (140)

15 Synthesis of Compound (140): Compound (140) (peak-2) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (140) (peak-2). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 8.03(s,1H), 6.92-7.07(m,3H), 6.7-6.77(m,1H), 4.10-4.30(m,1H), 3.54-3.76(m,2H), 2.46-3.27(m,7H), 1.67-1.83(m,4H), 1.33-1.41(m,6H). LC-MS (M+H)\(^+\) = 345.2; HPLC purity: 97.10%.
EXAMPLE 141: ethyl 1-[3-(1,3-benzothiazol-2-yl)butanoyl]octahydroquinoline-4a(2H)-carboxylate (141)

\[
\text{(141)}
\]

5 Synthesis of Compound (141): Compound (141) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (141). 1H NMR (300MHz,CDCl$_3$) : δ 7.75-7.89(m,2H), 7.23-7.38(m,2H), 3.81-4.13(m,3H), 2.99-3.09(m,1H), 2.53-2.87(m,1H), 2.01-2.19(m,3H), 1.22-1.78(m,18H). LC-MS (M+H)$^+$ = 415.2; HPLC purity: 93.99%.

EXAMPLE 142: 3-(1,3-benzothiazol-2-yl)-1-(octahydro-1H-indol-1-yl)butan-1-one (142)

\[
\text{(142)}
\]

15 Synthesis of Compound (142): Compound (142) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (142). 1H NMR (300MHz,CDCl$_3$) : δ 7.88-7.91 (d,1H), 7.75-7.78(d,1 H), 7.35-7.40(t,1 H), 7.25-7.30(t,1H), 3.86-4.10(m,2H), 3.38-3.50(m,2H), 2.91 (m,1H), 2.56(m,1H), 1.05-2.06(m,14H). LC-MS (M+H)$^+$ = 329.2; HPLC purity: 97.29%.
EXAMPLE 143: 1-(octahydroquinolin-1(2H)-yl)-3-(1W-pyrrolo[2,3-b]pyridin-3-yl)butan-1-one (143)

(143)

Synthesis of Compound (143): Compound (143) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (143). 1H NMR (300MHz,CDCl₃) : δ 9.63(s,1H), 7.94-8.14(m,2H), 6.97-7.07(m,2H), 4.40-4.60(m,1H), 3.40-3.65(m,2H), 2.41-2.88(m,5H), 1.18-1.48(m,14H). LC-MS (M+H)$^+$ = 326.1; HPLC purity: 94.48%.

EXAMPLE 144: 1-(octahydroquinolin-1(2H)-yl)-3-(1H-pyrrolo[2,3-d]pyridin-3-yl)butan-1-one (peak-1) (144)

(144, peak 1)

Synthesis of Compound (144) (Peak-1): Mixture of isomers of Compound (143) was separated by using preparative reverse phase HPLC column to give Compound (144) (peak-1). 1H NMR (300MHz,CDCl₃) : δ 12.04(s,1H), 8.55-8.57(d,1H), 8.14-8.16(d,1H), 7.30-7.34(m,2H), 4.32-4.67(m,1H), 3.47-3.85(m,2H), 2.51-2.98(m,5H), 1.32-1.73(m,14H). LC-MS (M+H)$^+$ = 326.2; HPLC purity: 99.85%; Column: Zorbax eclipse XDB-C-18, mobile phase: MeCN: H₂O 50: 50, RT = 4.77 min.
EXAMPLE 145: 1-(octahydroquinolin-1(2H)-yl)-3-(1 W-pyrrolo[2,3-/?]pyridin-3-yl)butan-1-one (peak-2) (145)

\[
\text{\textbf{145}, peak 2}
\]

5 Synthesis of Compound (145) (Peak-2): Mixture of isomers of Compound (143) was separated by using preparative reverse phase HPLC column to give Compound (145) (peak-2). \(^1\)H NMR (300MHz,CDCl3): \(\delta\) 11.84(s,1H), 8.51-8.54(d,1H), 8.16(d,1 H), 7.30 (m,2H), 4.32-4.67(m,1H), 3.45-3.76(m,2H), 2.51-2.98(m,5H), 1.32-1.73(m,14H). LC-MS (M+H)\(^+\) = 326.2; HPLC purity: 98.76%; Column: Zorbax eclipse XDB-C-18, mobile phase: MeCN: H2O 50: 50, RT = 5.24 min.

EXAMPLE 146: 1-[4a-(hydroxymethyl)octahydroquinolin-1(2W)-yl]-3-(1 W-pyrrolo[2,3-i]pyridin-3-yl)butan-1-one (146)

\[
\text{\textbf{146}}
\]

15 Synthesis of Compound (146): Compound (146) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (146). \(^1\)H NMR (300MHz,DMSO-d6) : \(\delta\) 11.28(s,1 H), 8.15-8.17(d,1H), 7.93-7.96(d,1H), 6.99-7.25(m,2H), 3.90-4.25(m,1H), 3.39-3.70(m,3H), 2.84-2.93(m,2H), 2.58-2.75(m,4H), 1.24-2.03(m,14H). LC-MS (M+H)\(^+\) = 356.2; HPLC purity: 96.35%.
EXAMPLE 147: 3-(4-chloro-1 H-pyrrolo[2,3- b]pyridin-3-yl)-1-[4a-(hydroxymethyl)octahydroquinolin-1(2H)-yl]butan-1-one (147)

5 Synthesis of Compound (147): Compound (147) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (147). 1H NMR (300MHz,CDCl3) : δ 9.07(s,1H), 8.05-8.07(d,1H), 6.99-7.10(m,2H), 3.51-3.92(m,4H), 2.78-2.94(m,4H), 2.14-2.32(m,2H), 1.35-1.96(m,13H). LC-MS (M+H)+ = 390.2; HPLC purity: 91.09%.

EXAMPLE 148: 1-(4a-hydroxyoctahydroquinolin-1(2H)-yl)-3-(1 H-pyrrolo[2,3-b]pyridin-3-yl)butan-1-one (148)

Synthesis of Compound (148): Compound (148) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (148). 1H NMR (300MHz,DMSO-d6) : δ 11.28(s,1H), 8.16(d,1H), 7.95-7.99(m,1 H), 7.20-7.24(m,1H), 6.99-7.03(m,1H), 4.35(s,1H), 4.15-4.29(m,1 H), 3.63-3.72(m,1H), 3.42-3.51 (m,2H), 2.62-2.83(m,3H), 1.20-1.98(m,14H). LC-MS (M+H)+ = 342.2; HPLC purity: 98.98%.
EXAMPLE 149: 1-[3-(4-methyl-1H-indol-3-yl)butanoyl] octahydroquinoline-4a(2W)-carbonitrile (149)

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{compound_149}
\end{center}}
\]

Synthesis of Compound (149): Compound (149) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (149). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 6.98-7.05 (m, 2H), 6.75-6.78 (m, 2H), 4.82 (s, 1H), 3.93 (s, 1H), 3.63 (s, 3H), 3.16-3.22 (m, 2H), 2.64 (s, 3H), 2.55-2.61 (m, 2H), 1.97-2.01 (m, 2H), 1.75-1.79 (m, 2H), 1.70-1.72 (m, 3H), 1.59-1.65 (m, 7H). LC-MS (M+H)\(^+\) = 364.2; HPLC purity: 93.73%.

EXAMPLE 150: 1-[3-(4-fluoro-1W-indol-3-yl)-3-phenylpropanoyl] decahydroquinoline-4-carboxylic acid (150)

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{compound_150}
\end{center}}
\]

Synthesis of Compound (150): Compound (150) was synthesized by following the procedure used to make Compound (105) (Scheme 51). \(^1\)H NMR (300MHz, DMSO-d6) : \(\delta\) 12.23(s,1H), 11.17(s,1H), 7.34-7.36(d,1H), 7.18-7.27(m,4H), 7.09-7.15(m,2H), 6.93-7.00(m,1H), 6.58-6.64(m,1H), 4.83(m,1H), 3.91-4.06(m,1H), 3.00-3.18(m,3H), 1.09-1.88(m,13H). LC-MS (M+H)\(^+\) = 449.2; HPLC purity: 96.20%.
EXAMPLE 151: 1-[3-(6-fluoro-1H-indol-3-yl)-3-phenylpropanoyl] decahydroquinoline-4-carboxylic acid (151)

5 Synthesis of Compound (151): Compound (151) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300MHz,DMSO-d6) : δ 12.21(s,1H), 10.94(s,1H), 7.27-7.30(m,4H), 7.19-7.24(t,2H), 7.05-7.13(m,2H), 6.69-6.75(m,1H), 4.63-4.65(m,1H), 3.90-3.98(m,2H), 2.98-3.26(m,3H), 2.27-2.43(m,2H), 1.10-1.84(m,10H). LC-MS (M+H)$^+$ = 449.22; HPLC purity: 96.21%.

10 EXAMPLE 152: 1-[3-(1,3-benzothiazol-2-yl)-3-phenylpropanoyl] decahydroquinoline-4-carboxylic acid (152)

15 Synthesis of Compound (152): Compound (152) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300MHz,DMSO-d6) : δ 12.26(s,1H), 7.92-8.00(m,2H), 7.24-7.49(m,7H), 4.96-4.98(m,1H), 3.50-4.23(m,3H), 2.90-3.21 (m,1H), 1.47-2.27(m,13H). LC-MS (M+H)$^+$ = 449.1 ; HPLC purity: 99.48%.
EXAMPLE 153: 1-(4a-methoxyoctahydroquinolin-1(2H)-yl)-3-(1 W-pyrrolo[2,3--5]pyridin-3-yl)butan-1-one (153)

\[
\text{153}
\]

5 Synthesis of Compound (153): Compound (153) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (153). \(^1\)H NMR (300MHz,CDCl3) : \(\delta\) 9.14(s,1 H), 8.20-8.21 (d,1H), 7.93-7.96(m,1 H), 6.96-7.08(m,2H)3.44-

10 3.64(m,3H), 303-3.06(m,3H), 2.42-2.75(m,2H), 1.27-1.83(m,16H). LC-MS (M+H)\(^+\) = 356.2; HPLC purity: 94.26%.

EXAMPLE 154: 1-[3-(1,3-benzothiazol-2-yl)butanoyl]decahydroquinoline-4-carboxylic acid (154)

\[
\text{154}
\]

15 Synthesis of Compound (154): Compound (154) was synthesized by following the procedure used to make Compound (105) (Scheme 51). \(^1\)H NMR (300MHz,CD3OD) : \(\delta\) 7.88-

20 7.94(m,2H), 7.44-7.50(m,1 H), 7.35-7.41 (m,1H), 4.17(s,1H), 3.79-3.97(m,2H), 3.52-

20 3.63(m,1H), 3.07-3.22(m,1 H), 2.69-2.86(m,1H), 2.56(m,1H)2.04-2.1 1(m,2H), 1.88-

20 1.92(m,2H), 1.61 (m,4H), 1.45-1.51 (m,3H), 1.35-1.38(m,4H). LC-MS (M+H)\(^+\) = 387.2; HPLC purity: 93.02%.
EXAMPLE 155: 1-[3-(4-chloro-1 W-indol-3-yl)-3-phenylpropanoyl]decahydroquinoline-4-
carboxylic acid (155):

Synthesis of (155): Compound (155) was synthesized by following the procedure used to
make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.19 (brs, 1H),
11.31 (s, 1H), 7.49, brs, 1H), 7.20-7.31 (m, 5H), 7.09-7.11 (m, 1H), 6.96-7.01 (t, 1H), 6.85-
6.87 (d, 1H), 5.27-5.30 (m, 1H), 3.81-3.91 (2H, m), 2.60-2.95 (m, 3H), 2.25 (brs, 1H), 1.39-
1.95 (m, 11H). LC-MS (M+H)⁺ = 465.2; HPLC purity: 99.0%.

EXAMPLE 156: 1-[3-(4-fluoro-1 H-indol-3-yl)-3-(thiophen-2-yl)propanoyl]
decahydroquinoline- 4-carboxylic acid (160):

Synthesis of (156): Compound (156) was synthesized by following the procedure used to
make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl₃) : δ 8.28 (brs, 1H), 6.98-
7.06 (m, 4H), 6.80-6.82 (m, 2H), 6.62-6.68 (m, 1H), 5.06-5.20 (m, 1H), 4.46-4.59 (m, 1H),
3.94-4.06 (m, 1H)3.54-3.64 (1H), 3.30-3.42 (m, 1H), 3.04-3.16 (m, 2H), 2.27-2.55 (m, 1H),
1.59-1.87 (m, 6H), 1.35-1.40 (m, 4H). LC-MS (M+H)⁺ = 455.2; HPLC purity: 98.58%.

EXAMPLE 157: 1-[3-(4-fluoro-1 «-indol-3-yl)-3-(4-fluorophenyl)
propanoyl]decahydroquinoline-4-carboxylic acid (157):
Synthesis of (157): Compound (157) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.23 (brs, 1H), 11.19 (brs, 1H), 7.24-7.53 (m, 3H), 7.12-7.15 (d, 1H), 6.94-7.06 (m, 3H), 6.61-6.65 (m, 1H), 4.83 (brs, 1H), 3.87-4.06 (m, 1H), 2.92-3.20 (4H), 2.45-2.60 (m, 2H), 1.47-1.86 (m, 10H). LC-MS (M+H)^+ = 467.2; HPLC purity: 97.74%.

EXAMPLE 158: 1-[3-(4-chloro-1H-indol-3-yl)butanoyl] decahydroquinoline-4-carboxylic acid (158):

![Chemical Structure of 158](image)

Synthesis of (158): Compound (158) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.25 (brs, 1H), 11.19 (brs, 1H), 7.28-7.32 (m, 2H), 6.96-7.04 (m, 2H), 3.96-4.01 (m, 2H), 3.45-3.50 (m, 1H), 2.63-2.79 (.4H), 1.91-1.95 (m, 1H), 1.23-1.70 (m, 13H). LC-MS (M+H)^+ = 403.2; HPLC purity: 93.16%.

EXAMPLE 159: 1-[3-(6-fluoro-1H-indol-3-yl)-3-phenylpropanoyl] decahydroquinoline-4-carboxylic acid (peak-1) (159):

![Chemical Structure of 159](image)

Synthetic Scheme-53
Synthesis of 3-(6-fluoro-1H-indol-3-yl)-W-[(1R)-2-hydroxy-1-phenylethyl]-3-phenylpropanamide (Intermediate-88, peak-1 and Intermediate-89 peak-2):

At 0°C, to a stirred solution of Intermediate-87 (0.800g, 2.8 mmol) and Starting Material-31 (0.387g, 2.8 mmol) in THF: DMF (10 mL: 0.5 mL), HBTU (1.28g, 3.3 mmol) was added followed by addition of isopropyl ethylamine (1.09g, 8.4 mmol). The resulted reaction mixture was stirred at room temperature for 2 hours. After completion of the reaction (reaction monitored by TLC), the reaction mass was quenched with water and extracted with Ethyl acetate (3x50 mL). The organic layer was washed with saturated brine solution (50mL) and concentrated. Crude product was purified by combi flash chromatography eluting with hexanes: EtOAc (1: 1) to give Intermediate-88 (200 mg) and Intermediate-89 (280 mg) as pink solid.

Intermediate-88, peak-1: LC-MS (M+H)+ = 403.2; HPLC purity: 91.08%; Column: Zorbax eclipse XDB-C18, 4.6X50mm, 5µm; RT = 13.58 minutes, Mobile phase: MeCN: 0.01%TFA gradient.

Intermediate-89, peak-2: LC-MS (M+H)+ = 403.2; HPLC purity: 91.62%; Column: Zorbax eclipse XDB-C18, 4.6X50mm, 5µm; RT = 13.82 minutes, Mobile phase: MeCN: 0.01%TFA gradient.

Synthetic Scheme-54

Synthesis of 3-(6-fluoro-1H-indol-3-yl)-3-phenylpropanoic acid (Intermediate-90, peak-1):

To a stirred solution of Intermediate-88, peak-1 (0.200g, 0.49 mmol) in 1,4 dioxane: H2O (2mL: 2mL) Cone. H2SO4 (0.6 mL) was added and the resultant mixture was heated at 90 °C for 6 hours. After completion of the reaction (reaction monitored by TLC), the reaction mass was quenched with ice and extracted with Ethyl acetate (3 x 50 mL). The organic layer was washed with saturated brine solution (50mL) and dried over anhydrous Na2SO4 and concentrated to give Intermediate-90 (130 mg) as a pink oily material.
Synthesis of methyl 1-[3-(6-fluoro-1H-indol-3-yl)-3-phenylpropanoyl]decahydroquinoline-4-carboxylate (Intermediate-91, peak-1):

Intermediate-91, peak-1 was synthesized by following the procedure used to make Compound (1) (Scheme 2).

Synthesis of Compound (159) (peak-1): Compound (159) (peak-1) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.21 (brs, 1H), 10.93 (brs, 1H), 7.22-7.29 (m, 3H), 7.05-7.13 (m, 3H), 6.93-6.97 (m, 2H), 6.75-6.80 (m, 1H), 4.56-4.64 (m, 1H), 3.50-3.60 (m, 2H), 2.99-3.1 (m, 2H), 2.27-2.32 (m, 1H), 1.15-1.83 (m, 11H). LC-MS (M+H)+ = 449.2; HPLC purity: 96.66%.

EXAMPLE 160: 1-[3-(6-fluoro-1H-indol-3-yl)-3-phenylpropanoyl]decahydroquinoline-4-carboxylic acid (peak-2) (160):

Synthetic Scheme-55

Synthesis of 3-(6-fluoro-1H-indol-3-yl)-3-phenylpropanoic acid (Intermediate-92, peak-2): Intermediate-92 (peak-2) was synthesized by following the procedure used to make Intermediate-90 (peak-1) (Scheme 54).
Synthesis of methyl 1-[3-(6-fluoro-1H-indol-3-yl)-3-phenylpropanoyl] decahydroquinoline-4-carboxylate (Intermediate-93, peak-2):
Intermediate-93 (peak-2) was synthesized by following the procedure used to make Compound (1) (Scheme 2).

Synthesis of Compound (160) (peak-2): Compound (160) (peak-2) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.22 (brs, 1H), 10.94 (brs, 1H), 7.19-7.31 (m, 3H), 7.05-7.13 (m, 3H), 7.05-7.11 (m, 2H), 6.69-6.75 (m, 1H), 4.62-4.65 (m, 1H), 3.78-3.93 (m, 1H), 2.97-3.18 (m, 4H), 2.41-2.45 (m, 1H), 1.46-1.90 (m, 11H). LC-MS (M+H)^+ = 449.2; HPLC purity: 97.44%.

EXAMPLE 161: 1-[3-(4-fluoro-1H-indol-3-yl)-3-phenylpropanoyl] decahydroquinoline-4-carboxylic acid (peak-1) (161):

1H NMR (300 MHz, CDCl3) : δ 8.38 (brs, 1H), 6.90-7.35 (m, 8H), 6.55-6.61 (m, 1H), 4.86-4.93 (m, 1H), 3.73-3.93 (m, 1H), 3.31-3.36 (m, 1H), 2.98-3.08 (m, 3H), 2.22-2.35 (m, 1H), 1.31-1.69 (m, 11H). LC-MS (M+H)^+ = 449.2; HPLC purity: 97.90%.

EXAMPLE 162: 1-[3-(4-fluoro-1H-indol-3-yl)-3-phenylpropanoyl] decahydroquinoline-4-carboxylic acid (peak-2) (162):

Synthesis of Compound (162) (peak-2): Compound (162) (peak-2) was synthesized by following the procedure used to make Compound (160) (peak-2) (Scheme 55). 1H NMR (300 MHz, DMSO-d6) : δ 12.23 (brs, 1H), 11.18 (brs, 1H), 7.35-7.36 (m, 1H), 7.07-7.27 (m, 6H),
EXAMPLE 163: 1-[4-methyl-3-(1H-pyrrolo[2,3-i5]pyridin-3-yl)pentanoyl]decahydro quinoline-4-carboxylic acid (163):

Synthesis of Compound (163): Compound (163) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 6.93-7.00 (m, 1H), 6.51-6.71 (dd, 1H), 4.83 (brs, 1H), 3.91-3.99 (m, 1H), 2.92-3.20 (m, 2H), 2.41-2.45 (m, 2H), 1.45-1.88 (m, 11H). LC-MS (M+H)^+ = 449.2; HPLC purity: 98.50%.

EXAMPLE 164: 4-methyl-1-(octahydroquinolin-1(2H)-yl)-3-(1H-pyrrolo[2,3-i3]pyridin-3-yl)pentan-1-one (164):

Synthesis of Compound (164): Compound (164) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (164). 1H NMR (300 MHz, CDCl3) : δ 9.46 (brs, 1H), 8.17-8.21 (m, 1H), 7.89-7.95 (m, 1H), 6.95-7.05 (m, 2H), 4.29-4.45 (m, 1H), 3.35-3.65 (m, 2H), 3.09-3.25 (m, 1H), 2.69-2.89 (m, 3H), 2.29-2.37 (m, 1H), 1.95-2.12 (m, 3H0, 1.55-1.70 (m, 3H), 1.37-1.49 (m, 6H), 0.90-0.92 (d, 3H), 0.76-0.78 (d, 3H). LC-MS (M+H)^+ = 354.3; HPLC purity: 96.20%.
EXAMPLE 165: 1-[3-(1 W-pyrroio[2,3-?]pyridin-3-yl)butanoyl]decahydroquinoline-4-
carboxylic acid (165):

5 Synthesis of Compound (165): Compound (165) was synthesized by following the
procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ
12.22 (brs, 1H), 11.31 (1H), 8.15-8.16 (m, H), 7.95-7.98 (d, 1H), 7.25-7.26 (m,1H), 6.98-7.02
(m, 1H), 4.05-4.06 (m, 1H), 3.74-3.87 (m, 1H), 3.48-3.52 (m, 2H), 2.63-2.81 (m, 3H), 2.27-
2.34 (m, 1H), 1.60-1.98 (m, 8H), 1.45-1.49 (m, 2H), 1.25-1.28, (m, 3H). LC-MS (M+H)+ =
370.2; HPLC purity: 91.67%.

EXAMPLE 166: 3-(4-chloro-1H-benzotriazol-1-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-
one (166):

15 Synthesis of Compound (166): Compound (166) was synthesized by following the
procedure used to make Compound (1) (Scheme 2). The crude product was obtained by
evaporating the organic layer under reduced pressure and was purified by silica gel column
using Petroleum ether: Ethyl acetate as eluent to obtain Compound (166). 1H NMR
(300MHz,CD3OD) 1H NMR (300 MHz, CDCI3) : δ 7.49-7.54 (t, 1H), 7.26-7.35 (m, 2H), 5.40-
5.44 (m, 1H), 4.23-4.38 (m, 1H), 3.30-3.76 (m, 2H0, 2.71 -3.02 (m, 1.5H), 2.41 -2.51 (m, 0.5H),
1.18-1.75 (m, 16H): LC-MS: (M+H)+ = 361.1 ; HPLC purity = 89.09%.
EXAMPLE 167: 3-(4-chloro-2H-benzotriazol-2-yl)-1-(octahydroquinolin-1(2H)-yl)butan-1-one (167):

5 Synthesis of Compound (167): Compound (167) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (167). 1H NMR (300 MHz, CDCl₃) : δ 7.67-7.71 (m, 1H), 7.28-7.31 (M, 1H), 7.19-7.24 (m, 1H), 5.55-5.64 (m, 1H), 4.38-4.55 (m, 1H), 3.50-3.62 (m, 1H), 3.20-3.45 (m, 1H), 2.75-3.05 (m, 1H), 2.46-2.50 (m, 1H), 1.70 (d, 3H), 1.17-1.68 (m, 12H). LC-MS: (M+H)+ = 361.2; HPLC purity = 95.89%.

EXAMPLE 168: 1-[3-(4-methyl-1H-benzotriazol-1-yl)butanoyl]decahydroquinoline-4-carboxylic acid (168):

15 Synthesis of Compound (168): Compound (168) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 7.66-7.69 (d, 1H), 7.37-7.42 (t, 1H), 7.14-7.16 (d, 1H), 5.41 (brs, 1H), 3.70-3.86 (m, 3H), 2.66 (s, 3H), 2.45-2.51 (m, 2H), 2.27 (brs, 1H), 1.19-1.83 (m, 14H). LC-MS: (M+H)+ = 385.2; HPLC purity = 83.84%.
EXAMPLE 169: 1-[3-(4-methyl-2H-benzotriazol-2-yl)butanoyl]decahydroquinoline-4-carboxylic acid (169):

![Chemical Structure Image](image)

(169)

5 Synthesis of Compound (169): Compound (169) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.26 (brs, 1H), 7.65-7.70 (1H, m), 7.37-7.42 (t, 1H), 7.14-7.16 (d, 1H), 5.41-5.43 (m, 1H), 3.88-3.96 (m, 2H), 2.85-3.12 (m, 3H), 2.69 (s, 3H), 2.27 (brs, 1H), 1.70-2.0 (m, 11H), 1.61 (s, 3H). LC-MS: (M+H)+ = 385.2; HPLC purity = 84.25%.

EXAMPLE 170: 1-[3-(4-fluoro-1H-indol-3-yl)-3-(thiophen-2-yl)propanoyl]decahydroquinoline-2-carboxylic acid (170):

![Chemical Structure Image](image)

(170)

10 Synthesis of Compound (170): Compound (170) was synthesized by following the procedure used to make (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 11.18 (brs, 1H), 7.35-7.40 (m, 1H), 7.13-7.28 (m, 2H), 6.98-7.02 (m, 1H), 6.80-6.88 (m, 2H), 6.65-6.71 (m, 1H), 5.00-5.12 (m, 1H), 4.59-4.66 (m, 0.5H), 4.26-4.34 (m, 0.5H), 3.80-3.86 (m, 1H), 2.92-3.05 (m, 2H), 2.20-2.22 (m, 1H), 1.33-1.75 (m, 10 H). LC-MS: (M+H)+ = 455.1; HPLC purity = 97.36%.
EXAMPLE 171: 1-[3-(4-chloro-1H-pyrrolo[2,3-b]pyridin-3-yl)butanoyl] decahydroquinoline-4-carboxylic acid (171):

\[
\text{\includegraphics{compound171.png}}
\]

Synthesis of (171): Compound (171) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : \(\delta\) 12.26 (brs, 1H), 11.77 (s, 1H), 8.09-8.11 (d, 1H), 7.42 (s, 1H), 7.10-7.12 (d, 1H), 4.05 (brs, 1H), 3.85-3.87 (m, 2H), 3.45-3.51 (m, 2H), 2.66-2.76 (m, 2H), 1.62-1.97 (m, 11H), 1.40-1.43 (d, 3H). LC-MS: (M+H)+ = 404.2; HPLC purity = 90.05%

EXAMPLE 172: 4-methyl-3-(4-methyl-1H-benzotriazol-1-yl)-1-(octahydroquinolin-1(2H)-yl)pentan-1-one (172):

\[
\text{\includegraphics{compound172.png}}
\]

Synthesis of Compound (172): Compound (172) was synthesized by following the procedure used to make Compound (1) (Scheme 2). The crude product was obtained by evaporating the organic layer under reduced pressure and was purified by silica gel column using Petroleum ether: Ethyl acetate as eluent to obtain Compound (172) 1H NMR (300 MHz, CDCl3) : \(\delta\) 7.34-7.39 (m, 1H), 7.25-7.30 (m, 1H), 7.00-7.02 (m, 1H), 5.00-5.03 (m, 1H), 4.61 (brs, 0.5H), 4.15-4.30 (m, 0.5H), 3.41-3.61 (m, 2H), 2.78-3.01 (m, 1H), 2.70 (s, 3H), 2.15-2.42 (m, 1H), 1.32-1.95 (m, 14H), 0.70-0.81 (m, 6H). LC-MS: (M+H)+ = 369.3; HPLC purity = 82.9%
EXAMPLE 173: 3-(4-chloro-1,3-benzothiazol-2-yl)-1-(octahydroquinolin-1 (2H)-yl)butan-
1-one (173):

(173)

Synthesis of Compound (173): Compound (173) was synthesized by following the
procedure used to make Compound (1) (Scheme 2). The crude product was obtained by
evaporating the organic layer under reduced pressure and was purified by silica gel column
using Petroleum ether: Ethyl acetate as eluent to obtain Compound (173) 1H NMR (300 MHz,
CDCl3) : δ 7.64-7.67 (d, 1H), 7.36-7.39 (d, 1H), 7.16-7.21 (m, 1H), 4.39-4.56 (m, 1H), 3.64-
3.94 (m, 2H), 3.01-3.23 (m, 2H), 2.48-2.65 (m, 2H), 1.52-1.78 (m, 8H), 1.46 (d, 3H), 1.31-1.42
(m, 6H). LC-MS: (M+H)+ = 377.1; HPLC purity = 98.83%.

EXAMPLE 174: 1-[3-(6-fluoro-1H-indol-3-yl)-3-phenylpropanoyl] decahydroquinoline-2-
carboxylic acid (174):

(174)

Synthesis of Compound (174): Compound (174) was synthesized by following the
procedure used to make Compound (105) (Scheme 5) 1H NMR (300 MHz, CDCl3) : δ 8.06
(brs, 0.5H), 7.98 (brs, 0.5H), 7.22-7.24 (m, 2H), 6.91-6.98 (m, 5H), 6.60-6.75 (m, 2H), 4.85-
4.87 (m, 1H), 4.78-4.83 (m, 2H), 3.54-3.66 (m, 2H), 3.24-3.32 (dd, 1H), 3.03-3.10 (dd, 1H),
2.12-2.30 (m, 2H), 1.85-2.00 (m, 5H), 1.41-1.58 (m, 4H). LC-MS: (M+H)+ = 449.2; HPLC
purity = 93.61%.
EXAMPLE 175: 1-[3-(6-fluoro-1H-indol-3-yl)-3-phenylpropanoyl]decahydroquinoline-3-carboxylic acid (175):

![Chemical Structure of 175]

Synthesis of Compound (175): Compound (175) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.35 (brs, 1H), 10.99 (brs, 1H), 7.20-7.31 (m, 6H), 7.05-7.12 (m, 2H), 6.69-6.75 (t, 1H), 4.62-4.66 (m, 1H), 4.30-4.45 (m, 0.5H), 3.81-4.10 (m, 0.5H), 2.93-3.22 (m, 2H), 2.45-2.51 (m, 2H), 2.24-2.30 (m, 1H), 1.17-1.75 (m, 11H). LC-MS: (M+H)+ = 449.2.

EXAMPLE 176: 1-[3-(4-fluoro-1H-indol-3-yl)-3-phenylpropanoyl] decahydroquinoline-3-carboxylic acid (176):

![Chemical Structure of 176]

Synthesis of Compound (176): Compound (176) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : δ 8.19 (brs, 1H), 7.19-7.23 (m, 1H), 6.92-7.12 (m, 7H), 6.54-6.65 (m, 1H), 4.88-4.90 (m, 1H), 4.51-4.64 (m, 1H), 3.66-3.79 (m, 1H), 2.94-3.09 (m, 2H), 2.48-2.74 (m, 2H), 2.12-2.30 (m, 1H), 1.95-2.02 (m, 1H), 1.31-1.85 (m, 10H). LC-MS: (M+H)+ = 449.2; HPLC purity = 99.50%.
EXAMPLE 177: 1-[3-(6-fluoro-1W-indol-3-yl)-4-methylpentanoyl]decahydroquinolione-4-
carboxylic acid (peak-1) (177):

\[(177)\]

Synthesis of Compound (177): Compound (177) was synthesized by following the
procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ
10.87 (brs, 1H), 7.48-7.53 (dd, 1H), 7.04-7.07 (m, 2H), 6.75-6.82 (m, 1H), 3.75-3.96 (m, 2H),
3.17-3.24 (q, 2H), 2.67-2.69 (d, 2H), 2.23-2.30 (m, 1H), 1.94-2.02 (m, 2H), 1.01-1.84 (m,
10H), 0.86-0.88 (d, 3H), 0.76-0.78 (d, 3H) . LC-MS: (M+H)+ = 415.2; HPLC purity = 99.75%.

EXAMPLE 178: 1-[3-(6-fluoro-1W-indol-3-yl)-4-methylpentanoyl]decahydroquinolione-4-
carboxylic acid (peak-2) (178):

\[(178)\]

Synthesis of Compound (178): Compound (178) was synthesized by following the
procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : δ 8.81
(brs, 0.5H), 8.45 (brs, 0.5H), 7.43-7.47 (dd, 1H), 6.84-6.90 (m, 1H), 6.79 (brs, 1H), 6.70-6.76
(m, 1H), 4.35-4.50 (m, 1H), 3.45-3.53 (m, 1H), 3.02-3.15 (m, 2H), 2.63-2.77 (m, 2H), 2.00-
2.10 (m, 1H), 1.75-1.95 (m, 2H), 1.23-1.65 (m, 10H), 0.94-0.96 (d, 3H), 0.78-0.80 (d, 3H). LC-
MS: (M+H)+ = 415.2; HPLC purity = 88.97%.

EXAMPLE 179: 1-[3-(4-fluoro-1W-indol-3-yl)-4-methylpentanoyl]decahydroquinolione-4-
carboxylic acid (179):

\[(179)\]

Synthesis of Compound (179): Compound (179) was synthesized by following the
procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : δ 8.44
EXAMPLE 180: 1-[4-methyl-3-(4-methyl-1H-pyrrolo[2,3-b]pyridin-3-yl)pentanoyl]decahydroquinoline-4-carboxylic acid (180):

\[
\text{Synthesis of Compound (180): } \text{Compound (180) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : } \delta \\
7.88-8.01 (m, 3H), 7.07 (s, 1H), 6.81-6.84 (m, 1H), 3.92-3.75 (m, 1H), 3.45-3.50 (m, 1H). LC-MS: (M+H)+ = 415.3; HPLC purity = 96.54%.
\]

EXAMPLE 181: 1-[3-(1H-benzotriazol-1-yl)-3-phenylpropanoyl]decahydroquinoline-4-carboxylic acid (peak-1) (181):

\[
\text{Synthesis of Compound (181): } \text{Compound (181) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : } \delta \\
7.67-7.73 (m, 3H), 7.45-7.50 (m, 1H), 7.37-7.42 (m, 4H), 7.21-7.28 (dd, 1H). 1.30-2.15 (m, 10H). LC-MS: (M+H)+ = 433.2; HPLC purity = 98.45%.
\]
EXAMPLE 182: 1-[3-(1 H-benzotriazol-1-yl)-3-phenylpropanoyl]decahydroquinoline-4-carboxylic acid (Peak-2) (182):

\[
\text{N} = \text{N} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{OH}
\]

(182)

Synthesis of Compound (182): Compound (182) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.36 (brs, 1H), 7.69-7.71 (d, 2H), 7.36-7.48 (m, 7H), 7.19-7.24 (d, 1H), 4.26-4.30 (m, 1H), 4.11-4.15 (m, 1H), 3.52-3.59 (m, 2H), 2.39-2.45 (m, 2H), 2.25-2.28 (m, 1H), 1.35-2.16 (m, 10H). LC-MS: (M+H)+ = 433.2; HPLC purity = 97.16%.

EXAMPLE 183: 1-[4-methyl-3-(4-methyl-1 H-benzotriazol-1-yl)pentanoyl]decahydroquinoline-4-carboxylic acid (183):

\[
\text{O} \\
\text{N} \\
\text{O} \\
\text{OH}
\]

(183)

Synthesis of Compound (183): Compound (183) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : δ 7.38-7.41 (d, 1H), 7.25-7.30 (t, 1H), 7.00-7.03 (d, 1H), 5.02-5.05 (m, 1H), 3.95-4.10 (m, 1H), 3.46-3.68 (m, 2H), 2.84-2.90 (m, 1H), 2.75 (s, 3H), 2.21-2.39 (m, 4H), 1.25-1.95 (m, 10H), 0.96-0.98 (d, 3H), 0.75-0.77 (d, 3H). LC-MS: (M+H)+ = 413.2; HPLC purity = 95.52%.
EXAMPLE 184: 1-[3-(4-chloro-1 W-indol-3-yl)-3-(thiophen-2-yl)propanoyl]decahydroquinoline-4-carboxylic acid (184):

![Chemical Structure](image)

Synthesis of Compound (184): Compound (184) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : δ 8.36 (br s, 1H), 7.16-7.21 (m, 2H), 7.11 -7.14 (d, 1H), 7.06-7.09 (m, 1H), 6.95-6.97 (m, 1H), 6.83-6.78 (m, 2H), 5.58-5.64 (m, 1H), 4.40-4.60 (m, 1H), 3.60-3.65 (m, 1H), 3.34-3.42 (m, 1H), 2.99-3.19 (m, 1H), 2.43-2.71 (m, 1H), 2.12-2.15 (m, 1H), 1.23-1.84 (m, 11H). LC-MS: (M+H)+ = 471.2; HPLC purity = 98.02%.

EXAMPLE 185: 1-[3-(6-chloro-1 W-indol-3-yl)-4-methylpentanoyl]decahydroquinoline-4-carboxylic acid (185):

![Chemical Structure](image)

Synthesis of Compound (185): Compound (185) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 10.94 (br s, 1H), 7.52-7.55 (d, 1H), 7.33 (s, 1H), 7.13 (s, 1H), 6.93-6.96 (d, 1H), 3.78-3.97 (m, 1H), 3.34-3.41 (m, 1H), 3.16-3.22 (m, 2H), 2.68-2.70 (m, 2H), 2.29-2.33 (m, 1H), 1.06-2.02 (m, 12H), 0.86-0.88 (d, 3H), 0.75-0.77 (d, 3H). LC-MS: (M+H)+ = 431.3; HPLC purity = 96.39%.
EXAMPLE 186: 1-[3-(4-fluoro-1H-indol-3-yl)-3-phenylpropanoyl]decahydroquinoline-6-carboxylic acid (186):

![Chemical Structure (186)]

Synthesis of Compound (186): Compound (186) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.07 (br s, 1H), 11.18 (brs, 1H), 7.33-7.38 (m, 1H), 7.18-7.29 (m, 4H), 7.08-7.15 (m, 2H), 6.93-7.00 (m, 1H), 6.55-6.64 (m, 1H), 4.78-4.85 (m, 1H), 4.18-4.35 (m, 1H), 3.74-4.00 (m, 1H), 2.93-3.19 (m, 2H), 2.20-2.25 (m, 2H), 1.25-1.82 (m, 11H). LC-MS: (M+H)+ = 449.3; HPLC purity = 98.98%.

EXAMPLE 187: 1-[3-(4-chloro-1H-indol-3-yl)pentanoyl]decahydroquinoline-4-carboxylic acid (187):

![Chemical Structure (187)]

Synthesis of Compound (187): Compound (187) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : δ 8.31 (brs 1H), 7.16-7.18 (m, 1H), 6.97-7.01 (m, 3H), 3.65-3.87 (m, 2H), 3.39-3.53 (m, 1H), 2.44-2.73 (m, 4H0, 1.23-1.85 (m, 13H), 0.81-0.86 (t, 3H). LC-MS: (M+H)+ = 417.2; HPLC purity = 90.53%.

EXAMPLE 188: 1-[3-(4-fluoro-1H-indol-3-yl)-3-phenylpropanoyl]decahydroquinoline-5-carboxylic acid (188):

![Chemical Structure (188)]
Synthesis of Compound (188): Compound (188) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6): δ 12.26 (br s, 1H), 11.18 (br s, 1H), 7.32-7.35 (m, 1H), 7.09-7.27 (m, 6H), 6.93-7.00 (m, 1H), 6.58-6.64 (m, 1H), 4.79-4.86 (m, 1H), 4.04-4.41 (m, 1H), 3.93-4.05 (m, 1H), 3.75-3.79 (m, 1H), 2.95-3.17 (m, 2H), 2.71-2.75 (m, 1H), 1.25-1.89 (m, 11H). LC-MS: (M+H)+ = 449.2; HPLC purity = 94.73%.

EXAMPLE 189: 1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]decahydroquinolin-4-yljacetic acid (189):

![Compound 189](image)

Synthesis of Compound (189): Compound (189) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 7.99 (br s, 1H), 7.09-7.12 (d, 1H), 6.97-7.01 (m, 2H), 6.66-6.68 (d, 1H), 4.45-4.53 (m, 0.5H), 4.10-4.15 (m, 1H), 3.50-3.64 (m, 1H), 3.05-3.07 (m, 0.5H), 2.67-2.83 (m, 2H), 2.19-2.50 (m, 4H), 1.40-1.96 (m, 12H), 1.36-1.38 (d, 3H), 0.89-0.93 (m, 2H), 0.82-0.85 (m, 2H). LC-MS: (M+H)+ = 423.2; HPLC purity = 95.52%.

EXAMPLE 190: 1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (190):

![Compound 190](image)
Synthesis of ethyl 3-(4-bromo-1H-indol-3-yl)butanoate (intermediate-94):
Intermediate-94 was synthesized by following the procedure used to make Intermediate-2 (Scheme-1).

Synthesis of ethyl 3-(4-cyclopropyl-1H-indol-3-yl)butanoate (intermediate-95):
A 250mL RB flask fitted with magnetic stirrer was charged with Intermediate-94 (15.95g, 51.47mmol), cyclopropylboronic acid (8.8g, 102.9 mmol), cesium carbonate (33.45g, 102.9mmol), in a mixture of dioxane and water (100 ml : 20 ML). Then purged with N₂ gas and added PdCl₂(dppf) (4.2g, 5.1 mmol). Resulting solution was stirred at 100 °C for 13 h. After completion of the reaction (reaction monitored by TLC), reaction solution was filtered through celite. Filtrate diluted with water and extracted with EtOAc and concentrated to give crude material, which is purified by silica gel column chromatography eluting with Petroleum ether (60-80) and ethyl acetate as eluent. The product (intermediate-95) was obtained as a brown liquid (12.5g).

Synthesis of 3-(4-cyclopropyl-1H-indol-3-yl)butanoic acid (intermediate-96):
Intermediate-96 was synthesized by following the procedure used to make Intermediate-3 (Scheme-1).
Synthesis of methyl quinoline-5-carboxylate (intermediate-97):
A 500mL RB flask fitted with magnetic stirrer was charged with Starting Material-32 (60g, 435mmol), Starting material-33 (168g, 1824mmol), 3-nitrobenzoic acid (30g, 179mmol) in 90mL of conc.H₂SO₄. Then reaction mixture was heated at 150 °C for 7 h. After reaction cooled to RT and added MeOH (600 mL) and refluxed for 12 hours. Then cooled to 0 °C quenched with ice and concentrated. Crude reaction mixture was basified with NaHCO₃, extracted with DCM and concentrated. Resulted crude material was purified by silica gel column chromatography eluting with Petroleum ether (60-80), ethyl acetate and 0.5% of triethylamine as eluent. The product (intermediate-97) was obtained as a brown liquid (21g).

Synthesis of quinoline-5-carboxylic acid (intermediate-98):
To a stirred solution of Intermediate-97 (21 g, 112mmol) in a mixture of THF: MeOH (25 mL: 200 mL) was added LiOH (10.75g, 448mmol) in water (25 mL) at 0 °C. Resulted reaction mixture was stirred at room temperature for 3 hours. After reaction (monitored by TLC), it was concentrated and acidified (PH= 5) with 1N. HCl. Resulted precipitate was filtered and dried to give product Intermediate-98 (19g).

Synthesis of decahydroquinoline-5-carboxylic acid (intermediate-99):
Intermediate-99 was synthesized by following the procedure used to make Intermediate-18 (Scheme-13).

Synthesis of methyl decahydroquinoline-5-carboxylate (intermediate-100):
A 250mL RB flask fitted with magnetic stirrer was charged with Intermediate-99 (5.4g, 29.5mmol) in 50 mL MeOH. To this thionylchloride (10 mL) was slowly added at 0 °C. Resulted reaction mixture was stirred at room temperature for 12 hours. After reaction (Monitered by LC-MS), it was concentrated followed by azetroped with with toluene to give product Intermediate-100 as white solid (4.4 g).

Synthesis of Compound (190): Compound (190) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : δ 7.94 (br s, 1H), 7.10-7.12 (m, 1H), 6.96-7.00 (m, 2H), 6.65-6.69 (m, 1H), 4.68-4.70 (m, 0.5H), 4.44-4.48 (m, 0.5H), 4.14-4.17 (m, 1H), 3.57-3.63 (m, 1H), 2.70-2.94 (m, 2H), 2.41-2.55 (m, 3H), 2.12-2.15 (m, 1H), 1.44-1.77 (m, 8H), 1.35-1.37 (d, 3H), 1.30-1.35 (m, 2H), 0.91-0.93 (m, 2H), 0.77-0.80 (m, 2H). LC-MS: (M+H)+ = 409.2; HPLC purity = 97.56%.
EXAMPLE 191: 1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]decahydroquinoline-6-carboxylic acid (191):

![Chemical Structure of 191]

Synthesis of Compound (191): Compound (191) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : \(\delta \) 12.11 (br s, 1H), 10.80 (br s, 1H), 7.16-7.19 (m, 1H), 7.12-7.14 (d, 1H), 6.88-6.93 (t, 1H), 6.55-6.58 (d, 1H), 4.05-4.10 (m, 1H), 3.70-3.73 (m, 1H), 2.90-3.01 (m, 1H), 2.61-2.70 (m, 2H), 2.30-2.39 (m, 2H), 2.25-2.28 (m, 1H), 1.31-2.06 (m, 11H), 1.27-1.29 (d, 3H), 0.89-0.91 (m, 2H), 0.72-0.73 (m, 2H). LC-MS: (M+H)+ = 409.2; HPLC purity = 93.25%.

EXAMPLE 192: 1-[3-[4-(thiophen-2-yl)-1H-indol-3-yl]butanoyl]decahydroquinoline-5-carboxylic acid (192):

![Chemical Structure of 192]

Synthesis of Compound (192): Compound (192) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : \(\delta \) 8.30 (br s, 1H), 7.37-7.40 (d, 1H), 7.29-7.32 (m, 1H), 7.18-7.20 (d, 1H), 7.08-7.15 (m, 4H), 3.22-3.46 (m, 2H), 2.71-2.93 (m, 1H), 2.39-2.57 (m, 2H), 2.10-2.25 (m, 2H), 1.42-1.94 (m, 11H), 0.85-0.88 (d, 3H). LC-MS: (M+H)+ = 451.1; HPLC purity = 99.67%.

EXAMPLE 193: 1-[3-[4-chloro-1H-indol-3-yl]butanoyl]decahydroquinoline-5-carboxylic acid (HS_A_643) (193):

![Chemical Structure of 193]

Synthesis of Compound (193): Compound (193) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : \(\delta \)
12.15 (br s, 1H), 11.18 (brs, 1H), 7.28-7.31 (m, 2H), 7.01-6.98 (m, 2H), 4.47-4.49 (m, 0.5H), 4.29-4.33 (m, 0.5H), 3.72-3.95 (m, 2H), 2.62-3.02 (m, 4H), 1.30-1.94 (m, 11H), 1.25-1.27 (d, 3H). LC-MS: (M+H)+ = 403.1; HPLC purity = 98.12%.

EXAMPLE 194: 1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]decahydroquinoline-4-carboxylic acid (194):

![Structure 194](image)

Synthesis of Compound (194): Compound (194) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : δ 7.95 (br s, 1H), 7.10-7.13 (d, 1H), 6.96-7.02 (m, 2H), 6.66-6.68 (d, 1H), 4.17-4.20 (m, 2H), 3.46-3.49 (m, 1H), 2.80-2.88 (m, 1H), 2.53-2.60 (m, 2H), 2.41-2.48 (m, 2H), 1.45-1.98 (m, 11H), 1.36-1.38 (d, 3H), 0.92-0.95 (m, 2H), 0.74-0.81 (m, 2H). LC-MS: (M+H)+ = 409.2; HPLC purity = 92.83%.

EXAMPLE 195: 1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (peak-1) (195):

![Structure 195](image)

Synthetic Scheme-58

![Scheme 58](image)
Synthesis of 3-(4-cyclopropyl-1H-indol-3-yl)butanoic acid (intermediate-101, Peak-1):

Intermediate-101, peak-1 was synthesized by following the procedure used to make Intermediate-90, peak-1 (Scheme-54). 1H NMR (300 MHz, DMSO-d6) : δ 12.01 (br s, 1H), 10.83 (br s, 1H), 7.12-7.15 (m, 2H) 6.89-6.94 (t, 1H), 6.58-6.61 (d, 1H), 3.99-4.03 (m, 1H), 2.71-2.78 (dd, 1H), 2.34-2.42 (m, 2H), 1.30-1.32 (d, 3H), 0.92-0.94 (m, 2H), 0.72-0.74 (m, 2H). LC-MS: (M+H)+ = 244.1; HPLC purity = 96.90%; Chiral RT = 7.91 min [chiral pak IA, mobile phase hexane:i-PrOH:DMSO = 8.5:1.0:0.5]; [α]D23 = +10.62° (c 0.032, MeOH).

Synthesis of methyl 1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylate (intermediate-102, Peak-1):

Intermediate-102, peak-1 was synthesized by following the procedure used to make Compound-1 (Scheme-2).

Synthesis of Compound (195): Compound (195) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : δ 8.04 (br s, 1H), 7.08-7.11 (d, 1H), 6.95-6.98 (m, 2H), 6.68 (s, 1H), 4.44-4.68 (m, 1H), 4.16 (br s, 1H), 3.39-3.59 (m, 1H), 2.66-2.93 (m, 2H), 2.14-2.51 (m, 3H), 1.38-1.85 (m, 1H), 1.30-1.32 (d, 3H), 0.91-0.93 (m, 2H), 0.70-0.72 (m, 2H). LC-MS: (M+H)+ = 409.2; HPLC purity = 96.52%.

EXAMPLE 196: 1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (196):
Synthesis of 3-(4-cyclopropyl-1 W-indol-3-yl)butanoic acid (intermediate-103, Peak-2):
Intermediate-103, peak-2 was synthesized by following the procedure used to make Intermediate-90, peak-1 (Scheme-54). 1H NMR (300 MHz, DMSO-d6) : δ 12.01 (br s, 1H), 10.83 (br s, 1H), 7.12-7.15 (m, 2H), 6.89-6.94 (t, 1H), 6.58-6.61 (d, 1H), 3.99-4.03 (m, 1H), 2.71-2.78 (dd, 1H), 2.34-2.42 (m, 2H), 1.30-1.32 (d, 3H), 0.92-0.94 (m, 2H), 0.72-0.74 (m, 2H). LC-MS: (M+H)+ = 244.1; HPLC purity = 89.91%; Chiral RT = 9.15 min [chiral pak IA, mobile phase hexane:i-PrOH: DCM (8.5:1.0:0.5)]; [α]D23 = -6.04° (c 0.033, MeOH)

Synthesis of methyl 1-[3-(4-cyclopropyl-1 W-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylate (intermediate-104, Peak-2):
Intermediate-104, peak-2 was synthesized by following the procedure used to make Compound-1 (Scheme-2).

Synthesis of Compound (196): Compound (196) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : δ 8.08 (br s, 1H), 7.08-7.10 (d, 1H), 6.94-7.00 (m, 2H), 6.65-6.67 (m, 1H), 4.44-4.68 (m, 1H), 4.15 (br s, 1H), 3.38-3.64 (m, 1H), 2.71-2.92 (m, 2H), 2.13-2.54 (m, 3H), 1.45-1.78 (m, 11H), 1.40-1.43 (d, 3H), 0.90-0.93 (m, 2H), 0.74-0.77 (m, 2H). LC-MS: (M+H)+ = 409.2; HPLC purity = 96.11%.

EXAMPLE 197: 1-[3-(4-cyano-1 W-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (197):

![Chemical Structure](image)

Synthesis of Compound (197): Compound (197) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.13 (br s, 1H), 11.48 (br s, 1H), 7.67-7.70 (d, 1H), 7.46-7.48 (m, 2H), 7.17-7.22 (t, 1H), 4.45-4.49 (m, 0.5H), 4.25-4.30 (0.5H), 3.74-3.85 (m, 3H), 2.91-3.00 (m, 1H), 2.69-2.86 (m, 2H), 1.30-1.98 (m, 14H). LC-MS: (M+H)+ = 394.2; HPLC purity = 99.0%.
EXAMPLE 198: 1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (HS_A_648, peak-1a) (198):

Synthesis of Compound (198): Mixture of isomers 195 was separated by using chiral column chromatography to give Compound 198. 1H NMR (300 MHz, CDCl3): δ 7.92 (br s, 1H), 7.10-7.13 (d, 1H), 6.97-7.02 (m, 2H), 6.67-6.69 (m, 1H), 4.67-4.72 (m, 0.5H), 4.45-4.48 (m, 0.5H), 4.16-4.18 (m, 1H), 3.00-3.62 (m, 1H), 2.69-2.96 (m, 2H), 2.37-2.48 (m, 2H), 2.13-2.24 (m, 1H), 1.37-1.92 (m, 11H), 1.33-1.35 (d, 3H), 0.92-0.95 (m, 2H), 0.83-0.88 (M, 2H). LC-MS: (M+H)+ = 409.2; HPLC purity = 99.39%; Chiral RT = 12.44 min [Column: Chiral Pak IC; mobile phase: hexane: IPA:DCM (8:1:1)].

EXAMPLE 199: 1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (peak-1 b) (199):

Synthesis of Compound (199): Mixture of isomers 195 was separated by using chiral column chromatography to give Compound 199. 1H NMR (300 MHz, DMSO-d6): δ 12.11 (br s, 1H), 10.80 (br s, 1H), 7.12-7.18 (m, 2H), 6.88-6.93 (t, 1H), 6.55-6.58 (d, 1H), 4.49-4.52 (m, 0.5H), 4.31-4.35 (m, 0.5H), 3.91-4.04 (m, 2H), 3.70-3.74 (m, 1H), 2.86-2.98 (m, 1H), 2.67-2.74 (m, 2H), 2.37-2.39 (m, 1H), 1.47-2.00 (M, 11H), 1.27-1.30 (d, 3H), 0.85-0.91 (m, 2H), 0.68-0.74 (m, 2H). LC-MS: (M+H)+ = 409.2; HPLC purity = 99.31%; Chiral RT = 14.93 min [Column: Chiral Pak IC; mobile phase: hexane: IPA:DCM (8:1:1)]. \[\alpha_d^{24} = +111.84^\circ\ (c\ 0.001,\ MeOH)\].
EXAMPLE 200: 1-[3-(4-cyclopropyl-1 H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (peak-1c) (200):

\[
\text{(200)}
\]

Synthesis of Compound (200): Mixture of isomers 195 was separated by using chiral column chromatography to give Compound 200. 1H NMR (300 MHz, DMSO-d6) : δ 12.23 (br s, 1H), 10.80 (br s, 1H), 7.1-7.16 (m, 2H), 6.88-6.93 (t, 1H), 6.55-6.57 (d, 1H), 4.54-4.56 (m, 0.5H), 4.30-4.34 (m, 0.5H), 3.89-4.06 (m, 2H), 3.70-3.73 (m, 1H), 2.92-3.00 (m, 1H), 2.66-2.72 (m, 2H), 2.26-2.29 (m, 1H), 1.35-1.98 (m, 11H), 1.28-1.31 (d, 3H), 0.87-0.91 (m, 2H), 0.70-0.74 (m, 2H). LC-MS: (M+H)+ = 409.2; HPLC purity = 94.22%; Chiral RT = 14.61 min [Column: Chiral Pak IC; mobile phase: hexane: IPA:DCM (8:1 :1)].

EXAMPLE 201: 1-[3-[4-(propan-2-yloxy)-1H-indol-3-yl]butanoyl]decahydroquinoline-5-carboxylic acid (201):

\[
\text{(201)}
\]

Synthesis of Compound (201): Compound (201) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.0 (br s, 1H), 10.67 (br s, 1H), 6.83-6.92 (m, 3H), 6.40-6.43 (d, 1H), 4.69-4.72 (m, 1H), 4.53-4.55 (m, 0.5H), 4.06-4.09 (m, 0.5H), 3.58-3.75 (m, 3H), 2.63-2.98 (m, 2H), 2.18-2.22 (m, 1H), 1.45-1.98 (m, 11H), 1.27-1.31 (m, 9H). LC-MS: (M+H)+ = 427.2; HPLC purity = 95.46%.
EXAMPLE 202: 1-{3-[4-(octahydroquinolin-1(2H)-yl)-4-oxobutan-2-yl]-1H-indol-4-yl}piperidine-4-carboxylic acid (202):

Synthetic Scheme-60

Synthesis of Intermediate-105: Intermediate-105 was synthesized by following the procedure used to make Compound (1) (Scheme 2).

10 Synthesis of Intermediate-106: To a stirred solution of Intermediate-105 (0.35 g, 1.09 mmol) in dry THF (4 mL), NaN (0.052 g, 2.1 mmol) was added at 0 °C and stirred for 10 minutes. To the stirred solution tosyl chloride (0.27 g, 1.4 mmol) was added and stirred for 30 minutes at room temperature. After completion of the reaction, the reaction mixture was quenched with H₂O, extracted with EtOAc to give crude material which was purified by using Silica-gel column chromatography eluting with mixture of hexanes: EtOAc to give Intermediate-106 (260 mg).

15 Synthesis of Intermediate-107: To a stirred solution of Intermediate-106 (0.26 g, 0.46 mmol) in dioxane(4 mL), methyl isonipecotate (0.10 mL, 0.69 mmol) and cesium carbonate (0.46 g, 1.39 mmol) were added. The resulted reaction mixture was purged with argon gas and
Pd$_2$(dba)$_3$ (0.085 g, 0.009 mmol), BINAP (0.015 g, 0.023 mmol) were added, then heated at 90 °C for 12 hours. After completion of the reaction, the reaction mixture was filtered through celite and concentrated to give crude material which was purified by using Silica-gel column chromatography eluting with mixture of hexanes: EtOAc to give Intermediate-107 (150 mg).

Synthesis of Intermediate-108: To a stirred solution of magnesium (0.3 g, 12.3 mmol) in MeOH (18 mL), Intermediate-107 (0.15 g, 0.29 mmol) and ammonium chloride (0.12 g, 2.1 mmol) were added, and stirred for 2 hours at room temperature. After completion of the reaction, the reaction mixture was quenched with saturated NH$_4$Cl solution, extracted with EtOAc and concentrated to give crude material which was purified by using Silica-gel column chromatography eluting with mixture of hexanes: EtOAc to give Intermediate-108 (50 mg).

Synthesis of Compound (202): To a stirred solution of Intermediate-108 (0.05 g, 0.10 mmol) in THF: MeOH (2mL, 1:1), aqueous NaOH (0.021 g, 0.53 mmol) was added and stirred at room temperature for 8 hours. After completion of the reaction, the reaction mixture was concentrated to give crude product, which was taken in H$_2$O, acidified with 10% aqueous KHSO$_4$ (PH=5), extracted with EtOAc, concentrated, and purified by using Silica-gel column chromatography eluting with mixture of hexanes: EtOAc to give Compound-202 (10 mg) as brown solid. 1H NMR (300 MHz, CDCl$_3$) : δ 7.95 (br s, 1H), 7.03-7.06 (m, 2H), 6.91-6.94 (m, 1H), 6.72-6.75 (m, 1H), 4.46-4.61 (m, 1H), 3.80-3.84 (m, 0.5H), 3.58-3.60 (m, 0.5H), 3.29-3.31 (m, 1H), 3.15-3.18 (m, 1H), 2.85-2.92 (m, 2H), 2.45-2.48 (m, 3H), 2.10-2.15 (m, 2H), 1.30-1.94 (m, 20H). LC-MS: (M+H)$^+$ = 452.2; HPLC purity = 96.62%.

EXAMPLE 203: 1-[3-(4-chloro-5-methyl-1 W-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (203):

![Structure of Compound 203](image)

Synthesis of Compound (203): Compound (203) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 11.10 (br s, 1H), 7.18-7.23 (m, 2H), 6.97-7.00 (d, 1H), 4.46-4.55 (m, 1H), 4.20-4.34 (m, 1H), 3.91-3.95 (m, 1H), 3.75-3.79 (m, 2H), 2.36 (s, 3H), 2.27-2.30 (m, 2H), 1.30-1.90 (m, 14H). LC-MS: (M+H)$^+$ = 417.1 ; HPLC purity = 99.1 1%.
EXAMPLE 204: 1-[3-(4-cyclopropyl-1-methyl-1H-indole-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (204):

\[\text{Chemical Structure (204)} \]

Synthesis of Compound (204): Compound (204) was synthesized by following the procedure used to make Compound (27) (Scheme 26). 1H NMR (300 MHz, CDCl3) : \(\delta \) 7.10-7.12 (m, 2H), 6.88-6.91 (d, 1H), 6.72-6.75 (m, 1H), 4.77-4.82 (m, 0.5H), 4.54-4.58 (m, 0.5H), 4.23-4.25 (m, 1H), 3.72 (s, 3H), 3.68-3.70 (m, 1H), 2.74-2.92 (m, 1H), 2.54-2.62 (m, 1H), 2.46-2.49 (m, 2H), 2.20-2.23 (m, 1H), 1.30-1.90 (m, 14H0, 0.98-1.01 (m, 2H0, 0.83-0.86 (m, 2H). LC-MS: (M+H)+ = 423.2; HPLC purity = 98.91%.

EXAMPLE 205: 1-[3-(4-cyclopropyl-1H-pyrrolo[2,3-d]pyridin-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (205):

\[\text{Chemical Structure (205)} \]

Synthesis of Compound (205): Compound (205) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : \(\delta \) 11.01 (br s, 1H), 7.91-8.00 (m, 1H), 7.04 (s, 1H), 6.46-6.59 (m, 1H), 4.51-4.63 (m, 1H), 4.38-4.42 (m, 1H), 3.98-4.06 (m, 2H), 3.44-3.47 (0.5H), 3.15-3.19 (m, 0.5H), 2.84-2.95 (m, 1H), 2.37-2.54 (m, 2H), 1.55-1.85 (m, 6H), 1.45-1.47 (d, 3H), 1.30-1.40 (m, 5H), 0.94-0.97 (m, 2H0, 0.78-0.83 (m, 2H). LC-MS: (M+H)+ = 410.2; HPLC purity = 98.14%.
EXAMPLE 206: 1-[3-(4-chloro-1H-indol-3-yl)-3-(thiophen-2-yl)propanoyl]decahydroquinoline-5-carboxylic acid (206):

\[
\text{Compound (206)}
\]

5 Synthesis of Compound (206): Compound (206) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.13 (br s, 1H), 11.31 (br s, 1H), 7.40-7.45 (m, 1H), 7.31-7.33 (d, 1H), 7.20-7.22 (m, 1H), 7.00-7.05 (t, 1H), 6.93-6.96 (d, 1H), 6.78-6.87 (m, 2H), 5.54-5.56 (m, 1H), 4.43-4.45 (m, 0.5H), 4.19-4.26 (m, 0.5H), 4.01-4.03 (m, 1H), 3.78-3.82 (m, 1H), 3.02-3.11 (m, 2H), 2.40-2.45 (m, 1H), 1.31-1.88 (m, 11H). LC-MS: (M+H)+ = 471.1; HPLC purity = 97.94%.

EXAMPLE 207: 1-[3-(1,4-dimethyl-1W-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (207):

\[
\text{Compound (207)}
\]

15 Synthesis of Compound (207): Compound (207) was synthesized by following the procedure used to make Compound (27) (Scheme 26). 1H NMR (300 MHz, CDCl3) : δ 7.05-7.12 (m, 2H), 6.80-6.89 (m, 2H), 4.73-4.77 (m, 0.5H), 4.52-4.56 (m, 0.5H), 3.91-3.95 (m, 1H), 3.71 (s, 3H), 3.60-3.63 (m, 1H), 2.86-3.06 (m, 1H), 2.72 (s, 3H), 2.41-2.57 (m, 2H), 2.21-2.24 (m, 1H), 1.49-1.90 (m, 11H), 1.39-1.41 (d, 3H). LC-MS: (M+H)+ = 397.2; HPLC purity = 98.36%.
EXAMPLE 208: 1-{3-[1-methyl-4-(propan-2-yloxy)-1\textit{tt}-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (208):

\[
\text{\begin{center}
\includegraphics[width=0.5\textwidth]{figure208}
\end{center}}
\]

Synthesis of Compound (208): Compound (208) was synthesized by following the procedure used to make Compound (27) (Scheme 26). 1H NMR (300 MHz, DMSO-d6) : \(\delta\) 12.01 (br s, 1H), 6.84-7.02 (m, 3H), 6.46-6.48 (m, 1H), 4.70-4.72 (m, 1H), 4.45-4.50 (m, 0.5H), 4.30-4.33 (m, 0.5H), 3.70-3.72 (m, 1H), 3.64 (s, 3H), 3.51-3.53 (m, 1H), 2.66-3.05 (m, 3H), 2.23-2.39 (m, 1H), 1.45-1.98 (m, 11H), 1.30-1.42 (m, 9H). LC-MS: (M+H)+ = 441.2; HPLC purity = 99.01%.

EXAMPLE 209: 1-[3-(4-chloro-1-methyl-1\textit{W}-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (209):

\[
\text{\begin{center}
\includegraphics[width=0.5\textwidth]{figure209}
\end{center}}
\]

Synthesis of Compound (209): Compound (209) was synthesized by following the procedure used to make Compound (27) (Scheme 26). 1H NMR (300 MHz, CDCl3) : \(\delta\) 7.09-7.11 (m, 1H), 6.97-7.05 (m, 2H), 6.85-6.91 (m, 1H), 4.66-4.68 (m, 0.5H), 4.47-4.49 (m, 0.5H), 3.66 (s, 3H), 2.69-3.05 (m, 2H), 2.36-2.57 (m, 1H), 2.16-2.24 (m, 1H), 1.45-1.90 (m, 11HO, 1.33-1.35 (d, 3H). LC-MS: (M+H)+ = 417.1; HPLC purity = 98.82%.

EXAMPLE 210: 1-[3-(4-cyclopropyl-1-ethyl-1\textit{H}-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (210):

\[
\text{\begin{center}
\includegraphics[width=0.5\textwidth]{figure210}
\end{center}}
\]
Synthesis of Compound (210): Compound (210) was synthesized by following the procedure used to make Compound (27) (Scheme 26). 1H NMR (300 MHz, CDCl3): δ 6.98-7.09 (m, 2H0), 6.87-6.91 (m, 1H), 6.64-6.66 (d, 1H), 4.68-4.70 (m, 0.5H), 4.48-4.51 (m, 0.5H), 4.14-4.16 (m, 1H), 4.00-4.07 (q, 2H), 3.57-3.65 (m, 1H), 2.68-2.98 (m, 2H), 2.39-2.58 (m, 2H), 2.15-2.27 (m, 1H), 1.40-1.97 (m, 11H), 1.34-1.36 (d, 3H), 0.88-0.94 (m, 2H), 0.75-0.81 (m, 5H). LC-MS: (M+H)+ = 437.2; HPLC purity = 98.31%.

EXAMPLE 211: 1-{3-[4-(propan-2-yl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (211):

Synthesis of Compound (211): Compound (211) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 7.99 (br s, 1H), 7.15-7.18 (m, 2H), 7.01-7.05 (m, 2H), 4.74-4.77 (m, 0.5H0), 4.53-4.56 (m, 0.5H0), 3.85-3.88 (m, 1H), 3.62-3.66 (m, 2H), 2.44-3.04 (m, 3H), 2.21-2.23 (m, 1H), 1.46-1.95 (m, 11H), 1.41-1.43 (d, 3H), 1.34-1.36 (d, 6H). LC-MS: (M+H)+ = 411.2; HPLC purity = 93.44%.

EXAMPLE 212: 1-[3-(4-cyclopropyl-1-methyl-1W-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (peak-1) (212):

Synthesis of Compound (212): Mixture of isomers of Compound (204) was seperated by using chiral column chromatography to give compound 212. 1H NMR (300 MHz, CDCl3): δ 7.03-7.05 (m, 2H), 6.81 (s, 1H), 6.65-6.68 (m, 1H), 4.19-4.23 (m, 1H), 4.09-4.10 (m, 1H), 3.66 (s, 3H), 3.36-3.40 (m, 1H), 3.00-3.03 (m, 1H), 2.70-2.84 (m, 1H), 2.38-2.45 (m, 2H), 2.21-2.26 (m, 1H), 1.45-1.95 (m, 11H), 1.33-1.36 (d, 3H), 0.92-0.95 (m, 2H), 0.76-0.79 (m, 2H). LC-MS:
(M+H)+ = 423.2; HPLC purity = 99.14%; Chiral RT = 19.99 min [Column: Chiral Pak IC; mobile phase: hexane: IPA:DCM (8.5:0.5:1.0)].

EXAMPLE 213: 1-[3-(4-cyclopropyl-1-methyl-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (peak-2) (213):

\[
\text{(213)}
\]

Synthesis of Compound (213): Mixture of isomers of Compound (204) was separated by using chiral column chromatography to give compound 213. 1H NMR (300 MHz, CDCl3) : δ 7.03-7.05 (m, 2H), 6.82-6.85 (d, 1H), 6.65-6.68 (m, 1H), 4.67-4.70 (m, 0.5H), 4.44-4.49 (m, 0.5H), 4.15-4.16 (m, 1H), 3.65 (s, 3H), 3.42-3.46 (m, 1H), 2.79-2.95 (m, 2H), 2.68-2.70 (m, 1H), 2.56-2.59 (m, 1H), 2.39-2.43 (m, 1H), 1.38-1.82 (m, 11H), 1.31-1.34 (d, 3H), 0.92-0.94 (m, 2H), 0.76-0.80 (m, 2H). LC-MS: (M+H)+ = 423.2; HPLC purity = 94.30%; Chiral RT = 27.35 min [Column: Chiral Pak IC; mobile phase: hexane: IPA:DCM (8.5:0.5:1.0)].

EXAMPLE 214: 1-[3-(4-cyclopropyl-1-methyl-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (peak-3) (214):

\[
\text{(214)}
\]

Synthesis of Compound (214): Mixture of isomers of Compound (204) was separated by using chiral column chromatography to give compound 214. 1H NMR (300 MHz, CDCl3) : δ 7.03-7.05 (m, 2H), 6.82-6.85 (d, 1H), 6.65-6.68 (m, 1H), 4.67-4.70 (m, 0.5H), 4.46-4.49 (m, 0.5H), 4.14-4.16 (m, 1H), 3.65 (s, 3H), 3.42-3.46 (m, 1H), 2.79-2.95 (m, 2H), 2.68-2.70 (m, 1H), 2.56-2.59 (m, 1H), 2.39-2.43 (m, 1H), 1.38-1.82 (m, 11H), 1.31-1.34 (d, 3H), 0.92-0.94 (m, 2H), 0.76-0.80 (m, 2H). LC-MS: (M+H)+ = 423.2; HPLC purity = 98.00%; Chiral RT = 30.61 min [Column: Chiral Pak IC; mobile phase: hexane: IPA:DCM (8.5:0.5:1.0)].
EXAMPLE 215: 1-{3-[4-(furan-2-yl)-1/-indol-3-yl]butanoyl}decahydroquinoline-5-
carboxylic acid (215):

![Chemical Structure](215)

Synthesis of Compound (215): Compound (215) was synthesized by following the procedure used to make (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6) : δ 12.14 (br s, 1H), 11.08 (br s, 1H), 7.63-7.65 (m, 1H), 7.39-7.41 (d, 1H), 7.25 (s, 1H), 7.06-7.11 (t, 1H), 6.94-7.03 (m, 1H), 6.52-6.54 (m, 2H), 4.45-4.47 (m, 0.5H), 4.24-4.28 (m, 0.5H), 3.66-3.74 (m, 1H), 3.46-3.49 (m, 1H), 2.82-2.90 (m, 1H), 2.57-2.72 (m, 1H), 2.07-.31 (m, 1H), 2.07-2.10 (m, 1H), 1.25-1.85 (m, 11H), 1.04-1.09 (d, 3H). LC-MS: (M+H)+ = 435.2; HPLC purity = 93.62%.

EXAMPLE 216: 1-[3-t4-(furan-2-yl)-1-methyl-1"-indol-3-yl]butanoyl] decahydroquinoline-5-carboxylic acid (216):

![Chemical Structure](216)

Synthesis of Compound (216): Compound (216) was synthesized by following the procedure used to make (105) (Scheme 51). 1H NMR (300 MHz, CDCl3) : δ 7.43-7.48 (m, 1H), 7.24-7.27 (m, 1H), 7.09-7.16 (m, 2H), 6.91 (s, 1H), 6.40-6.42 (m, 2H), 4.56-4.60 (m, 0.5H), 4.39-4.42 (m, 0.5H), 3.70 (s, 3H), 3.50-3.53 (m, 1H), 3.22-3.37 (m, 2H), 2.65-2.81 (m, 1H), 2.37-2.46 (m, 1H), 1.99-2.18 (m, 1H), 1.37-1.83 (m, 11H), 1.32-1.35 (d, 3H). LC-MS: (M+H)+ = 449.2; HPLC purity = 97.01%.
EXAMPLE 217: 1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]decahydroquinoline-6-carboxylic acid (217):

Synthesis of Compound (217): Compound (217) was synthesized by following the procedure used to make Compound (195) (Scheme 59). 1H NMR (300 MHz, CDCl₃) : δ 7.95 (br s, 1H), 7.10-7.12 (d, 1H), 6.99-7.01 (d, 1H), 6.96 (s, 1H), 6.65-6.68 (d, 1H), 4.62-4.63 (m, 0.5H), 4.44-4.46 (m, 0.5H), 4.16-4.18 (m, 1H), 3.56-3.58 (m, 1H), 2.77-2.86 (m, 1H), 2.69-2.71 (m, 1H), 2.42-2.45 (m, 1H), 2.18-2.24 (m, 1H), 1.35-1.75 (m, 11H), 1.30-1.33 (d, 3H), 0.92-0.95 (m, 2H), 0.78-0.81 (m, 2H). LC-MS: (M+H)+ = 409.2; HPLC purity = 96.63%.

EXAMPLE 218: 1-[3-(4-chloro-1H-indol-3-yl)-3-(thiophen-2-yl)propanoyl]decahydroquinoline-5-carboxylic acid (peak-1) (218):

Synthesis of Compound (218): Compound (218) was synthesized by following the procedure used to make Compound (195) (Scheme 58). 1H NMR (300 MHz, DMSO-d6) : δ 12.14 (br s, 1H), 11.31 (br s, 1H), 7.40-7.45 (m, 1H), 7.31-7.33 (d, 1H), 7.20-7.22 (m, 1H), 7.00-7.05 (m, 1H), 6.89-6.96 (m, 1H), 6.78-6.86 (m, 2H), 5.48-5.55 (m, 1H), 4.42-4.44 (m, 0.5H), 4.22-4.26 (m, 0.5H), 4.00-4.04 (m, 0.5H), 3.78-3.83 (m, 0.5H), 2.95-3.16 (m, 2H), 2.45-2.55 (m, 2H), 1.32-1.92 (m, 11H). LC-MS: (M+H)+ = 471.1; HPLC purity = 99.98%.
EXAMPLE 219: 1-[3-(4-chloro-1H-indol-3-yl)-3-(thiophen-2-yl)propanoyl] decahydroquinoline-5-carboxylic acid (peak-2) (219):

![Chemical Structure](image)

Synthesis of Compound (219): Compound (219) was synthesized by following the procedure used to make Compound (196) (Scheme 59). 1H NMR (300 MHz, DMSO-d6): δ 612.15 (br s, 1H), 11.34 (br s, 1H), 7.41-7.45 (m, 1H), 7.31-7.33 (d, 1H), 7.22-7.24 (m, 1H), 7.00-7.05 (m, 2H), 6.94-6.96 (d, 1H), 6.86-6.89 (m, 1H), 5.56-5.58 (m, 1H), 4.41-4.51 (m, 0.5H), 4.21-4.23 (m, 0.5H), 4.00-4.04 (m, 1H), 3.78-3.82 (m, 1H), 2.95-3.11 (m, 2H), 2.08-2.15 (m, 1H), 1.33-1.80 (m, 11H). LC-MS: (M+H)+ = 471.1; HPLC purity = 91.48%.

EXAMPLE 220: 1-[3-(4-cyclopropyl-5-fluoro-1H-indol-3-yl)butanoyl] decahydroquinoline-5-carboxylic acid (220):

![Chemical Structure](image)

Synthesis of Compound (220): Compound (220) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 8.02 (br s, 1H), 7.08-7.11 (m, 2H), 6.80-6.87 (t, 1H), 4.72-4.74 (m, 0.5H), 4.50-4.54 (m, 0.5H), 4.18-4.20 (m, 1H), 3.65-3.68 (m, 1H), 2.80-3.07 (m, 1H), 2.51-2.64 (m, 2H), 2.01-2.05 (m, 1H), 1.45-1.86 (11H), 1.39-1.42 (d, 3H), 1.06-1.08 (m, 2H), 0.88-0.92 (m, 2H). LC-MS: (M+H)+ = 427.2; HPLC purity = 99.0%.
EXAMPLE 221: 1-{3-[4-(furan-2-yl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (221):

[Chemical structure image]

Synthesis of Compound (221): Compound (221) was synthesized by following the procedure used to make Compound (195) (Scheme 58). 1H NMR (300 MHz, CDCl3) : δ 8.20 (br s, 1H), 7.51-7.55 (m, 1H), 7.39-7.41 (m, 1H), 7.14-7.19 (m, 3H), 6.48-6.50 (m, 2H), 4.66-4.69 (m, 0.5H), 4.43-4.45 (m, 0.5H), 4.11-4.32 (m, 1H), 3.53-3.63 (m, 1H), 2.80-2.85 (m, 1H), 2.53-2.62 (m, 1H), 2.28-2.35 (m, 2H), 1.40-1.80 (m, 11H), 1.28-1.31 (d, 3H). LC-MS: (M+H)+ = 435.2; HPLC purity = 98.74%.

EXAMPLE 222: 1-{3-[4-(furan-2-yl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (222):

[Chemical structure image]

Synthesis of Compound (222): Compound (222) was synthesized by following the procedure used to make Compound (196) (Scheme 59). 1H NMR (300 MHz, CDCl3) : δ 8.27 (br s, 1H), 7.51-7.56 (m, 1H), 7.38-7.41 (m, 1H), 7.23-7.28 (m, 1H), 7.13-7.17 (m, 3H), 6.48-6.50 (d, 1H), 4.63-4.67 (m, 0.5H), 4.46-4.49 (m, 0.5H), 3.51-3.64 (m, 1H), 3.37-3.40 (m, 1H), 2.80-2.88 (m, 1H), 2.49-2.62 (m, 1H), 2.16-2.29 (m, 2H), 1.40-1.86 (m, 11H), 1.36-1.38 (d, 3H). LC-MS: (M+H)+ = 435.2; HPLC purity = 99.83%.
EXAMPLE 223: 1-{3-[4-(furan-2-yl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (223):

\[
\text{Synthesis of Compound (223): Mixture of isomers of Compound (221) separated by preparative chiral chromatography to give Compound (223). 1H NMR (300 MHz, CD30D): }\delta
\]
\[
7.57-7.60 (d, 1H), 7.37-7.42 (t, 1H), 7.17 (br s, 1H), 7.05-7.11 (m, 2H), 6.52-6.53 (m, 1H), 6.46-6.47 (m, 1H), 4.28-4.31 (d, 1H), 3.50-3.63 (m, 2H), 2.48-2.54 (m, 2H), 2.20-2.36 (m, 1H), 2.02-2.06 (m, 1H), 1.28-1.80 (m, 11H), 1.21-1.23 (d, 3H).
\]
\[
\text{LC-MS: (M+H)+ = 435.2; HPLC purity = 100%. Chiral RT = 19.31 min [Column: Chiral Pak IC; mobile phase: hexane:IPA:DCM (8.5:1:0.5)].}
\]

EXAMPLE 224: 1-{3-[4-(furan-2-yl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (224):

\[
\text{Synthesis of Compound (224): Mixture of isomers of Compound (221) separated by preparative chiral chromatography to give Compound (224). 1H NMR (300 MHz, CDC13): }\delta
\]
\[
8.14 (br s, 1H), 7.44-7.49 (d, 1H), 7.32-7.34 (d, 1H), 7.08-7.12 (m, 3H), 6.41-6.44 (d, 2H), 4.56-4.61 (m, 0.5H), 4.39-4.43 (m, 0.5H), 4.20 (4.25 (dd, 0.5H), 4.01-4.10 (m, 0.5H), 3.47-3.59 (m, 1H), 3.30-3.34 (m, 1H), 2.73-2.81 (m, 1H), 2.42-2.52 (m, 1H), 2.28-2.30 (m, 1H), 1.48-1.80 (m, 11H), 1.35-1.37 (d, 3H).
\]
\[
\text{LC-MS: (M+H)+ = 435.2; HPLC purity = 96.72%. Chiral RT = 23.19 min [Column: Chiral Pak IC; mobile phase: hexane:IPA:DCM (8.5:1:0.5)].}
\]
EXAMPLE 225: 1-[3-(4-fluoro-1H-indol-3-yl)-3-(4-fluorophenyl)propanoyl]decahydroquinoline-4-carboxylic acid (peak-1) (225):

![Chemical Structure](image)

Synthesis of Compound (225): Compound (225) was synthesized by following the procedure used to make Compound (195) (Scheme 58). 1H NMR (300 MHz, DMSO-d6): δ 12.23 (br s, 1H), 11.19 (br s, 1H), 7.25-7.36 (m, 3H), 7.13-7.16 (d, 1H), 7.03-7.06 (d, 1H), 6.93-6.97 (m, 2H), 6.59-6.65 (dd, 1H), 4.84 (br s, 1H), 3.88-3.94 (m, 1H), 3.30-3.32 (m, 1H), 2.94-3.21 (m, 2H), 2.38-2.40 (m, 1H), 1.40-1.90 (m, 11H). LC-MS: (M+H)+ = 467.1; HPLC purity = 95.38%.

EXAMPLE 226: 1-[3-(4-fluoro-1H-indol-3-yl)-3-(4-fluorophenyl)propanoyl]decahydroquinoline-4-carboxylic acid (peak-2) (226):

![Chemical Structure](image)

Synthesis of Compound (226): Compound (226) was synthesized by following the procedure used to make Compound (196) (Scheme 59). 1H NMR (300 MHz, DMSO-d6): δ 12.24 (br s, 1H), 11.20 (br s, 1H), 7.36-7.37 (m, 1H), 7.25-7.29 (t, 2H), 7.13-7.16 (d, 1H), 7.03-7.06 (d, 1H), 6.94-7.00 (m, 2H), 6.59-6.66 (dd, 1H), 4.84 (br s, 1H), 3.88-3.90 (m, 1H), 3.29-3.32 (m, 1H), 2.93-3.21 (m, 2H), 2.38-2.42 (m, 2H), 1.28-1.91 (m, 11H). LC-MS: (M+H)+ = 467.1; HPLC purity = 100%.
EXAMPLE 227: 1-{3-[4-(furan-2-yl)-1 H-indol-3-yl]butanoyl}decahydroquinoline-4-carboxylic acid (227):

![Chemical Structure Image]

Synthesis of Compound (227): Compound (227) was synthesized by following the procedure used to make Compound (105) (Scheme 51).
\[\text{H NMR (300 MHz, CDCl3)}: \delta 8.39 (br s, 1H), 7.51-7.53 (m, 1H), 7.37-7.39 (m, 1H), 7.13-7.20 (m, 4H), 6.48 (s, 1H), 3.55-3.58 (m, 1H), 3.37-3.42 (m, 1H), 2.39-2.58 (m, 3H), 2.23-2.29 (m, 2H), 1.45-1.87 (m, 11H), 1.41-1.43 (d, 3H). \]
\[\text{LC-MS: (M+H)+ = 435.1; HPLC purity = 98.43%}. \]

EXAMPLE 228: 1-[3-(4-chloro-1 H-indol-3-yl)butanoyl]decahydroquinoline-6-carboxylic acid (228):

![Chemical Structure Image]

Synthesis of Compound (228): Compound (228) was synthesized by following the procedure used to make Compound (105) (Scheme 51).
\[\text{H NMR (300 MHz, CDCl3)}: \delta 8.19 (br s, 1H), 7.21-7.24 (m, 1H), 7.03-7.10 (m, 3H), 4.27-4.68 (m, 1H), 4.11-4.17 (m, 1H), 3.68-3.71 (m, 1H), 2.80-3.02 (m, 1H), 2.40-2.53 (m, 2H), 2.28-2.33 (m, 2H), 1.50-1.89 (m, 11H), 1.45-1.47 (d, 3H). \]
\[\text{LC-MS: (M+H)+ = 403.3; HPLC purity = 94.02%}. \]

EXAMPLE 229: 1-{3-[4-(furan-2-yl)-1 W-indol-3-yl]butanoyl}decahydroquinoline-6-carboxylic acid (229):

![Chemical Structure Image]
Synthesis of Compound (229): Compound (229) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 8.19 (br s, 1H), 7.50-7.52 (m, 1H), 7.39-7.41 (m, 1H), 7.18-7.20 (m, 2H), 7.14 (s, 1H), 6.48-6.49 (d, 2H), 4.27-4.32 (dd, 0.5H), 4.11-4.17 (d, 0.5H), 3.57-3.59 (m, 1H), 3.39-3.41 (m, 1H), 2.75-2.79 (m, 1H), 2.22-2.38 (m, 3H), 1.47-1.87 (m, 14H). LC-MS: (M+H)+ = 435.2; HPLC purity = 98.67%.

EXAMPLE 230: 1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]-2-methyldecahydroquinoline-5-carboxylic acid (230):

![Chemical Structure of (230)]

Synthesis of Compound (230): Compound (230) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6): δ 12.16 (br s, 1H), 10.81 (br s, 1H), 7.17 (s, 1H), 7.13-7.15 (d, 1H), 6.88-6.94 (t, 1H), 6.55-6.58 (t, 1H), 4.58-4.62 (t, 0.5H), 4.41-4.45 (m, 0.5H), 3.99-4.11 (m, 1H), 3.81-3.85 (m, 1H), 2.58-2.93 (m, 2H), 2.31-2.43 (m, 2H), 1.33-1.99 (m, 11H), 1.27-1.30 (d, 3H), 1.06-1.08 (d, 3H), 0.90-0.96 (m, 2H), 0.65-0.72 (m, 2H). LC-MS: (M+H)+ = 423.4; HPLC purity = 98.0%.

EXAMPLE 231: 1-[3-[4-(furan-2-yl)-1H-indol-3-yl]butanoyl]-2-methyldecahydroquinoline-5-carboxylic acid (231):

![Chemical Structure of (231)]

Synthesis of Compound (231): Compound (231) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 12.11 (br s, 1H), 11.09 (br s, 1H), 7.61-7.64 (m, 1H), 7.39-7.42 (d, 1H), 7.23-7.26 (d, 1H), 7.06-7.12 (t, 1H), 7.02-7.03 (m, 1H), 6.51-6.53 (m, 2H), 4.49-4.51 (m, 0.5H), 4.33-4.45 (m, 0.5H), 3.96-3.98 (m, 1H), 2.65-2.73 (m, 2H), 2.16-2.28 (m, 2H), 1.37-1.94 (m, 11H), 1.15-1.18 (d, 3H), 1.02-1.05 (d, 3H). LC-MS: (M+H)+ = 449.2; HPLC purity = 98.27%.
EXAMPLE 232: 2-methyl-1-{3-[4-(thiophen-2-yl)-1H-indol-3-yl]butanoyl} decahydroquinoline-5-carboxylic acid (232):

```
\begin{center}
\includegraphics[width=0.3\textwidth]{compound_232.png}
\end{center}
```

Synthesis of Compound (232): Compound (232) was synthesized by following the procedure used to make Compound (195) (Scheme 58). 1H NMR (300 MHz, CDCl3): δ 8.23 (br s, 1H), 7.31-7.41 (m, 2H), 7.12-7.22 (m, 5H), 4.62-4.64 (m, 0.5H), 4.47-4.51 (m, 0.5H), 3.71-3.77 (m, 1H), 3.42-3.54 (m, 1H), 2.55-2.64 (m, 1H), 2.27-2.35 (m, 1H), 2.05-2.12 (m, 1H), 1.25-1.75 (m, 11H), 1.14-1.16 (d, 3H), 1.09-1.11 (d, 3H). LC-MS: (M+H)+ = 465.4; HPLC purity = 96.26%.

EXAMPLE 233: 2-methyl-1-{3-[4-(thiophen-2-yl)-1H-indol-3-yl]butanoyl} decahydroquinoline-5-carboxylic acid (233):

```
\begin{center}
\includegraphics[width=0.3\textwidth]{compound_233.png}
\end{center}
```

Synthesis of Compound (233): Compound (233) was synthesized by following the procedure used to make Compound (196) (Scheme 59). 1H NMR (300 MHz, CDCl3): δ 8.47 (br s, 1H), 7.21-7.29 (m, 2H), 7.00-7.11 (m, 5H), 4.56-4.57 (m, 0.5H), 4.41-4.43 (m, 0.5H), 3.63-3.68 (m, 1H), 3.42-3.44 (m, 1H), 2.51-2.59 (m, 1H), 2.25-2.27 (m, 1H), 2.02-2.10 (m, 1H), 1.34-1.68 (m, 11H), 1.00-1.03 (d, 3H), 0.98-1.00 (d, 3H). LC-MS: (M+H)+ = 465.4; HPLC purity = 97.31%.
EXAMPLE 234: 1-[3-(4-chloro-1H-indol-3-yl)butanoyl]-2-methyldecahydroquinoline-5-carboxylic acid (234):

![Chemical Structure](image)

Synthesis of Compound (234): Compound (234) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6): δ 12.14 (br s, 1H), 11.20 (br s, 1H), 7.25-7.32 (m, 2H), 6.96-7.02 (m, 2H), 4.58-4.60 (m, 0.5H), 4.41-4.43 (m, 0.5H), 3.99-4.01 (m, 1H), 2.72-2.93 (m, 2H), 2.25-2.27 (m, 1H), 1.92-1.97 (m, 1H), 1.30-1.72 (m, 11H), 1.15-1.17 (d, 3H), 1.07-1.09 (d, 3H). LC-MS: (M+H)+ = 417.1; HPLC purity = 97.11%.

EXAMPLE 235: 1-[3-(4-chloro-1H-indol-3-yl)butanoyl]octahydroquinolin-4(1H)-one (235):

![Chemical Structure](image)

Synthesis of Compound (235): Compound (235) was synthesized by following the procedure used to make Compound (26) (Scheme 25). 1H NMR (300 MHz, CDCl3): δ 8.18 (br s, 1H), 7.16-7.18 (m, 1H), 7.04-7.07 (m, 1H), 7.01-7.03 (d, 2H), 4.91-4.95 (m, 0.5H), 4.62-4.68 (m, 0.5H), 4.08-4.11 (m, 1H), 3.86-3.98 (m, 1H), 3.31-3.46 (m, 0.5H), 2.83-2.91 (m, 1H), 2.48-2.70 (m, 1H), 2.11-2.23 (m, 3H), 1.53-1.70 (m, 8H), 1.46-1.48 (d, 3H), 1.41-1.43 (d, 3H). LC-MS: (M+H)+ = 373.3; HPLC purity = 97.62%.

EXAMPLE 236: 1-[3-[4-(5-methylfuran-2-yl)-1H-indol-3-yl]butanoyl]decahydroquinoline-5-carboxylic acid (236):

![Chemical Structure](image)
Synthesis of Compound (236): Compound (236) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 8.19 (br s, 1H), 7.28-7.32 (m, 1H), 7.05-7.16 (m, 3H), 6.29-6.33 (m, 1H), 5.98-6.00 (m, 1H), 4.58-4.60 (m, 0.5H), 4.37-4.42 (m, 0.5H), 3.49-3.62 (m, 1H), 3.28-3.31 (m, 1H), 2.43-2.55 (m, 2H), 2.30 (s, 3H), 2.05-2.07 (m, 1H), 1.97-2.05 (m, 1H), 1.24-1.30 (m, 11H), 1.18-1.20 (d, 3H). LC-MS: (M+H)+ = 449.2; HPLC purity = 98.32%.

EXAMPLE 237: 1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]-5-methyldecahydroquinoline-5-carboxylic acid (237):

![Chemical Structure](237)

Synthesis of Compound (237): Compound (237) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6): δ 12.20 (br s, 1H), 10.79 (br s, 1H), 7.12-7.15 (d, 2H), 6.88-6.92 (t, 1H), 6.55-6.58 (d, 1H), 4.03 (m, 1H), 3.69-3.87 (m, 1H), 2.90-2.95 (m, 1H), 2.65-2.78 (m, 2H), 2.35-2.41 (m, 2H), 1.49-1.98 (m, 10H), 1.28 (s, 3H), 1.24-1.26 (d, 3H). LC-MS: (M+H)+ = 423.2; HPLC purity = 91.85%.

EXAMPLE 238: 1-[3-(4-(pyridin-2-yl)-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (238):

![Chemical Structure](238)

Synthesis of Compound (238): Compound (238) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6): δ 12.15 (br s, 1H), 11.06 (br s, 1H), 8.59 (br s, 1H), 7.82-7.87 (t, 1H), 7.51-7.53 (d, 1H), 7.41-7.44 (d, 1H), 7.33-7.36 (m, 1H), 7.23 (s, 1H), 7.10-7.15 (t, 1H), 6.90-6.92 (d, 1H), 4.37-4.40 (m, 0.5H), 4.16-4.20 (m, 0.5H), 3.64-3.69 (m, 1H), 3.10-3.14 (m, 1H), 2.69-2.80 (m, 2H), 2.30-2.35 (m, 1H), 2.14-2.19 (m, 1H), 1.45-2.00 (m, 11H), 1.33-1.37 (d, 3H). LC-MS: (M+H)+ = 446.2; HPLC purity = 96.69%.
EXAMPLE 239: 1-{3-[4-(3-methyl-1,2-oxazol-5-yl)-1H-indol-3-yl]butanoyl} decahydroquinoline-5-carboxylic acid (239):

\[
\text{(239)}
\]

Synthesis of Compound (239): Compound (239) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): \[\delta \text{ 8.28 (br s, 1H), 7.48-7.51 (d, 1H), 7.13-7.16 (m, 2H), 7.09 (s, 1H), 6.34 (s, 1H), 4.46-4.50 (m, 0.5H), 4.20-4.25 (dd, 1H), 4.04-4.08 (dd, 1H), 3.84-3.86 (m, 0.5H), 3.39-3.45 (m, 1H), 2.52-2.60 (m, 1H), 2.37 (s, 3H), 2.24-2.30 (m, 1H), 2.12-2.17 (m, 1H), 1.35-1.90 (m, 14H). \]

LC-MS: (M+H)+ = 450.2; HPLC purity = 99.79%.

EXAMPLE 240: 3-(4-cyclopropyl-1H-indol-3-yl)-1-[5-(1H-tetrazol-5-yl)octahydroquinolin-1(2H)-yl]butan-1-one (240):

\[
\text{(240)}
\]

Synthetic Scheme-62

Synthesis of Compound (240): To a stirred solution of Intermediate-109 (30mg, 0.077 mmol) in DMF (2 mL), NaN₃ (25 mg, 0.38 mmol) and ammonium chloride (15 mg, 0.22 mmol) were added. Resulted reaction mixture was heated at 110 °C for 48 hours. After completion of the reaction (monitored by TLC), the reaction mixture was quenched with water and was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was concentrated to
obtain a crude product. The resulted crude product was purified by preparative HPLC to give Compound (240) (2.5 mg) as brown gummy material. 1H NMR (300 MHz, CDCl3): δ 8.03 (br s, 1H), 7.08-7.11 (m, 1H), 6.97-7.04 (m, 2H), 6.63-6.70 (m, 1H), 5.20-5.27 (m, 1H), 4.08-4.24 (m, 2H), 3.52-3.58 (m, 1H), 2.77-2.97 (m, 2H), 2.21-2.30 (m, 2H), 1.45-1.90 (m, 1H), 1.37-1.40 (d, 3H), 0.70-0.90 (m, 4H). LC-MS: (M-H)+ = 431.3; HPLC purity = 91.69%.

EXAMPLE 241: 1-{3-[3-(4-cyclopropyl-1-methoxy-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (241):

10 Synthesis of Compound (241): Compound (241) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 7.10 (s, 1H), 7.02-7.07 (t, 1H), 6.78-6.80 (m, 2H), 4.20-4.25 (m, 1H), 4.04-4.10 (m, 2H), 3.98 (s, 3H), 3.52-3.65 (m, 1H), 2.61-2.82 (m, 1H), 2.38-2.47 (m, 2H), 2.21-2.24 (m, 1H), 0.7-1.90 (m, 18H). LC-MS: (M+H)+ = 439.3; HPLC purity = 92.8%.

EXAMPLE 242: 1-{3-[4-cyclopropyl-1-(methoxymethyl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (242):

20 Synthesis of Compound (242): Compound (242) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 7.23 (s, 1H), 7.02-7.07 (t, 1H), 6.94-6.97 (d, 1H), 6.70-6.72 (d, 1H), 5.31 (s, 2H), 4.62-4.69 (m, 0.5H), 4.49-4.52 (m, 0.5H), 4.17-4.25 (m, 1H), 4.04-4.10 (m, 1H), 3.52-3.62 (m, 1H), 3.18 (s, 3H), 2.75-2.81 (m, 1H), 2.39-2.43 (m, 2H), 2.15-2.30 (m, 1H), 1.39-1.80 (m, 11H), 1.32-1.35 (d, 3H), 0.94-0.96 (m, 2H), 0.73-0.77 (m, 2H). LC-MS: (M-H)+ = 451.2; HPLC purity = 92.13%.
EXAMPLE 243: 1-{3-[4-(4-fluorophenyl)-1H-indol-3-yl]butanoyl} decahydroquinoline-5-carboxylic acid (243):

![Chemical Structure](image)

Synthesis of Compound (243): Compound (243) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 8.25 (br s, 1H), 7.36-7.46 (m, 3H), 7.18-7.22 (t, 1H), 7.06-7.13 (m, 3H), 6.90-6.93 (d, 1H), 4.55-4.59 (m, 0.5H), 4.36-4.39 (m, 0.5H), 3.45-3.49 (m, 1H), 3.11-3.15 (m, 1H), 2.52-2.77 (m, 2H), 2.31-2.40 (dd, 1H), 2.07-2.16 (m, 2H), 1.36-1.96 (m, 10H), 1.13-1.15 (d, 3H). LC-MS: (M-H)+ = 463.3; HPLC purity = 98.0%.

EXAMPLE 244: 1-{3-[4-(1-methyl-1H-pyrrol-2-yl)-1H-indol-3-yl]butanoyl} decahydroquinoline-5-carboxylic acid (244):

![Chemical Structure](image)

Synthesis of Compound (244): Compound (244) was synthesized by following the procedure used to make Compound (105) (Scheme 51). LC-MS: (M-H)+ = 448.4; HPLC purity = 84.68%.
EXAMPLE 245: 1-\{3-\[4-(5-fluorofuran-2-yl)-1\text{-}H\text{-}indol-3-yl\]butanoyl\}decahydroquinoline-5-carboxylic acid (245):

![Chemical Structure](image)

(245)

Synthetic Scheme-63

Synthesis of Intermediate-110:

To a stirred solution of Starting Material-34 (1.0 g, 5.26 mmol) in water (5 mL) sodium bicarbonate (1.06 g, 12.6 mmol) was added at room temperature and stirred for 30 min. To this n-hexane (5 mL) followed by selectfluor (2.23 g, 6.31 mmol) was added at 10 °C and stirred for 2 hours at same temperature. After reaction hexane layer was separated and dried over anhydrous MgSO₄ to give crude intermediate-1 10 hexane solution, which was taken for next step without any purification.

Synthesis of Intermediate-11:

To a stirred solution of Intermediate-110 hexanes solution (0.863 g, 5.26 mmol) in ether (5 mL) was added 2.5 M n-BuLi (2.52 mL, 6.31 mmol) at -78°C and stirred for 20 minutes. To this tributyltin chloride (1.56 mL, 5.78 mmol) was added and stirred for 10 min at -78 °C, then
rt for 12 h. After reaction quenched with aqueous 1N NaOH solution and extracted with EtOAc and concentrated to give crude material Intermediate-1 11 (0.95 g) as brown liquid.

Synthesis of Intermediate-1 12:

To a stirred solution of Intermediate-1 10 (0.050 g, 0.16 mmol), and Intermediate-1 11 (0.060 g, 0.16 mmol) in toluene purged with argon gas for 15 minutes, then added PdCl₂ (Dppf) catalyst (0.013 g, 0.016 mmol). Then reaction was carried out under micro wave for 30 min at 130°C. After reaction quenched with water and extracted with EtOAc and concentrated to give crude material, which was further purified by silica gel column chromatography eluting with hexanes: EtOAc to give 0.035 g of Intermediate-1 12 as brown liquid).

Synthesis of Intermediate-1 13:

Intermediate-1 13 was synthesized by following the procedure used to make Intermediate-3 (Scheme 1).

Synthesis of Intermediate-1 14:

Intermediate-1 14 was synthesized by following the procedure used to make Compound-1 (Scheme 2).

Synthesis of Compound (245): Compound (245) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl₃): δ 8.24 (br s, 1H), 7.40-7.42 (m, 1H), 7.15-7.21 (m, 3H), 6.37-6.39 (m, 1H), 5.51-5.54 (m, 1H), 4.66-4.70 (m, 0.5H), 4.48-4.52 (m, 0.5H), 3.60-3.61 (m, 1H), 3.47-3.51 (m, 1H), 2.91-2.99 (m, 1H), 2.59-2.76 (m, 2H), 2.31-2.39 (m, 1H), 2.20-2.23 (m, 1H), 1.81-1.86 (m, 10H), 1.31-1.34 (d, 3H). LC-MS: (M-H)+ = 453.2; HPLC purity = 97.87%.

EXAMPLE 246: 5-{3-[4-(octahydroquinolin-1 (2H)-yl)-4-oxobutan-2-yl]-1 H-indol-4-yl)furan-2-carboxylic acid (246):
Synthesis of Intermediate-116: To a stirred solution of Intermediate-115 (0.2 g, 0.49 mmol) in dioxane (5 mL), bis(pinacolato)diboron (0.25 g, 0.99 mmol), and KOAc (0.145 g, 1.48 mmol) were added, and then the reaction solution was purged with argon gas. To the reaction mixture PdCl₂(dpff) (0.040 g, 0.049 mmol) was added and heated at 100 °C for 12 hours. After completion of the reaction, the reaction mixture was diluted with H₂O, extracted with EtOAc and concentrated to give crude product. The crude product was purified using Silica-gel column chromatography eluting with mixture of hexanes: EtOAc to give Intermediate-116 (100 mg) as brown gummy material.

Synthesis of Compound (246): To a stirred solution of Intermediate-116 (0.1 g, 0.22 mmol) in dioxane: H₂O (5 mL, 8:2), 2-bromofuroic acid (0.084 g, 0.44 mmol) and Cs₂CO₃ (0.28 g, 0.88 mmol) were added, and then the reaction solution was purged with argon gas. To the reaction mixture PdCl₂(dpff) (0.018 g, 0.022 mmol) was added and heated at 100 °C for 12 hours. After completion of reaction, the reaction mixture was diluted with H₂O, extracted with EtOAc and concentrated to give crude product. The crude product was purified using Silica-gel column chromatography eluting with mixture of hexanes: EtOAc to give Compound-246 (12 mg) as white solid. 1H NMR (300 MHz, CDCl₃): δ 8.59 (br s, 1H), 7.42-7.45 (m, 1H), 7.34-7.37 (m, 1H), 7.19-7.25 (m, 3H), 6.62-6.64 (m, 1H), 4.53-4.56 (m, 0.5H), 4.42-4.47 (m, 0.5H), 3.61-3.65 (m, 1H), 3.49-3.53 (m, 1H), 2.80-2.84 (m, 1H), 2.61-2.63 (m, 1H), 2.29-2.31 (m, 1H), 1.47-1.87 (m, 13H), 1.41-1.44 (d, 3H). LC-MS: (M-H)+ = 435.3; HPLC purity = 99.33%.
EXAMPLE 247: W-({1-[3-(4-cyclopropyl-1H-indol-3-yl)butanoyl]decahydroquinolin-5-yl}carbonyl)glycine (247):

\[
\text{H} \quad \text{O} \quad \text{O} \quad \text{NH} \quad \text{COOH}
\]

Synthesis of Compound (247): Compound (247) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6): δ 12.30 (br s, 1H), 10.79 (br s, 1H), 8.02-8.04 (m, 1H), 7.12-7.15 (m, 2H), 6.88-6.93 (t, 1H), 6.55-6.59 (m, 1H), 4.49-4.52 (m, 0.5H), 4.31-4.33 (m, 0.5H), 4.02-4.05 (m, 1H), 3.68-3.70 (m, 2H), 3.10-3.13 (m, 1H), 2.93-2.98 (m, 1H), 2.62-2.78 (m, 2H), 2.31-2.35 (m, 2H), 1.90-1.95 (m, 1H), 1.37-1.75 (m, 10H), 1.31-1.34 (d, 3H), 0.84-0.88 (m, 2H), 0.72-0.76 (m, 2H). LC-MS: (M-H)+ = 466.4; HPLC purity = 94.3%.

EXAMPLE 248: 1-{3-[4-(5-fluorofuran-2-yl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (248):

\[
\text{F} \quad \text{O} \quad \text{O} \quad \text{NH} \quad \text{COOH}
\]

(248)
Synthetic Scheme-65

5 **Synthesis of Intermediate-1 17:**

To a stirred solution of Intermediate-1 100 (14.5 g, 62.0 mmol) in DCM (250 mL), 50 mL of TEA (31.39 g, 310 mmol) was added followed by benzyl chloroformate (15.87 g, 93.1 mmol) at 0 °C. Then it was stirred at room temperature for 12 hours. After completion of the reaction the reaction mixture was quenched with water and extracted with DCM. The combined organic layers were concentrated to give crude material, which was further purified by using silica gel column chromatography eluting with hexanes: EtOAc to give 20 g of Intermediate-117 as a pale brown liquid.

10 **Separation of Intermediate-1 18:**

Mixture of isomers of Intermediate 117 (20 g) was separated by using Preparative Reverse HPLC to give 6.4 g of Intermediate-1 18: HPLC: [Column: Phenomenex Luna C-18, Mobile phase: 0.1% Formic acid in H2O and MeCN (1:1), RT = 15.40 min].

20 **Synthesis of Intermediate-1 21:**

A stirred solution of Intermediate-1 18 (6.4 g, 19.33 mmol) in MeOH (70 mL) was purged with N2 gas, and then 10%Pd-C (1.2 g, 10% w/w) was added. The resulted reaction mixture was stirred under hydrogen atmosphere for 12 hours. After completion of the reaction, the reaction mixture was filtered through the celite and concentrated to give Intermediate-1 21 (3.79 g) as white solid.
Synthesis of Intermediate-122, Peak-1:
Intermediate-122, peak-1 was synthesized by following the procedure used to make Intermediate-90 (Peak-1) (Scheme 54).

Synthesis of Intermediate-123, Peak-1:
Intermediate-123, peak-1 was synthesized by following the procedure used to make Intermediate-91 (Peak-1) (Scheme 54).

Synthesis of Compound (248): Compound (248) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CD30D): δ 7.33-7.37 (m, 1H), 7.12-7.14 (d, 1H), 7.01-7.05 (t, 1H), 6.94-6.97 (m, 1H), 6.30-6.33 (m, 1H), 5.53-5.56 (m, 1H), 4.46-4.55 (m, 0.5H), 4.23-4.28 (m, 0.5H), 3.43-3.57 (m, 2H), 2.83-2.92 (m, 1H), 2.46-2.73 (m, 2H), 2.17-2.36 (m, 1H), 1.97-2.06 (m, 1H), 1.49-1.78 (m, 10H), 1.37-1.40 (d, 3H). LC-MS: (M-H)+ = 453.3; HPLC purity = 93.80%.

EXAMPLE 249: 1-{3-[4-(5-fluorofuran-2-yl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (249):
Synthesis of Intermediate-124, Peak-2:
Intermediate-124, peak-2 was synthesized by following the procedure used to make Intermediate-92 (Peak-2) (Scheme 55).

Synthesis of Intermediate-125, Peak-2:
Intermediate-125, peak-2 was synthesized by following the procedure used to make Intermediate-93 (Peak-2) (Scheme 55).

Synthesis of Compound (249): Compound (249) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 8.24 (br s, 1H), 7.40-7.42 (m, 1H), 7.13-7.21 (m, 3H), 6.35-6.38 (m, 1H), 5.50-5.54 (m, 1H), 4.66-4.70 (m, 0.5H), 4.48-4.52 (0.5H), 3.60-3.62 (m, 1H), 3.47-3.51 (m, 1H), 2.91-2.99 (m, 1H), 2.60-2.73 (m, 2H), 2.32-2.39 (m, 1H), 2.25-2.28 (m, 1H), 1.48-1.87 (m, 10H), 1.41-1.43 (d, 3H). LC-MS: (M-H)+ = 453.3; HPLC purity = 98.07%.

EXAMPLE 250: 1-{3-[4-(5-fluorofuran-2-yl)-1 H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (250):
Synthesis of Compound (250): Mixture of isomers of Compound (248) separated by using chiral column chromatography to give Compound (250). 1H NMR (300 MHz, CD3OD): δ 7.39-7.45 (t, 1H), 7.20 (s, 1H), 7.01-7.15 (m, 2H), 6.39-6.41 (m, 1H), 5.60-5.66 (m, 1H), 4.53-4.57 (d, 0.5H), 4.30-4.34 (d, 0.5H), 3.50-3.59 (m, 2H), 2.86-2.99 (m, 1H), 2.65-2.70 (m, 1H), 2.52-2.60 (m, 2H), 2.00-2.21 (m, 1H), 1.46-1.73 (m, 10H), 1.37-1.40 (d, 3H).

HPLC purity = 98.29%; chiral purity = 94.75% [column: Chiralpak IC, mobile phase: hexane: IPA: DCM (8.5:1.0:0.5); RT = 10.88 min].

EXAMPLE 251: 1-{3-[4-(5-fluorofuran-2-yl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (251):

\[
\text{Synthesis of Compound (251): Mixture of isomers of Compound (248) separated by using chiral column chromatography to give Compound (251). 1H NMR (300 MHz, CDCl3): δ 8.32 (br s, 1H), 7.32-7.35 (d, 1H), 7.05-7.13 (m, 3H), 6.29-6.32 (m, 1H), 5.43-5.46 (m, 1H), 4.58-4.62 (m, 0.5H), 4.39-4.44 (m, 0.5H), 3.52-3.56 (m, 2H), 2.83-2.91 (m, 1H), 2.61-2.70 (m, 1H), 2.46-2.51 (m, 1H), 2.25-2.34 (m, 1H), 2.07-2.18 (m, 1H), 1.45-1.79 (m, 10H), 1.37-1.40 (d, 3H). LC-MS: (M-H)+ = 453.4; HPLC purity = 96.81%. chiral purity = 99.52% [column: Chiralpak IC, mobile phase: hexane: IPA: DCM (8.5:1.0:0.5); RT = 13.71 min].}

EXAMPLE 252: 1-[3-(2-cyano-4-cyclopropyl-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (252):

\[
\text{Synthesis of Compound (252): Compound (252) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 8.75 (br s, 1H), 7.13-7.22 (m, 2H), 6.90-6.92 (d, 1H), 4.76-4.81 (m, 1H), 4.67-4.71 (m, 0.5H), 4.40-4.53 (m, 0.5H), 3.78-4.01 (m, 1H), 3.01-3.27 (m, 1H), 2.85-2.97 (m, 1H), 2.50-2.57 (m, 2H),}
\]
2.22 (2.36 (m, 1H), 2.12-2.18 (m, 1H), 1.52-1.85 (m, 10H), 1.46-1.49 (d, 3H), 1.01-1.04 (m, 2H), 0.84-0.87 (m, 2H). LC-MS: (M-H)+ = 434.3; HPLC purity = 97.78%.

EXAMPLE 253: 1-{3-[4-(4-fluorophenyl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (253):

![Structure of 253](image)

Synthesis of Compound (253): Compound (253) was synthesized by following the procedure used to make Compound (159, peak-1) (Scheme 53-54). 1H NMR (300 MHz, CDCl3): δ 8.27 (br s, 1H), 7.42-7.46 (m, 2H), 7.36-7.39 (d, 1H), 7.14-7.20 (t, 1H), 7.08-7.14 (m, 3H), 6.90-6.97 (m, 1H), 4.55-4.59 (m, 0.5H), 4.37-4.39 (m, 0.5H), 3.06-3.32 (m, 2H), 2.73-2.82 (m, 1H), 2.59-2.64 (m, 1H), 2.41-2.48 (m, 1H), 2.32-2.38 (m, 1H), 2.10-2.15 (m, 1H), 1.39-1.93 (m, 10H), 1.13-1.15 (d, 3H). LC-MS: (M-H)+ = 463.3; HPLC purity = 95.23%.

EXAMPLE 254: 1-{3-[4-(4-fluorophenyl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (254):

![Structure of 254](image)

Synthesis of Compound (254): Compound (254) was synthesized by following the procedure used to make Compound (160, peak-2) (Scheme 53 and 55). 1H NMR (300 MHz, CDCl3): δ 8.30 (br s, 1H), 7.42-7.46 (m, 2H), 7.36-7.39 (d, 1H), 7.17-7.22 (t, 1H), 7.07-7.14 (m, 3H), 6.90-6.97 (m, 1H), 4.55-4.59 (m, 0.5H), 4.37-4.39 (m, 0.5H), 3.11-3.32 (m, 2H), 2.69-2.82 (m, 1H), 2.40-2.50 (m, 2H), 2.13-2.23 (m, 2H), 1.39-1.90 (m, 10H), 1.13-1.15 (d, 3H). LC-MS: (M-H)+ = 463.3; HPLC purity = 96.95%.
EXAMPLE 255: 1-[(3-[4-(4-fluorophenyl)-1H-indol-3-yl]butanoyl)decahydroquinoline-5-carboxylic acid (255):

5 Synthesis of Compound (255): Mixture of isomers of (253) separated by using chiral column chromatography to give Compound (255). 1H NMR (300 MHz, CDCl3): δ 8.21 (br s, 1H), 7.34-7.39 (m, 2H), 7.29-7.32 (d, 1H), 7.13-7.17 (d, 1H), 7.00-7.06 (m, 3H), 6.81-6.90 (m, 1H), 4.48-4.52 (m, 0.5H), 4.28-4.32 (m, 0.5H), 3.24-3.46 (m, 1H), 2.97-3.03 (m, 1H), 2.33-2.67 (m, 3H), 1.85-1.90 (m, 2H), 1.41-1.74 (m, 10H), 1.05-1.08 (d, 3H). LC-MS: (M-H)+ = 463.4; HPLC purity = 99.7%; chiral purity = 90.74% [column: Chiralpak IC; mobile phase: hexane: IPA: DCM (8.5:1:0.0.5); RT = 16.87 min].

EXAMPLE 256: 1-[(3-[4-(4-fluorophenyl)-1H-indol-3-yl]butanoyl)decahydroquinoline-5-carboxylic acid (256):

15 Synthesis of Compound (256): Mixture of isomers of (253) separated by using chiral column chromatography to give Compound (256). 1H NMR (300 MHz, DMSO-d6): δ 12.15 (br s, 1H), 11.04 (br s, 1H), 7.34-7.44 (m, 3H), 7.16-7.23 (m, 3H), 7.06-7.11 (t, 1H), 6.73-6.75 (d, 1H), 4.36-4.40 (m, 0.5H), 4.17-4.21 (m, 0.5H), 3.70-3.74 (m, 1H), 3.45-3.48 (m, 1H), 3.04-3.06 (m, 1H), 2.73-2.86 (m, 1H), 2.27-2.44 (m, 2H), 2.11-2.19 (m, 1H), 1.35-1.94 (m, 10H), 1.20-1.24 (d, 3H). LC-MS: (M-H)+ = 463.3; HPLC purity = 96.51%; chiral purity = 89.64% [column: Chiralpak IC; mobile phase: hexane: IPA: DCM (8.5:1:0.0.5); RT = 12.92 min].
EXAMPLE 257: 1-{3-[4-(2-fluorophenyl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (257):

![Chemical Structure]

Synthesis of Compound (257): Compound (257) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 8.22 (br s, 1H), 7.25-7.35 (m, 3H), 7.03-7.16 (m, 4H), 6.86-6.91 (m, 1H), 4.49-4.51 (m, 0.5H), 4.29-4.34 (m, 0.5H), 3.22-3.25 (m, 1H), 2.98-3.05 (m, 1H), 2.70-2.78 (m, 1H), 2.36-2.50 (m, 2H), 2.06-2.23 (m, 2H), 1.34-1.75 (m, 10H), 1.09-1.11 (d, 3H). LC-MS: (M-H)+ = 463.3; HPLC purity = 94.78%.

EXAMPLE 258: 1-[3-(2-cyano-4-cyclopropyl-1-methyl-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (258):

![Chemical Structure]

Synthesis of Compound (258): Compound (258) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 7.16-7.21 (t, 1H), 7.04-7.07 (d, 1H), 6.85-6.87 (d, 1H), 4.70-4.75 (m, 1H), 4.60-4.65 (m, 1H), 4.37-4.45 (m, 1H), 3.77 (s, 3H), 2.84-3.01 (m, 2H), 2.46-2.55 (m, 2H), 2.09-2.27 (m, 2H), 1.47-1.80 (m, 10H), 1.40-1.43 (d, 3H). 0.97-1.00 (m, 2H), 0.76-0.79 (m, 2H). LC-MS: (M-H)+ = 448.4; HPLC purity = 99.99%.
EXAMPLE 259: 1-{3-[4-(3-fluorophenyl)-1H-indol-3-yl]butanoyl}decahydroquinoline-5-carboxylic acid (259):

![Chemical Structure]

Synthesis of Compound (259): Compound (259) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 8.50 (br s, 1H), 7.27-7.30 (m, 2H), 7.07-7.15 (m, 3H), 6.97-6.99 (m, 2H), 6.84-6.87 (m, 1H), 4.46-4.47 (m, 0.5H), 4.21-4.25 (m, 0.5H), 3.12-3.14 (m, 1H), 3.02-3.05 (m, 1H), 2.51-2.57 (m, 2H), 2.35-2.39 (m, 2H), 1.37-1.72 (m, 10H), 1.09-1.11 (d, 3H). LC-MS: (M-H)+ = 463.3; HPLC purity = 95.6%.

EXAMPLE 260: 1-{{[(4-cyclopropyl-1H-indol-3-yl)sulfanyl]acetyl}decahydroquinoline-5-carboxylic acid (260):

![Chemical Structure]

Synthesis of Compound (260): Compound (260) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 8.33 (br s, 1H), 7.26-7.36 (m, 1H), 7.09-7.12 (m, 1H), 7.01-7.07 (m, 1H), 6.59-6.62 (d, 1H), 4.57-4.61 (m, 0.5H), 4.41-4.46 (m, 0.5H), 3.99-4.08 (m, 1H), 3.50-3.66 (m, 2H), 3.19-3.26 (m, 1H), 2.24-2.31 (m, 1H), 2.16-2.21 (m, 1H), 1.92-1.94 (m, 1H), 1.35-1.74 (m, 10H), 1.00-1.03 (m, 2H), 0.74-0.77 (m, 2H). LC-MS: (M-H)+ = 413.3; HPLC purity = 99.65%.
EXAMPLE 261: 1-[3-(4-chloro-1-cyclopentyl-1H-indol-3-yl)butanoyl] decahydroquinoline-5-carboxylic acid (261):

Synthesis of Compound (261): Compound (261) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 7.36-7.38 (m, 1H), 6.96-7.02 (m, 3H), 4.62-4.68 (t, 0.5H), 4.20-4.26 (m, 0.5H), 3.95-4.10 (m, 1H), 3.62-3.68 (m, 1H), 3.20-3.22 (m, 1H), 2.83-2.89 (m, 1H), 2.51-2.58 (m, 3H), 2.19-2.23 (m, 1H), 1.38-1.79 (m, 10H), 1.34-1.36 (d, 3H), 0.98-1.00 (m, 2H), 0.91-0.92 (m, 2H). LC-MS: (M-H)+ = 443.3; HPLC purity = 97.77%.

EXAMPLE 262: 1-[3-[4-(3-fluoropyridin-2-yl)-1H-indol-3-yl]butanoyl] decahydroquinoline-5-carboxylic acid (262):

Synthesis of Compound (262): Compound (262) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6): δ 12.01 (br s, 1H), 11.09 (br s, 1H), 8.45 (s, 1H), 7.72-7.81 (m, 1H), 7.47-7.50 (m, 2H), 7.24 (s, 1H), 7.12-7.17 (t, 1H), 6.88-6.90 (d, 1H), 4.14-4.38 (m, 0.5H), 3.70-3.78 (m, 0.5H), 3.40-3.48 (m, 2H), 2.72-2.78 (m, 2H), 2.30-2.35 (m, 1H), 2.22-2.26 (m, 1H), 1.91-2.05 (m, 1H), 1.33-1.70 (m, 10H), 1.13-1.17 (d, 3H). LC-MS: (M-H)+ = 464.3; HPLC purity = 95.01%.
EXAMPLE 263: 1-{3-[4-(5-fluorofuran-2-yl)-1-methyl-1H-indol-3-yl]butanoyl}
decahydroquinoline-5-carboxylic acid (263):

Synthesis of Compound (263): Compound (263) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 7.26-7.29 (m, 1H), 7.12-7.15 (d, 1H), 7.05-7.07 (m, 1H), 6.95 (br s, 1H), 6.28-6.30 (m, 1H), 5.45-5.47 (m, 1H), 4.61-4.65 (m, 0.5H), 4.49-4.43 (m, 0.5H), 3.72 (s, 3H), 3.43-3.51 (m, 2H), 2.54-2.58 (m, 2H), 2.27-2.30 (m, 1H), 2.21-2.24 (m, 1H), 2.05-2.10 (m, 1H), 1.49-1.85 (m, 10H), 1.33-1.36 (d, 3H). LC-MS: (M-H)+ = 467.4; HPLC purity = 98.0%.

EXAMPLE 264: 1-[3-(4-methoxy-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (264):

Synthesis of Compound (264): Compound (264) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6): δ 12.13 (br s, 1H), 10.76 (br s, 1H), 6.95-6.98 (m, 2H), 6.92-6.93 (d, 1H), 6.43-6.46 (d, 1H), 4.52-4.56 (m, 0.5H), 4.30-4.34 (m, 0.5H), 3.82 (s, 3H), 3.61-3.63 (m, 2H), 2.96-3.05 (m, 1H), 2.74-2.90 (m, 2H), 2.16-2.39 (m, 1H), 1.44-1.90 (m, 10H), 1.37-1.40 (d, 3H). LC-MS: (M-H)+ = 399.2; HPLC purity = 94.44%.
EXAMPLE 265: 1-[4,4,4-trifluoro-3-hydroxy-3-(1 Wndol-3-yl)butanoyl]-
decahydroquinoline-5-carboxylic acid (265):

Synthetic Scheme-68

10 **Synthesis of Intermediate-126:** To a stirred solution of Starting Material-1 (3.0 g, 25.6 mmol) in toluene (50 mL), Montmorillonite K 10 (15 g) was added and heated at 80 °C for 4 hours. After completion of the reaction (LC-MS), catalyst was filtered through the sintered funnel, the filtrate diluted with H2O and extracted with EtOAc and concentrated to give crude Intermediate 126 (5 g), which was taken for next step without any purification.

15 **Synthesis of Intermediate-127:** Intermediate-127 was synthesized by following the procedure used to make Intermediate-3 (Scheme 1).

Synthesis of Intermediate-128: Intermediate-128 was synthesized by following the procedure used to make Compound-1 (Scheme 2).

Synthesis of Compound (265): Compound (265) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, CDCl3): δ 8.25 (br s, 1H), 7.70-7.80 (m, 1H), 7.33-7.39 (m, 2H), 7.17-7.22 (m, 1H), 7.1-7.16 (m, 1H), 4.54-4.58 (m, 0.5H), 4.37-4.41 (m, 0.5H), 3.50-3.75 (m, 1H), 3.37-3.45 (d, 1H), 3.04-3.13 (d, 1H), 2.50-2.61 (m, 2H), 2.29-2.31 (m, 1H), 1.43-1.90 (m, 10H). LC-MS: (M-H)+ = 439.2; HPLC purity = 93.26%.
EXAMPLE 266: 1-[3-(4-chloro-1-ethyl-1H-indol-3-yl)butanoyl]decahydroquinoline-5-carboxylic acid (266):

![Molecular Structure of 266](image)

Synthesis of Compound (266): Compound (266) was synthesized by following the procedure used to make Compound (105) (Scheme 51). 1H NMR (300 MHz, DMSO-d6): δ 12.10 (br s, 1H), 7.39-7.42 (d, 3H), 7.33-7.36 (d, 3H), 7.05-7.10 (t, 1H), 7.01-7.02 (m, 1H), 4.46-4.48 (m, 0.5H), 4.27-4.29 (m, 0.5H), 4.13-4.18 (m, 2H), 3.96-3.98 (m, 1H), 3.70-3.72 (m, 1H), 1.14-1.20 (m, 2H), 2.62-2.75 (m, 2H), 2.00-2.05 (m, 1H), 1.45-1.50 (m, 10H), 1.26-1.32 (m, 6H). LC-MS: (M-H)+ = 431.3; HPLC purity = 95.81%.

EXAMPLE 267: 1-(2-(4-cyclopropyl-1H-indol-3-yl)propanoyl)decahydroquinoline-5-carboxylic acid (267):

![Molecular Structure of 267](image)

Synthetic Scheme-69
Synthesis of Intermediate 129: To a stirred solution of Starting Material-35 (40 g, 206 mmol) in ether (400 mL), oxalyl chloride (23.2 mL, 268 mmol) was added at 0 °C, and stirred at room temperature for 5 hours. The reaction mixture was then filtered and washed with ether to get solid material (42 g), which was treated with MeOH (28 mL) in ether (200 mL) at 0 °C to room temperature for 5 hours. After completion of the reaction, the reaction mixture was diluted with hexanes, resulted precipitate was filtered and dried to get Intermediate-1 29 (35 g) as yellow solid.

Synthesis of Intermediate-130: To a stirred solution of Intermediate-1 29 (35 g, 129 mmol) in MeOH (350 mL), tosyl hydrazine (23.1 g, 129 mmol) was added and refluxed for 4 hours. After completion of the reaction, the reaction mixture was concentrated to give crude mixture, which was diluted with H₂O, extracted with DCM and concentrated to give Intermediate-1 30 (35 g) as pale yellow solid.

Synthesis of Intermediate-131: To a stirred solution of Intermediate-1 31 (14 g, 31 mmol) in THF (140mL), NaBH₄ (1.8 g, 46 mmol) was added at 0 °C and continued to stir at room temperature for 6 hours. After completion of the reaction, the reaction mixture was quenched with H₂O, extracted with DCM and concentrated. The resulted crude product was purified by using silica gel column chromatography elutive with mixture of hexanes, EtOAc to give Intermediate-1 31 (3 g) as pale yellow liquid.

Synthesis of Intermediate-132: Intermediate-1 32 was synthesized by following the procedure used to make Intermediate-95 (Scheme 56).

Synthesis of Intermediate-133: Intermediate-1 33 was synthesized by following the procedure used to make Intermediate-72 (Scheme 47).

Synthesis of Intermediate-134: Intermediate-1 34 was synthesized by following the procedure used to make Intermediate-5 (Scheme 3).

Synthesis of Intermediate-135: Intermediate-1 35 was synthesized by following the procedure used to make Intermediate-3 (Scheme 1).

Synthesis of Intermediate-136: Intermediate-1 36 was synthesized by following the procedure used to make Intermediate-75 (Scheme 47).
Synthesis of Compound (267): Compound (267) was synthesized by following the procedure used to make Compound (105) (Scheme 51). LC-MS: (M-H)+ = 395.3; HPLC purity = 94.32%.

EXAMPLE 268: 1-(3-(4-cyclopropyl-1-methyl-1H-indazol-3-yl)propanoyl)decahydroquinoline-5-carboxylic acid (268):

\[
\text{(268)}
\]

Synthesis of Compound (268): Compound (268) was synthesized by following the procedure used to make Compound (88) (Scheme 47). LC-MS: (M-H)+ = 410.2.

Biological activity
In vitro HSD11p1 inhibition assay:
CHO cells were maintained in Dulbecco's modified Eagle's medium/nutrient mixture F-12 containing 5% fetal bovine serum (v/v) and 2 mM glutamine. Cells were cultured at 37°C with 5% CO2. For transient expression of human full length HSD11β1 expression vector (OriGene Technologies), cells were seeded at a density of 2 x105 cells/well in a 6-well plate. Transfection was done using Turbofectin8 reagent (OriGene Technologies), according to the protocol provided with the reagent. After 24 hours post-transfection, cells were trypsinized and pooled together before they were re-seeding to 96-well plate at a density of 40000 cells/well. 24 hours after re-seeding, cells were incubated with 200 nM cortisone + 500uM NADPH (or along with small molecule inhibitors) overnight. The enzymatic activity or inhibition of enzyme activity was measured by estimating the conversion of cortisone to Cortisol by LC/MS-MS method. The IC50 in nM was calculated from an 8 point log scale of concentration versus inhibition.

The results of the biological testing are shown in table 1:
<table>
<thead>
<tr>
<th>Cmpd No</th>
<th>11βHSD1 (IC50)</th>
<th>Cmpd No</th>
<th>11βHSD1 (IC50)</th>
<th>Cmpd No</th>
<th>11βHSD1 (IC50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*****</td>
<td>96</td>
<td>*</td>
<td>191</td>
<td>****</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>97</td>
<td>***</td>
<td>192</td>
<td>*****</td>
</tr>
<tr>
<td>3</td>
<td>***</td>
<td>98</td>
<td>*</td>
<td>193</td>
<td>****</td>
</tr>
<tr>
<td>4</td>
<td>****</td>
<td>99</td>
<td>*</td>
<td>194</td>
<td>*</td>
</tr>
<tr>
<td>5</td>
<td>*****</td>
<td>100</td>
<td>*</td>
<td>195</td>
<td>*****</td>
</tr>
<tr>
<td>6</td>
<td>**</td>
<td>101</td>
<td>*</td>
<td>196</td>
<td>*****</td>
</tr>
<tr>
<td>7</td>
<td>*</td>
<td>102</td>
<td>*</td>
<td>197</td>
<td>*</td>
</tr>
<tr>
<td>8</td>
<td>****</td>
<td>103</td>
<td>*</td>
<td>198</td>
<td>****</td>
</tr>
<tr>
<td>9</td>
<td>**</td>
<td>104</td>
<td>*</td>
<td>199</td>
<td>****</td>
</tr>
<tr>
<td>10</td>
<td>****</td>
<td>105</td>
<td>*</td>
<td>200</td>
<td>*****</td>
</tr>
<tr>
<td>11</td>
<td>****</td>
<td>106</td>
<td>*</td>
<td>201</td>
<td>****</td>
</tr>
<tr>
<td>12</td>
<td>*</td>
<td>107</td>
<td>*</td>
<td>202</td>
<td>*</td>
</tr>
<tr>
<td>13</td>
<td>****</td>
<td>108</td>
<td>*</td>
<td>203</td>
<td>*</td>
</tr>
<tr>
<td>14</td>
<td>*</td>
<td>109</td>
<td>*</td>
<td>204</td>
<td>*****</td>
</tr>
<tr>
<td>15</td>
<td>****</td>
<td>110</td>
<td>*</td>
<td>205</td>
<td>*</td>
</tr>
<tr>
<td>16</td>
<td>***</td>
<td>111</td>
<td>****</td>
<td>206</td>
<td>*****</td>
</tr>
<tr>
<td>17</td>
<td>****</td>
<td>112</td>
<td>****</td>
<td>207</td>
<td>*</td>
</tr>
<tr>
<td>18</td>
<td>*</td>
<td>113</td>
<td>*</td>
<td>208</td>
<td>****</td>
</tr>
<tr>
<td>19</td>
<td>*</td>
<td>114</td>
<td>****</td>
<td>209</td>
<td>***</td>
</tr>
<tr>
<td>20</td>
<td>****</td>
<td>115</td>
<td>*</td>
<td>210</td>
<td>****</td>
</tr>
<tr>
<td>21</td>
<td>*</td>
<td>116</td>
<td>*</td>
<td>211</td>
<td>****</td>
</tr>
<tr>
<td>22</td>
<td>*</td>
<td>117</td>
<td>****</td>
<td>212</td>
<td>*</td>
</tr>
<tr>
<td>23</td>
<td>*</td>
<td>118</td>
<td>****</td>
<td>213</td>
<td>*</td>
</tr>
<tr>
<td>24</td>
<td>*</td>
<td>119</td>
<td>****</td>
<td>214</td>
<td>****</td>
</tr>
<tr>
<td>25</td>
<td>*</td>
<td>120</td>
<td>****</td>
<td>215</td>
<td>****</td>
</tr>
<tr>
<td>26</td>
<td>*</td>
<td>121</td>
<td>****</td>
<td>216</td>
<td>*****</td>
</tr>
<tr>
<td>27</td>
<td>****</td>
<td>122</td>
<td>****</td>
<td>217</td>
<td>****</td>
</tr>
<tr>
<td>28</td>
<td>****</td>
<td>123</td>
<td>****</td>
<td>218</td>
<td>****</td>
</tr>
<tr>
<td>29</td>
<td>*</td>
<td>124</td>
<td>****</td>
<td>219</td>
<td>*</td>
</tr>
<tr>
<td>30</td>
<td>*</td>
<td>125</td>
<td>****</td>
<td>220</td>
<td>****</td>
</tr>
<tr>
<td>31</td>
<td>*</td>
<td>126</td>
<td>*</td>
<td>221</td>
<td>****</td>
</tr>
<tr>
<td>32</td>
<td>*</td>
<td>127</td>
<td>*</td>
<td>222</td>
<td>****</td>
</tr>
<tr>
<td>33</td>
<td>*</td>
<td>128</td>
<td>*</td>
<td>223</td>
<td>****</td>
</tr>
<tr>
<td>Cmpd No</td>
<td>11βHSD1 (IC50)</td>
<td>Cmpd No</td>
<td>11βHSD1 (IC50)</td>
<td>Cmpd No</td>
<td>11PHSD1 (IC50)</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>129</td>
<td></td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>130</td>
<td></td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>131</td>
<td></td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>132</td>
<td></td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>133</td>
<td></td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>134</td>
<td></td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>135</td>
<td></td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>136</td>
<td></td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>137</td>
<td></td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>138</td>
<td></td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>139</td>
<td></td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>140</td>
<td></td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>141</td>
<td></td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>142</td>
<td></td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>143</td>
<td></td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>144</td>
<td></td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>145</td>
<td></td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>146</td>
<td></td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>147</td>
<td></td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>148</td>
<td></td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>149</td>
<td></td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>150</td>
<td></td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>151</td>
<td></td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>152</td>
<td></td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>153</td>
<td></td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>154</td>
<td></td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>155</td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>156</td>
<td></td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>157</td>
<td></td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>158</td>
<td></td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>159</td>
<td></td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>160</td>
<td></td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>161</td>
<td></td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>162</td>
<td></td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>Cmpd No</td>
<td>11pPHSD1 (IC50)</td>
<td>Cmpd No</td>
<td>11pPHSD1 (IC50)</td>
<td>Cmpd No</td>
<td>11pPHSD1 (IC50)</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>---------</td>
<td>----------------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>163</td>
<td></td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>164</td>
<td></td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>165</td>
<td></td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>166</td>
<td></td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>167</td>
<td></td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>168</td>
<td></td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>169</td>
<td></td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>170</td>
<td></td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>171</td>
<td></td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>172</td>
<td></td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>173</td>
<td></td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>174</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td>176</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>178</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td>179</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
<td>181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td>182</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td>183</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td>184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>185</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td>186</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td>187</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>188</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>189</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>190</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***** = < 100 nM
**** = 100 nM < 150 nM
*** = 150 nM < 200 nM
** = 200 nM < 250 nM
* = 250 nM <
Claims:

1. A compound of formula (I):

 ![Formula (I)]

 wherein:

 each R¹ and R¹₂ is independently selected from the group consisting of H, halogen,

 OH, N0₂, CN, SH, NH₂, CF₃, OCF₃, optionally substituted C₁-C₆alkyl, optionally substituted C₁-C₆haloalkyl optionally substituted C₂-C₆alkenyl, optionally substituted C₂-C₆alkynyl, optionally substituted C₂-C₆heteroalkyl, optionally substituted C₂-C₆heteroalkynyl, optionally substituted C₃-C₆cycloalkyl, optionally substituted C₃-C₆cycloalkenyl, optionally substituted C₂-C₆heterocycloalkyl, optionally substituted C₂-C₆heterocycloalkynyl, optionally substituted C₆-C₆aryll, optionally substituted C₆-C₆heteroaryll, optionally substituted C₆-C₆alkenyl, optionally substituted C₂-C₆alkynyl, optionally substituted C₂-C₆heteroalkenyl, optionally substituted C₂-C₆heteroalkynyl, optionally substituted C₃-C₆cycloalkenyl, optionally substituted C₆-C₆heterocycloalkenyl, optionally substituted C₆-C₆heterocycloalkynyl, optionally substituted C₁-C₂alkyl, optionally substituted C₁-C₆alkenyl, optionally substituted C₁-C₆alkynyl, optionally substituted C₂-C₆cycloalkyl, optionally substituted C₂-C₆cycloalkenyl, optionally substituted C₂-C₆heterocycloalkyl, optionally substituted C₂-C₆heterocycloalkenyl, optionally substituted C₂-C₆heterocycloalkynyl, optionally substituted C₆-C₆aryll, optionally substituted C₆-C₆heteroaryll, optionally substituted C₆-C₆alkenyl, optionally substituted C₂-C₆alkynyl, optionally substituted C₂-C₆heteroalkenyl, optionally substituted C₂-C₆heteroalkynyl, optionally substituted C₃-C₆cycloalkenyl, optionally substituted C₆-C₆heterocycloalkenyl, optionally substituted C₆-C₆heterocycloalkynyl, optionally substituted C₁-C₂alkylmino, optionally substituted S₂₃H, S₂₂NR₂R₃, S₂₂R₂, SONR₂R₃, SO₂R₂, COR₂, CO₂R₂, COOH, COOR₂, CONR₂R₃, NR₂COR₂, NR₂COOR₂, NR₂SO₂R₂, NR₂CONR₂R₃, NR₂R₂, and acyl, or any two R¹ on adjacent carbon atoms may be joined to form a cyclic moiety, or any two R¹ on the same carbon when taken together may form a group of the formula=0 or =NR², and the two R¹₂ may be joined to form a double bond;

 Ar is an optionally substituted CrCl₈heteroaryll group,

 A is selected from the group consisting of S, SO, SO₂, O, and -CR²R³;

 B is a group of the formula -(CR²R³)ₙ;
wherein each R^a, R^b, R^c and R^d is independently selected from the group consisting of H, halogen, OH, N=O, CN, SH, NH$_2$, CF$_3$, OCF$_3$, optionally substituted C$_1$-C$_{12}$alkyl, optionally substituted C$_2$-C$_{18}$heteroalkyl, optionally substituted d-C$_4$haloalkyl, optionally substituted C$_3$-C$_{12}$cycloalkyl, optionally substituted C$_6$-C$_{18}$aryl, optionally substituted CrC$_{18}$heteroaryl; SR$_2$, S0$_2$H, S0$_2$NR$_2$R3, S0$_2$R2, SONR$_2$R3, SOR$_2$, COR$_2$, COOH, COOR$_2$, CONR$_2$R3, NR$_2$COR$_3$, NR$_2$COOR$_3$, NR$_2$SO$_2$R3, NR$_2$CONR$_2$R2, NR$_2$R3, and acyl,

or any two R^a, R^b, R^c and R^d on the same carbon atom when taken together may form a cycloalkyl group or a substituent of the formula:

![cycloalkyl structure](image)

wherein each R^2 and R^3 is independently selected from the group consisting of H, optionally substituted C$_1$-C$_{12}$alkyl, optionally substituted C$_2$-C$_{18}$heteroalkyl, optionally substituted C$_3$-C$_{12}$haloalkyl, optionally substituted C$_4$-C$_{18}$cycloalkyl, optionally substituted C$_5$-C$_{18}$aryl, and optionally substituted C$_1$-C$_{18}$heteroaryl;

R^4 is selected from the group consisting of O, S, and NR$_2$;

R^5 is selected from the group consisting of H, OR$_6$, optionally substituted C$_1$-C$_{12}$alkyl, optionally substituted C$_1$-C$_{18}$heteroalkyl, optionally substituted C$_2$-C$_{12}$alkenyl, optionally substituted C$_3$-C$_{12}$alkynyl, optionally substituted C$_4$-C$_{12}$alkyloxy, optionally substituted C$_5$-C$_{18}$haloalkyloxy, optionally substituted C$_6$-C$_{18}$heteroalkyloxy, optionally substituted C$_7$-C$_{18}$heteroalkyl, optionally substituted C$_8$-C$_{18}$aryl, and optionally substituted C$_1$-C$_{18}$heteroaryl,

R^6 is selected from the group consisting of H, optionally substituted C$_1$-C$_{12}$alkyl, optionally substituted C$_2$-C$_{12}$heteroalkyl, optionally substituted C$_3$-C$_{12}$cycloalkyl, optionally substituted C$_4$-C$_{18}$aryl, and optionally substituted CrCl$_8$heteroaryl,

or any two or more R^a, R^b, R^c and R^d may join together to form a multiple bond between adjacent carbon atoms such as a double or triple bond, or a cyclic moiety connecting the carbon atoms to which they are attached;
W₁ and W₂ are selected such that one is N and the other is (CR₂₁).

the bond from the carbonyl carbon is joined to whichever of W₁ or W₂ is N,

D is O or (CR₂₁).

n is an integer selected from the group consisting of 0, 1, 2, 3, and 4;

a is an integer selected from the group consisting of 0, 1, and 2, 3;

b is an integer selected from the group consisting of 0, 1, 2, 3, 4, 5, 6, 7, and 8;

c is an integer selected from 0, 1, and 2;

or a pharmaceutically acceptable salt, N-oxide, or prodrug thereof.

2. A compound according to claim 1 wherein D is (CR₂₁).

3. A compound according to claim 1 or 3 wherein B is CH₂.

4. A compound according to any one of claims 1 to 3 wherein A is CRₐRₕ.

5. A compound according to claim 5 wherein Rₐ and Rₕ are different.

6. A compound according to claim 1 having the formula:
wherein Ar, R², R³, R⁴, R⁵, a and b are as defined in claim 1.

7. A compound according to claim 6 wherein one of R⁴ and R⁵ is H and the other is optionally substituted alkyl.

5

8. A compound according to any one of claims 1 to 7 wherein Ar is a group of the formula:

wherein each V¹, V², V³, V⁴, V⁵ and V⁶ is independently selected from the group consisting of N and CR⁷;

U is selected from the group consisting of NR⁸, O, S and CR⁸₂;

15

wherein each R⁷ is independently selected from the group consisting of H, halogen, OH, N⁰₂, CN, SH, NH₂, CF₃, OCF₂, optionally substituted Cl-Cl₂alkyl, optionally substituted C₁-C₁₂haloalkyl, optionally substituted C₂-C₁₂alkenyl, optionally substituted C₂-C₁₂alkynyl, optionally substituted C₂-Cl₂heteroalkyl, optionally substituted C₃-Cl₂cycloalkyl, optionally substituted C₃-Cl₂cycloalkenyl, optionally substituted C₂-C₁₂heterocycloalkenyl, optionally substituted C₁-C₁₂heterocycloalkenyl, optionally substituted C₂-Cl₂cycloalkenoxy, optionally substituted C₂-Cl₂cycloalkynoxy, optionally substituted C₂-Cl₂cycloalkenoloxy, optionally substituted C₃-Cl₂cycloalkenoloxy, optionally substituted C₂-C₁₂heterocycloalkenyloxy, optionally substituted C₂-C₁₂heterocycloalkenyloxy, optionally substituted C₁-C₁₂heterocycloalkenyloxy, optionally substituted C²-C₉aryl, optionally substituted C₁-C₉heteroaryl, optionally substituted C₁-C₉heteroaryl, optionally substituted d-C₉alkylamino, SR⁰, SO₃H, SO₂NR⁰R¹⁰, SO₂R⁰, SONR⁰R¹⁰, SOR⁰, COR⁰, COOH, COOR⁰, CONR⁰R¹⁰, NR⁰COR¹⁰, NR⁰COOR¹⁰, NR⁰SO₂R¹⁰, NR⁰CONR⁰R¹⁰, NR⁰R¹⁰, and acyl;

30

wherein R³ is selected from the group consisting of H, optionally substituted C₁-C₁₂alkyl, optionally substituted C₂-Cl₂alkenyl, optionally substituted C₂-Cl₂alkenyl, optionally substituted C₂-Cl₂heteroalkyl, optionally substituted C₃-Cl₂cycloalkyl, optionally substituted
C_2-C_{12} heterocycloalkyl, optionally substituted C_{6-18} aryl, optionally substituted C_{1-}
C_{18} heteroaryl, S_0^3 H, S_0^2 NR^{9}R^{10}, S_0^2 R^{9}, SONR^{9}R^{10}, SOR^{9}, COR^{9}, COOH, COOR^{9}, and
CONR^{9}R^{10};

wherein each R^{9} and R^{10} is independently selected from the group consisting of H, optionally substituted C_{1-12} alkyl, optionally substituted C_{2-18} heteroalkyl, optionally substituted C_{1-12} haloalkyl, optionally substituted C_{3-12} cycloalkyl, optionally substituted C_{6-}
C_{18} aryl, and optionally substituted C_{1-18} heteroaryl.

9. A compound according to claim 8 wherein Ar is selected from the group consisting of:

\[\text{\includegraphics{compound_1.png}} \]
\[\text{\includegraphics{compound_2.png}} \]
\[\text{\includegraphics{compound_3.png}} \]
\[\text{\includegraphics{compound_4.png}} \]
\[\text{\includegraphics{compound_5.png}} \]
\[\text{\includegraphics{compound_6.png}} \]
\[\text{\includegraphics{compound_7.png}} \]
\[\text{\includegraphics{compound_8.png}} \]

wherein R^7 is as defined in claim 8;

\[\text{\textit{e} is an integer selected from the group consisting of 0, 1, 2, 3 and 4;} \]

\[\text{\textit{f} is an integer selected from the group consisting of 0, 1, 2, and 3;} \]

10. A compound according to claim 9 wherein the R^7 substituent is located in the 4 or the
5 position of the six membered ring.
11. A compound according to claim 8 or 9 wherein R^7 is selected from the group consisting of CH_3, CH_2CH_3, $\text{CH}_2\text{CH}_2\text{CH}_3$, $\text{CH(\text{CH}_3)}_2$, $(\text{CH}_2)_3\text{CH}_3$, Cl, Br, F, I, OH, NO$_2$, NH$_2$, CN, SO_3H, OCH$_3$, OCH$_2\text{CH}_2\text{CH}_3$, CF$_3$, and OCF$_3$.

12. A compound according to claim 1 selected from the group consisting of:
The image contains various chemical structures and molecular formulas.
or pharmaceutically acceptable salt, or prodrug thereof.

13. A pharmaceutical composition including a compound according to any one of claims 1 to 12 and a pharmaceutically acceptable diluent, excipient or carrier.

14. A method of prevention or treatment of a condition in a mammal, the method comprising administering an effective amount of a compound according to any one of claims 1 to 12.

15. A method according to claim 14 wherein the condition can be prevented or treated by inhibition of 11β-HSDI.

16. A method according to claim 15 wherein the condition is selected from the group consisting of diabetes, hyperglycemia, low glucose tolerance, hyperinsulinemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, dyslipidemia, obesity, abdominal obesity, glaucoma, hypertension, atherosclerosis and its sequelae, retinopathy, nephropathy, neuropathy, osteoporosis, osteoarthritis, dementia, depression, neurodegenerative disease, psychiatric disorders, Cushing's Disease, Cushing's syndrome, viral diseases, and inflammatory diseases.

17. A method according to claim 16 wherein the condition is diabetes.

18. A method according to claim 17 wherein the condition is type II diabetes.

19. The method of claim 15, wherein the compound is administered in combination with an adjuvant.

20. The method of claim 19, wherein the adjuvant is selected from the group consisting of dipeptidyl peptidase-IV (DP-IV) inhibitors; (b) insulin sensitizing agents; (c) insulin and insulin mimetics; (d) sulfonylureas and other insulin secretagogues; (e) alpha-glucosidase inhibitors; (f) GLP-1, GLP-1 analogs, and GLP-1 receptor agonists; and combinations thereof.
21. The method of claim 20, wherein the insulin sensitizing agents are selected from the group consisting of (i) PPAR-gamma-agonists, (ii) PPAR-alpha-agonists, (iii) PPAR-alpha/gamma-dual agonists, (iv) biguanides, and combinations thereof.

22. Use of a compound according to claim 1 in the preparation of a medicament.

23. A use according to claim 22 wherein the medicament is for treatment of a condition that can be prevented or treated by inhibition of 11β-HSD1.

24. A use according to claim 23 wherein the condition is selected from the group consisting of diabetes, hyperglycemia, low glucose tolerance, hyperinsulinemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, dyslipidemia, obesity, abdominal obesity, glaucoma, hypertension, atherosclerosis and its sequelae, retinopathy, nephropathy, neuropathy, osteoporosis, osteoarthritis, dementia, depression, neurodegenerative disease, psychiatric disorders, Cushing's Disease, Cushing's syndrome, virus diseases, and inflammatory diseases.

25. A use according to claim 24 wherein the condition is diabetes.

26. A use according to claim 25 wherein the condition is type II diabetes.

27. A use according to claim 25 or 26, wherein the medicament contains an adjuvant.

28. A use according to claim 27, wherein the adjuvant is selected from the group consisting of dipeptidyl peptidase-IV (DP-IV) inhibitors; (b) insulin sensitizing agents; (c) insulin and insulin mimetics; (d) sulfonylureas and other insulin secretagogues; (e) alpha-glucosidase inhibitors; (f) GLP-1, GLP-1 analogs, and GLP-1 receptor agonists; and combinations thereof.

29. A use according to claim 28 wherein the insulin sensitizing agents are selected from the group consisting of (i) PPAR-gamma-agonists, (ii) PPAR-alpha-agonists, (iii) PPAR-alpha/gamma-dual agonists, (iv) biguanides, and combinations thereof.

30. A compound according to claim 1 substantially as hereinbefore described with reference to any of the examples.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D401/12 C07D401/06 C07D471/04 C07D413/06 C07D417/12
C07D405/06 C07D405/06 A61K31/437 A61K31/4725 A61P3/10

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal , WPI Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 29 03 966 AI (BAYER AG) 7 August 1980 (1980-08-07) see examples 22, 27 to 29 and 40 in table 1</td>
<td>1-3, 8, 9</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
- "X" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "A" document member of the same patent family

Date of the actual completion of the international search
13 June 2013

Date of mailing of the international search report
24/06/2013

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3016

Authorized officer
Traegler-Goeldel , M
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2005/073199 AI (AVENTIS PHARMA GMBH [DE]; ZOLLER GERHARD [DE]; RETRY STEFAN [DE]; MUEL) 11 August 2005 (2005-08-11)</td>
<td>1.2, 8-11, 13, 14, 16-22, 24-29</td>
</tr>
<tr>
<td></td>
<td>e.g. compound 46 on p. 36 and claims 15 to 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see examples 8, in col umn 12 and examples C and in col umn 13</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 99/52876 AI (SANOFI SYNTHELABO [FR]; BED0YA ZURITA MANUEL [ES]; DIAZ MARTIN JUAN AN) 21 October 1999 (1999-10-21)</td>
<td>1-30</td>
</tr>
<tr>
<td></td>
<td>see compound 64 on p. 17 and its pharmacological activity in the treatment of diabetes, obesity, hyperglycemia and inflammation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see e.g. example 224 and its insulin secretion promoting action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see compound of example 213 and its action on 11-beta-hydroxysteroid dehydrogenase type 1</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 2010/139827 AI (SALVAT LAB SA [ES]; CATENA RUIZ JUAN LORENZO [ES]; SERRA COMAS CARME) 9 December 2010 (2010-12-09)</td>
<td>1-30</td>
</tr>
<tr>
<td></td>
<td>see examples 1, k.2, k.4,k.5, k.10-l k.14, k.15, k.18, k.19, k.21, k.23 , k.25 , k.27 , k.28, k.30, k.31, k.35-l k.37, k.39, k.42-l k.44, k.46 and k.47 as 11-beta-hydroxysteroid dehydrogenase type 1 inhibitor</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>WO 2009126675 Al</td>
<td>15-10-2009</td>
<td>CA 2720613 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2276731 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011516563 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011275800 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009126675 Al</td>
</tr>
<tr>
<td>DE 2903966 Al</td>
<td>07-08-1980</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008146811 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006012504 A2</td>
</tr>
<tr>
<td>WO 2005073199 Al</td>
<td>11-08-2005</td>
<td>AR 047520 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 505460 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2005209366 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0507370 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2554524 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1914180 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CR 8487 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102004005172 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DO P2005000011 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP066750 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1713779 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HN 200500039 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 170912 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 471415158 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2007519649 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20060128958 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MA 28338 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MY 143407 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 548872 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 06902005 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2370491 C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 149891 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005197348 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009215824 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 28735 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005073199 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200605311 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6506894 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2158663 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9502584 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69402058 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69402058 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 693059 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 063059 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2099601 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 954730 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2703679 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3022798 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H08508283 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 953813 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 310948 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 123595 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5631279 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9422822 A</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3153199 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 5011046 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1071666 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2777566 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002511451 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6262060 Bl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9952876 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2429426 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1340749 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004048908 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006084690 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0240458 Al</td>
</tr>
<tr>
<td>WO 2005075471 A2</td>
<td>18-08-2005</td>
<td>AR 047535 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005239853 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005075471 A2</td>
</tr>
<tr>
<td>WO 2010139827 Al</td>
<td>09-12-2010</td>
<td>AU 2010255653 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2764214 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102834385 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201171410 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2439202 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2350077 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012528836 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120027402 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012071466 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010139827 Al</td>
</tr>
</tbody>
</table>