

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2007/0290433 A1 Mushimoto et al.

Dec. 20, 2007 (43) Pub. Date:

(54) PAPER FEED CASSETTE

(75) Inventors:

Atsushi Mushimoto, Daito-shi (JP); Takahiro Naito, Daito-shi

Correspondence Address: **CROWELL & MORING LLP** INTELLECTUAL PROPERTY GROUP P.O. BOX 14300 WASHINGTON, DC 20044-4300

(73) Assignee:

Funai Electric Co., Ltd., Daito-shi

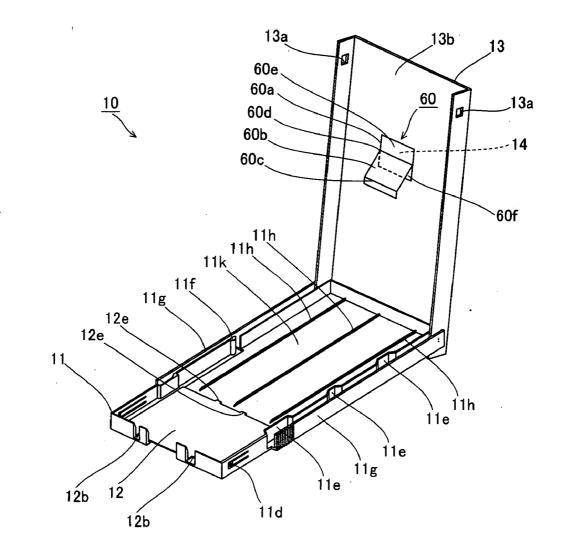
(21) Appl. No.:

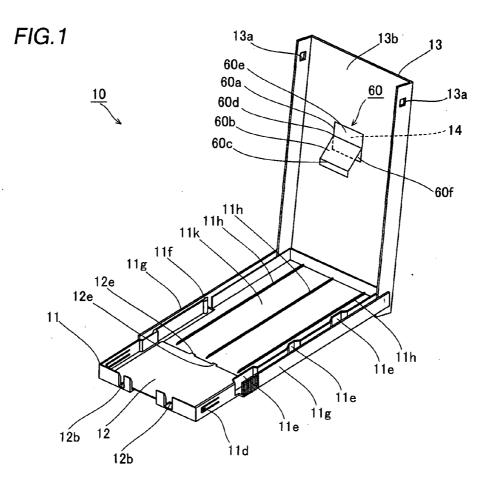
11/797,201

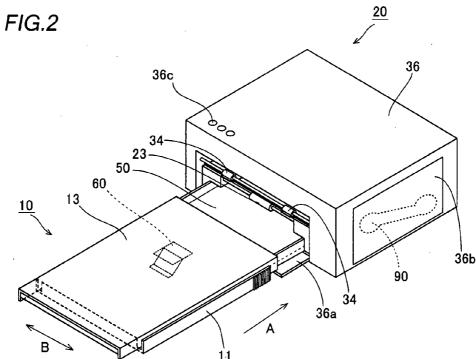
(22)Filed: May 1, 2007

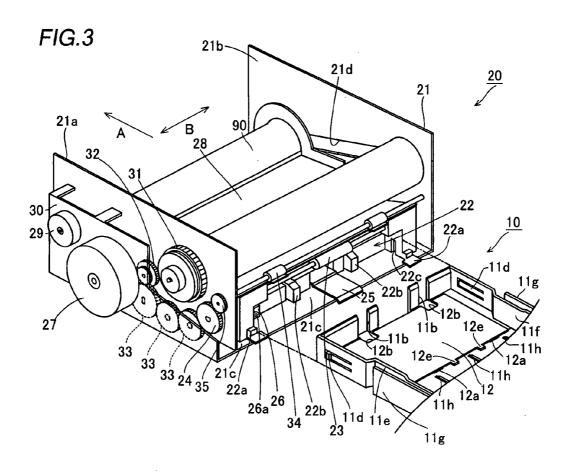
(30)Foreign Application Priority Data

Jun. 15, 2006 (JP) 2006-165661


Publication Classification


(51) Int. Cl. B65H 1/04


(2006.01)


ABSTRACT

A paper feed cassette includes a second press member for pressing the center in a width direction of an upper surface of a paper. The second press member integrally includes a flat portion mounted on the lower surface of the lid member, an inclined portion integrally bonded with the flat portion on a region other than an end in a lower surface of the flat portion, extending in an oblique direction toward an inner bottom surface of the cassette body, and having at least an elastically deformable bonding portion between the inclined portion and the flat portion and a press portion provided on a forward end of the inclined portion, and the press portion is brought into contact with the inner bottom surface of the cassette body when the lid member is arranged on the upper portion of the cassette body.

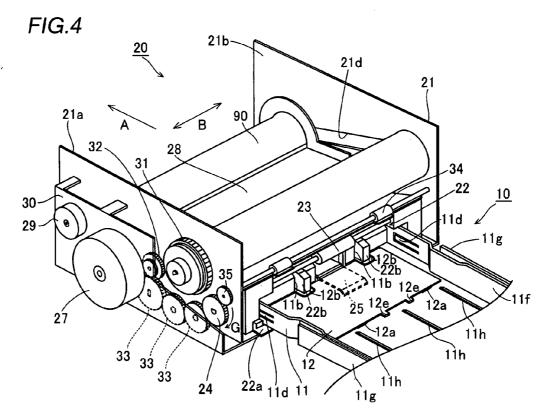


FIG.5

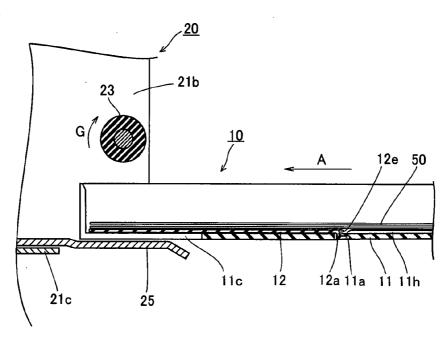
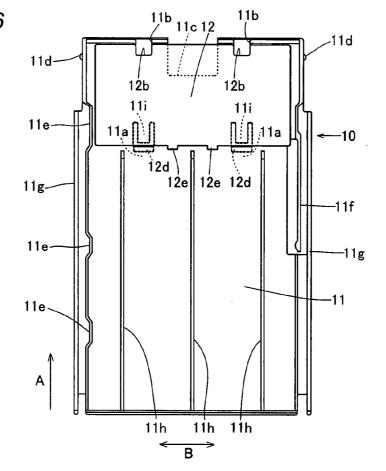
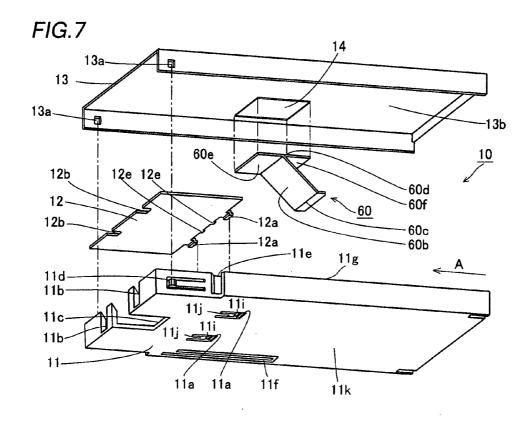




FIG.6

60a 60e 60d 60d 60d 60d

FIG.9

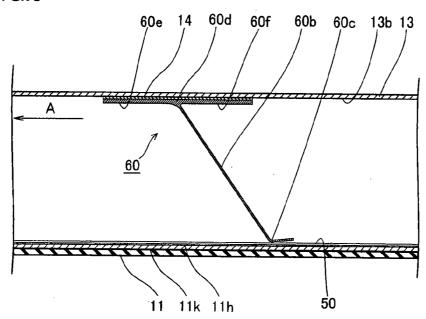


FIG.10

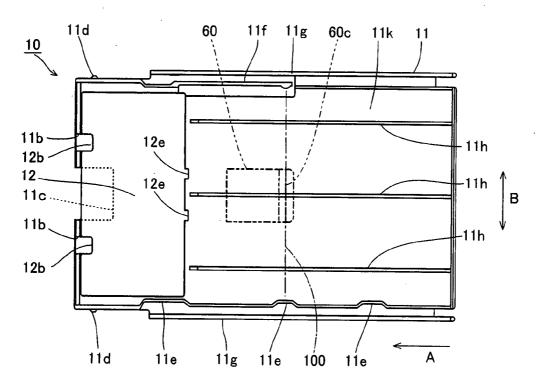
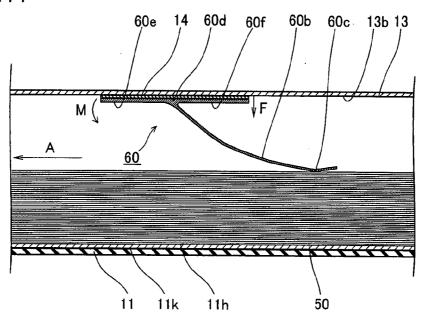



FIG.11

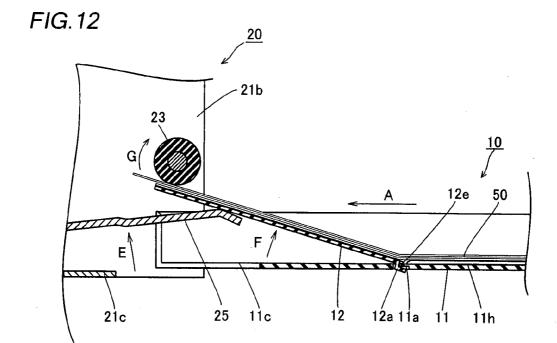
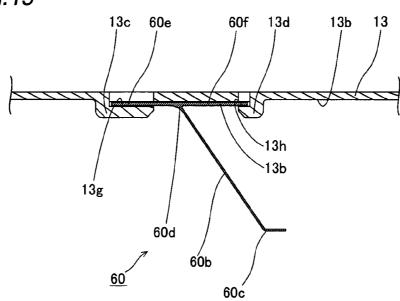



FIG.13

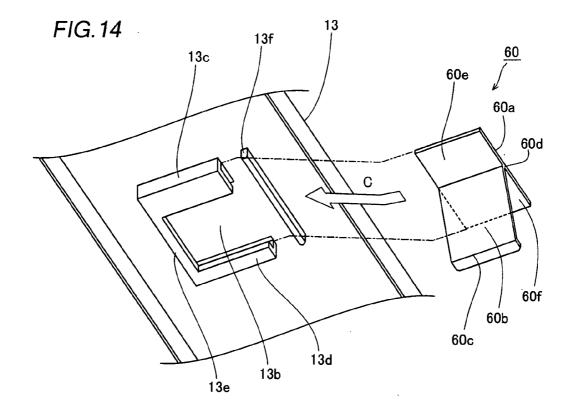


FIG. 15

13c 60a 13f 60d 60d 60d 13d 60f 13d 6

FIG.16

FIG.17

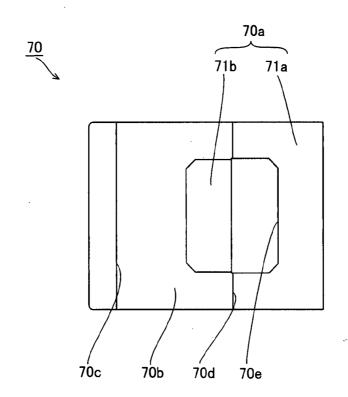


FIG.18

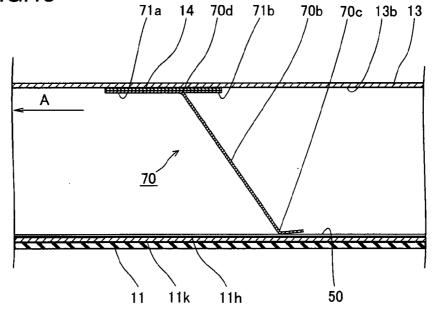


FIG.19

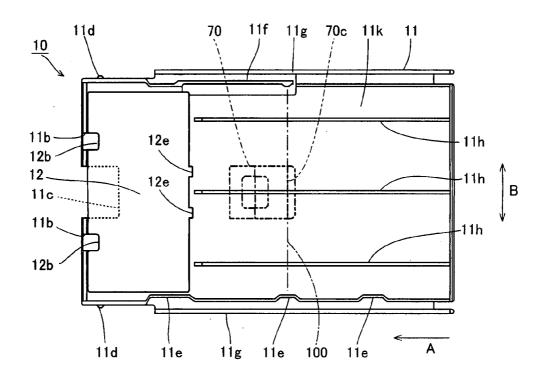


FIG.20

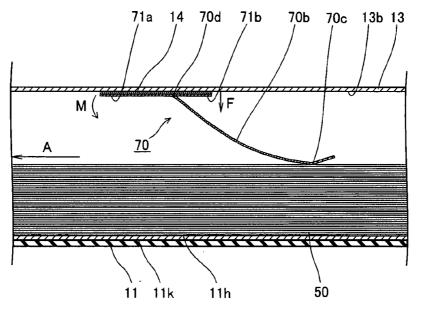


FIG.21

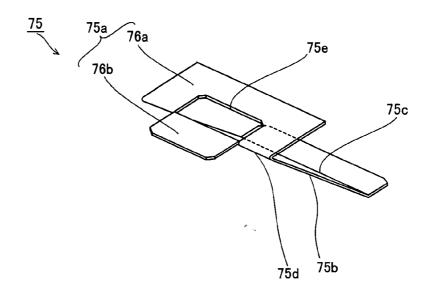


FIG.22

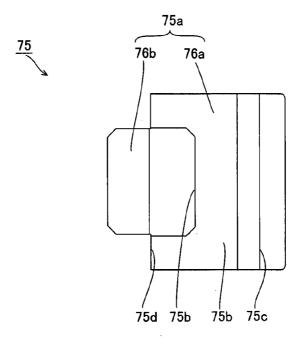


FIG.23

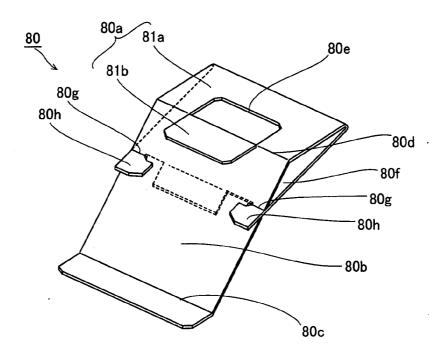


FIG.24

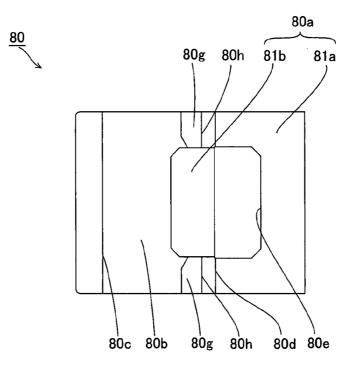


FIG.25

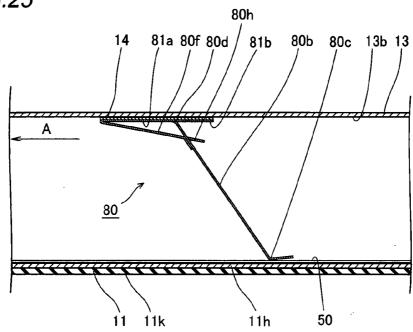


FIG.26

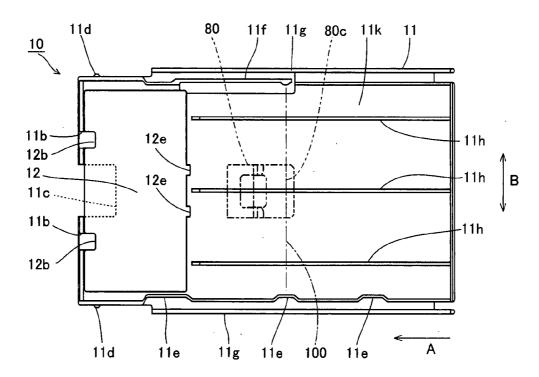


FIG.27

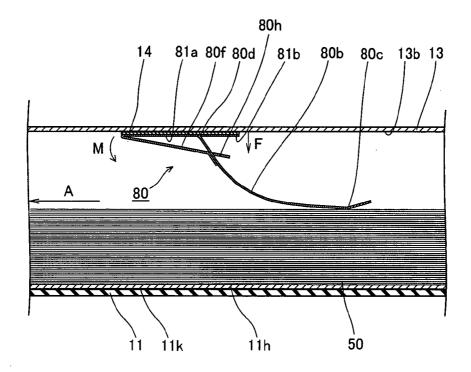


FIG.28

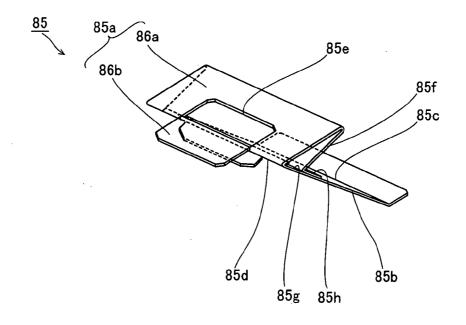
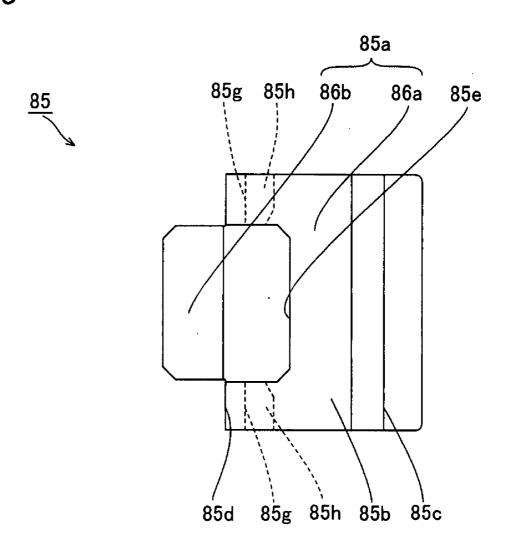



FIG.29

PAPER FEED CASSETTE

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates to a paper feed cassette, and more particularly, it relates to a paper feed cassette mounted on an image generating apparatus.

[0003] 2. Description of the Background Art

[0004] Paper feed cassettes mounted on image generating apparatuses are known in general, as disclosed in Japanese Patent Laying-Open Nos. 2002-332122, 2003-276863, 2004-83175 and 5-229676 (1993), for example.

[0005] The aforementioned Japanese Patent Laying-Open No. 2002-332122 discloses the paper feed cassette comprising a width approaching member (plate spring) pressing a side surface of a paper parallel to a paper feed direction of the paper stored in a paper tray to approach the paper to one side of the paper tray, and a rotatable lid covering an upper surface of the paper tray, in which a press member (plate spring) pressing a vicinity of both ends in a width direction of an upper surface of the paper is conceivably bonded to the inside of the lid. In the paper feed cassette, the press member (plate spring) pressing the upper surface of the paper against the inside of the lid is constituted by a flat portion mounted on the lid, a press portion pressing the upper surface of the paper when the lid is closed, and one inclined portion linking the flat portion and the press portion. A bonding portion between the inclined portion and the flat portion is provided on a first end of the flat portion.

[0006] The aforementioned Japanese Patent Laying-Open No. 2003-276863 discloses the paper feed cassette comprising wall portions (curl forcing portions) provided on ends of the paper tray storing a paper in a direction perpendicular to a paper feed direction of the paper, and a press member (plate spring) pulled up to an center in a width direction of a paper tray covering an upper surface of the paper and pressing the upper surface of the paper. The paper feed cassette is so formed as to properly curl the paper (form a curl) by pressing the ends of the paper downward with the wall portions (curl forcing portions) to feed the same in a paper feed roller while the press member (plate spring) properly pressing the upper surface of the paper downward is provided in order to avoid an excessive curl. The press plate and the spring member (coil spring) for urging the paper stored in the paper tray against the paper feed roller on a device body side are provided on the device body side, and the press plate and the spring member (coil spring) on the device body side press both the wall portions (curl forcing portions) and the press member (plate spring) on a paper tray side when the paper feed cassette is mounted on the device body.

[0007] The aforementioned Japanese Patent Laying-Open No. 2004-83175 discloses the paper feed cassette comprising a first press member (plate spring) pressing a side surface of a stored paper against an inner side surface of a paper tray to approach the paper to one side of the paper tray, and a second press member (plate spring) integrally formed on right and left inner side surfaces of the paper tray and pressing an upper surface of the paper. The paper feed cassette is so formed as to upwardly rotate a pushing up plate for urging the stored paper against a paper feed roller on a device body side for bringing the paper into contact with the

second press member (plate spring) on the upper surface of the paper in the case where the paper tray is mounted on the device body.

Dec. 20, 2007

[0008] The aforementioned Japanese Patent Laying-Open No. 5-229676 discloses the paper feed cassette comprising a paper tray, a rotatable lid covering an upper surface of a paper tray, and a roller rotating with carrying the paper while being in contact with an center in a width direction of an upper surface of a paper inside the lid at a small area. In the paper feed cassette, a spring member (coil spring) and a pushing up plate for pressing the paper stored in the plate paper tray against a roller mounted on a lid are provided on a bottom portion of the paper tray.

[0009] In the conventional paper feed cassette proposed in the aforementioned Japanese Patent Laying-Open No. 2002-332122, however, the press member (plate spring) pressing the upper surface in the vicinity of the end in the width direction of the paper is integrally formed on the left and right inner surfaces of the paper tray, whereby the center in the width direction of the paper is not pressed, and the paper is disadvantageously likely to be curved (warped) at the center in the width direction thereof. Thus, the paper feed cassette does not eliminate the warpage in the width direction of the paper, whereby the paper is disadvantageously likely to be carried in a direction oblique to a carrying direction due to the warpage in the width direction of the paper. In the paper feed cassette proposed in the aforementioned Japanese Patent Laying-Open No. 2002-332122, in the case where the lid is closed in a state where a large number of papers are stored in the paper tray, loads from the papers and the above thereof is applied to the press member (plate spring) by coming into contact with the papers, and the inclined portion is further warped in a fallen direction, thereby causing deformation. In this case, in the case where the press member is bonded to the inside of the lid with a bonding layer, bending moment occurs in the bonding portion between the flat portion and the inclined portion of the press member (plate spring) about the bonding portion of an end of the flat portion of the press member (plate spring) and the inclined portion as a central axis, and the flat portion is always urged in a direction (downward) for peeling from the inside of the lid. Thus, in the case where the press member presses a large number of papers, the flat portion disadvantageously peels and comes off from a lower surface of the lid as time advances.

[0010] In the conventional paper feed cassette proposed in the aforementioned Japanese Patent Laying-Open No. 2003-276863, the press member (plate spring) pressing the upper surface of the paper suppresses the excessive curl (warpage) in the width direction of the paper and does not eliminate the warpage in the width direction of the paper, whereby the paper is disadvantageously likely to be carried in the direction oblique to the carrying direction due to the warpage in the width direction of the paper.

[0011] In the conventional paper feed cassette proposed in the aforementioned Japanese Patent Laying-Open No. 2004-83175, the second press member (plate spring) pressing the upper surface in the vicinity of the end in the width direction of the paper is integrally formed on the right and left inner side surfaces of the paper tray, whereby the curvature (warpage) is disadvantageously likely to occur in the center in the width direction of the paper. Thus, the paper is

US 2007/0290433 A1

disadvantageously likely to be carried in the direction oblique to the carrying direction due to the warpage in the width direction of the paper.

[0012] In the conventional paper feed cassette proposed in the aforementioned Japanese Patent Laying-Open No. 5-229676, the spring member (coil spring) and the pushing up plate for pressing the paper stored in the paper tray against the roller mounted on the lid is required in addition to the roller, whereby the number of components is disadvantageously increased.

SUMMARY OF THE INVENTION

[0013] The present invention has been proposed in order to solve the aforementioned problems, and an object of the present invention is to provide a paper feed cassette capable of suppressing curvature (warpage) in a width direction of a paper for inhibiting the paper from being carried in an oblique direction, and inhibiting a press member pressing the paper from coming off from a paper feed cassette also in a state of a large number of the papers, while inhibiting the number of components from increase.

[0014] A paper feed cassette according to a first aspect of the present invention comprises a cassette body mounted on an image generating apparatus including a paper feed roller and storing a paper, a first press member provided on at least a first side surface inside the cassette body and pressing a side surface of the paper when the paper is stored, a lid member arranged on an upper portion of the cassette body, and a second press member provided independently of the lid member, mounted on a lower surface of the lid member, and pressing the vicinity of the center in a width direction of an upper surface of the paper stored in the cassette body, wherein the second press member integrally includes a flat portion mounted on the lower surface of the lid member, an inclined portion integrally bonded with the flat portion on a region other than an end in a lower surface of the flat portion, extending in an oblique direction toward an inner bottom surface of the cassette body, and having at least an elastically deformable bonding portion between the inclined portion and the flat portion, and a press portion provided on a forward end of the inclined portion, and the press portion is brought into contact with the inner bottom surface of the cassette body when the lid member is arranged on the upper portion of the cassette body.

[0015] In the paper feed cassette according to the first aspect, as hereinabove described, the second press member integrally includes the inclined portion integrally bonded with the flat portion on the region other than the end in the lower surface of the flat portion mounted on the lower surface of the lid member, extending in an oblique direction toward an inner bottom surface of the cassette body, and having at least an elastically deformable bonding portion between the inclined portion and the flat portion, whereby in the case where bending moment occurs about the bonding portion between the inclined portion and the flat portion of the second press member as a central axis with reaction from the papers when the second press member presses the papers in a state of a large number of the papers, a region of the flat portion in which an angle formed by the inclined portion and the flat portion is an acute angle can generate reaction having a direction to counteract the aforementioned bending moment. Thus, also in the case of a large number of the papers, the flat portion can be inhibited from peeling and coming off from the lower surface of the lid member. The second press member is so formed as to press the vicinity of the center in the width direction of the upper surface of the paper stored in the cassette body, whereby the second press member can press the center in the width direction of the upper surface of the paper, and hence curvature (warpage) in the width direction of the paper can be effectively suppressed. Thus, the paper can be inhibited from being carried in the oblique direction due to the warpage in the width direction of the paper. In addition, the second press member integrally includes the flat portion mounted on the lower surface of the lid member, the inclined portion integrally bonded with the flat portion on the region other than the end in the lower surface of the flat portion, and the press portion provided on the forward end of the inclined portion, and the press portion is so formed as to come into contact with the inner bottom surface of the cassette body when the lid member is located on an upper portion of the cassette body. Thus, no push up mechanism for bringing the upper surface of the paper into contact with the press portion may be provided below the paper, whereby the number of components can be inhibited from increase.

Dec. 20, 2007

[0016] In the aforementioned paper feed cassette according to the first aspect, the press portion is preferably so formed as to have a substantially L-shaped section and linearly press the paper with a corner of the L-shape. According to this structure, the contact area between the paper and the press portion can be reduced, thereby allowing reduce in frictional resistance between the paper and the press portion. Thus, it is possible to suppress a paper feed error caused by the frictional resistance between the paper and the press portion in paper feeding, thereby allowing smooth paper feeding.

[0017] In the aforementioned paper feed cassette according to the first aspect, the flat portion of the second press member is preferably mounted on the lower surface of the lid member with an adhesive layer. According to this structure, the second press member can be easily mounted on the lid member.

[0018] In the aforementioned paper feed cassette according to the first aspect, the inclined portion is preferably bonded at the substantial center of the flat portion. According to this structure, it is possible to increase the area of the region generating the reaction having the direction to counteract the bending moment in pressing the paper with the second press member. Thus, the flat portion can be reliably inhibited from peeling and coming off from the lower surface of the lid member.

[0019] In the aforementioned paper feed cassette according to the first aspect, the flat portion of the second press member preferably includes a first flat portion on the right and a second flat portion on the left, between which a bonding line between the flat portion and the inclined portion is a boundary line, and the second flat portion is preferably formed by providing a U-shaped cutout portion in a prescribed region of a bonding portion between the first flat portion and the inclined portion and folding back an inner region of the U-shaped cutout portion of the first flat portion along the bonding line of the bonding portion. According to this structure, a structure in which the inclined portion is integrally bonded on the region other than the end in the lower surface of the flat portion can be easily obtained.

[0020] In this case, the second press member preferably includes a support portion integrally coupled with the first flat portion on an end of the first flat portion, extending in an

Dec. 20, 2007

oblique direction toward the inclined portion, and supporting the inclined portion. According to this structure, the inclined portion of the second press member is supported by the support portion, thereby improving rigidity of the inclined portion. Thus, in the case where the second press member presses the papers especially in a state of a large number of the papers, displacement (deforming degree) of the inclined portion in the bonding portion between the inclined portion and the first flat portion can be reduced, whereby a basic form of the inclined portion can be easily held.

[0021] In the aforementioned paper feed cassette according to the first aspect, the bonding portion between the inclined portion and the flat portion of the second press member is preferably so formed as to have a thickness larger than those of the inclined portion and the flat portion. According to this structure, the mechanical strength of the bonding portion is improved, whereby the bonding portion can be inhibited from breaking also in the case where stress is applied to the bonding portion due to the deformation of the inclined portion when the press portion of the second press member presses the paper.

[0022] In the aforementioned paper feed cassette according to the first aspect, the second press member may be mounted on the lower surface of the lid member such that the inclined portion of the second press member is inclined from the bonding portion between the inclined portion and the flat portion toward a direction opposite to a paper feed direction of the paper.

[0023] In the aforementioned paper feed cassette according to the first aspect, an engaging portion engaging with the flat portion of the second press member is preferably integrally provided on the lower surface of the lid member. According to this structure, the second press member can be mounted on the lid member by engaging the flat portion of the second press member with the engaging portion of the lid member without increasing the number of the component.

[0024] In the aforementioned paper feed cassette according to the first aspect, the press portion of the second press member is preferably arranged substantially on a line of action of pressing force in pressing the paper with the first press member in plan view. According to this structure, the first press member can press the paper in the width direction and the second press member can press the upper surface of the paper along the line of action of the pressing force of the first press member in pressing the paper. Therefore, curvature (warpage) in the width direction of the paper can be reliably suppressed. Thus, the paper can be reliably inhibited from being carried in the oblique direction due to the warpage in the width direction of the paper.

[0025] A paper feed cassette according to a second aspect of the present invention comprises a cassette body mounted on an image generating apparatus including a paper feed roller and storing a paper, a lid member arranged on an upper portion of the cassette body, a first press member provided on at least a first side surface inside the cassette body and pressing a side surface of the paper when the paper is stored, and further comprises a second press member provided independently of the lid member, mounted on a lower surface of the lid member, and pressing the vicinity of the center in a width direction of an upper surface of the paper stored in the cassette body, wherein the second press member integrally includes a flat portion mounted on the lower surface of the lid member, an inclined portion integrally

bonded with the flat portion on a region other than an end in a lower surface of the flat portion, extending in an oblique direction toward an inner bottom surface of the cassette body, and having at least an elastically deformable bonding portion between the inclined portion and the flat portion, and a press portion provided on a forward end of the inclined portion, the press portion is brought into contact with the inner bottom surface of the cassette body when the lid member is arranged on the upper portion of the cassette body, the press portion is so formed as to have a substantially L-shaped section and linearly press the paper with a corner of the L-shape, the flat portion of the second press member is mounted on the lower surface of the lid member with an adhesive layer, and the inclined portion is bonded at the substantial center of the flat portion.

[0026] The paper feed cassette according to the second aspect, as hereinabove described, the second press member integrally includes the inclined portion integrally bonded with the flat portion on the region other than the end in the lower surface of the flat portion mounted on the lower surface of the corner member, extending in an oblique direction toward an inner bottom surface of the cassette body, and having at least an elastically deformable bonding portion between the inclined portion and the flat portion, whereby in the case where bending moment occurs about the bonding portion between the inclined portion and the flat portion of the second press member as a central axis with reaction from the papers when the second press member presses the papers in a state of a large number of the papers, a region of the flat portion in which an angle formed by the inclined portion and the flat portion is an acute angle can generate reaction having a direction to counteract the aforementioned bending moment. Thus, also in the case of a large number of the papers, the flat portion can be inhibited from peeling and coming of f from the lower surface of the lid member. The second press member is so formed as to press the vicinity of the center in the width direction of the upper surface of the paper stored in the cassette body, whereby the second press member can press the center in the width direction of the upper surface of the paper, and hence curvature (warpage) in the width direction of the paper can be effectively suppressed. Thus, the paper can be inhibited from being carried in the oblique direction due to the warpage in the width direction of the paper. In addition, the second press member integrally includes the flat portion mounted on the lower surface of the lid member, the inclined portion integrally bonded with the flat portion on the region other than the end in the lower surface of the flat portion, and the press portion provided on the forward end of the inclined portion, and the press portion is so formed as to come into contact with the inner bottom surface of the cassette body when the lid member is located on the upper portion of the cassette body. Thus, no push up mechanism for bringing the upper surface of the paper into contact with the press portion may be provided below the paper, whereby the number of components can be inhibited from increase.

[0027] In the aforementioned paper feed cassette according to the second aspect, the bonding portion between the inclined portion and the flat portion of the second press member is preferably so formed as to have a thickness larger than those of the inclined portion and the flat portion. According to this structure, the mechanical strength of the bonding portion is improved, whereby the bonding portion can be inhibited from breaking also in the case where stress

is applied to the bonding portion due to the deformation of the inclined portion when the press portion of the second press member presses the paper.

[0028] In the aforementioned paper feed cassette according to the second aspect, the second press member may be mounted on the lower surface of the lid member such that the inclined portion of the second press member is inclined from the bonding portion between the inclined portion and the flat portion toward a direction opposite to a paper feed direction of the paper.

[0029] In the aforementioned paper feed cassette according to the second aspect, an engaging portion engaging with the flat portion of the second press member is preferably integrally provided on the lower surface of the lid member. According to this structure, the second press member can be mounted on the lid member by engaging the flat portion of the second press member with the engaging portion of the lid member without increasing the number of the component.

[0030] In the aforementioned paper feed cassette according to the second aspect, the press portion of the second press member is preferably so formed as to be arranged substantially on a line of action of pressing force in pressing the paper with the first press member in plan view. According to this structure, the first press member can press the paper in the width direction and the second press member can press the upper surface of the paper along the line of action of the pressing force of the first press member in pressing the paper. Therefore, curvature (warpage) in the width direction of the paper can be reliably suppressed. Thus, the paper can be reliably inhibited from being carried in the oblique direction due to the warpage in the width direction of the paper.

[0031] The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] FIG. 1 is a perspective view showing an overall structure of a paper feed cassette according to a first embodiment of the present invention;

[0033] FIG. 2 is a perspective view showing an overall structure of a dye sublimation printer mounted with the paper feed cassette according to the first embodiment of the present invention shown in FIG. 1;

[0034] FIGS. 3 and 4 are perspective views showing an internal structure of the paper feed cassette according to the first embodiment of the present invention shown in FIG. 1 and the dye sublimation printer;

[0035] FIG. 5 is a sectional view of the paper feed cassette according to the first embodiment of the present invention shown in FIG. 1 and the dye sublimation printer;

[0036] FIG. 6 is a plan view of a cassette body of the paper feed cassette according to the first embodiment of the present invention shown in FIG. 1;

[0037] FIG. 7 is an exploded perspective view of the paper feed cassette according to the first embodiment of the present invention shown in FIG. 1;

[0038] FIG. 8 is a perspective view showing a structure of a second press member according to the first embodiment of the present invention shown in FIG. 1;

[0039] FIG. 9 is a sectional view showing a structure of the second press member according to the first embodiment of the present invention shown in FIG. 1;

[0040] FIG. 10 is a plan view showing a mounting position of the second press member according to the first embodiment of the present invention shown in FIG. 1 on the paper feed cassette;

[0041] FIG. 11 is a sectional view showing the pressed second press member according to the first embodiment of the present invention shown in FIG. 1;

[0042] FIG. 12 is a sectional view for illustrating a paper feed operation of the paper feed cassette according to the first embodiment of the present invention shown in FIG. 1 and the dye sublimation printer;

[0043] FIG. 13 is a sectional view showing a mounting structure of the second press member according to a modification of the first embodiment of the present invention on the paper feed cassette;

[0044] FIG. 14 is a perspective view showing a method of mounting the second press member on the paper feed cassette according to a modification of the first embodiment of the present invention;

[0045] FIG. 15 is a perspective view showing the second press member according to the modification of the first embodiment of the present invention, which is mounted on the paper feed cassette;

[0046] FIG. 16 is a perspective view showing a structure of a second press member according to a second embodiment of the present invention;

[0047] FIG. 17 is a plan view showing a structure of a second press member according to the second embodiment of the present invention;

[0048] FIG. 18 is a sectional view showing a structure of a second press member according to the second embodiment of the present invention;

[0049] FIG. 19 is a plan view showing a mounting position of the second press member according to the second embodiment of the present invention on the paper feed cassette:

[0050] FIG. 20 is a sectional view showing the pressed second press member according to the second embodiment of the present invention;

[0051] FIG. 21 is a perspective view showing a structure of the second press member according to a modification of the second embodiment of the present invention;

[0052] FIG. 22 is a plan view showing a structure of the second press member according to the modification of the second embodiment of the present invention;

[0053] FIG. 23 is a perspective view showing a structure of a second press member according to a third embodiment of the present invention;

[0054] FIG. 24 is a plan view showing a structure of a second press member according to the third embodiment of the present invention;

[0055] FIG. 25 is a sectional view showing a structure of a second press member according to the third embodiment of the present invention;

[0056] FIG. 26 is a plan view showing a mounting position of the second press member according to the third embodiment of the present invention to the paper feed cassette;

[0057] FIG. 27 is a sectional view showing the pressed second press member according to the third embodiment of the present invention;

[0058] FIG. 28 is a perspective view showing a structure of a second press member according to a modification of the third embodiment of the present invention; and

[0059] FIG. 29 is a plan view showing a structure of the second press member according to the modification of the third embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0060] Embodiments of the present invention will be hereinafter described with reference to the drawings.

First Embodiment

[0061] With reference to FIGS. 1 to 10, a structure of a paper feed cassette according to a first embodiment of the present invention will be now described. According to the embodiment, the present invention is applied to the paper feed cassette of a dye sublimation printer which is an exemplary image generating apparatus.

[0062] A paper feed cassette 10 according to the first embodiment of the present invention is so formed as to be detachably mounted on a dye sublimation printer 20 as shown in FIG. 2.

[0063] The paper feed cassette 10 comprises a cassette body 11 made of resin, a lift member 12 made of resin and a lid member 13 made of resin as shown in FIGS. 1 and 2. The lid member 13 made of resin is provided for inhibiting dust or the like from adhering to papers 50 and slidably mounted on the cassette body 11 as shown in FIG. 2. As shown in FIGS. 3 to 7, the cassette body 11 has a pair of engaging portions 11a (see FIG. 5) rotatably engaged with the lift member 12, a pair of notches 11b for relieving an after-mentioned pair of paper separating walls 22b, a notch 11c for relieving after-mentioned push-up member 25, a pair of mounting portions 11d elastically deformably engaged with a dye sublimation printer 20 in mounting the paper feed cassette 10, three projecting portions 11e for aligning a position in a direction B (see FIG. 3) of the papers 50 (see FIG. 2), a first press member 11f for urging the papers 50 (see FIG. 2) against the projecting portions 11e, guide portions 11g slidably guiding the lid member 13 with respect to the cassette body 11, and three ribs 11h extending in a paper feed direction (along arrow A in FIG. 3) for supporting the papers 50 (see FIG. 2).

[0064] As shown in FIG. 6, the pair of mounting portions 11d is integrally provided on the cassette body 11 of the paper feed cassette 10 so as to have outer protrusions protruding from outer side surfaces of the cassette body 11 of the paper feed cassette 10 respectively. Each mounting portions lid has a function of fixing the paper feed cassette 10 to the dye sublimation printer 20 by engaging with an after-mentioned mounting portion 22c of the dye sublimation printer 20 when the paper feed cassette 10 is mounted on the dye sublimation printer 20. Each of the three ribs 11h has a function as a guide for carrying the papers 50 (see FIG. 2) in paper feeding and is so formed as to extend from a rear end of the cassette body 11 to the vicinity of a pair of engaging portions 11a of the cassette body 11.

[0065] According to the first embodiment, receiving holes 11*i* receiving the engaging portions 12*a* of the lift member 12 respectively and plate springs 11*j* integrally provided in the cassette body 11 so as to adjacent to the receiving holes 11*i* respectively are provided on a bottom portion of the

cassette body 11 as shown in FIG. 1 and FIGS. 3 to 7. The lift member 12 is so formed as to engage with the engaging portions 11a of the cassette body 11 through the receiving holes 11i by utilizing deflection of the plate springs 11j. The lift member 12 has the pair of engaging portions 12a engaging with the pair of engaging portions 11a of the cassette body 11 and the pair of notches 12b for relieving the pair of paper separating walls 22b when the paper feed cassette 10 is mounted on the dye sublimation printer 20, as shown in FIG. 1 and FIGS. 3 to 7.

Dec. 20, 2007

[0066] As shown in FIGS. 1 and 7, the lid member 13 has mount engaging portions 13a engaging with the mounting portions lid of the cassette body 11 when the lid member 13 is mounted on the cassette body 11. When the paper feed cassette 10 is not mounted on the dye sublimation printer 20, the mount engaging portions 13a of the lid member 13 engage with the mounting portions lid of the cassette body 11. On the other hand, when the paper feed cassette 10 is mounted on the dye sublimation printer 20, a user detaches the mount engaging portions 13a of the lid member 13 from the mounting portions lid of the cassette body 11 respectively as shown in FIG. 4. Then the paper feed cassette 10 is mounted on the dye sublimation printer 20 in a state of sliding the lid member 13 in a direction opposite to the paper feed direction (direction A) with respect to the cassette body 11 along the guide portions 11g of the cassette body 11. Thus, the paper feed cassette 10 is formed such that the lid member 13 has no influence on the paper feed operation.

[0067] According to the first embodiment, a second press member 60 made of resin pressing an upper surface of the papers 50 against a lower surface 13b of the lid member 13 is provided independently of the lid member 13 as shown in FIG. 7. The second press member 60 integrally includes a flat portion 60a, an elastically deformable inclined portion 60b and a press portion 60c as shown in FIG. 8. The inclined portion 60b is integrally bonded with the flat portion 60a at the substantially center of a lower surface of the flat portion 60a and extends in a direction oblique to an inner bottom surface 11k (see FIG. 7) of the cassette body 11 (see FIG. 7), while the press portion 60c is provided on a forward end of the inclined portion 60b.

[0068] According to the first embodiment, in the second press member 60, the inclined portion 60b of the second press member is so mounted on the lower surface of the lid member 13 as to be inclined from a bonding portion 60d between the inclined portion 60b and the flat portion 60a to a direction opposite to the paper feed direction (along arrow A in FIG. 9) of the papers 50, as shown in FIG. 9.

[0069] The flat portion 60a includes a first region 60e in which the inclined portion 60b and the flat portion 60a form an obtuse angle and a second region 60f in which the inclined portion 60b and the flat portion 60a form an acute angle, between which the bonding portion 60d is a boundary. [0070] According to the first embodiment, the bonding portion 60d between the inclined portion 60b and the flat portion 60a of the second press member 60 have a thickness larger than the inclined portion 60a and the flat portion 60a.

as shown in FIGS. 8 and 9. [0071] As shown in FIG. 9, when the lid member 13 is mounted on the cassette body 11, the press portion 60c of the second press member 60 comes close to the ribs 11h on the inner bottom surface 11k of the cassette body 11.

[0072] According to the first embodiment, the press portion 60c of the second press member 60 has an L-shaped

section as shown in FIG. 9. The second press member 60 is mounted on the lower surface 13b of the lid member 13 with an adhesive tape 14 (two-sided tape). The adhesive tape 14 is an example of the "adhesive layer" in the present invention.

[0073] According to the first embodiment, the press portion 60c of the second press member 60 is arranged on a line of action 100 (alternate long and short dash line) of pressing force in pressing the papers 50 with the first press member 11f, at the substantial center in a width direction of the papers 50 (see FIG. 2) of the cassette body 11 in plan view, as shown in FIG. 10.

[0074] The dye sublimation printer 20 has a chassis 21 made of metal, a paper feed cassette mounting portion 22, a paper feed roller 23 made of rubber for carrying the papers 50 (see FIG. 2) inside the dye sublimation printer 20, a paper feed roller gear 24, the push-up member 25 pushing up the lift member 12 with the papers 50 (see FIG. 2) stacked thereon and pressing the papers 50 (see FIG. 2) against the paper feed roller 23, a sensor portion 26 sensing that the paper feed cassette 10 is mounted on the dye sublimation printer 20, a stepping motor 27 for driving the paper feed roller 23 and the like, a print head 28 for printing an image on the papers 50 (see FIG. 2), a stepping motor 29 for driving a print head press member (not shown) and the push-up member 25 pressing the print head 28, a motor bracket 30 for mounting the stepping motor 27 and the stepping motor 29, a take-up reel 31 for taking up an ink sheet (not shown), a swingable swing gear 32, a plurality of intermediate gears 33 for transmitting driving force of the stepping motor 27 to the paper feed roller gear 24, discharge rollers 34 made of rubber and a discharge roller gear 35, as shown in FIGS. 3 and 4.

[0075] The dye sublimation printer 20 is detachably mounted with an ink sheet cartridge 90 storing the ink sheet (not shown) as shown in FIGS. 3 and 4.

[0076] The chassis 21 has a first side surface 21a on which the motor bracket 30 is mounted, a second side surface 21b and a bottom surface 21c connecting the first and second side surfaces 21a and 21b with each other, as shown in FIGS. 3 and 4. The second side surface 21b of the chassis 21 is provided with an ink sheet cartridge receiving hole 21d for mounting the ink sheet cartridge 90 storing the ink sheet (not shown).

[0077] As shown in FIG. 3, the paper feed cassette mounting portion 22 has a pair of guide portions 22a for mounting the paper feed cassette 10 on the dye sublimation printer 20, a pair of paper separating walls 22b for preventing double feeding of the papers 50 (see FIG. 2), and a pair of the mounting portions 22c engaging with the pair of mounting portions 11d of the cassette body 11 when the paper feed cassette 10 is mounted on the dye sublimation printer 20. When the paper feed cassette 10 is mounted on the dye sublimation printer 20 as shown in FIG. 2, the pair of paper separating walls 22b are located in the pair of notches 11bof the cassette body 11 and a pair of the notches 12b of the lift member 12 as shown in FIG. 4. As shown in FIGS. 4 and 5, when the paper feed cassette 10 is mounted on the dye sublimation printer 20, the paper feed roller 23 is located above the lift member 12 and the push-up member 25 is located below the lift member 12. The paper feed roller 23 has a function of carrying the papers 50 (see FIG. 2) pushed up by the push-up member 25 inside the dye sublimation printer 20 by rotation. The paper feed roller gear 24 is mounted on a first end of the paper feed roller 23, and the paper feed roller 23 is rotated following the rotation of the paper feed roller gear 24.

[0078] As shown in FIG. 3, the sensor portion 26 is located in the vicinity of the first end of the paper feed cassette mounting portion 22. The sensor portion 26 has a protrusion 26a. When the paper feed cassette 10 is mounted on the paper feed cassette mounting portion 22 of the dye sublimation printer 20, the protrusion 26a is pushed in with the paper feed cassette 10 as shown in FIG. 4 and therefore the sensor portion 26 senses that the paper feed cassette 10 has been mounted. A housing 36 includes lid members 36a and 36, and push-button switches 36c as shown in FIG. 2. The lid member 36a of the housing 36 is provided for mounting the paper feed cassette 10 on the dye sublimation printer 20. The lid member 36b of the housing 36 is provided for mounting the ink sheet cartridge 90 on the dye sublimation printer. The push-button switches 36c of the housing 36 is provided as operation buttons used when the user starts printing.

[0079] With reference to FIGS. 9 and 11, a description will be now made of a pressing state of the second press member 60 of the paper feed cassette 10 according to the first embodiment with respect to the papers 50.

[0080] As shown in FIG. 9, in the case of a small number of the papers 50, the first press member 11f (see FIG. 6) of the cassette body 11 (see FIG. 6) presses a side surface of the papers 50, while the press portion 60c of the second press member 60 presses the upper surface of the papers 50 with prescribed pressing force. As shown in FIG. 11, in the case of a large number of the papers 50 in the second press member 60, in the second press member 60, the press portion 60c presses the upper surface of the papers 50 with the prescribed pressing force while the inclined portion 60b and the bonding portion 60d are elastically deformed.

[0081] According to the first embodiment, as shown in FIG. 11, in the case where bending moment M occurs about the bonding portion 60d between the inclined portion 60band the flat portion 60a of the second press member 60 as a central axis with reaction F from the papers 50 when the second press member 60 presses the papers 50 in a state of a large number of the papers 50, the second region 60f of the flat portion 60a in which an angle formed by the inclined portion 60b and the flat portion 60a is an acute angle can generate reaction F having a direction to counteract the aforementioned bending moment M. Thus, the deforming degree of the inclined portion 60b becomes small in the vicinity of the bonding portion 60d between the inclined portion 60b and the flat portion 60a, while the papers 50 are pressed deforming (downwardly curving) the inclined portion 60b in a region far from the bonding portion 60d and close to the press portion 60c in the inclined portion 60b.

[0082] With reference to FIGS. 3 to 5 and FIG. 12, a description will be now made of a paper feed operation of the paper feed cassette according to the first embodiment of the present invention and the dye sublimation printer.

[0083] As shown in FIG. 4, the paper feed cassette 10 is mounted on the dye sublimation printer 20 from a state shown in FIG. 3. In the paper feed cassette 10, the papers 50 are stacked on an upper surface of the lift member 12 as shown in FIG. 5. In the case where the paper feed cassette 10 is mounted on the dye sublimation printer 20, the paper feed roller 23 is located above the lift member 12 on which the papers 50 are stacked as shown in FIG. 5. The push-up

member 25 is located below the lift member 12 (position corresponding to the notch 11c of the cassette body 11). In this state, the stepping motor 29 (see FIG. 4) drives. The driving force of the stepping motor 29 rotates the push-up member 25 through a driving force transfer mechanism (not shown) in a direction E (upward) as shown in FIG. 12. The push-up member 25 is located below the lift member 12 in mounting the paper feed cassette 10, whereby the push-up member 25 rotates in the direction E (upward), thereby rotating the lift member 12 about the engaging portions 12a in a direction F shown in FIG. 13. Thus, the papers 50 stacked on the lift member 12 are pushed up to come into contact with the paper feed roller 23.

[0084] At this time, the stepping motor 27 (see FIG. 4) also drives and the driving force of the stepping motor 27 rotates the paper feed roller gear 24 through the plurality of intermediate gears 33 in a direction G in FIG. 4. Thus, the paper feed roller 23 is rotated in the direction G as shown in

[0085] The aforementioned pushed up papers 50 are pressed by the paper feed roller 23 rotating in the direction G as shown in FIG. 12. The papers 50 are carried inside the dye sublimation printer 20 with frictional force between the paper feed roller 23 and the papers 50.

[0086] According to the first embodiment, also during the papers 50 are carried (fed) inside the dye sublimation printer 20, the second press member 60 (see FIG. 1) always presses the upper surface of the papers 50, thereby performing the paper feed operation with no curvature (warpage) in the width direction of the papers 50 without any difficulty.

[0087] According to the first embodiment, as hereinabove described, the second press member 60 is integrally bonded with the flat portion 60a on a region other than an end in the lower surface of the flat portion 60a mounted on the lower surface 13b of the lid member 13 and extends in an oblique direction toward the inner bottom surface 11k of the cassette body 11, and at least the bonding portion 60d between the flat portion 60a and the inclined portion 60b integrally includes the elastically deformable inclined portion 60b, whereby the second region 60f of the flat portion 60a in which the angle formed by the inclined portion 60b and the flat portion 60a is an acute angle can generate reaction F having a direction to counteract the aforementioned bending moment M, in the case where bending moment M occurs about the bonding portion 60d between the inclined portion 60b and the flat portion 60a of the second press member 60as a central axis with reaction from the papers 50 when the second press member 60 presses the papers 50 in a state of a large number of the papers 50. Thus, also in the state of a large number of the papers 50, the flat portion 60a can be inhibited from peeling and coming off from the lower surface 13b of the lid member 13. The second press member is formed to press the vicinity of the center in the width direction of the upper surface of the papers stored in the cassette body, so that the second press member can press the center in the width direction of the upper surface of the papers, whereby curvature (warpage) in the width direction of the papers can be effectively suppressed. Thus, the papers can be inhibited from being carried in the oblique direction due to the warpage in the width direction of the papers. In addition, the second press member 60 integrally includes the flat portion 60a mounted on the lower surface 13b of the lid member 13, the inclined portion 60b integrally bonded with the flat portion 60a on the region other than the end in the lower surface of the flat portion 60a, and the press portion **60**c provided on the forward end of the inclined portion **60**b, and the press portion 60c is so formed as to come into contact with the inner bottom surface 11k of the cassette body 11 when the lid member 13 is located on an upper portion of the cassette body 11. Thus, no push up mechanism for bringing the upper surface of the papers 50 into contact with the press portion 60c may be provided below the papers 50, whereby the number of components can be inhibited from increase.

Dec. 20, 2007

[0088] According to the first embodiment, the press portion 60c has a substantially L-shaped section, and is so formed as to linearly press the papers with an L-shaped corner, whereby the contact area between the papers 50 and the press portion 60c can be reduced, thereby allowing reduce in frictional resistance between the papers 50 and the press portion 60c. Thus, it is possible to suppress a paper feed error caused by the frictional resistance between the papers 50 and the press portion 60c in paper feeding, thereby allowing smooth paper feeding.

[0089] According to the first embodiment, the flat portion 60a of the second press member 60 is mounted on the lower surface 13b of the lid member 13 with the adhesive tape 14 (two-sided tape), whereby the second press member 60 can be easily mounted on the lid member 13.

[0090] According to the first embodiment, the inclined portion 60b is bonded to the substantial center of the flat portion 60a, whereby it is possible to increase an area of the region generating the reaction F having the direction counteract the bending moment M in pressing the papers 50 with the second press member 60. Thus, the flat portion 60a can be reliably inhibited from peeling and coming off from the lower surface 13b of the lid member 13.

[0091] According to the first embodiment, the bonding portion 60d between the inclined portion 60b and the flat portion 60a of the second press member 60 is so formed as to become larger than the thicknesses of the inclined portion 60b and the flat portion 60a, whereby the mechanical strength of the bonding portion 60d is improved. Thus, the bonding portion can be inhibited from breaking also in the case where stress is applied to the bonding portion 60d due to the deformation of the inclined portion 60b when the press portion 60c of the second press member 60 presses the papers 50.

[0092] According to the first embodiment, the second press member 60 may be formed such that the inclined portion 60b is so mounted on the lower surface of the lid member 13 as to be inclined from the bonding portion 60d between the inclined portion 60b and the flat portion 60a to the direction opposite to the paper feed direction of the papers 50.

[0093] According to the first embodiment, the press portion 60c of the second press member 60 is so formed as to be arranged substantially on the line of action 100 of the pressing force in pressing the papers 50 with the first press member 11f in plan view, whereby the first press member 11f can press the papers 50 in the width direction and the second press member 60 can press the upper surface of the papers 50 along the line of action 100 of the pressing force of the first press member 11f in pressing the papers 50. Therefore, curvature (warpage) in the width direction of the papers 50 can be reliably suppressed. Thus, the papers 50 can be reliably inhibited from being carried in the oblique direction due to the warpage in the width direction of the papers 50.

US 2007/0290433 A1 Dec. 20, 2007 8

[0094] According to a modification of the first embodiment, a structure in which a second press member 60 is mounted on a lower surface 13b of a lid member 13 is provided as shown in FIGS. 13 to 15.

[0095] According to the modification of the first embodiment, a lid member 13 is integrally provided with a first engaging portion 13c, a second engaging portion 13d and a coupling portion 13e so as to protrude from the lower surface 13b of the lid member 13 as shown in FIG. 13. The first engaging portion 13c and the second engaging portion 13d are coupled with each other through the coupling portion 13e as shown in FIG. 14.

[0096] A rib 13f is provided in the vicinity of a first engaging portion 13c and a second engaging portion 13d. According to the modification of the first embodiment, a first region 60e and a second region 60f of a flat portion 60a of the second press member 60 are fitted into a clearance between the first engaging portion 13c and the lower surface 13b of the lid member 13 and a clearance between the second engaging portion 13d and the lower surface 13b of the lid member 13 respectively by sliding the flat portion 60a of the second press member 60 along arrow C while bringing the flat portion 60a into contact with the rib 13f as shown in FIG. 14, whereby the second press member 60 is mounted on the lower surface 13b of the lid member 13. At this time, the first region 60e of the flat portion 60a of the second press member 60 is brought into contact with an inner surface 13g of the first engaging portion 13c of the lid member 13. The region second 60f of the flat portion 60a of the second press member 60 is brought into contact with a lower surface 13h of the second engaging portion 13d of the lid member 13. An upper surface of the flat portion 60a of the second press member 60 is brought into contact with the lower surface 13b of the lid member 13. Thus, the flat portion 60a of the second press member 60 is fixed on the lower surface 13b of the lid member 13. The rib 13f has a function of inhibiting the second press member 60 from falling off from the lid member 13 in the case of sliding in a falling off direction (direction opposite to a direction C).

[0097] According to the modification of the first embodiment, as hereinabove described, an engaging portion constituted by the first engaging portion 13c, the second engaging portion 13d and the coupling portion 13e engaged with the flat portion 60a of the second press member 60 is integrally provided on the lower surface of the lid member 13, whereby the second press member 60 can be mounted on the lid member 13 by engaging the flat portion 60a of the second press member 60 with the engaging portion of the lid member 13 without increasing the number of the component. The remaining effects of this modification are similar to those of the first embodiment.

Second Embodiment

[0098] A second press member 70 according to a second embodiment has a different structure from that of the first embodiment with reference to FIGS. 16 to 19. Structures other than the second press member 70 according to the second embodiment are similar to those according to the aforementioned first embodiment, and hence the description thereof will not be repeated.

[0099] According to the second embodiment, a second press member 70 made of resin pressing an upper surface of papers 50 is provided on a lower surface 13b of a lid member 13 independently of the lid member 13 as shown in FIG. 18.

As shown in FIG. 16, a flat portion 70a of the second press member 70 includes a first flat portion 71a on the right and a second flat portion 71b on the left, between which a bonding line of the flat potion 70a and the inclined portion 70b is a boundary line. The second flat portion 71b is provided with a U-shaped cutout portion 70e in a prescribed region of a bonding portion 70d between the first flat portion 71a and the inclined portion 70b, and is formed by folding back an inner region of the U-shaped cutout portion 70e of the first flat portion 71a by 180 degrees along the bonding line of the bonding portion 70d. As shown in FIG. 18, a press portion 70c of the second press member 70 is so formed as to come close to ribs 11h of an inner bottom surface 11k of the cassette body 11 when the lid member 13 is mounted on a cassette body 11. According to the second embodiment, the press portion 70c of the second press member 70 has an L-shaped section, and the second press member 70 is mounted on the lower surface 13b of the lid member 13 through an adhesive tape 14 as shown in FIG. 18. As shown in FIG. 19, the press portion 70c of the second press member 70 is provided at the center in a width direction of the papers 50 (see FIG. 2) of the cassette body 11 on a line of action 100 (alternate long and short dash line) pressing the papers 50 from a side surface with a first press member 11f of the cassette body 11.

[0100] With reference to FIGS. 18 to 20, a description will be now made of a pressing state of the second press member 70 of the paper feed cassette 10 according to the second embodiment with respect to the papers 50.

[0101] As shown in FIG. 18, in the case of a small number of the papers 50, the first press member 11f (see FIG. 19) of the cassette body 11 (see FIG. 19) presses a side surface of the papers 50, while the press portion 70c of the second press member 70 presses the upper surface of the papers 50 with prescribed pressing force. As shown in FIG. 20, in the case of a large number of the papers 50 in the second press member 70, in the second press member 70, the press portion 70c presses the upper surface of the papers 50 with the prescribed pressing force while the inclined portion 70band the bonding portion 70d are elastically deformed.

[0102] According to the second embodiment, as shown in FIG. 20, in the case where bending moment M occurs about the bonding portion 70d between the inclined portion 70b and the flat portion 70a of the second press member 70 as a central axis with reaction from the papers 50 when the second press member 70 presses the papers 50 in a state of a large number of the papers 50, the second flat portion 71b in which an angle formed by the inclined portion 70b and the flat portion 70a is an acute angle can generate reaction F having a direction to counteract the aforementioned bending moment M. Thus, the deforming degree of the inclined portion 70b is reduced in the vicinity of the bonding portion 70d between the inclined portion 70b and the flat portion 70a, while the papers 50 are pressed deforming (downwardly curving) the inclined portion 70b in a region far from the bonding portion 70d and close to the press portion 70cin the inclined portion 70b.

[0103] A paper feed operation of the paper feed cassette according to the second embodiment and the dye sublimation printer is similar to that according to the aforementioned first embodiment, and hence the description thereof will not be repeated.

[0104] According to the second embodiment, as hereinabove described, the flat portion 70a of the second press member 70 includes the first flat portion 71a on the right and the second flat portion 71b on the left, between which the bonding line of the flat potion 70a and the inclined portion 70b is the boundary line, and the second flat portion 71b is formed by providing the U-shaped cutout portion 70e in the prescribed region of the bonding portion 70d between the first flat portion 71a and the inclined portion 70b and folding back an inner region of the U-shaped cutout portion 70e of the first flat portion 71a by 180 degrees along the bonding line of the bonding portion 70d. Thus, it is possible to easily obtain a structure in which the inclined portion 70b is integrally bonded on a region other than an end in a lower surface of the flat portion 70a.

[0105] According to a modification of the second embodiment, a flat portion 75a of a second press member 75 pressing papers 50 in a paper feed cassette 10 includes a first flat portion 76a on the right and a second flat portion 76b on the left, between which a bonding line of the flat potion 75a and the inclined portion 75b is a boundary line, as shown in FIGS. 21 and 22. The second flat portion 76b is formed by providing a U-shaped cutout portion 75e in a prescribed region of a bonding portion 75d between the first flat portion 76a and the inclined portion 75b and folding back an inner region of the U-shaped cutout portion 75e of the first flat portion 76a by 180 degrees along the bonding line of the bonding portion 75d. The inclined portion 75b is inclined toward the first flat portion 76a dissimilarly to the inclined portion 70b of the second press member 70 according to the second embodiment. Also in this structure, effects similar to the effects in the second embodiment can be obtained.

Third Embodiment

[0106] With reference to FIGS. 23 to 26, according to a third embodiment, an inclined portion 80b of the second press member 80 is supported by a support portion 80f dissimilarly to the aforementioned first and second embodiments. Structures other than the second press member 80 according to the third embodiment are similar to those according to the aforementioned first embodiment, and hence the description thereof will not be repeated.

[0107] In a paper feed cassette 10 according to the third embodiment, a second press member 80 made of resin pressing an upper surface of papers 50 is provided on a lower surface 13b of a lid member 13 independently of the lid member 13 as shown in FIG. 25. The second press member 80 includes the support portion 80f integrally bonded with a first flat portion 81a on an end on a lower surface of the first flat portion 81a, extending a direction oblique to the inclined portion 80b and bonding with the inclined portion 80b. The support portion 80f supports an inclined portion 80c by engaging a pair of engaging portions **80**h provided on ends of the support portion **80**f with a pair of notches 80g provided in the inclined portion 80b

[0108] As shown in FIG. 25, a press portion 80c of the second press member 80 is so formed as to come close to ribs 11h on an inner bottom surface 11k of the cassette body 11 when the lid member 13 is mounted on a cassette body

[0109] According to the third embodiment, the press portion 80c of the second press member 80 has an L-shaped section and the second press member 80 is mounted on the lower surface 13b of the lid member 13 with an adhesive tape 14 as shown in FIG. 25. As shown in FIG. 26, the press portion 80c of the second press member 80 is provided at the center in a width direction of the papers 50 (see FIG. 2) of the cassette body 11 on a line of action 100 (alternate long and short dash line) pressing the papers 50 from a side surface with a first press member 11f of the cassette body 11. [0110] With reference to FIGS. 25 and 27, a description will be now made of a pressing state of the second press member 80 of the paper feed cassette 10 according to the third embodiment with respect to the papers 50.

Dec. 20, 2007

[0111] As shown in FIG. 25, in the case of a small number of the papers 50, the press portion 80c of the second press member 80 presses the upper surface of the papers 50 with prescribed pressing force. As shown in FIG. 27, in the case of a large number of the papers 50 in the second press member 80, the press portion 80c presses the upper surface of the papers 50 with the prescribed pressing force while the inclined portion 80b and a bonding portion 80d are elastically deformed.

[0112] According to the third embodiment, as shown in FIG. 27, in the case where bending moment M occurs about the bonding portion 80d between the inclined portion 80band the flat portion 80a of the second press member 80 as a central axis with reaction from the papers 50 when the second press member 80 presses the papers 50 in a state of a large number of the papers 50, the second flat portion 81b in which an angle formed by the inclined portion 80b and the flat portion 80a is an acute angle can generate reaction F having a direction to counteract the aforementioned bending moment M. Thus, the deforming degree of the inclined portion 80b is reduced in the vicinity of the bonding portion **80**d between the inclined portion **80**b and the flat portion 80a, while the papers 50 are pressed deforming (downwardly curving) the inclined portion 80b in a region far from the bonding portion 80d and close to the press portion 80cin the inclined portion 80b.

[0113] A paper feed operation of the paper feed cassette according to the third embodiment and the dye sublimation printer is similar to that according to the aforementioned first embodiment, and hence the description thereof will not be repeated.

[0114] According to the third embodiment, as hereinabove described, the second press member 80 includes the support portion 80f integrally bonded with the first flat portion 81a on the end of the first flat portion 81a, extending the oblique direction toward the inclined portion 80b and supporting the inclined portion 80b, so that the inclined portion 80b of the second press member 80 is supported by the support portion **80**f, thereby improving rigidity of the inclined portion **80**b. Thus, in the case where the second press member 80 presses the papers 50 especially in a state of a large number of the papers 50, displacement (deforming degree) of the inclined portion 80b in the bonding portion 80d between the inclined portion 80b and the first flat portion 81a can be reduced, whereby a basic form of the inclined portion 80b can be easily held.

[0115] According to a modification of the third embodiment, a second press member 85 pressing the papers 50 in the paper feed cassette 10 is provided with a support portion **85** f integrally bonded with a first flat portion **86** a on an end on a lower surface of the first flat portion 86a, extending an oblique direction toward the inclined portion 85b and bonding with the inclined portion 85b. The support portion 85f is bonded with an inclined portion 85b by engaging a pair of engaging portions 85h provided on ends of the support portion 85f with a pair of notches 85g provided in the

inclined portion **85***b*. While the inclined portion **85***b* is inclined toward the first flat portion **86***a* dissimilarly to the inclined direction of the inclined portion **80***b* of the second press member **80** according to the third embodiment, effects similar to those in the third embodiment can be obtained.

[0116] Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.

[0117] For example, while the aforementioned embodiments are applied to the paper feed cassette of the dye sublimation printer employed as an exemplary image generating apparatus, the present invention is not restricted to this but is also applicable to a paper feed cassette of an image generating apparatus other than the dye sublimation printer. [0118] While the press portion 60c of the second press member 60 has the L-shaped section in the aforementioned first embodiment, the present invention is not restricted to this but may alternatively have a U-shaped section.

[0119] While the flat portion 60a of the second press member 60 is mounted on the lower surface 13b of the lid member 13 with the adhesive tape 14 (two-sided tape) in the aforementioned first embodiment, the present invention is not restricted to this but may be alternatively mounted on the lower surface 13b of the lid member 13 with an adhesive or the like.

[0120] While the inclined portion 60b is bonded at the substantial center of the flat portion 60a in the aforementioned first embodiment, the present invention is not restricted to this but the inclined portion 60b and the flat portion 60a may be alternatively bonded with each other at a dividing line dividing the flat portion 60a such that the area of the first region 60e in which the angle formed by the inclined portion 60b and the flat portion 60a between which the bonding portion 60d is a boundary is an obtuse angle is larger than that of the second region 60f in which the angle formed by the inclined portion 60b and the flat portion 60a is an acute angle.

[0121] While the second press member 60 made of resin is mounted on the lower surface 13b of the lid member 13 in the aforementioned first embodiment, the present invention is not restricted to this but a second press member 60 made of metal may be alternatively mounted on the lower surface 13b of the lid member 13.

What is claimed is:

- 1. A paper feed cassette comprising:
- a cassette body mounted on an image generating apparatus including a paper feed roller and storing a paper;
- a first press member provided on at least a first side surface inside said cassette body and pressing a side surface of said paper when said paper is stored;
- a lid member arranged on an upper portion of said cassette body; and
- a second press member provided independently of said lid member, mounted on a lower surface of said lid member, and pressing the vicinity of the center in a width direction of an upper surface of said paper stored in said cassette body, wherein
- said second press member integrally includes:
- a flat portion mounted on said lower surface of said lid member,

- an inclined portion integrally bonded with said flat portion on a region other than an end in a lower surface of said flat portion, extending in an oblique direction toward an inner bottom surface of said cassette body, and having at least an elastically deformable bonding portion between said inclined portion and said flat portion, and
- a press portion provided on a forward end of said inclined portion, and
- said press portion is brought into contact with said inner bottom surface of said cassette body when said lid member is arranged on said upper portion of said cassette body.
- 2. The paper feed cassette according to claim 1, wherein said press portion is so formed as to have a substantially L-shaped section and linearly press said paper with a corner of said L-shape.
- 3. The paper feed cassette according to claim 1, wherein said flat portion of said second press member is mounted on said lower surface of said lid member with an adhesive layer.
- **4.** The paper feed cassette according to claim **1**, wherein said inclined portion is bonded at the substantial center of said flat portion.
- 5. The paper feed cassette according to claim 1, wherein said flat portion of said second press member includes a first flat portion on the right and a second flat portion on the left, between which a bonding line between said flat portion and said inclined portion is a boundary line, and
- said second flat portion is formed by providing a U-shaped cutout portion in a prescribed region of a bonding portion between said first flat portion and said inclined portion and folding back an inner region of said U-shaped cutout portion of said first flat portion along said bonding line of said bonding portion.
- 6. The paper feed cassette according to claim 8, wherein said second press member includes a support portion integrally coupled with said first flat portion on an end of said first flat portion, extending in an oblique direction toward said inclined portion, and supporting said inclined portion.
- 7. The paper feed cassette according to claim 1, wherein said bonding portion between said inclined portion and said flat portion of said second press member is so formed as to have a thickness larger than those of said inclined portion and said flat portion.
- 8. The paper feed cassette according to claim 1, wherein said second press member is mounted on said lower surface of said lid member such that said inclined portion of said second press member is inclined from said bonding portion between said inclined portion and said flat portion toward a direction opposite to a paper feed direction of said paper.
- 9. The paper feed cassette according to claim 5, wherein an engaging portion engaging with said flat portion of said second press member is integrally provided on said lower surface of said lid member.
- 10. The paper feed cassette according to claim 1, wherein said press portion of said second press member is so formed as to be arranged substantially on a line of action of pressing force in pressing said paper with said first press member in plan view.
- 11. A paper feed cassette comprising:
- a cassette body mounted on an image generating apparatus including a paper feed roller and storing a paper;

- a lid member arranged on an upper portion of said cassette body;
- a first press member provided on at least a first side surface inside said cassette body and pressing a side surface of said paper when said paper is stored; and
- a second press member provided independently of said lid member, mounted on a lower surface of said lid member, and pressing the vicinity of the center in a width direction of an upper surface of said paper stored in said cassette body, wherein
- said second press member integrally includes:
- a flat portion mounted on said lower surface of said lid member,
- an inclined portion integrally bonded with said flat portion on a region other than an end in a lower surface of said flat portion, extending in an oblique direction toward an inner bottom surface of said cassette body, and having at least an elastically deformable bonding portion between said inclined portion and said flat portion, and
- a press portion provided on a forward end of said inclined portion,
- said press portion is brought into contact with said inner bottom surface of said cassette body when said lid member is arranged on said upper portion of said cassette body,
- said press portion is so formed as to have a substantially L-shaped section and linearly press said paper with a corner of said L-shape,

- said flat portion of said second press member is mounted on said lower surface of said lid member with an adhesive layer, and
- said inclined portion is bonded at the substantial center of said flat portion.
- 12. The paper feed cassette according to claim 11, wherein said bonding portion between said inclined portion and said flat portion of said second press member is so formed as to have a thickness larger than those of said inclined portion and said flat portion.
- 13. The paper feed cassette according to claim 11, wherein said second press member is mounted on said lower surface of said lid member such that said inclined portion of said second press member is inclined from said bonding portion between said inclined portion and said flat portion toward a direction opposite to a paper feed direction of said paper.
- 14. The paper feed cassette according to claim 11, wherein an engaging portion engaging with said flat portion of said second press member is integrally provided on said lower surface of said lid member.
- 15. The paper feed cassette according to claim 11, wherein said press portion of said second press member is so formed as to be arranged substantially on a line of action of pressing force in pressing said paper with said first press member in plan view.

* * * * *