

United States Patent

Richardson et al.

[15] 3,635,580

[45] Jan. 18, 1972

[54] **CENTRIFUGAL REFRIGERANT GAS COMPRESSOR CAPACITY CONTROL**

[72] Inventors: Douglas K. Richardson, Staunton; John G. Johnson, Waynesboro, both of Va.

[73] Assignee: Westinghouse Electric Corporation, Pittsburgh, Pa.

[22] Filed: Feb. 26, 1970

[21] Appl. No.: 14,471

[52] U.S. Cl. 415/150, 415/219, 415/183

[51] Int. Cl. F04d 27/00

[58] Field of Search. 415/146, 147, 148, 150, 151, 415/209; 62/217, 201

[56] References Cited

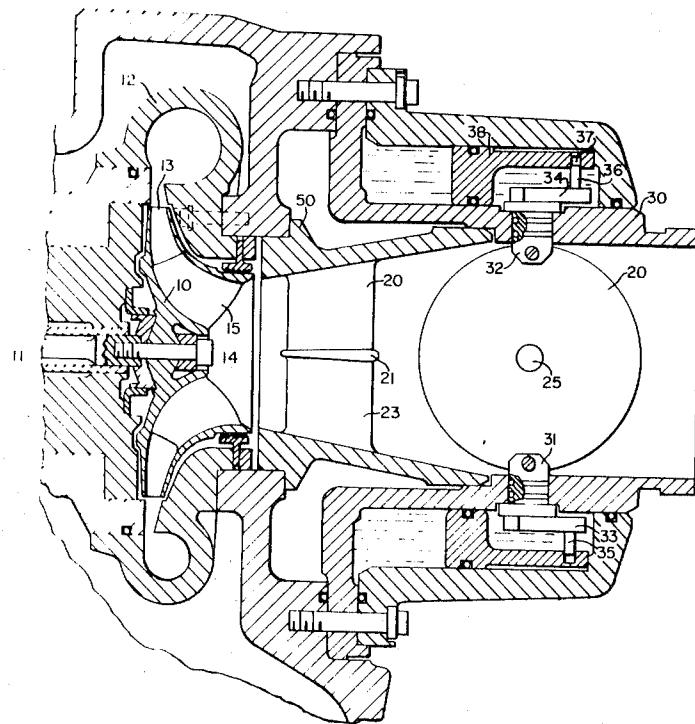
UNITED STATES PATENTS

3,289,919 12/1966 Wood 415/150

3,160,112 12/1964 Flaton et al. 415/147

FOREIGN PATENTS OR APPLICATIONS

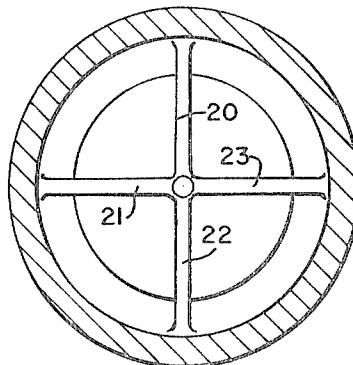
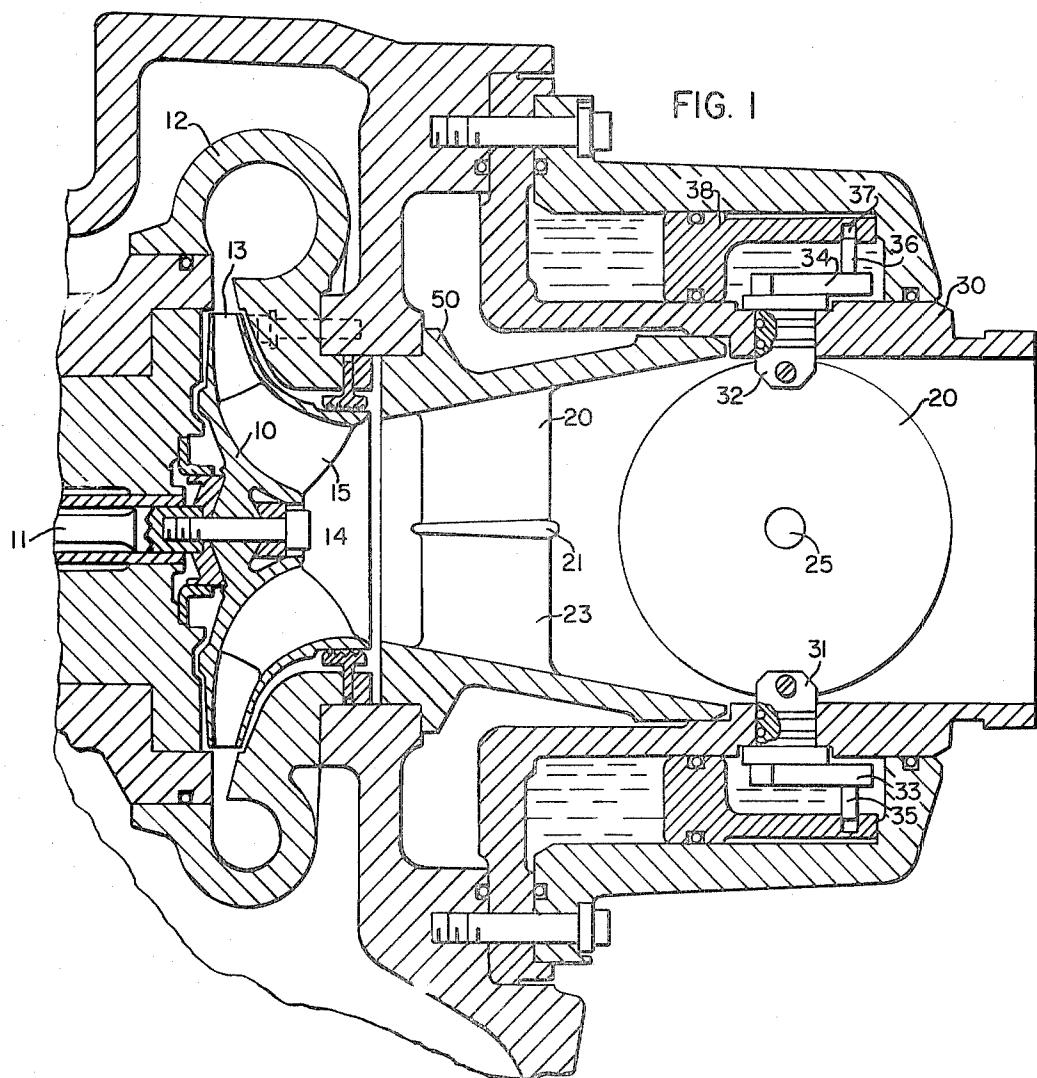
736,207 6/1943 Germany 415/147
727,649 4/1955 Great Britain 415/150


Primary Examiner—Henry F. Raduazo
Attorney—F. H. Henson and F. E. Blake

[57]

ABSTRACT

A capacity control for a refrigerant gas compressor is comprised of a throttle disk in a throttle intake passage leading to a nozzle intake passage extending to the intake portions of a rotatable centrifugal gas impeller and gas flow directing vanes are positioned within the nozzle intake passage to properly direct the gas flow from the throttle disk to the impeller vanes.



2 Claims, 5 Drawing Figures

PATENTED JAN 18 1972

3,635,580

SHEET 1 OF 2

WITNESSES

Alfred M. Colaizzi
Lisa M. Garrison

INVENTOR
Douglas K. Richardson
John G. Johnson

Frank J. Blaue
ATTORNEY

PATENTED JAN 18 1972

3,635,580

SHEET 2 OF 2

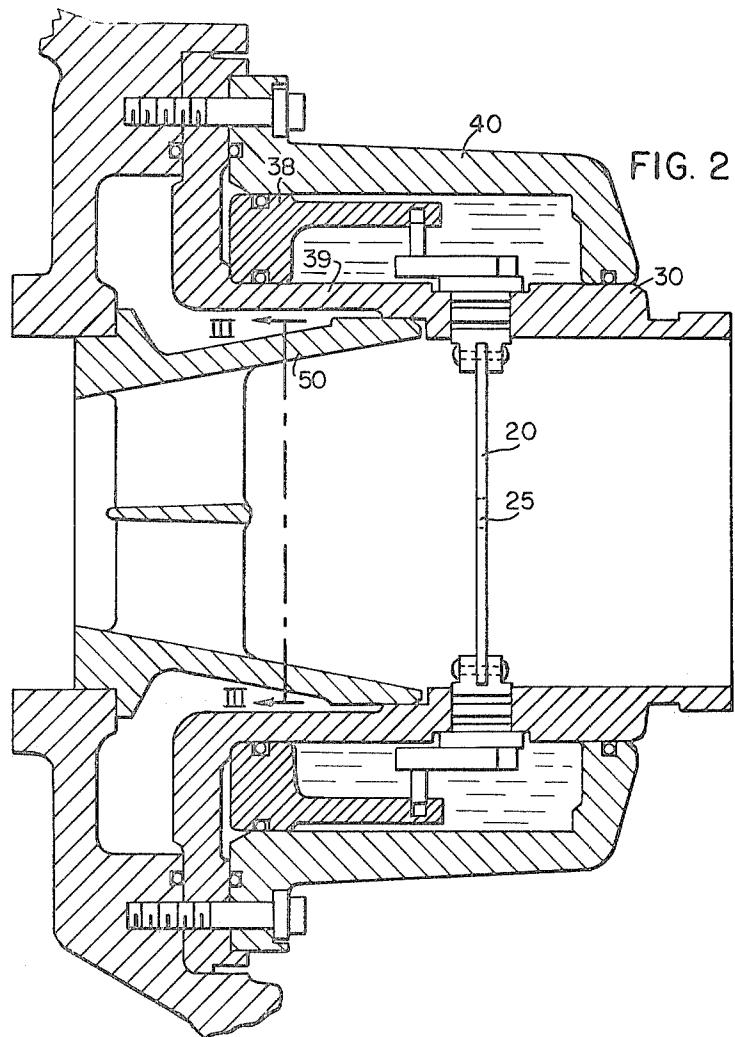
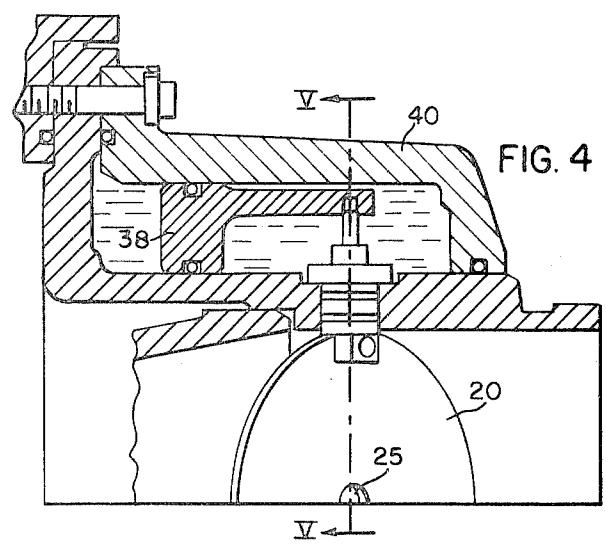
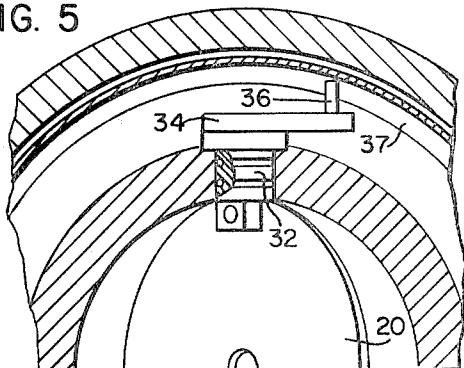




FIG. 5

CENTRIFUGAL REFRIGERANT GAS COMPRESSOR CAPACITY CONTROL

CROSS REFERENCES TO RELATED PATENT APPLICATIONS

A centrifugal refrigerant gas compressor for which the capacity control of the present invention may be particularly suitable is disclosed in the copending patent application Ser. No. 14469.

BACKGROUND OF THE INVENTION

Recent developments have enabled the use of centrifugal refrigerant gas compressors for relatively small air-conditioning machinery for which reciprocating gas compressors have previously been considered to be more economically suitable. In order to have the many advantages of a centrifugal type of gas compressor in these smaller air-conditioning systems, it is desirable to have a simple, inexpensive and reliable capacity control for varying the compressed gas output of the centrifugal compressor to meet air-conditioning system requirements without appreciably varying the speed of the compressor impeller from its most efficient design speed.

PRIOR ART

Capacity controls for centrifugal refrigerant gas compressors as used in air-conditioning systems are disclosed in U.S. Pat. No. 3,248,896 to Plaster issued May 4, 1966, U.S. Pat. No. 3,350,897 to Plaster issued Nov. 7, 1967, and U.S. Pat. No. 3,362,185 to Harnish issued Jan. 9, 1968. The capacity controls as disclosed in the above patents are of the movable inlet spin vane-type and are relatively more complex than the capacity control of the present invention. Applicants are unaware of any prior disclosures disclosing a centrifugal gas compressor capacity control of the nature described and claimed herein.

SUMMARY OF THE INVENTION

In accordance with the present invention, a throttle intake passage leads through a nozzle intake passage that extends to the rotatable centrifugal gas compressor impeller. A throttle disk is pivotally mounted with the throttle intake passage and is movable from a minimum capacity position with the disk positioned transverse to the gas flow to a maximum capacity position with the disk positioned in parallel to the gas flow. In order to eliminate a vortex at the impeller inlet, a plurality of flow-directing vanes are positioned within the nozzle intake passage that extends between the throttle disk passage and the impeller vanes. The throttle disk may be provided with at least one aperture to predetermine the gas flow for the minimum capacity of the gas compressor. In the preferred form of the invention, a ring piston is concentrically positioned about the outer walls of the throttle intake passage and is connected by suitable linkage such as a bellcrank to translate the reciprocatory movement of the piston to pivotal movement of the piston to pivotal movement of the throttle disk. In order to reciprocate the piston, a cylinder is arranged concentric to the outer walls of the throttle intake passage and surrounding the piston so that fluid under pressure may be selectively applied to either side of the piston to move the piston accordingly.

BRIEF DESCRIPTION OF THE DRAWINGS

Other features and advantages of the invention will be apparent with reference to the following specification and drawings in which:

FIG. 1 is a fragmentary sectional view partly in elevation of a centrifugal gas compressor with the capacity control of the invention and showing the throttle disk in the full capacity position;

FIG. 2 is a view similar to FIG. 1 but showing only the throttle passage and the intake nozzle passage with the throttle disk in the minimum capacity position;

FIG. 3 is a fragmentary section on the line III-III of FIG. 2;

FIG. 4 is an even more fragmentary view similar to FIG. 2 but showing the throttle disk in an intermediate capacity position; and

FIG. 5 is a section on the line V-V of FIG. 4.

5 DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1 of the drawings, the centrifugal refrigerant gas compressor is shown to include the rotatable impeller 10 mounted on the end of the impeller shaft 11 for rotation therewith. A gas-collecting scroll 12 is positioned to surround the impeller 10 and collect through the diffuser structure the compressed gases issuing from the compressed gas passages 13 of the impeller 10. The impeller 10 is also provided with intake gas passages 14 that are centrally located and the rotation of the impeller 10 causes the gas entering the impeller intake passages 14 and passing between the impeller vanes such as shown at 15, to be discharged under pressure from the discharge passages such as shown at 13 around the periphery of the impeller 10 as is well known to those skilled in the art.

In order to vary the capacity of the centrifugal gas compressor without substantially changing the speed of the rotation for the impeller 10, this invention provides for a novel arrangement of movable throttle disk 20 and a plurality of gas directing vanes such as shown at 20 through 23. It should be understood that the invention is not limited to any particular number or precise configuration or angle of direction of the gas flow directing vanes 20-23.

30 It will be noted that the throttle disk 20 is mounted within a throttle intake housing 30 and is pivotal therein from the maximum capacity position shown in FIG. 1 to the minimum capacity position shown by FIG. 2 of the drawings. In order to enable the throttle disk 20 to be so moved within the throttle intake passage 30, the throttle disk 20 is secured to pivotal stub shafts 31 and 32. The stub shaft 31 is connected by a bellcrank 33 and the stub shaft 32 is connected by a bellcrank 34 to respective pins 35 and 36 received in a groove 37 of a reciprocating piston 38.

40 As shown in more detail by FIGS. 2, 4 and 5 of the drawings, the piston 38 is a ring piston concentrically mounted around the outer wall 39 of the throttle intake passage 30. A cylinder wall 40 is also concentrically mounted around the outer wall 39 of the throttle intake passage 30 in a manner to enclose the reciprocating piston 38 and fluid under pressure is introduced within the cylinder selectively to either or both sides of the piston 38 for reciprocating the piston accordingly in a manner to move or maintain the throttle disk 20 at a desired position. The aforementioned U.S. Pat. Nos. 3,350,897 and 3,362,185 disclose various ways for valving fluid under pressure to either or both sides of a capacity control piston such as the piston 38 as used in the present invention. Since the arrangement for supplying fluid under pressure selectively to either or both sides of the piston 38 is not a part of the present invention, and any suitable arrangements well known to those skilled in the art may be used, the details of such an arrangement have been omitted from the present disclosure.

45 Referring now to FIGS. 1, 2 and 3 of the drawings, it will be seen that a nozzle intake passage 50 is positioned between the throttle intake passage 30 and the impeller 10 to converge and direct the gas flow from the throttle disk 20 into the intake passages 14 of the centrifugal gas compressor impeller 10. A feature of the invention is the provision of the aforementioned gas flow directing vanes such as shown at 20-23, to direct the flow of gas coming from the throttle disk 20 to the centrifugal gas impeller.

50 Referring again to the drawings, it will be seen that the throttle disk 20 is provided with the aperture 25, which, when the throttle disk 20 is in the minimum capacity position shown by FIG. 2 of the drawings, provides a minimum gas flow into the intake nozzle 50 and the gas impeller. This invention is not limited to the provision of a centrally located aperture such as shown at 25 but one or more apertures may be used in various positions as will be obvious to those skilled in the art.

There has been described an exceedingly simple, inexpensive and reliable capacity control for a centrifugal refrigerant gas compressor in which a single valve disk in combination with suitably positioned gas flow directing vanes are used to modify the flow of refrigerant gas into the centrifugal gas compressor impeller and thereby vary its capacity. Various modifications will occur to those skilled in the art.

We claim:

1. A capacity control for a centrifugal refrigerant gas compressor having a rotatable impeller with centrally located intake passages and peripherally located compressed gas passages, comprising, a throttle intake passage, a nozzle intake passage extending from said throttle intake passage to the centrally located intake passages of said impeller, a throttle disk pivotally mounted in said throttle intake passage and having at least one aperture for determining the minimum capacity of said compressor when the throttle disk is in a minimum

capacity position, means to move said disk from a position transverse to the gas flow for minimum capacity to a position parallel to the gas flow for full capacity and any position therebetween, and a plurality of gas flow directing and straightening vanes extending within said nozzle intake passage to direct the flow of gas into said impeller after passage from said throttle disk.

2. The invention of claim 1 in which the means to move said disk is comprised of a ring piston concentrically mounted on the outside of said throttle intake passage and connected to said disk by means of a bellcrank to translate reciprocatory movement of said piston to pivotal movement of said disk, and means to enclose said piston in a cylinder concentric with said throttle intake passage for applying a fluid under pressure within said cylinder to either side of said piston for reciprocating the piston in accordance therewith.

* * * * *

20

25

30

35

40

45

50

55

60

65

70

75