
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0103.197 A1

US 2004O103197A1

Benson (43) Pub. Date: May 27, 2004

(54) USE OF BROWSER COOKIES TO STORE (60) Provisional application No. 60/118,266, filed on Feb.
STRUCTURED DATA 2, 1999.

(76) Inventor: Eric A. Benson, Seattle, WA (US) Publication Classification

Correspondence Address: (51) Int. Cl. ... G06F 15/16
KNOBBE MARTENS OLSON & BEAR LLP (52) U.S. Cl. .. 709/227; 71.9/311
2040 MAIN STREET
FOURTEENTH FLOOR (57) ABSTRACT
IRVINE, CA 92614 (US) A web site System implements a proceSS for Storing Selected

(21) Appl. No.: 10/694,509 data Structures within browser cookies. The data Structures
may contain a variety of different types of data elements,

(22) Filed: Oct. 27, 2003 including N-bit integers and other non-character elements. A
version tracking Scheme provides forward and backward

Related U.S. Application Data compatibility between client and server software. The pro
ceSS is implemented without the need for any browser

(63) Continuation of application No. 09/494.712, filed on extensions, and without the need for users to download any
Jan. 31, 2000, now Pat. No. 6,714,926. Special code to their computers.

- 4 - - - - - - - - - - - - - - -

SCHEMAVER

LOCAL STORAGE

strug orse RANGE
<STRUCT DEFs.<VERRANGE

60

as

WEB SERVER

COOKIE-HOST REPR,
CONVERSION

WEBSITE

APPLICATION(S)

HOST REPR,-- COOKE -
conVERSION

COOKE:
NAME = VALUE

2.

USER DATABASE(S)
USERA

STRUCT_1 (PRIMITIVES)

Patent Application Publication May 27, 2004 Sheet 2 of 3 US 2004/0103.197 A1

CONVERT STORE INTO
COOKE FORMAT -

-25

IDENTIFY VALID STRUCTURES
LISTED IN SCHEMA FILE

retrieve each vaLiD STRUCTURE
FROM DATABASE. AND WRITE PRIMITIVES

IN NETWORK BYTE ORDER

COMPUTE CHECKSUM FOR
RESULTING BYTE SEQUENCE

PREPEND CHECKSUM, GLOBAL VERSION NO.
AND SEQUENCE LENGTH TO BYTE SEQUENCE

so

s2

&z

asa

ENCRYPT BYTE SEQUENCE AND HEADER
- - as

TRANSLATE RESULT INTO CHARACTER STRING
90

WRITE CHARACTER STRING AS 'VALUE'
PORTION OF COOKIE WITHIN HTTP

SET-COOKIE HEADER

Patent Application Publication May 27, 2004 Sheet 3 of 3 US 2004/0103.197 A1

PROCESS VALUE PORTIO
OF RECEIVED COOKE

722

DECODE CHARACTER STRING
TO GENERATE BYTE SEQUENCE

DECRYPT BYTE SEQUENCE

COMPUTE CHECKSUM OF DATA
PORTION, AND COMPARE TO
CHECKSUM OF DECRYPTED

BYTE SEQUENCE

. 706

725

GNORE
YES 72 COOKE

coMPARE VERSION NUMBER WITHIN
|COOKIE TO VERSION RANGES WITHIN

SCHEMA FILE TO DETERMNE
STRUCTURES WITHIN COOKIE

f

-702

7624

772

NFLATE STRUCTURES ACCORDING TO
SCHEMA WHILE MARKING SCHEMA
STRUCTURES NOT PRESENT WITHN

COOKE AS UNINTALIZED

A762 3

US 2004/0103.197 A1

USE OF BROWSER COOKES TO STORE
STRUCTURED DATA

RELATED APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 09/494,712, filed Jan. 31, 2000, which
claims the benefit of U.S. provisional application No.
60/118,266, filed Feb. 2, 1999.

FIELD OF THE INVENTION

0002 The present invention relates to Web site customi
Zation using cookies, and more particularly, to a method of
extending the functionality of cookies to increase Web site
performance.

BACKGROUND

0003) Commercially available Web browsers such as
Internet Explorer and Netscape Navigator Support a mecha
nism by which a Web server can store persistent information
on a user's machine for Subsequent retrieval. This informa
tion is commonly referred to as a “cookie,” and typically
includes information about the user's identity. The cookie is
Stored on the user's computer as a name-value pair (NAME=
VALUE), together with a URL (or range of URLs) to which
the cookie corresponds and an optional expiration date.
When the user initiates a request for a URL that corresponds
to the cookie, the browser automatically Sends the cookie
(and any other cookies that correspond to the requested
URL) to the host Web server with the URL request.
0004 One common application for cookies involves
dynamically customizing Web pages and functions for
known users of a Web site. Typically, this involves storing
known information about the user, Such as a user ID, on the
user's computer in response to a page request. When the user
Subsequently accesses the Web Site, the information con
tained within the cookie is used to access a back-end
database to retrieve additional information about the user,
Such as the user's preferences or account information. This
database information may then be used to customize the
requested Web page.
0005 One problem with the above approach is that it
requires frequent accesses to the database. For Web Sites that
experience many thousands of hits per day, the need to
access the database can produce a significant performance
degradation. The performance degradation may be the result
of a limited load capacity of the database System, increased
network traffic between physical Web servers and the data
base System, or both.

SUMMARY

0006. One potential solution to the above problem would
be to store within cookies all of the user information needed
to customize the Web pages, or at least the most frequently
accessed Web pages. This would allow accesses to back-end
databases during page requests to be reduced or avoided.
Unfortunately, the existing cookies Specification does not
provide a mechanism for Storing non-character data. Thus,
for example, where the database information used to cus
tomize Web pages includes a list or table of 16-bit integers,
Storing Such data within browser cookies is not a viable
option. Further, the existing cookies specification does not

May 27, 2004

provide a mechanism for allowing Server Software to keep
track of versions of data elements contained within cookies.

0007. The present invention overcomes this problem by
providing a Server System and process for Storing Selected
data Structures within browser cookies, preferably using a
version tracking Scheme to provide forward and backward
compatibility between client and server software. The data
Structures may contain a variety of different types of data
elements, including N-bit integers and other non-character
elements. The process is implemented without the need for
any browser extensions, and without the need for users to
download any Special code to their computers.
0008. In a preferred embodiment, the system uses a
Schema file or other data Structure that specifies past and
present Schemas for encoding data Structures within cookies.
A first Server component uses the Schema file to encode data
Structures into character Strings that are Stored within cook
ies on user computers. A checksum value, a length field, and
a Schema version number are also preferably encoded within
the cookies. A Second Server component receives cookies
from user computers, uses the Schema file to identify the
types of data Structures Stored in Such cookies, and repro
duces the data Structures in local memory for temporary use.
Application Software uses these temporary data Structures to
generate personalized web pages and/or perform other cus
tom operations.

BRIEF DESCRIPTION OF THE DRAWINGS

0009 FIG. 1 illustrates a Web site system according to a
preferred embodiment of the invention.
0010 FIG. 2 illustrates a preferred sequence of steps that
are implemented by the host-to-cookie module of FIG. 1 to
translate a Sequence of Structures to a cookie format.
0011 FIG. 3 illustrates a preferred sequence of steps that
are implemented by the cookie-to-host conversion module
of FIG. 1 to convert a character string back to the original
host representation.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

0012 A preferred embodiment of the process and asso
ciated components will now be described with reference to
FIGS. 1-3. Throughout these figures and the associated
description, reference will be made to various implementa
tion-specific details Such as Specific data types, algorithms,
rules and conventions. These and other details are provided
in order to illustrate an example implementation, and not to
limit the Scope of the invention.
0013 FIG. 1 illustrates a Web site system (“Web site”)
30 according to a preferred embodiment of the invention,
and illustrates a representative user computer 32 that com
municates with the Web site via the Internet. For purposes of
illustration, it may be assumed that the Web site 30 is the
Amazom.com Web site. The user computer includes a Web
browser 34, such as Microsoft Internet Explorer 4.0, that
Supports cookies.
0014) The Web site 30 includes a Web server 36 which
accesses a store 38 of HTML (Hypertext Markup Language)
documents. The Web site also includes one or more appli
cations 40 that are used to dynamically generate customized

US 2004/0103.197 A1

Web pages for users. The Web server 36 and the applications
40 may, for example, run on one or more physical Servers of
the Web site.

0.015 AS depicted by FIG. 1, the applications 40 access
one or more databases or other repositories 44 (collectively
“user database') that contain information about known users
of the Site. In the context of the Amazon.com Site, this
information may include, for example, user names and
identifiers, payment and Shipping information, Shopping
preference information (e.g., 1-Click Settings), Shopping cart
contents, group discount information, product recommen
dations, user purchase histories, and Service data (e.g.,
BookMatcher ratings). Different items within the user data
base 44 may be used by the applications 40 to customize
different Web pages or functions.
0016. The information stored in the user database 44 for
each user is in the form of multiple structures, STRUCT 1
through STRUCT N. The structures may include, for
example, lists, tables, arrays, variables, records, and other
types of elements. Each Structure includes one or more
primitives, where a primitive is a data element that does not
include a reference to another data element. For purposes of
illustration, it may be assumed that Some of these primitives
are in the form of non-character elements (such as 16-bit and
32-bit integers) that are used to customize frequently-ac
cessed Web pages.
0017 Previously, the process of dynamically customiz
ing Web pages for users has required the applications 40 to
frequently access the user database 44. For example, when
a known user would request the Site’s home page, informa
tion contained within the cookie (or cookies) transmitted
with the URL request would be used to look up in the
database 44 the user's name and certain preference infor
mation; this information would then be used to generate the
home page. AS described above, Such frequent accesses to
back-end databases can significantly degrade performance
as Seen by end users.
0.018. In accordance with the invention, the following
additional components are provided to reduce the need for
accesses to the user database 44. These components include
a host representation to cookie conversion module 50A
("host-to-cookie module'), a cookie to host representation
conversion module 50B (“cookie-to-host module”), and a
schema file 52. The conversion modules 50A, 50B may be
in the form of executable functions that can be called by the
applications.
0019. The schema file 52, which may alternatively be in
the form of a table or other data Structure, Specifies the user
database structures that have been Selected (typically by
application developers) to be included within cookies. (The
term “Schema,” as used herein, referS generally to the pattern
or arrangement of a collection of data elements.) Typically,
the Structures that are included are those which contain
relatively static user data that is used to customize fre
quently-accessed Web pages. AS described below, informa
tion about structures that are no longer in use (due to
application design changes) is retained within the Schema
file to support backward and forward compatibility. The
Schema file 52 thus acts as a specification of past and present
Schemas used to generate cookies.
0020. The schema file 52 is preferably stored in local
Storage 56 of the physical server(s) that run the applications

May 27, 2004

40. For example, where the applications are replicated
acroSS multiple physical Servers, the Schema file 52 may be
Stored on the hard drive of each Such Server, and may be
cached in the Server's RAM to increase performance.
0021. In operation, the conversion modules 50A, 50B
perform the task of converting Selected Structures of the user
database 44 (preferably those used for the customization of
popular Web pages) between the host representation and a
cookie representation. During the cookie generation process,
the host-to-cookie conversion module 50A is invoked to
convert Selected database Structures for a particular user into
a cookie to be Stored on the user's computer, during this
process, the Schema file 52 is accessed to determine which
of the Specific structures (or primitives thereof) are to be
included within the cookie.

0022. When the cookie is subsequently returned with a
URL request, the cookie-to-host module 50B is invoked to
convert the cookie back to the host representation used by
the applications 40. During the decoding process, the
Schema file 52 is used to determine the content and format
of the embedded structure data. In addition, the schema file
52 is used to determine whether any of the structures
contained within the cookie is no longer valid; if any Such
Structure exists, it need not be fully decoded. The Structures
that are extracted from the cookie are Stored in local Storage
56 while they are used by the applications 44, and are then
deleted. Typically, the extracted information is used to
customize one or more Web pages, but the information could
also or alternatively be used to perform other types of
user-specific functions (e.g., authentication).
0023. In one implementation of the disclosed system,
structures that use primitive datatypes of 8, 16, and 32 bit
integers and null-terminated ASCII Strings are Supported. In
other implementations of the disclosed design, more com
plex Structures Such as nested or croSS-referenced Structures
could be stored.

0024. The content of the schema file 52 will now be
described in further detail with reference to FIG. 1. As
illustrated, the Schema file 52 includes a global Schema
version number 58 (SCHEMA VER) which, as described
below, is incremented when certain types of changes are
made to the schema. The schema file 52 also includes a
Sequence of Structure entries 60, each of which corresponds
to a particular database Structure that has been Selected for
inclusion. Each entry 60 includes a structure definition
portion 60A and a valid version range portion 60B. The
structure definition portion 60A contains the metadata for
the corresponding Structure, including a list of the primitive
fields of the Structure and their datatypes and address offsets.
0025 The valid version range 60B specifies the range of
Schema version numbers for which the corresponding Struc
ture is valid, and consists of an upper bound and a lower
bound. Since the deletion of a structure is rarely planned in
advance, the upper bound of the valid version range 60B for
a structure is preferably Set to be unlimited. AS discussed
below, a structure can be retired by incrementing the global
schema version number 58 and setting the upper bound of
the valid version range 60B of the structure to be less than
the new global version number.
0026. To support the ability to read both old and new
cookies, the Schema file 52 is modified according to the
following Set of rules.

US 2004/0103.197 A1

0027 1. The set of data elements specified within a
structure definition 60A cannot be modified.

0028 2. No insertions into, or deletions from, the
Sequence of Structure entries 60 are permitted.

0029. 3. A new structure can be added to the schema
by adding a new entry 60 to the Sequence and
incrementing the global Schema version number.

0030 4. To retire a structure, the upper bound of the
structure's version range 60B is set to the current
global version number 58, and all deployed applica
tion Software is updated to reflect this change. The
global version number 58 is then incremented.

0031) These rules may be followed “by hand” by devel
oper(s) during manual editing of the Schema file 52. Alter
natively, a Special management layer could be provided
which enforces these rules.

0.032 FIG. 2 illustrates a preferred sequence of steps that
are implemented by the host-to-cookie module 50A to
translate the Sequence of Structures to a cookie format. All
but the final step 90 of this process can optionally be
performed in an off-line mode, rather than in response to a
URL request, to reduce the delay experienced by the user.
0033. The first step 78 of the process involves accessing
the schema file 52 to identify the structures to be included
within the cookie. This involves identifying the structures
listed in the schema file 52 that are currently valid (i.e., have
a valid version number range 60B which includes the global
schema version number 58).
0034. In step 80, each valid structure is read from the user
database 44, and the primitive elements of the Structure are
sequentially written in their network byte order. Conven
tional NTOHL and HTONL families of functions may be
used for this purpose. Putting the primitives in network byte
order allows machines having different endian architectures
to be used for generating and decoding cookies. The result
of step 80 is a variable-length sequence of bytes which
represents the primitive elements of the valid structures.
0035) In step 82, a checksum is computed for the result
ing Sequence of bytes. A 32-bit checksum may be used for
this purpose. The checksum provides a mechanism for later
determining whether the cookie has been modified. The
checksum, global version number 58, and the length of the
Sequence are then prepended or otherwise attached to the
byte Sequence (step 84), with these values being again
written in network byte order. In step 86, the resulting
Sequence is encrypted using a Standard encryption library
(not shown).
0.036 AS indicated by step 88, the resulting, encrypted
byte Sequence is then translated into a character String. This
is preferably accomplished by dividing the Sequence of
bytes into a sequence of six-bit values (padding the sequence
as needed to provide even divisibility), and converting each
Six-bit value into a base-64 digit. The character Set used for
this purpose consists of the numbers 0-9, all upper-case and
lower-case alphabetical characters, and the characters “G”
and "?.” Any of a variety of other character sets and
conversion Schemes could be used for this purpose.
0037 Finally, in step 90, the resulting character string is
written to the corresponding user's computer 32 as the value

May 27, 2004

portion of a cookie. AS is conventional, the cookie is written
by including a Set-Cookie header within an HTTP response
to the browser 34. The user's structures that are written to
the cookie are preferably retained within the user database
44, but could alternatively be deleted to reduce server
Storage burden.

0038. When the cookie is subsequently transmitted to the
Web server 36 as part of a URL request, the cookie-to-host
conversion module 50B applies the above steps in reverse
order to convert the character String back to the original host
representation. As depicted by FIG. 3, the first step 100 of
this process involves decoding the character String to repro
duce the encrypted byte Sequence. The encrypted byte
Sequence is then decrypted (step 102) using the same
encryption library and key used for encryption. At this point,
the length, Version number, checksum and data are available
in network byte order.

0039. As represented by step 104, a checksum is then
computed for the extracted data portion, and this checksum
is compared to the extracted checksum to determine whether
the cookie Value was modified. If a mismatch occurs, the
cookie is ignored (steps 106 and 108); in this event, the user
database 44 may be accessed to retrieve the desired user
data.

0040. Otherwise, the structures are “inflated” to their host
representation according to the information contained within
the schema file, and are written to local storage 56 (steps 110
and 112) for use by the applications. During this process, the
version number contained within the cookie is compared to
the valid version ranges 60B of the schema file 52 (step 110).
If the version number is within or exceeds the valid range of
a schema entry 60, that structure is inflated from the byte
Structure; otherwise, there is no data Stored within the cookie
for that Structure, and the Structure is skipped and marked as
uninitialized (step 112).
0041. The above scheme allows values stored in old
versions of cookies to be readby new versions of application
Software. If the cookie predates the addition of a structure to
the end of the Schema Sequence, that Structure is simply
marked as uninitialized So that it can be treated as Such by
the new application Software. If a structure has been deac
tivated (retired), the data from an old cookie will still be read
but may then be ignored by the new application Software.
Further, cookies associated with new versions of application
Software can be read by old versions of the software.
0042. As will be appreciated by the foregoing, the
Schema used to generate each cookie could alternatively be
incorporated into that cookie. Doing So, however, increases
the cookie Size, and can decrease performance. The above
described approach of keeping track of the current and past
Schemas in a Schema file or other Server data structure is
therefor preferred. It will also be recognized that the infor
mation stored within the Schema file 52 could be distributed
acroSS multiple different files or data structures and/or
represented in a different form.

0043 Although this invention has been described in
terms of certain preferred embodiments, other embodiments
that are apparent to those or ordinary skill in the art are also
within the scope of this invention.

US 2004/0103.197 A1

What is claimed is:
1. A System for Servicing web page requests, the System

comprising a Server that responds to user requests for web
pages, said Server comprising a memory;

Schema data Stored in the memory of the Server, Said
Schema data Specifying past and present Schemas used
to encode data structures into cookies Stored on user
computers,

a conversion component executed by the Server, Said
conversion component configured to use the Schema
data to identify and decode the data Structures encoded
within cookies received from user computers to gen
erate temporary data Structures within the memory of
the Server; and

application code executed by the Server, Said application
code configured to use the temporary data Structures to
customize web pages requested by the user computers.

2. The System of claim 1; wherein the conversion com
ponent is not Specific to a particular type of data Structure.

3. The system of claim 1, wherein the conversion com
ponent Supports a plurality of different types of data Struc
tureS.

4. The System of claim 1, wherein the Schema data
Specifies the content and format of each of a plurality of data
Structures that are encoded within the cookies.

5. The system of claim 1, wherein the schema data
includes, for a given data Structure that is encoded within
cookies, an identification of primitive fields of the given data
Structure and datatypes of Said primitive fields.

6. The system of claim 5, wherein the schema data further
includes address offsets of the primitive fields.

7. The system of claim 1, wherein the schema data
includes, for a given data Structure that is encoded within
cookies, an indication of a range of Schema versions for
which the data Structure is valid, wherein the conversion
component uses Said range to determine whether a particular
data Structure encoded within a cookie is valid.

8. The system of claim 1, wherein the schema data
includes information about at least one data Structure that is
no longer in use.

9. The system of claim 1, wherein the conversion com
ponent uses the Schema data to determine which of a Set of
the data Structures encoded within a received cookie are to
be decoded for use.

10. The system of claim 1, wherein the conversion com
ponent uses the Schema data to determine whether a par
ticular data Structure that is encoded within a received
cookie is to be decoded for use.

11. The system of claim 1, wherein the conversion com
ponent is an executable function that is called by the
application code.

12. The System of claim 1, wherein the Schema data is
cached with random access memory of the Server.

13. The system of claim 1, wherein the schema data is
stored within a file in the memory of the server.

14. The system of claim 1, wherein the schema data is
stored within a table in the memory of the server.

15. The system of claim 1, wherein the conversion com
ponent uses a checksum included within a received cookie
to evaluate whether the cookie has been modified.

May 27, 2004

16. The system of claim 1, wherein the conversion com
ponent applies a decryption algorithm to encrypted infor
mation contained in the cookies received from the user
computers.

17. The System of claim 1, further comprising an encoding
component that encodes data Structures into cookies accord
ing to a current Schema Specified by the Schema data.

18. A method of extracting information from cookies, the
method comprising

(a) receiving, at a server, cookie data that has a data
Structure encoded therein, Said cookie data received
from a user computer;

(b) determining whether the data structure encoded within
the cookie data is valid; and

(c) if and only if the data structure encoded within the
cookie data is determined to be valid in Step (b),
decoding the encoded data Structure to reproduce the
data Structure within a memory of the Server.

19. The method of claim 18, wherein the validity of the
data structure as determined in Step (b) reflects whether the
data Structure is currently used by any applications running
on the Server.

20. The method of claim 18, wherein step (b) comprises
identifying a version of a Schema used to encode the data
Structure within the cookie data.

21. The method of claim 18, wherein step (b) comprises
using Schema data Stored within the memory of the Server to
determine whether the data structure is valid.

22. The method of claim 18, wherein a plurality of data
Structures are encoded within the cookie data, and the
method comprises determining which of the plurality of data
structures should be fully decoded.

23. The method of claim 18, further comprising using the
data structure as reproduced in Step (c) to customize a web
page requested by the user computer.

24. The method of claim 18, wherein step (c) is performed
by executable code that is not Specific to a particular type of
data Structure.

25. The method of claim 18, wherein the data structure
includes primitives of at least one of the following data
types: 16-bit integers, 32-bit integers.

26. A server system that performs the method of claim 18.
27. A computer program that embodies the method of

claim 18 Stored within a computer readable medium.
28. A method of generating cookie data for Storage on a

computer of a user, the method comprising:
identifying a set of data Structures to be encoded within

the cookie data;

encoding the Set of data Structures within the cookie data
according to Schema data Stored within a computer
memory, Said Schema data Specifying how the Set of
data Structures is to be encoded within the cookie data;
and

incorporating into the cookie data at least one of the
following to facilitate extraction of the Set of data
Structures from the cookie data: (a) a Schema identifier,
(b) the Schema data.

29. The method of claim 28, wherein the method com
prises incorporating the Schema data into the cookie data.

30. The method of claim 28, wherein the method com
prises incorporating a Schema identifier into the cookie data,

US 2004/0103.197 A1

Said Schema identifier identifying one of a plurality of
Schemas used over a period of time to encode data Structures
within cookie data.

31. The method of claim 28, wherein the set of data
Structures is encoded within the cookie data using execut
able code that is not specific to a particular type of data
Structure.

32. The method of claim 28, wherein the set of data
Structures includes noncharacter. primitives.

33. The method of claim 28, wherein the set of data
Structures includes primitives of at least one of the following
data types 16-bit integers, 32-bit integers.

34. The method of claim 28, further comprising incorpo
rating a checksum into the cookie data to permit Subsequent
detection of whether the cookie data has been modified.

35. The method of claim 28, wherein the method is
performed in an off-line mode to reduce a delay experienced
by a user.

36. A computer-readable medium comprising cookie data
generated according to the method of claim 28.

37. A computer System configured to perform the method
of claim 28.

38. A computer-readable medium that Stores a computer
program embodying the method of claim 28.

May 27, 2004

39. A method for using browser cookies to store structured
data, the method comprising:

Storing Schema data on at least one Server computer of a
Web Site System, Said Schema data Specifying Schemas
used by executable Software to (a) encode data struc
tures within cookies for Storage on user computers, and
(b) decode said cookies to extract the data structures
when the cookies are returned by the user computers,
and

modifying the Schema data over time to add data Struc
tures to, and remove data Structures from, a set of data
Structures encoded within cookies by the executable
Software.

40. The method of claim 39, wherein the schema data is
modified according to a set of rules to enable the executable
Software to decode cookies encoded using both past and
present Schemas.

41. The method of claim 40, wherein the rules are
enforced by a management layer.

42. The method of claim 39, wherein the executable
Software is not specific to a particular type of data Structure.

k k k k k

