wO 2009/035834 A2 | 1IN 00 00 OO 000 O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(43) International Publication Date (10) International Publication Number

19 March 2009 (19.03.2009) PCT WO 2009/035834 A2

(19) World Intellectual Property Organization
International Bureau

(51) International Patent Classification: (74) Agents: YAU, Philip et al.; Davis Wright Tremaine LLP,
G11C 7/10 (2006.01) G11C 16/10 (2006.01) 505 Montgomery Street, Suite 800, San Francisco, CA
G11C 11/56 (2006.01) G11C 16/34 (2006.01) 94111 (US).

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every

PCT/US2008/073750 kind of national protection available): AE, AG, AL, AM,

(22) International Filing Date: 20 August 2008 (20.08.2008) AQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA,

(25) Filing Language: English CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,

. EG, ES, F1, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,

(26) Publication Language: English IL,IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,

(30) Priority Data: LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
11/852,229 7 September 2007 (07.09.2007) US MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,

(71) Applicant (for all designated States except US): SAN- RO, RS, RU, SC, 8D, SE, 8G, 8K, SL, SM, ST, SV, SY, T,
DISK CORPORATION [US/US]; 601 McCarthy Blvd., TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 7M,
Milpitas, CA 95035 (US). ZwW.

(72) Inventors; and (84) Designated States (unless otherwise indicated, for every

(75) Inventors/Applicants (for US only): LI, Yan [US/US]; kind of regional protection available): ARIPO (BW, GH,
695 Kevenaire Drive, Milpitas, CA 95035 (US). FONG, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
Yupin, Kawing [US/US]; 2938 Bruce Drive, Fremont, CA ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
94539 (US). MOKHLESI, Nima [US/US]; 14285 Selinda European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
Way, Los Gatos, CA 95032 (US). FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,

[Continued on next page]

(54) Title: NONVOLATILE MEMORY AND METHOD FOR ON-CHIP PSEUDO-RANDOMIZATION OF DATA WITHIN A
PAGE AND BETWEEN PAGES

(57) Abstract: Features within an
integrated-circuit memory chip enables
scrambling or randomization of data stored

Prowding an integrated-circuit rmemory chip having an array of 200 in an array of nonvolatile memory cells. In
nonvolatiie memary cells accessible page by page, each page -y i L L
being a group of memory cells, each memory cell of the group one embodiment, randomization w'1th1n each
being in a column of the array and along a row accessible by a page helps to control source loading errors
common word ling during sensing and floating gate to floating
gate coupling among neighboring cells.
Randomization from page to page helps to
A . .
reduce program disturbs, user read disturbs,
Genarating on-chip & sequence of starting column positions so 710 and floating gate to floating gate coupling
that each page to be programmed has an associated starting — that result from repeated and long term
column position storage of specific data patterns. In another

embodiment, randomization is implemented
both within a page and between pages.
720 The scrambling or randomization may be

Staging data to be programmed into each page by starting from |— predetermined, or code generated pseudo
the associated starting column position and wrapping around until
the page is filed

h

randomization or user driven randomization
in different embodiments. These features
are accomplished within the limited resource
N and budget of the integrated-circuit memory
chip.

730
Programming the staged data in parallel into each page t—

Scrambling of data in a page by shifting the starting location

FIG. 26

WO 2009/035834 A2

NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

WO 2009/035834 PCT/US2008/073750

NONVOLATILE MEMORY AND METHOD FOR ON-CHIP PSEUDO-
RANDOMIZATION OF DATA WITHIN A PAGE AND BETWEEN PAGES

FIELD OF THE INVENTION

[0001] The present invention relates generally to nonvolatile memory such as
flash memory with charge storage elements, and more specifically to have the
memory store data pseudo-randomly to avoid possible undesirable data patterns which

could cause the memory to malfunction.

BACKGROUND

[0002] As the capacity of flash memory cards and drives increases, the scale of
the memory cells within the memory array continues to decrease. Within a high
density array, especially of the NAND variety, a charge stored in one cell or portion
of the array may influence a read or program operation of a neighboring cell. This is

what as known as a read or program disturb and cell coupling.

[0003] For further information on cell coupling, disturbs, and the operation and
structure of NAND flash generally, please refer to U.S. patent application publication
Nos.: US-2006-0233026-A1 entitled “Method for Non-Volatile Memory With
Background Data Latch Caching During Program Operations”; US-2006-0233023-A1
entitled “Method for Non-Volatile Memory With Background Data Latch Caching
During Erase Operations”; US-2006-0221696-A1, entitled “Method for Non-Volatile
Memory With Background Data Latch Caching During Read Operations”; US Patent
No. 6,870,768 entitled “Techniques for Reducing Effects of Coupling Between
Storage Elements of Adjacent Rows of Memory Cells”; and US-2006-0140011-A1
entitled “Reducing Floating Gate to Floating Gate Coupling Effect” which are hereby

incorporated by reference in the entirety for all purposes.

[0004] Flash memory is often used by some users to constantly store the same
data pattern again and again repeatedly in some blocks of the flash memory. The
result is that there will be some bits left to be erased but never programmed.
Additionally, there will be also some bits always programmed and rarely erased.

These persistent data patterns are problematic in that they may result in disturbs and

S 1-

WO 2009/035834 PCT/US2008/073750

other difficulties such as floating gate to floating gate effects, NAND string resistance

effect, and reduced memory endurance and reliability, etc.

[0005] Solid-state memory capable of nonvolatile storage of charge, particularly
in the form of EEPROM and flash EEPROM packaged as a small form factor card,
has recently become the storage of choice in a variety of mobile and handheld
devices, notably information appliances and consumer electronics products. Unlike
RAM (random access memory) that is also solid-state memory, flash memory is non-
volatile, retaining its stored data even after power is turned off. In spite of the higher
cost, flash memory is increasingly being used in mass storage applications.
Conventional mass storage, based on rotating magnetic medium such as hard drives
and floppy disks, is unsuitable for the mobile and handheld environment. This is
because disk drives tend to be bulky, are prone to mechanical failure and have high
latency and high power requirements. These undesirable attributes make disk-based
storage impractical in most mobile and portable applications. On the other hand, flash
memory, both embedded and in the form of a removable card is ideally suited in the
mobile and handheld environment because of its small size, low power consumption,

high speed and high reliability features.

[0006] EEPROM and eclectrically programmable read-only memory (EPROM)
are non-volatile memory that can be erased and have new data written or
“programmed” into their memory cells. Both utilize a floating (unconnected)
conductive gate, in a field effect transistor structure, positioned over a channel region
in a semiconductor substrate, between source and drain regions. A control gate is
then provided over the floating gate. The threshold voltage characteristic of the
transistor is controlled by the amount of charge that is retained on the floating gate.
That is, for a given level of charge on the floating gate, there is a corresponding
voltage (threshold) that must be applied to the control gate before the transistor is

turned “on” to permit conduction between its source and drain regions.

[0007] The floating gate can hold a range of charges and therefore can be
programmed to any threshold voltage level within a threshold voltage window. The
size of the threshold voltage window is delimited by the minimum and maximum

threshold levels of the device, which in turn correspond to the range of the charges

.

WO 2009/035834 PCT/US2008/073750

that can be programmed onto the floating gate. The threshold window generally
depends on the memory device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within the window may, in

principle, be used to designate a definite memory state of the cell.

[0008] The transistor serving as a memory cell is typically programmed to a
"programmed" state by one of two mechanisms. In "hot electron injection,” a high
voltage applied to the drain accelerates electrons across the substrate channel region.
At the same time a high voltage applied to the control gate pulls the hot electrons
through a thin gate dielectric onto the floating gate. In "tunneling injection,” a high
voltage is applied to the control gate relative to the substrate. In this way, electrons

are pulled from the substrate to the intervening floating gate.

[0009] The memory device may be erased by a number of mechanisms. For
EPROM, the memory is bulk erasable by removing the charge from the floating gate
by ultraviolet radiation. For EEPROM, a memory cell is electrically erasable, by
applying a high voltage to the substrate relative to the control gate so as to induce
electrons in the floating gate to tunnel through a thin oxide to the substrate channel
region (i.c., Fowler-Nordheim tunneling.) Typically, the EEPROM is erasable byte
by byte. For flash EEPROM, the memory is electrically erasable either all at once or
one or more blocks at a time, where a block may consist of 512 bytes or more of

memory.

EXAMPLES OF NON-VOLATILE MEMORY CELLS

[0010] The memory devices typically comprise one or more memory chips that
may be mounted on a card. Each memory chip comprises an array of memory cells
supported by peripheral circuits such as decoders and erase, write and read circuits.
The more sophisticated memory devices also come with a controller that performs
intelligent and higher level memory operations and interfacing. There are many
commercially successful non-volatile solid-state memory devices being used today.
These memory devices may employ different types of memory cells, each type having

one or more charge storage element.

[0011] FIGs. 1A-1E illustrate schematically different examples of non-volatile

-3-

WO 2009/035834 PCT/US2008/073750
memory cells.

[0012] FIG. 1A illustrates schematically a non-volatile memory in the form of an
EEPROM cell with a floating gate for storing charge. An electrically erasable and
programmable read-only memory (EEPROM) has a similar structure to EPROM, but
additionally provides a mechanism for loading and removing charge electrically from
its floating gate upon application of proper voltages without the need for exposure to
UV radiation. Examples of such cells and methods of manufacturing them are given

in United States patent no. 5,595,924.

[0013] FIG. 1B illustrates schematically a flash EEPROM cell having both a
select gate and a control or steering gate. The memory cell 10 has a “split-channel”
12 between source 14 and drain 16 diffusions. A cell is formed effectively with two
transistors T1 and T2 in series. T1 serves as a memory transistor having a floating
gate 20 and a control gate 30. The floating gate is capable of storing a selectable
amount of charge. The amount of current that can flow through the T1’s portion of
the channel depends on the voltage on the control gate 30 and the amount of charge
residing on the intervening floating gate 20. T2 serves as a select transistor having a
select gate 40. When T2 is turned on by a voltage at the select gate 40, it allows the
current in the T1’s portion of the channel to pass between the source and drain. The
select transistor provides a switch along the source-drain channel independent of the
voltage at the control gate. One advantage is that it can be used to turn off those cells
that are still conducting at zero control gate voltage due to their charge depletion
(positive) at their floating gates. The other advantage is that it allows source side

injection programming to be more easily implemented.

[0014] One simple embodiment of the split-channel memory cell is where the
select gate and the control gate are connected to the same word line as indicated
schematically by a dotted line shown in FIG. 1B. This is accomplished by having a
charge storage element (floating gate) positioned over one portion of the channel and
a control gate structure (which is part of a word line) positioned over the other
channel portion as well as over the charge storage element. This effectively forms a
cell with two transistors in series, one (the memory transistor) with a combination of

the amount of charge on the charge storage element and the voltage on the word line

-4 -

WO 2009/035834 PCT/US2008/073750

controlling the amount of current that can flow through its portion of the channel, and
the other (the select transistor) having the word line alone serving as its gate.
Examples of such cells, their uses in memory systems and methods of manufacturing
them are given in United States patents nos. 5,070,032, 5,095,344, 5,315,541,
5,343,063, and 5,661,053.

[0015] A more refined embodiment of the split-channel cell shown in FIG. 1B is
when the select gate and the control gate are independent and not connected by the
dotted line between them. One implementation has the control gates of one column in
an array of cells connected to a control (or steering) line perpendicular to the word
line. The effect is to relieve the word line from having to perform two functions at the
same time when reading or programming a selected cell. Those two functions are (1)
to serve as a gate of a select transistor, thus requiring a proper voltage to turn the
select transistor on and off, and (2) to drive the voltage of the charge storage element
to a desired level through an electric field (capacitive) coupling between the word line
and the charge storage element. It is often difficult to perform both of these functions
in an optimum manner with a single voltage. With the separate control of the control
gate and the select gate, the word line need only perform function (1), while the added
control line performs function (2). This capability allows for design of higher
performance programming where the programming voltage is geared to the targeted
data. The use of independent control (or steering) gates in a flash EEPROM array is
described, for example, in United States patent nos. 5,313,421 and 6,222,762.

[0016] FIG. 1C illustrates schematically another flash EEPROM cell having
dual floating gates and independent select and control gates. The memory cell 10 is
similar to that of FIG. 1B except it effectively has three transistors in series. In this
type of cell, two storage elements (i.e., that of T1 - left and T1 - right) are included
over its channel between source and drain diffusions with a select transistor T1 in
between them. The memory transistors have floating gates 20 and 20°, and control
gates 30 and 30, respectively. The select transistor T2 is controlled by a select gate
40. At any one time, only one of the pair of memory transistors is accessed for read
or write. When the storage unit T1 - left is being accessed, both the T2 and T1 - right
are turned on to allow the current in the T1 - left’s portion of the channel to pass

between the source and the drain. Similarly, when the storage unit T1 - right is being

-5-

WO 2009/035834 PCT/US2008/073750

accessed, T2 and T1 - left are turned on. Erase is effected by having a portion of the
select gate polysilicon in close proximity to the floating gate and applying a
substantial positive voltage (e.g. 20V) to the select gate so that the electrons stored

within the floating gate can tunnel to the select gate polysilicon.

[0017] FIG. 1D illustrates schematically a string of memory cells organized into
an NAND cell. An NAND cell 50 consists of a series of memory transistors M1, M2,
... Mn (n= 4, 8, 16 or higher) daisy-chained by their sources and drains. A pair of
select transistors S1, S2 controls the memory transistors chain’s connection to the
external via the NAND cell’s source terminal 54 and drain terminal 56. In a memory
array, when the source select transistor S1 is turned on, the source terminal is coupled
to a source line. Similarly, when the drain select transistor S2 is turned on, the drain
terminal of the NAND cell is coupled to a bit line of the memory array. Each memory
transistor in the chain has a charge storage element to store a given amount of charge
so as to represent an intended memory state. A control gate of each memory
transistor provides control over read and write operations. A control gate of each of
the select transistors S1, S2 provides control access to the NAND cell via its source

terminal 54 and drain terminal 56 respectively.

[0018] When an addressed memory transistor within an NAND cell is read and
verified during programming, its control gate is supplied with an appropriate voltage.
At the same time, the rest of the non-addressed memory transistors in the NAND cell
50 are fully turned on by application of sufficient voltage on their control gates. In
this way, a conductive path is effective created from the source of the individual
memory transistor to the source terminal 54 of the NAND cell and likewise for the
drain of the individual memory transistor to the drain terminal 56 of the cell. Memory
devices with such NAND cell structures are described in United States patent nos.

5,570,315, 5,903,495, 6,046,935.

[0019] FIG. 1E illustrates schematically a non-volatile memory with a dielectric
layer for storing charge. Instead of the conductive floating gate elements described
carlier, a dielectric layer is used. Such memory devices utilizing dielectric storage
element have been described by Eitan et al., “NROM: A Novel Localized Trapping,
2-Bit Nonvolatile Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11,

-6 -

WO 2009/035834 PCT/US2008/073750

November 2000, pp. 543-545. An ONO dielectric layer extends across the channel
between source and drain diffusions. The charge for one data bit is localized in the
dielectric layer adjacent to the drain, and the charge for the other data bit is localized
in the dielectric layer adjacent to the source. For example, United States patents nos.
5,768,192 and 6,011,725 disclose a nonvolatile memory cell having a trapping
dielectric sandwiched between two silicon dioxide layers. Multi-state data storage is
implemented by separately reading the binary states of the spatially separated charge

storage regions within the dielectric.

MEMORY ARRAY

[0020] A memory device typically comprises of a two-dimensional array of
memory cells arranged in rows and columns and addressable by word lines and bit
lines. The array can be formed according to an NOR type or an NAND type

architecture.

NOR Array

[0021] FIG. 2 illustrates an example of an NOR array of memory cells.
Memory devices with an NOR type architecture have been implemented with cells of
the type illustrated in FIGs. 1B or 1C. Each row of memory cells are connected by
their sources and drains in a daisy-chain manner. This design is sometimes referred to
as a virtual ground design. Each memory cell 10 has a source 14, a drain 16, a control
gate 30 and a select gate 40. The cells in a row have their select gates connected to
word line 42. The cells in a column have their sources and drains respectively
connected to selected bit lines 34 and 36. In some embodiments where the memory
cells have their control gate and select gate controlled independently, a steering line

36 also connects the control gates of the cells in a column.

[0022] Many flash EEPROM devices are implemented with memory cells where
cach is formed with its control gate and select gate connected together. In this case,
there is no need for steering lines and a word line simply connects all the control gates
and select gates of cells along each row. Examples of these designs are disclosed in
United States patent nos. 5,172,338 and 5,418,752. In these designs, the word line

essentially performed two functions: row selection and supplying control gate voltage

-7 -

WO 2009/035834 PCT/US2008/073750
to all cells in the row for reading or programming.

NAND Array

[0023] FIG. 3 illustrates an example of an NAND array of memory cells, such as
that shown in FIG. 1D. Along cach column of NAND cells, a bit line is coupled to
the drain terminal 56 of each NAND cell. Along cach row of NAND cells, a source
line may connect all their source terminals 54. Also the control gates of the NAND
cells along a row are connected to a series of corresponding word lines. An entire
row of NAND cells can be addressed by turning on the pair of select transistors (see
FIG. 1D) with appropriate voltages on their control gates via the connected word
lines. When a memory transistor within the chain of a NAND cell is being read, the
remaining memory transistors in the chain are turned on hard via their associated
word lines so that the current flowing through the chain is essentially dependent upon
the level of charge stored in the cell being read. An example of an NAND
architecture array and its operation as part of a memory system is found in United

States patents nos. 5,570,315, 5,774,397 and 6,046,935.
Block Erase

[0024] Programming of charge storage memory devices can only result in adding
more charge to its charge storage elements. Therefore, prior to a program operation,
existing charge in a charge storage element must be removed (or erased). Erase
circuits (not shown) are provided to erase one or more blocks of memory cells. A
non-volatile memory such as EEPROM is referred to as a “Flash” EEPROM when an
entire array of cells, or significant groups of cells of the array, is electrically erased
together (i.e., in a flash). Once erased, the group of cells can then be reprogrammed.
The group of cells erasable together may consist one or more addressable erase unit.
The erase unit or block typically stores one or more pages of data, the page being the
unit of programming and reading, although more than one page may be programmed
or read in a single operation. Each page typically stores one or more sectors of data,
the size of the sector being defined by the host system. An example is a sector of 512
bytes of user data, following a standard established with magnetic disk drives, plus
some number of bytes of overhead information about the user data and/or the block in

with it is stored.

WO 2009/035834 PCT/US2008/073750

READ/WRITE CIRCUITS

[0025] In the usual two-state EEPROM cell, at least one current breakpoint level
is established so as to partition the conduction window into two regions. When a cell
is read by applying predetermined, fixed voltages, its source/drain current is resolved
into a memory state by comparing with the breakpoint level (or reference current
Irpr). If the current read is higher than that of the breakpoint level, the cell is
determined to be in one logical state (e.g., a "zero" state). On the other hand, if the
current is less than that of the breakpoint level, the cell is determined to be in the other
logical state (e.g., a “one” state). Thus, such a two-state cell stores one bit of digital
information. A reference current source, which may be externally programmable, is

often provided as part of a memory system to generate the breakpoint level current.

[0026] In order to increase memory capacity, flash EEPROM devices are being
fabricated with higher and higher density as the state of the semiconductor technology
advances. Another method for increasing storage capacity is to have each memory

cell store more than two states.

[0027] For a multi-state or multi-level EEPROM memory cell, the conduction
window is partitioned into more than two regions by more than one breakpoint such
that each cell is capable of storing more than one bit of data. The information that a
given EEPROM array can store is thus increased with the number of states that each
cell can store. EEPROM or flash EEPROM with multi-state or multi-level memory
cells have been described in U.S. Patent No. 5,172,338.

[0028] In practice, the memory state of a cell is usually read by sensing the
conduction current across the source and drain electrodes of the cell when a reference
voltage is applied to the control gate. Thus, for each given charge on the floating gate
of a cell, a corresponding conduction current with respect to a fixed reference control
gate voltage may be detected. Similarly, the range of charge programmable onto the
floating gate defines a corresponding threshold voltage window or a corresponding

conduction current window.

[0029] Alternatively, instead of detecting the conduction current among a

partitioned current window, it is possible to set the threshold voltage for a given

-9.-

WO 2009/035834 PCT/US2008/073750

memory state under test at the control gate and detect if the conduction current is
lower or higher than a threshold current. In one implementation the detection of the
conduction current relative to a threshold current is accomplished by examining the

rate the conduction current is discharging through the capacitance of the bit line.

[0030] FIG. 4 illustrates the relation between the source-drain current I and the
control gate voltage Vg for four different charges Q1-Q4 that the floating gate may
be selectively storing at any one time. The four solid Ip versus Vg curves represent
four possible charge levels that can be programmed on a floating gate of a memory
cell, respectively corresponding to four possible memory states. As an example, the
threshold voltage window of a population of cells may range from 0.5V to 3.5V. Six
memory states may be demarcated by partitioning the threshold window into five
regions in interval of 0.5V each. For example, if a reference current, Igpr of 2 pA is
used as shown, then the cell programmed with Q1 may be considered to be in a
memory state “1” since its curve intersects with Irgr in the region of the threshold

window demarcated by Veg =0.5V and 1.0V. Similarly, Q4 is in a memory state “5”.

[0031] As can be seen from the description above, the more states a memory cell
is made to store, the more finely divided is its threshold window. This will require
higher precision in programming and reading operations in order to be able to achieve

the required resolution.

[0032] United States Patent No. 4,357,685 discloses a method of programming a
2-state EPROM in which when a cell is programmed to a given state, it is subject to
successive programming voltage pulses, each time adding incremental charge to the
floating gate. In between pulses, the cell is read back or verified to determine its
source-drain current relative to the breakpoint level. Programming stops when the
current state has been verified to reach the desired state. The programming pulse train

used may have increasing period or amplitude.

[0033] Prior art programming circuits simply apply programming pulses to step
through the threshold window from the erased or ground state until the target state is
reached. Practically, to allow for adequate resolution, each partitioned or demarcated
region would require at least about five programming steps to transverse. The

performance is acceptable for 2-state memory cells. However, for multi-state cells,

-10-

WO 2009/035834 PCT/US2008/073750

the number of steps required increases with the number of partitions and therefore, the
programming precision or resolution must be increased. For example, a 16-state cell

may require on average at least 40 programming pulses to program to a target state.

[0034] FIG. 5 illustrates schematically a memory device with a typical
arrangement of a memory array 100 accessible by read/write circuits 170 via row
decoder 130 and column decoder 160. As described in connection with FIG. 2 and
FIG. 3, a memory transistor of a memory cell in the memory array 100 is addressable
via a set of selected word line(s) and bit line(s). The row decoder 130 selects one or
more word lines and the column decoder 160 selects one or more bit lines in order to
apply appropriate voltages to the respective gates of the addressed memory transistor.
Read/write circuits 170 are provided to read or write (program) the memory states of
addressed memory transistors. The read/write circuits 170 comprise a number of

read/write modules connectable via bit lines to memory elements in the array.

[0035] FIG. 6A is a schematic block diagram of an individual read/write module
190. Essentially, during read or verify, a sense amplifier determines the current
flowing through the drain of an addressed memory transistor connected via a selected
bit line. The current depends on the charge stored in the memory transistor and its
control gate voltage. For example, in a multi-state EEPROM cell, its floating gate can
be charged to one of several different levels. For a 4-level cell, it may be used to store
two bits of data. The level detected by the sense amplifier is converted by a level-to-

bits conversion logic to a set of data bits to be stored in a data latch.

FACTORS AFFECTING READ/WRITE PERFORMANCE AND ACCURACY

[0036] In order to improve read and program performance, multiple charge
storage elements or memory transistors in an array are read or programmed in
parallel. Thus, a logical “page” of memory elements are read or programmed
together. In existing memory architectures, a row typically contains several
interleaved pages. All memory clements of a page will be read or programmed
together. The column decoder will selectively connect each one of the interleaved
pages to a corresponding number of read/write modules. For example, in one
implementation, the memory array is designed to have a page size of 532 bytes (512

bytes plus 20 bytes of overheads.) If each column contains a drain bit line and there

-11 -

WO 2009/035834 PCT/US2008/073750

are two interleaved pages per row, this amounts to 8512 columns with each page
being associated with 4256 columns. There will be 4256 sense modules connectable
to read or write in parallel either all the even bit lines or the odd bit lines. In this way,
a page of 4256 bits (i.c., 532 bytes) of data in parallel are read from or programmed
into the page of memory elements. The read/write modules forming the read/write

circuits 170 can be arranged into various architectures.

[0037] Referring to FIG. 5, the read/write circuits 170 is organized into banks of
read/write stacks 180. Each read/write stack 180 is a stack of read/write modules 190.
In a memory array, the column spacing is determined by the size of the one or two
transistors that occupy it. However, as can be seen from FIG. 6A, the circuitry of a
read/write module will likely be implemented with many more transistors and circuit
elements and therefore will occupy a space over many columns. In order to service
more than one column among the occupied columns, multiple modules are stacked up

on top of each other.

[0038] FIG. 6B shows the read/write stack of FIG. 5 implemented
conventionally by a stack of read/write modules 190. For example, a read/write
module may extend over sixteen columns, then a read/write stack 180 with a stack of
eight read/write modules can be used to service eight columns in parallel. The
read/write stack can be coupled via a column decoder to either the eight odd (1, 3, 5, 7,
9, 11, 13, 15) columns or the eight even (2, 4, 6, &, 10, 12, 14, 16) columns among the
bank.

[0039] As mentioned before, conventional memory devices improve read/write
operations by operating in a massively parallel manner on all even or all odd bit lines
at a time. This architecture of a row consisting of two interleaved pages will help to
alleviate the problem of fitting the block of read/write circuits. It is also dictated by
consideration of controlling bit-line to bit-line capacitive coupling. A block decoder
is used to multiplex the set of read/write modules to either the even page or the odd
page. In this way, whenever one set bit lines are being read or programmed, the

interleaving set can be grounded to minimize immediate neighbor coupling.

[0040] However, the interleaving page architecture is disadvantageous in at least

three respects. First, it requires additional multiplexing circuitry. Secondly, it is slow

-12-

WO 2009/035834 PCT/US2008/073750

in performance. To finish read or program of memory cells connected by a word line
or in a row, two read or two program operations are required. Thirdly, it is also not
optimum in addressing other disturb effects such as field coupling between
neighboring charge storage elements at the floating gate level when the two neighbors

are programmed at different times, such as separately in odd and even pages.

[0041] The problem of neighboring field coupling becomes more pronounced
with ever closer spacing between memory transistors. In a memory transistor, a
charge storage clement is sandwiched between a channel region and a control gate.
The current that flows in the channel region is a function of the resultant electric field
contributed by the field at the control gate and the charge storage element. With ever
increasing density, memory transistors are formed closer and closer together. The
field from neighboring charge elements then becomes significant contributor to the
resultant field of an affected cell. The neighboring field depends on the charge
programmed into the charge storage elements of the neighbors. This perturbing field
is dynamic in nature as it changes with the programmed states of the neighbors. Thus,
an affected cell may read differently at different time depending on the changing

states of the neighbors.

[0042] The conventional architecture of interleaving page exacerbates the error
caused by neighboring floating gate coupling. Since the even page and the odd page
are programmed and read independently of each other, a page may be programmed
under one set of condition but read back under an entirely different set of condition,
depending on what has happened to the intervening page in the meantime. The read
errors will become more severe with increasing density, requiring a more accurate
read operation and coarser partitioning of the threshold window for multi-state
implementation. Performance will suffer and the potential capacity in a multi-state

implementation is limited.

[0043] United States Patent Publication No. US-2004-0060031-A1 discloses a
high performance yet compact non-volatile memory device having a large block of
read/write circuits to read and write a corresponding block of memory cells in
parallel. In particular, the memory device has an architecture that reduces redundancy

in the block of read/write circuits to a minimum. Significant saving in space as well

-13 -

WO 2009/035834 PCT/US2008/073750

as power is accomplished by redistributing the block of read/write modules into a
block read/write module core portions that operate in parallel while interacting with a
substantially smaller sets of common portions in a time-multiplexing manner. In
particular, data processing among read/write circuits between a plurality of sense

amplifiers and data latches is performed by a shared processor.

[0044] Therefore there is a general need for high performance and high capacity
non-volatile memory. In particular, there is a need for a compact non-volatile
memory with enhanced read and program performance having an improved processor
that is compact and efficient, yet highly versatile for processing data among the

read/writing circuits.
SUMMARY OF THE INVENTION

[0045] According to one aspect of the invention, the data in each memory page
is randomized such that when data from several pages are lined up problematic data

patterns are avoided during programming.

[0046] In one preferred embodiment, a simple way of scrambling the data on a
page is to write the data on an independent or different starting address for each
different page. A corresponding page of data is written to each page of memory cells
at a different starting location for each page. When the data is filled to the end of the
page, it continues by wrapping around from the first address of the page until just

before the starting location.

[0047] In another preferred embodiment, a sequence of starting physical column

addresses, one for cach page, is provided by a pseudo-random generator.

[0048] According to another aspect of the invention, the data bits in the page are
randomized such that on average the page contains an equal mix of cells with erased
and programmed states. In this way, the source line bias or loading does not vary
substantially and can be allowed for with appropriate adjustment during the sensing

operation.

[0049] This is accomplished by randomizing the individual bits within a page.

Preferably, a sequence of pseudo random bits, cach specifying a certain polarity is

-14 -

WO 2009/035834 PCT/US2008/073750

employed to encode bits within the page. In one embodiment, there is a polarity bit
for cach data bit in the page. In another embodiment, there is a polarity bit for each
byte of data in the page. In this embodiment, if the polarity bit specifies a flipping of
the bits, then all bits within the data byte will get flipped.

[0050] According to another aspect of the invention, randomization within a
page is combined with randomization form page to page. In particular, given the
limited resource of the on-chip circuitry, randomization within a page is preferably
accomplished by ecach page having an independent starting position and
randomization from page to page is preferably accomplished by each page having an

independent encoding polarity.

[0051] In another embodiment, the randomization within a page implemented by
cach page having an independent starting position is also augmented by each set of

data bits within a page having an independent encoding polarity.

[0052] The various randomization methodologies and embodiments are memory
chip (EEPROM) implemented. This is to say that they take place within the memory
chip itself rather than with a memory controller that communicates with the chip.
This differs from a different technique of addressing the issue known as wear leveling
that is often implemented on a system level and utilizes the controller to change how

data is stored within the memory chip.

[0053] The present invention will reduce or eliminate the specific data patterns
which can cause program disturbs or user read disturbs, as well as reducing NAND
string resistance effect, and increasing memory endurance and reliability. It will also

reduce the problem of floating gate to floating gate coupling.

BRIEF DESCRIPTION OF THE FIGURES

[0054] FIGS. 1A-1E illustrate schematically different examples of non-volatile

memory cells.

[0055] FIG. 2 illustrates an example of an NOR array of memory cells.

-15-

WO 2009/035834 PCT/US2008/073750

[0056] FIG. 3 illustrates an example of an NAND array of memory cells, such as
that shown in FIG. 1D.

[0057] FIG. 4 illustrates the relation between the source-drain current and the
control gate voltage for four different charges Q1-Q4 that the floating gate may be

storing at any one time.

[0058] FIG. § illustrates schematically a typical arrangement of a memory array

accessible by read/write circuits via row and column decoders.
[0059] FIG. 6A is a schematic block diagram of an individual read/write module.

[0060] FIG. 6B shows the read/write stack of FIG. 5 implemented

conventionally by a stack of read/write modules.

[0061] FIG. 7A illustrates schematically a compact memory device having a
bank of partitioned read/write stacks, in which the improved processor of the present

invention is implemented.

[0062] FIG. 7B illustrates a preferred arrangement of the compact memory
device shown in FIG. 7A.

[0063] FIG. 8 illustrates schematically a general arrangement of the basic

components in a read/write stack shown in FIG. 7A.

[0064] FIG. 9 illustrates one preferred arrangement of the read/write stacks

among the read/write circuits shown in FIGs. 7A and 7B.

[0065] FIG. 10 illustrates an improved embodiment of the common processor

shown in FIG 9.

[0066] FIG. 11A illustrates a preferred embodiment of the input logic of the

common processor shown in FIG. 10.
[0067] FIG. 11B illustrates the truth table of the input logic of FIG. 11A.

[0068] FIG. 12A illustrates a preferred embodiment of the output logic of the

common processor shown in FIG. 10.

-16 -

WO 2009/035834 PCT/US2008/073750
[0069] FIG. 12B illustrates the truth table of the output logic of FIG. 12A.

[0070] FIG. 13 is a simplified version of FIG. 10 that shows some specific
clements that are relevant to the present discussion in a two-bit embodiment of the

present invention

[0071] FIG. 14 indicates the latch assignment for the same elements as FIG. 13

for upper page program where the lower page data is read in.
[0072] FIG. 15 illustrates aspects of cache program in the single page mode.

[0073] FIG. 16 shows a programming waveform that can be used in a lower

page to full sequence conversion.

[0074] FIG. 17 illustrates the relative timing in a cache program operation with a

full sequence conversion.

[0075] FIG. 18 describes the disposition of latches in a cache page copy

operation.

[0076] FIGS. 19A and 19B illustrate the relative timings in cache page copy

operations.

[0077] FIG. 20 illustrates threshold voltage distributions of the 4-state memory

array when each memory cell stores two bits of data using the LM code.

[0078] FIG. 21 is a schematic block diagram of certain components of
EEPROM or memory chip 600.

[0079] FIG. 22A is an illustration of the encoding scheme and polarity bit of

various pages of data by page address.

[0080] FIG. 22B is a table illustrating the application of an example 17 bit code

used to transform the encoding of user data.

[0081] FIG. 22C illustrates application of polarity bits to the upper and lower
bits stored in the memory cells of an exemplary NAND chain/string.

-17 -

WO 2009/035834 PCT/US2008/073750

[0082] FIG. 23A is an illustration of encoding scheme determination as a

function of a command clock signal.
[0083] FIG. 23B is a clock signal of a command.

[0084] FIG. 23C illustrates an embodiment of control circuitry for data

encoding determination and inversion.

[0085] FIG. 23D illustrates a page of user data with the polarity bit stored

therein.

[0086] FIG. 23E illustrates an embodiment of control circuitry for reverting the

encoding of potentially inverted data for read operations.

[0087] FIG. 24A is a timeline of a command clock signal and a finite state
machine clock signal showing the value of the FSM clock at the rising edge of the

command clock signal.

[0088] FIG. 24B illustrates exemplary circuitry to determine the polarity bit as a

function of the command clock signal shown in FIG. 24A.

[0089] FIG. 25 illustrates the On-chip control circuitry shown in FIG. 7A and
FIG. 9 in more detail.

[0090] FIG. 26 illustrates a method of scrambling the data on a memory page,
according to one preferred embodiment of writing from different starting location for

cach page.

[0091] FIG. 27 is a table illustrating an example of different pages having

different starting locations for writing data.

[0092] FIG. 28A illustrates the problem of source voltage error due to current

flow in the source line having a finite resistance to ground.

[0093] FIG. 28B illustrates the error in the threshold voltage level of a memory

cell caused by a source line voltage drop.

[0094] FIG. 29 illustrates a method of randomizing bits within a page.

- 18 -

WO 2009/035834 PCT/US2008/073750

[0095] FIG. 30 illustrates a method of randomizing data page-by-page and

within each page, according to another aspect of the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0096] FIG. 7A to FIG. 20 illustrate preferred memory systems in which the

present invention is implemented.

[0097] FIG. 7A illustrates schematically a compact memory device having a
bank of partitioned read/write stacks, in which the improved processor of the present
invention is implemented. The memory device includes a two-dimensional array of
memory cells 300, control circuitry 310, and read/write circuits 370. The memory
array 300 is addressable by word lines via a row decoder 330 and by bit lines via a
column decoder 360. The read/write circuits 370 is implemented as a bank of
partitioned read/write stacks 400 and allows a block (also referred to as a “page”) of
memory cells to be read or programmed in parallel. In a preferred embodiment, a
page is constituted from a contiguous row of memory cells. In another embodiment,
where a row of memory cells are partitioned into multiple blocks or pages, a block
multiplexer 350 is provided to multiplex the read/write circuits 370 to the individual

blocks.

[0098] The control circuitry 310 cooperates with the read/write circuits 370 to
perform memory operations on the memory array 300. The control circuitry 310
includes a state machine 312, an on-chip address decoder 314 and a power control
module 316. The state machine 312 provides chip level control of memory
operations. The on-chip address decoder 314 provides an address interface between
that used by the host or a memory controller to the hardware address used by the
decoders 330 and 370. The power control module 316 controls the power and

voltages supplied to the word lines and bit lines during memory operations.

[0099] FIG. 7B illustrates a preferred arrangement of the compact memory
device shown in FIG. 7A. Access to the memory array 300 by the various peripheral
circuits is implemented in a symmetric fashion, on opposite sides of the array so that
access lines and circuitry on each side are reduced in half. Thus, the row decoder is

split into row decoders 330A and 330B and the column decoder into column decoders

-19-

WO 2009/035834 PCT/US2008/073750

360A and 360B. In the embodiment where a row of memory cells are partitioned into
multiple blocks, the block multiplexer 350 is split into block multiplexers 350A and
350B. Similarly, the read/write circuits are split into read/write circuits 370A
connecting to bit lines from the bottom and read/write circuits 370B connecting to bit
lines from the top of the array300. In this way, the density of the read/write modules,
and therefore that of the partitioned read/write stacks 400, is essentially reduced by

one half.

[00100] FIG. 8 illustrates schematically a general arrangement of the basic
components in a read/write stack shown in FIG. 7A. According to a general
architecture of the invention, the read/write stack 400 comprises a stack of sense
amplifiers 212 for sensing k bit lines, an I/O module 440 for input or output of data
via an I/O bus 231, a stack of data latches 430 for storing input or output data, a
common processor 500 to process and store data among the read/write stack 400, and
a stack bus 421 for communication among the stack components. A stack bus
controller among the read/write circuits 370 provides control and timing signals via

lines 411 for controlling the various components among the read/write stacks.

[00101] FIG. 9 illustrates one preferred arrangement of the read/write stacks
among the read/write circuits shown in FIGs. 7A and 7B. Each read/write stack 400
operates on a group of k bit lines in parallel. If a page has p=r*k bit lines, there will

be r read/write stacks, 400-1, ..., 400-r.

[00102] The entire bank of partitioned read/write stacks 400 operating in parallel
allows a block (or page) of p cells along a row to be read or programmed in parallel.
Thus, there will be p read/write modules for the entire row of cells. As each stack is
serving k memory cells, the total number of read/write stacks in the bank is therefore
given by r =p/k. For example, if r is the number of stacks in the bank, then p = r*k.
One example memory array may have p = 512 bytes (512x8 bits), k = &, and therefore
r=1512. In the preferred embodiment, the block is a run of the entire row of cells. In
another embodiment, the block is a subset of cells in the row. For example, the subset
of cells could be one half of the entire row or one quarter of the entire row. The
subset of cells could be a run of contiguous cells or one every other cell, or one every

predetermined number of cells.

-20 -

WO 2009/035834 PCT/US2008/073750

[00103] Each read/write stack, such as 400-1, essentially contains a stack of sense
amplifiers 212-1 to 212-k servicing a segment of k memory cells in parallel. A
preferred sense amplifier is disclosed in United States Patent Publication No. 2004-
0109357-A1, the entire disclosure of which is hereby incorporated herein by

reference.

[00104] The stack bus controller 410 provides control and timing signals to the
read/write circuit 370 via lines 411. The stack bus controller is itself dependent on the
memory controller 310 via lines 311. Communication among each read/write stack
400 is effected by an interconnecting stack bus 431 and controlled by the stack bus
controller 410. Control lines 411 provide control and clock signals from the stack bus

controller 410 to the components of the read/write stacks 400-1.

[00105] In the preferred arrangement, the stack bus is partitioned into a SABus
422 for communication between the common processor 500 and the stack of sense
amplifiers 212, and a DBus 423 for communication between the processor and the

stack of data latches 430.

[00106] The stack of data latches 430 comprises of data latches 430-1 to 430-k,
one for each memory cell associated with the stack The I/0 module 440 enables the

data latches to exchange data with the external via an I/O bus 231.

[00107] The common processor also includes an output 507 for output of a status
signal indicating a status of the memory operation, such as an error condition. The
status signal is used to drive the gate of an n-transistor 550 that is tied to a FLAG
BUS 509 in a Wired-Or configuration. The FLAG BUS is preferably precharged by
the controller 310 and will be pulled down when a status signal is asserted by any of

the read/write stacks.

[00108] FIG. 10 illustrates an improved embodiment of the common processor
shown in FIG 9. The common processor 500 comprises a processor bus, PBUS 505
for communication with external circuits, an input logic 510, a processor latch PLatch

520 and an output logic 530.

[00109] The input logic 510 receives data from the PBUS and outputs to a BSI

221 -

WO 2009/035834 PCT/US2008/073750

node as a transformed data in one of logical states “17, “0”, or “Z” (float) depending
on the control signals from the stack bus controller 410 via signal lines 411. A
Set/Reset latch, PLatch 520 then latches BSI, resulting in a pair of complementary
output signals as MTCH and MTCH*.

[00110] The output logic 530 receives the MTCH and MTCH* signals and outputs
on the PBUS 505 a transformed data in one of logical states “1”, “0”, or “Z” (float)

depending on the control signals from the stack bus controller 410 via signal lines

411.

[00111] At any one time the common processor 500 processes the data related to a
given memory cell. For example, FIG. 10 illustrates the case for the memory cell
coupled to bit line 1. The corresponding sense amplifier 212-1 comprises a node
where the sense amplifier data appears. In the preferred embodiment, the node
assumes the form of a SA Latch, 214-1 that stores data. Similarly, the corresponding
set of data latches 430-1 stores input or output data associated with the memory cell
coupled to bit line 1. In the preferred embodiment, the set of data latches 430-1

comprises sufficient data latches, 434-1, ..., 434-n for storing n-bits of data.

[00112] The PBUS 505 of the common processor 500 has access to the SA latch
214-1 via the SBUS 422 when a transfer gate 501 is enabled by a pair of
complementary signals SAP and SAN. Similarly, the PBUS 505 has access to the set
of data latches 430-1 via the DBUS 423 when a transfer gate 502 is enabled by a pair
of complementary signals DTP and DTN. The signals SAP, SAN, DTP and DTN are

illustrated explicitly as part of the control signals from the stack bus controller 410.

[00113] FIG. 11A illustrates a preferred embodiment of the input logic of the
common processor shown in FIG. 10. The input logic 520 receives the data on the
PBUS 505 and depending on the control signals, either has the output BSI being the
same, or inverted, or floated. The output BSI node is essentially affected by either the
output of a transfer gate 522 or a pull-up circuit comprising p-transistors 524 and 525
in series to Vdd, or a pull-down circuit comprising n-transistors 526 and 527 in series
to ground. The pull-up circuit has the gates to the p-transistor 524 and 525
respectively controlled by the signals PBUS and ONE. The pull-down circuit has the
gates to the n-transistors 526 and 527 respectively controlled by the signals

-2

WO 2009/035834 PCT/US2008/073750
ONEB<1> and PBUS.

[00114] FIG. 11B illustrates the truth table of the input logic of FIG. 11A. The
logic is controlled by PBUS and the control signals ONE, ONEB<0>, ONEB<1>
which are part of the control signals from the stack bus controller 410. Essentially,

three transfer modes, PASSTHROUGH, INVERTED, and FLOATED, are supported.

[00115] In the case of the PASSTHROUGH mode where BSI is the same as the
input data, the signals ONE is at a logical “1”, ONEB<0> at “0” and ONEB<1> at
“0”. This will disable the pull-up or pull-down but enable the transfer gate 522 to
pass the data on the PBUS 505 to the output 523. In the case of the INVERTED
mode where BSI is the invert of the input data, the signals ONE is at “0”, ONEB<0>
at “1” and ONE<I> at “1”. This will disable the transfer gate 522. Also, when
PBUS is at “0”, the pull-down circuit will be disabled while the pull-up circuit is
enabled, resulting in BSI being at “1”. Similarly, when PBUS is at ““1”, the pull-up
circuit is disabled while the pull-down circuit is enabled, resulting in BSI being at “0”.
Finally, in the case of the FLOATED mode, the output BSI can be floated by having
the signals ONE at “1”, ONEB<0> at “1” and ONEB<I> at “0”. The FLOATED

mode is listed for completeness although in practice, it is not used.

[00116] FIG. 12A illustrates a preferred embodiment of the output logic of the
common processor shown in FIG. 10. The signal at the BSI node from the input
logic 520 is latched in the processor latch, PLatch 520. The output logic 530 receives
the data MTCH and MTCH* from the output of PLatch 520 and depending on the
control signals, outputs on the PBUS as either in a PASSTHROUGH, INVERTED
OR FLOATED mode. In other words, the four branches act as drivers for the PBUS
505, actively pulling it either to a HIGH, LOW or FLOATED state. This is
accomplished by four branch circuits, namely two pull-up and two pull-down circuits
for the PBUS 505. A first pull-up circuit comprises p-transistors 531 and 532 in
series to Vdd, and is able to pull up the PBUS when MTCH is at “0”. A second pull-
up circuit comprises p-transistors 533 and 534 in series to ground and is able to pull
up the PBUS when MTCH is at “1”. Similarly, a first pull-down circuit comprises n-
transistors 535 and 536 in series to Vdd, and is able to pull down the PBUS when

MTCH is at “0”. A second pull-up circuit comprises n-transistors 537 and 538 in

_23.

WO 2009/035834 PCT/US2008/073750

series to ground and is able to pull up the PBUS when MTCH is at “1”.

[00117] One feature of the invention is to constitute the pull-up circuits with
PMOS transistors and the pull-down circuits with NMOS transistors. Since the pull
by the NMOS is much stronger than that of the PMOS, the pull-down will always
overcome the pull-up in any contentions. In other words, the node or bus can always
default to a pull-up or “1” state, and if desired, can always be flipped to a “0” state by

a pull-down.

[00118] FIG. 12B illustrates the truth table of the output logic of FIG. 12A. The
logic is controlled by MTCH, MTCH* latched from the input logic and the control
signals PDIR, PINV, NDIR, NINV, which are part of the control signals from the
stack bus controller 410. Four operation modes, PASSTHROUGH, INVERTED,
FLOATED, and PRECHARGE are supported.

[00119] In the FLOATED mode, all four branches are disabled. This is
accomplished by having the signals PINV = 1, NINV =0, PDIR = 1, NDIR =0,
which are also the default values. In the PASSTHROUGH mode, when MTCH =0, it
will require PBUS = 0. This is accomplished by only enabling the pull-down branch
with n-transistors 535 and 536, with all control signals at their default values except
for NDIR = 1. When MTCH =1, it will require PBUS = 1. This is accomplished by
only enabling the pull-up branch with p-transistors 533 and 534, with all control
signals at their default values except for PINV = 0. In the INVERTED mode, when
MTCH = 0, it will require PBUS = 1. This is accomplished by only enabling the pull-
up branch with p-transistors 531 and 532, with all control signals at their default
values except for PDIR = 0. When MTCH = 1, it will require PBUS = 0. This is
accomplished by only enabling the pull-down branch with n-transistors 537 and 538,
with all control signals at their default values except for NINV = 1. In the
PRECHARGE mode, the control signals settings of PDIR = 0 and PINV = 0 will
either enable the pull-up branch with p-transistors 531 and 531 when MTCH =1 or
the pull-up branch with p-transistors 533 and 534 when MTCH = 0.

[00120] Common processor operations are developed more fully in U.S. patent
application publication number US-2006-0140007 A1, which is hereby incorporated

in its entirety by this reference.

-4 -

WO 2009/035834 PCT/US2008/073750

Use of Data Latches in Cache Operations

[00121] A number of aspects of the present invention make use of the data latches
of the read/write stacks described above in FIG. 10 for cache operations that will data
in and out while the internal memory is doing other operations such as read, write, or
erase. In the above-described architectures, data latches are shared by a number of
physical pages. For example, as on the read/write stacks of the bit lines, shared by all
of the word lines, so while one operation is going on, if any of these latches are free,
they can cache data for future operations in the same or another word line, saving
transfer time as this can be hidden behind another operation. This can improve
performance by increasing the amount of pipelining of different operations or phases
of operations. In one example, in a cache program operation, while programming one
page of data another page of data can be loaded in, saving on transfer time. For
another example, in one exemplary embodiment, a read operation on one word line is
inserted into a write operation on another word line, allowing the data from the read to

be transferred out of the memory while the data write continues on.

[00122] Note that this allows data from another page in the same block, but on a
different word line, to be toggled out (to, for example, do an ECC operation) while the
write or other operation is going on for the first page of data. This inter-phase
pipelining of operations allows the time needed for the data transfer to be hidden
behind the operation on the first page of data. More generally, this allows a portion of
one operation to be inserted between phases of another, typically longer, operation.
Another example would be to insert a sensing operation between phases of, say, an
erase operation, such as before an erase pulse or before a soft programming phase

used as the later part of the erase.

[00123] To make the relative times needed for some of the operations discussed, a

set of exemplary time values for the system described above can be take as:

Data write: ~700us (lower page~600us, upper page 800us)

Binary data write: ~200us

Erase: ~2,500us

Read: ~20-40us

Read and toggle out data: 2KB data, ~80us; 4KB ~160us; 8KB ~320us

-25.-

WO 2009/035834 PCT/US2008/073750

These values can be used for reference to give an idea of the relative times involved
for the timing diagrams below. If have a long operation with different phases, a
primary aspect will interpose in a quicker operation using the shared latches of the
read/write stacks if latches available. For example, a read can be inserted into a
program or erase operation, or a binary program can be inserted into an erase. The
primary exemplary embodiments will toggle data in and/or out for one page during a
program operation for another page that shares the same read write stacks, where, for
example, a read of the data to be toggled out and modified is inserted into the verify

phase of the data write.

[00124] The availability of open data latches can arise in a number of ways.
Generally, for a memory storing n bits per cell, n such data latches will be needed for
cach bit line; however, not all of these latches are needed at all times. For example, in
a two-bit per cell memory storing data in an upper page/lower page format, two data
latches will be needed while programming the lower page. More generally, for
memories storing multiple pages, all of the latches will be needed only when
programming the highest page. This leaves the other latches available for cache
operations. Further, even while writing the highest page, as the various states are
removed from the verify phase of the write operation, latches will free up.
Specifically, once only the highest state remains to be verified, only a single latch is

needed for verification purposes and the others may be used for cache operations.

[00125] The following discussion will be based on a four state memory storing
two-bits per cell and having two latches for data on each bit line and one additional
latch for quick pass write, as described in U.S. patent application entitled “Use of
Data Latches in Multi-Phase Programming of Non-Volatile Memories” filed
concurrently with the present application that was incorporated above. The operations
of writing the lower page, or erasing, or doing a post erase soft program are basically
a binary operation and have one of the data latches free, which can use it to cache
data. Similarly, where doing an upper page or full sequence write, once all but the
highest level has verified, only a single state needs to verify and the memory can free
up a latch that can be used to cache data. An example of how this can be used is that

when programming one page, such as in a copy operation, a read of another page that

-26 -

WO 2009/035834 PCT/US2008/073750

shares the same set of data latches, such as another word line on the same set of bit
lines, can be slipped in during the verify phase of the write. The address can then be
switched to the page being written, allowing the write process to pick up where it left
off without having to restart. While the write continues, the data cached during the
interpolated read can be toggled out, checked or modified and transferred back to be
present for writing back in once the earlier write operation completes. This sort cache
operation allows the toggling out and modification of the second page of data to be

hidden behind the programming of the first page.

[00126] As a first example, a cache program operation for a two-bit memory
operating in single page (lower page/upper page format) program mode. FIG. 13 is a
simplified version of FIG. 10 that shows some specific elements that are relevant to
the present discussion in a two-bit embodiment, the other elements being suppressed
to simplify the discussion. These include data latch DLO 434-0, which is connected
Data I/0O line 231, data latch DL.1 434-1, connected to common processor 500 by line
423, data latch DL2 434-2, commonly connected with the other data latches by line
435, and sense amp data latch DLS 214, which is connected to common processor 500
by line 422. The various elements of FIG. 13 are labeled according to their
disposition during the programming of the lower page. The latch DL2 434-2 is used
for the lower verify (VL) in quick pass write mode, as is described in U.S. patent
application entitled “Use of Data Latches in Multi-Phase Programming of Non-
Volatile Memories” filed concurrently with the present application; the inclusion of
the register, and of using quick pass write when it is included, are optional, but the

exemplary embodiment will include this register.
[00127] The programming of the lower page can include the following steps:

(1) The process begins by resetting data latches DLO 434-0 the default value
“1”. This convention is used to simplify partial page programming as cells in a

selected row that are not to be programmed will be program inhibited.
(2) Program data is supplied to DLO 434-0 along I/O line 231.

(3) The program data will be transferred to DL1 434-1 and DL2 434-2 (if this

latch is included and quick pass write is implemented).

_27 -

WO 2009/035834 PCT/US2008/073750

(4) Once the program data is transferred to DL 1 434-1, data latch DLO 434-0
can be reset to “1” and, during program time, the next data page can be loaded to DLO
434-0 along 1/0 line 231, allowing the caching of a second page while a first page is

being written.

(5) Once the first page is loaded into DL1 434-1, programming can begin.
DL1 434-1 data is used for lockout of the cell from further programming. DL2 434-2
data is used for the lower verify lockout that governs the transition to the second
phase of quick pass write, as described in U.S. patent application entitled “Use of
Data Latches in Multi-Phase Programming of Non-Volatile Memories” filed

concurrently with the present application.

(6) Once programming begins, after a programming pulse, the result of the
lower verify is used to update DL2 434-2; the result of the higher verify is used to
update DL1 434-1. (This discussion is based on the “conventional” coding, where the
lower page programming is to the A state. This, and other codings are discussed
further in U.S. patent applications entitled “Use of Data Latches in Multi-Phase
Programming of Non-Volatile Memories” filed concurrently with the present
application and entitled “Non-Volatile Memory and Method with Power-Saving Read
and Program-Verify Operations”, filed March 16, 2005. The extension of the present

discussion to other codings follows readily.)

(7) In determining of whether programming is complete, only the DL1 434-1

registers of the cells of row (or appropriate physical unit of program) are checked.

[00128] Once the lower page is written, the upper page can be programmed. FIG.
14 shows the same elements as FIG. 13, but indicates the latch assignment for upper
page program where the lower page data is read in. (The description again uses
conventional coding, so that the programming of the upper page is to the B and C

states.) The programming of the upper page can include the following steps:

(1) Once the lower page finishes programming, the upper page (or next page)
write will begin with a signal from the state machine controller where the

(unexecuted) cache program commands are kept.

-28 -

WO 2009/035834 PCT/US2008/073750

(2) The program data will be transferred from DLO 434-0 (where it was
loaded into in step (3) during lower page write) to DL1 434-1 and DL2 434-2.

(3) The lower page data will be read in from the array and placed into DLO
434-0.

(4) DL1 434-1 and DL2 434-2 are again respectively used for the verify high
and verify low lockout data. Latch DL0 434-0 (holding the lower page data) is

checked as program reference data, but is not updated with the verify results.

(5) As part of verifying the B state, after sensing at the lower verify VBL, the
data will be updated in DL2 434-2 accordingly, with DL1 434-1 data being updated
with the high verify VBH results. Similarly, the C verify will have corresponding
commands to update latches DL2 434-2 and DL1 434-1 with the respective VCL and
VCH results.

(6) Once the B data is completed, then the lower page data (held in DLO 434-
0 for reference) is not needed as only the verify for the C state needs to be performed.
DLO0 434-0 is reset to "1" and another page of program data can be loaded in from I/O
line 231 and cached in latch DLO 434-0. The common processor 500 can set an

indication that that only the C state is to be verified.

(7) In determining of whether upper page programming is completed, for the
B state, both of latches DL1 434-1 and DLO 434-0 are checked. Once the cells being
programmed to the B state and only the C state is being verified, only the latch DL1

434-1 data needs to be checked to see if there are any bits not programmed.

[00129] Note that under this arrangement, in step 6, the latch DL0O 434-0 is no
longer required and can be used to cache data for the next programming operation.
Additionally, in embodiments using quick pass write, once the second, slowly
programming phase is entered, the latch DL2 434-2 could also be made available for
caching data, although, in practice, it is often the case that this is only available in this
way for a fairly short time period that does not justify the additional overhead that is

often required to implement this feature.

[00130] FIG. 15 can be used to illustrate many of the aspects of cache program in

-29.

WO 2009/035834 PCT/US2008/073750

the single page mode that has been described in the last few paragraphs. FIG. 15
shows the relative timing of what events are occurring internally to the memory (the
lower “True Busy” line) and as seen from external to the memory (the upper “Cache

Busy” line).

[00131] Attime 7y the lower page to be programmed onto the selected word line
(WLn) is loaded into the memory. This assumes the first lower page of data has not
been previously cached, as it will be for the subsequent pages. At time ¢, the lower
page is finished loading and the memory begins to write it. Since this is equivalent to
a binary operation at this point, only the state A needs to be verified (“pvfyA”) and
the data latch DLO 434-0 is available to receive the next page of data, here taken as
the upper pages to be programmed into WLn, at time #,, which is consequently cached
in latch DLO0 434-0 during the programming of the lower page. The upper page
finishes loading at time #; and can be programmed as soon as the lower page finishes
at #,. Under this arrangement, although all of the data (lower and upper page) to be
written into physical unit of programming (here, word line WLn), the memory must
wait from time #; to time ¢, before the upper page data can be written, unlike the full

sequence embodiment described below.

[00132] The programming of the upper page begins at time #,, where initially only
the B state is verified (“pvfyB”), the C state being added at 5 (“pvfyB/C”). Once the
B state is no longer being verified at #5, only the C state needs to be verified (“pvfyC”)
and the latch DLO 434-0 is freed up. This allows the next data set to be cached while

the upper page finishes programming.

[00133] Asnoted, according to the single page algorithm with cache program, as
shown in FIG. 15, even though the upper page data may be available at time #3, the
memory will wait until time #, before starting to write this data. In a conversion to a
full sequence program operation, such as is developed more fully in U.S. patent
application 11/013,125, once the upper page is available the upper and lower page

data can be programmed concurrently.

[00134] The algorithm for cache program in full sequence (low to full conversion)
write begins with lower page program as above. Consequently, steps (1)-(4) are as for

the lower page process in single page program mode:

-30 -

WO 2009/035834 PCT/US2008/073750

(1) The process begins by resetting data latches DLO 434-0 the default value
“1”. This convention is used to simplify partial page programming as cells in a
selected row that are not to be programmed will be program inhibited.

(2) Program data is supplied to DLO 434-0 along I/O line 231.

(3) The program data will be transferred to DL1 434-1 and DL2 434-2 (if this
latch is included and quick pass write is implemented).

(4) Once the program data is transferred to DL 1 434-1, data latch DLO 434-0
can be reset to “1” and, during program time, the next data page can be loaded to DLO
434-0 along 1/0 line 231, allowing the caching of a second page while a first page is

being written.

Once the second page of data is loaded, if correspond to the upper of the lower page
being written and the lower page is not yet finished programming, the conversion to
full sequence write can be implemented. This discussion focuses on the use of the
data latches in such an algorithm, with many of the other details being developed

more full in co-pending, commonly assigned U.S. patent No. 7,120,051.

(5) After the upper page data is loaded into latch DL0O 434-0, a judgment will
be done in the address block to check if the 2 pages are on the same word line and the
same block, with one page is the lower page and one is upper page. If so, then the
program state machine will trigger a lower page program to full sequence program
conversion if this is allowed. After any pending verify is complete, the transition is
then effected.

(6) Some operation parameters will be typically be changed when the
program sequence changed from lower page to full sequence. In the exemplary
embodiment these include:

(1) Maximum program loop for the number of pulse verify cycles will
be changed from that of the lower page algorithm to that of the full sequence if the
lower page data has not been locked out, but the number of program loops completed
will not be reset by the conversion.

(i) As shown in FIG. 16, the programming waveform starts with the
value VPGM_L used in the lower page programming process. If the programming

waveform has progressed to where it exceeds the beginning value VPGM_U used in

-31 -

WO 2009/035834 PCT/US2008/073750

the upper page process, at conversion to full sequence, the staircase will drop back
down to VPGM_U prior to continuing up the staircase.

(iii) The parameters determining the step size and maximum value of
the program pulse are not changed.

(7) A full sequence read of the current state of the memory cells should be
performed to guarantee the right data will be programmed for multi-level coding.
This ensures that states that may have formerly locked out in the lower page
programming, but which require further programming to take account of their upper
page data, are not program inhibited when the full sequence begins.

(8) If quick pass write is activated, the data of latch DL2 434-2 will be
updated as well to reflect the upper page program data, since this was formerly based
on the lower verify for only the A state.

(9) The programming then resumes with the multi-level, full sequence
program algorithm. If the program waveform in the lower page process has increased
beyond the upper page starting level, the waveform is stepped back to this level at

conversion time, as shown in FIG. 16.

[00135] FIG. 17 is a schematic representation of the relative times involved in the
lower page to full sequence conversion write process. Up until time ¢3, the process is
as described above for the process in FIG. 15. At #; the upper page of data has been
loaded and the transition is made to the full sequence algorithm the verification
process is switched to include the B states with the A states. Once all of the A states
lock out, the verify process switches to checking for the B and C states at time 7,.
Once the B states have verified at ¢5, only the C state needs to be checked and a
register can be freed up to load the next data to be programmed, such as the lower
page on the next word line (WL,;) as indicated on the Cache Busy line. At time #5
this next data set has been cached and one the programming of the C data for the
previous set concludes at #7, this next data set begins programming. Additionally,
while the (here) lower page on word line WL, is programming, the next data (such

as the corresponding upper page data) can be loaded into the open latch DL0 434-0.

[00136] During the full sequence write, a status report is implemented in a way

that gives lower page and upper page status independently. At the end of the program

-32.-

WO 2009/035834 PCT/US2008/073750

sequence, if there are unfinished bits, a scan of physical page can be performed. A
first scan can check latch DLO 434-0 for unfinished upper page data, a second scan
can check DL1 434-1 for unfinished lower page data. Since, the verification of the B
state will change both DLO 434-0 and DL1 434-1 data, an A state verification should
be performed in the way that DL1 434-1 data “0” will be changed to “1” if the bit’s
threshold value is higher than the A verify level. This post verify will check on
whether any under programmed B levels are passing at the A level; if they are passing
at the A level, then the error is only on upper page and not on lower page; if they are

not passing at the A level, then both lower and upper pages have error.

[00137] If the cache program algorithm is used, after the A and B data are
programmed, the C state will be transferred to latch DL1 434-1 to finish
programming. In this case, the scan of latch is not necessary for lower page, because

the lower page will have already passed program without any failed bits.

[00138] Another set of exemplary embodiments of the present invention relate to
page copy operations, where a data set is relocated from one location to another.
Various aspects of data relocation operations are described in U.S. patent application
publication Nos. US-2005-0257120-A1 ; US-2006-0136687-A1; and US-2006-
0031593-A1; and U.S. patent number 6,266,273, which are all hereby incorporated
by reference, which are all hereby incorporated by reference. When data is copied
from one location to another, the data is often toggled out to be checked (for error, for
example), updated (such as updating a header), or both (such correcting detected
error). Such transfers are also to consolidate date in garbage collection operations. A
principal aspect of the present invention allows for a data read to an open register to
be interpolated during the verify phase of a write operation, with this cached data then
being transferred out of the memory device as the write operation continues, allowing

the time for toggling the data out to hide behind the write operation.

[00139] The following presents two exemplary embodiments of a cache page copy
operation. In both cases, an implementation that uses a quick pass write
implementation is described. FIG. 18 indicates the disposition of the exemplary

arrangement of latches as the process progresses.

[00140] The first version of cache page copy will write to a lower page and can

-33 -

WO 2009/035834 PCT/US2008/073750

include the following steps, where read addresses are labeled M, M+1, ..., and write

addresses are labeled N, N+1, ..

(1) The page to be copied (“page M”) is read into latch DL1 434-1. This can

be either an upper or lower page of data
(2) Page M is then transferred into DLO 434-0.

(3) The data in DLO 434-0 is then toggle out and modified, after which it is

transferred back into the latch.

(4) The program sequence can then begin. After data to be written into the
lower page N is transferred to DL1 434-1 and DL2 434-2, the latch DL0 434-0 is
ready for cache data. This lower page will be programmed. For this embodiment, the

program state machine will stop here.

(5) The next page to be copied is then read into DLO 434-0. Programming
can then resume. The state machine, stopped at the end of step (4), will restart the

program sequence from the beginning.
(6) Programming continues until the lower page finishes.

[00141] The copy destination page address will determine whether a write is to a
lower or an upper page. If the program address is an upper page address, then the
programming sequence will not be stopped until the programming finishes and the

read of step (5) will be executed after the write is complete.

[00142] In a second cache page copy method, the program/verify process can be
paused to insert a read operation and then restart the write operation, picking up at the
point where it left off. The data that was read during this interleaved sensing
operation can then be toggled out while the resumed write operation continues on.
Also, this second process allows for the page copy mechanism to be used in an upper
page or full sequence write process once only the C state is being verified and one
latch on each bit line opens up. The second cache page copy operation begins with
the same first three steps as in the first case, but then differs. It can include the

following steps:

-34 -

WO 2009/035834 PCT/US2008/073750

(1) The page to be copied (“page M”) is read into latch DL1 434-1. This can

be either a lower or upper page

(2) The data from page M is then transferred into DLO 434-0. (As before, N,

etc. will denote a write address, M, etc., for a read address.)

(3) The data in DLO 434-0 is then toggled out, modified, and then transferred
back to the latch.

(4) The state machine program will go to an infinite wait state until the
command a read command is entered and then a read of another page, say the next

page M+1, to latch DLO 434-0 will begin.

(5) Once the read of step (4) is complete, the address is switched back to word
line and block address to program the data in steps (1-3) into page N (here, a lower

page) and the programming is resumed.

(6) After the read of page M+1 is finished, the data can be toggled out,
modified, and returned. Once the process is complete, the write can be converted to a
full sequence operation if the two pages are the corresponding upper and lower pages

on the same WL.

(7) Once the A and B levels are done in the full sequence write, the data in
DLO0 434-0 will be transferred to DL1 434-1, as in the normal cache program
described earlier, and a read command for another page (e.g., page M+2) can be
issued. If there is not a single page to full sequence conversion, the lower page will
finish the writing and then the upper page will start. After the B level state is done
completely, the same DLO 434-0 to DL1 434-1 data transfer will occur, and the state

machine will go into state of waiting for the read command for page M+2.

(8) Once the read command arrives, the address is switched to the read

address and the next page (page M+2) is read out.

(9) Once the read is complete, the address will be switched back to previous

upper page address (program address N+1) until the write finishes.
[00143] Asnoted above, the exemplary embodiments include the latch DL2 434-2

-35-

WO 2009/035834 PCT/US2008/073750

used for the lower verify of the quick pass write technique in addition to the latches
DLO0 434-0 and DL1 434-1 used in holding the (here, 2 bits) of data that can be
programmed into each of the memory cells. Once the lower verify is passed, the latch
DL2 434-2 may also be freed up and used to cache data, although this is not done in

the exemplary embodiments.

[00144] FIGs. 19A and 19B illustrate the relative timing of the second cache page
copy method, where FIG. 19B illustrates the algorithm with the full sequence write
conversion and FIG. 19A illustrates the algorithm without. (Both FIGs. 19A and
19B are composed of two parts, the first, upper part beginning at the broken vertical
line A, corresponding to 7y, and ending with the broken vertical line B, corresponding
to ts5; the second, lower part is a continuation of the upper portion and begins with the
broken vertical line B, corresponding to #5. In both cases the line B at time #5 is same
in the upper portion as in the lower portion, being just a seam in two parts allowing it

to be displayed on two lines.)

[00145] FIG. 19A shows a process that starts with reading of a first page (page
M) that is taken to be a lower page in this example, assumes no data has previously
been cached, and operates in single page mode, waiting until the lower page has
finished writing before beginning to write the upper page. The process starts at time
to with a read of the page M (Sense page M (L)), which here is a lower that is sensed
by a read at the A and C levels in this coding. At time at time ¢, the read is complete
and page M can be toggled out and checked or modified. Beginning at time #, a next
page (here page M+1, the upper page corresponding to the same physical as lower
page M) is sensed by reading at the B level, a process that finishes at time #3. At this
point, the first page (originating from Page M) (lower) is ready to be programmed
back into the memory at page N and the data read from page M+1 is being held in a
latch and can be transferred out to be modified/checked. Both of these processes can
start at the same time, here #;. Using the typical time values described above, the data
from page M+1 has been toggled out and modified by time #,; however, for the
embodiment not implementing a full sequence conversion, the memory will wait until
page N finishes at time #5 to begin writing the second read page of data (originating

from Page M+1) into page N+1.

-36 -

WO 2009/035834 PCT/US2008/073750

[00146] As page N+1 is an upper page, its write begins initially with a verification
at the B level, the C level being added at #5. Once the storage elements having a target
state B all lock out (or the maximum count is reached) at time ¢, the B state
verification is dropped. As described above, according to several principal aspects of
the present invention, this allows a data latch to be freed up, an ongoing write
operation is suspended, a reading operation (at a different address than the suspended
program/verify operation) is interposed, the write then resumes where it left off, and
the data sensed the interposed write operation can be toggled out while the resumed

write operation runs on.

[00147] At time #; the interposed write operation is performed for the, here, lower
page M+2. This sensing is finished at time 75 and the write of page N+1 picks back up
and the data from page M+2 is concurrently toggled out and modified. In this
example, page N+1 finishes programming at time #y before page M+2 is finished at
time #;9. At time ¢, a write of the data originating from page M+2 could begin;
however, in this embodiment, instead a read of page M+3 is first executed, allowing
for this page’s data to be toggled out and the modification to be hidden behind the
writing of the data originating from page M+2 into page N+2, beginning at time ;.
The process then continues on as in the earlier parts of the diagram, but with the page
numbers shifted, with time ¢;; corresponding to time #3, time #;, corresponding to time

t4, and so on until the copy process is stopped.

[00148] FIG. 19B again shows a process that starts with reading of a lower page,
page M that is taken to be a lower page, and assumes no data has previously been
cached. FIG. 19B differs from FIG. 19A by implementing a conversion to full
sequence write at time ¢;. This roughly speeds up the process by the time (#5-24) of
FIG. 19A. Attime t, (=5 in FIG. 19A), the various changes related to the full
sequence conversion are implemented as described previously. Otherwise, the
process is similar to that of FIG. 19A, including those aspects of the present invention

found between times ¢7 and ¢;>.

[00149] In both the page copy processes and the other techniques described here
that involve writing data, which states are verified at a given time can be selected

intelligently, along the lines describe in U.S. patent publication number US-2004-

-37-

WO 2009/035834 PCT/US2008/073750

0109362-A1, which is hereby incorporated by reference. For example, in the full
sequence write, the write process can begin verifying only the A level. After ever A
verify, it is checked to see whether any bits have passed. If so, the B level can be
added to the verify phase. The A level verify will be removed after all storage units
with it as their target values verify (or except a maximum count based on a settable
parameter). Similarly, after the verifications at the B level, a verify of the C level can
be added, with the B level verify being removed after all storage units with it as their

target values verify (or except a maximum count based on a settable parameter).

[00150] Programming operation with background data caching for other

operations is described with respect to a preferred multi-state coding.

Exemplary Preferred “LM” Coding for a 4-state Memory

[00151] FIG. 20 illustrates the programming and reading of the 4-state memory
encoded with a 2-bit logical code (“LM” code). This code provides fault-tolerance
and alleviates the neighboring cell coupling due to the Yupin Effect. FIG. 20
illustrates threshold voltage distributions of the 4-state memory array when each
memory cell stores two bits of data using the LM code. The LM coding differs from
the conventional Gray code in that the upper and lower bits are reversed for states “A”
and “C”. The “LM” code has been disclosed in U.S. Patent No. 6,657,891 and is
advantageous in reducing the field-effect coupling between adjacent floating gates by

avoiding program operations that require a large change in charges.

[00152] The coding is designed such that the 2 bits, lower and upper, may be
programmed and read separately. When programming the lower bit, the threshold
level of the cell either remains in the unprogrammed region or is moved to a “lower
middle” region of the threshold window. When programming the upper bit, the
threshold level in either of these two regions is further advanced to a slightly higher

level not more than one quarter of the threshold window.

PSUEDO AND USER DRIVEN RANDOMIZATION OF DATA PATTERNS

[00153] Various embodiments of a memory EEPROM or chip and method of

-38 -

WO 2009/035834 PCT/US2008/073750

randomization seck to minimize the problems that result from repetitive data storage
patterns such as increased NAND string resistance, decreased endurance and
reliability, and unwanted coupling. The pseudo randomization techniques of the
present invention are practical and in terms of data processing capacity, they are not

costly to implement.

[00154] The present invention includes different embodiments and methods
implementing pseudo-randomization and true user based randomization of the stored
data on the flash memory chip. All the embodiments have the advantage of requiring
only simple and small circuit modifications to be implemented in a flash EEPROM.
This is noteworthy because the randomization techniques and circuitry are not
computationally intensive and are implemented with little if any performance penalty.
The solutions of the present invention are also flexible in that the randomization can
be casily enabled or disabled at any time. Furthermore, the pattern of pseudo
randomization utilized in certain embodiments can be varied in many ways and casily

changed in time.

[00155] FIG. 21 illustrates the main components of EEPROM or memory chip
600 that are relevant to the randomization process. Chip 600 comprises memory array
602, register(s) 610 in the peripheral circuitry, and multiplexer 614. Other
components of chip 600 will be illustrated in and described in reference to the
additional figures. Register 610 is capable of holding multiple bits and may comprise
multiple registers. In some embodiments it functions as a shift register. Memory
array 602 comprises a hidden arca 604 and user data area 606. The hidden area may
be used to store firmware and other overhead data such as memory operation control
codes. In a NAND architecture, as was described earlier, the data is organized in
blocks, each of which may comprise multiple pages of data. In certain embodiments,

neither the register 610, nor the multiplexer 614 will be present.

[00156] The various embodiments of the present invention will reduce or
eliminate long term and repeated storage of specific data patterns which can cause
program disturbs or user read disturbs. It does so by varying the encoding of the data
by either pseudo random mechanisms or by user triggered randomization. Because

the timing of user activity is completely unpredictable, using the activity as a trigger

-39.

WO 2009/035834 PCT/US2008/073750

results in a truly random sequence of encoding schemes. Each of the embodiments
will also reduce NAND string resistance effect, increase memory endurance and

reliability, and reduce the problem of floating gate to floating gate coupling.

[00157] Each of the embodiments requires only minimal modification to the
circuitry of the flash EEPROM, yet at the same time will drastically increase the
randomness of the data storage, and therefore increase the performance of the
EEPROM. The randomization of the data may be either enabled or disabled easily
within the array. Further, the sequence responsible for the pseudo randomization may

continually change, providing flexibility within the system.

[00158] In one embodiment, a code or sequence of bits, which can be either a zero
or one, is stored in the hidden area 604 of array 602. The portion of hidden area 604
where the code is stored may be referred to as a “ROM block.” The code may
comprise 2 or more bits, but preferably comprises 17 or more bits. The more bits, the
greater the randomization will be. Upon power up of the chip 600, the value is loaded
into register 610. Each bit in the register is assigned to a specific page address. Each
bit is compared to the page address of a page, and based on the comparison, the
encoding of the data of the page will be inverted or will remain the same (passed) for
the page. For example, a 0 value for the bit may be used to indicate that the encoding
scheme of the data will remain the same, whereas a value of 1 in the register may
indicate that the encoding of data within a page will be inverted. If the code
comprises less bits than the number of pages within a block, the code may be applied
to more than one group of one or more pages. In other words, the code can be used
repeatedly in series until all pages are compared. The code may also be changed
between cycles. Alternatively, the code may be multiplexed through multiplexer 614
so that one bit of one code will determine the encoding of multiple pages of data
stored in the user data arca 602. Each bit of the code can be referred to as a polarity
bit, as it acts to change the polarity of the encoding employed for some portion of user
data. This is depicted in FIG. 22A. In this case, the encoding is based on the page
address, such that it is known that pages 0, N have a polarity of 1, whereas pages 1,
n+1 have a polarity 0, and pages 2, n+2 have polarity 1 and so forth. Therefore, in an
embodiment where the encoding is based upon the page address, it is not necessary to

store the polarity bit with the page, although it may be done for redundancy purposes.

- 40 -

WO 2009/035834 PCT/US2008/073750

[00159] Table 1, seen below and reproduced as FIG. 22B, illustrates the
application of the polarity bits of the code in register 610 to portions of user data.
While any portion of user data may be compared and associated with a particular

polarity bit, the preferred embodiments described illustrate a page as the basic unit.

Register 11234567 |89 (10|11 (12|13 |14 |15]|16]|17
position

Code rjfo|frjofoqf1r(1rjyr{1rjo (o (o (1 (1 |0 (1 |0
(polarity
bit)

UD o(r{o(10jrjojrjof1 (0 |1 {0 (1 (0 |1 |O
Original
encoding

UD r|jr(1rf1r{o0jof{rjo1(1 (o (1 {1 {0 |0 |0 (O
Subsequent
encoding

State ER ER B C ER A C B

Table 1

[00160] As seen in the table, each (polarity) bit of the code will determine
whether the original encoding (data) of a bit will remain the same or will change. For
example, looking at register position 1, the polarity code in that position has a value
of 1. Thus, in an embodiment where a 1 indicates that the data will be inverted, an
original bit of user data stored as a 0 will be inverted to a value of 1. The table
illustrates a multi state cell, where 2 bits are used to define a state. The states are
shown in FIG. 20, and as can be seen in FIG. 20, an upper and a lower bit define the
states. In a 2 bit or 4 state memory cell of the type shown in FIG. 20, (1:1) defines an
erase (“ER”) or un-programmed (“U”) state; (0:1) defines state A, (0:0) defines state
B, and (1:0) defines state C. The upper and lower bits may be physically located in a
single memory cell. The same or a different code could be applied to another group
of data such that the group of data corresponding to bit 17 would be used in
conjunction with the data corresponding to bit 1 of the next code applied to determine
the state. Each polarity register will control the polarity for all the data on the
corresponding page. The lower and upper bits are preferably located on the same
physical wordlines. The example given in Table 1 illustrates the function of polarity

bits to convert a simple pattern to random pattern(s) across many wordlines. The

-4] -

WO 2009/035834 PCT/US2008/073750

randomization is achieved on the data located on the same NAND chain structure, an

example of which is provided in FIG. 22C to illustrate this concept.

[00161] In FIG. 22C, the lower and upper bits of a given cell are illustrated at
cach of the illustrated cells of the NAND string or chain. The NAND string shown is
simply an example, and there may of course be more or less cells in a string, and
structures different than that shown may be used with the present invention. For
example, a cell storing 3, 4 or more bits may also be employed. Also, it should be
remembered that the polarity bit preferably applies to a page or more of data, although
application on the bit level is shown to illustrate the concept of bit inversion,
especially in a multi state memory. In FIG. 22C, the polarity bits are applied to each
bit of the user data, and the resulting user data, as inverted or passed by the polarity
bit, is labeled as the saved data. The saved data is the data that will subsequently be
written to the memory array and stored as a result of the randomization operation. As
can be seen, the states indicated at the right of the figure are defined by the upper and
lower bit of the cell. The “saved data” terminology employed in FIG. 22C
corresponds to what is referred to as the “User Data (UD) subsequent encoding” in

Table 1 and FIG. 22B.

[00162] FIG. 23A illustrates another embodiment in which the register shown in
FIG. 21 is a shift register with a feedback. In such an embodiment, the register 610 is
configured as a pseudo-random generator. Its content is cyclically fed back to
generate a sequence of pseudo random numbers. In this way, one bit will be used at a
time, in contrast to the embodiment where all the bits of the code were used at a time.
When a command is issued by a user, the shift register will shift to the next bit. The
polarity bit used on the incoming user page will be from the last register output. This
is preferably done on the rising edge of the command. The triggering command may
be a program command, a cache program command, a read command, an erase
command, or other user issued command. An example program command signal is
shown in FIG. 23B. The clock signal associated with the command is shown, and the
instantiation of the command will be triggered by the user request, the timing and type
of which is unpredictable and essentially random. FIG. 23A illustrates the clock
signal associated with the user command as the one of the inputs that determines the

polarity bit. The other input in the figure is the user data. The application of the

_42 -

WO 2009/035834 PCT/US2008/073750

polarity bit would invert or leave as is, the encoding of the data, as described

previously.

[00163] FIG. 23C illustrates an example of control circuitry for the data
inversion. The data path with the single inverter will result in inverting of the
encoding, whereas the path with the two inverters in series will result in the data
encoding scheme being unaltered. In such a case, the polarity bit associated with a
group of data will be stored with that group of data. For example, as seen in FIG.
23D, for a page of data 630, the polarity bit 632 for the data in user area 636 would be
programmed into the hidden area 634 of the page 630. When the page 630 is read, the
polarity bit 632 will be transferred out and latched to control the output data, and will
revert the encoding scheme back if it was inverted, as accomplished by the exemplary
circuitry shown in FIG. 23E. In this way, the polarity of the page will be reverted to

its original encoding.

[00164] The pattern of the code utilized by the shift register can vary and can be
modified for different applications. If all bits are set to zero (in the case where zero
indicates no change) then the randomization will be disabled. While the pattern of the
bits in the register is pseudo random, the user behavior is unpredictable, and the
resulting polarity at any given time is thus also unpredictable and random. Two
examples of user behavior are as follows: 1) the user programs some pages and
jumps to a different address to read or program some pages or to erase some blocks,
then the returns back to the block where the last program occurred and continues to
program more pages; and 2) the user programs all the pages sequentially without
jumping to another address. In case 1, a new polarity bit can be triggered for each
user command, whereas in case 2 the sequential programming will utilize and be
based on one polarity bit. Therefore, even though the original data the user wishes to
store may be the same for both cases, the final programmed data in the memory will
likely be different for at least some of the various individual pages and groups of
pages in these 2 cases. Note that the EEPROM is typically controlled by a controller

chip, and some of the actions of the “user” may be that of the controller chip.

[00165] In another embodiment, the polarity bit is also generated randomly as a

result of a user command, such as the cache program operation described earlier. This

-43 -

WO 2009/035834 PCT/US2008/073750

embodiment utilizes two inputs that are not synchronized. The first is the timing of
user commands, which as mentioned earlier is unpredictable. The second is a finite
state machine clock. In certain memory systems, the finite state machine clock is only
active at certain times (e.g. during cache operations), whereas in other systems it may
always be active. This technique of this embodiment is available whenever the finite

state machine clock of the memory system is active.

[00166] At the rising edge of the user command clock signal, the level or state of
the finite state machine (“FSM”) clock is referenced. The state may be either high or
low, as seen in FIG. 24A. A low state may correspond to a polarity bit of zero
(although the opposite correspondence is also possible). At time t=0, the FSM is low
and thus the polarity bit would be zero, indicating no change of the data encoding, as
mentioned previously. At time t=1, the FSM is high, and the polarity bit would be
one, whereas at time t=3 it the FSM is again at a low state. In some embodiments,
the polarity bit 632 is loaded into the hidden arca 634 as soon as the executing
command is issued and it is sensed. In other embodiments it may be temporarily
stored in another memory of the system. FIG. 24B illustrates an exemplary circuit to
determine the polarity bit as described above. The inverter would again be preferably

be rising edge triggered.

[00167] FIG. 25 illustrates the On-chip control circuitry shown in FIG. 7A and
FIG. 9 in more detail. In addition to the state machine 312 and the address decoder or
generator 314, it also contains a data scrambler 318. In the preferred embodiment, it
contains the register 610 and the multiplexer 614 shown in FIG. 21 and FIG. 23A. In
another preferred embodiment, it also contains the data inverting circuit shown in

FIG. 23C and the data reverting circuit shown in FIG. 23E.

[00168] As disclosed in FIG. 21 to FIG. 25 and associated text, each page of data
accessible by a common word line is programmed or read in parallel. Randomization
on a page-by-page basis is accomplished by pseudo randomly selecting certain pages

to have the polarity of their bits flipped.

[00169] On-chip, page-by-page randomization of data is disclosed in U.S.
Application No. 11/530,392 filed on September &, 2006, entitled “Methods in a

Pseudo Random and Command Driven Bit Compensation for the Cycling Effects in

_44 -

WO 2009/035834 PCT/US2008/073750

Flash Memory,” by Yan Li et al, the entire disclosure of which is incorporated herein

by reference.

ON-CHIP PSEUDO-RANDOMIZATION OF DATA WITHIN A PAGE

[00170] It is desirable also to scramble the data within each page. This is
advantageous for avoiding certain highly regular data pattern that could cause
problem during programming and also for controlling source loading errors when

sensing a page of data in parallel.

[00171] If a repeated data pattern is stored into certain pages, either by a user or a
controller, then the data may line up certain patterns which are detrimental to the
boosting mode during programming for some NAND chain. When a number of
NAND chains (see FIG. 1D and FIG. 3) share a seclected word line during
programming, the chains not to be programmed are program-inhibited by having their
channel region boosted so as to reduce the effective programming voltage applied to
the selected word line. For example, a NAND type memory typically has each
NAND chain programmed from the source side to the drain side. If a number of the
memory cells on the source side are in the erased state, the boosted channel on the
drain side during program-inhibition will not be very efficient as charges from the
boosted channel may leak towards the source via the highly conductive channel
created by the erased cells. The less than effective channel boosting and therefore
program inhibition may cause program disturb and erroncous results. Issues with
boosting efficiency are discussed in U.S. Application Publication No. US-2006-
0198195-A1 and U.S. Application No. US 11/618,482 filed on December 29, 2006,
entitled “Method of NAND Flash Memory Cell Array with Adaptive Memory State
Partitioning,” by Farookh Moogat, et al, which entire disclosures are incorporated

herein by reference.

[00172] According to one aspect of the invention, the data in the page is
randomized such that when data from several pages are lined up problematic data

patterns are avoided during programming.

-45 -

WO 2009/035834 PCT/US2008/073750

Scrambling by shifting starting location of each page

[00173] In one preferred embodiment, a simple way of scrambling the data on a
page is to write the data on an independent or different starting address for each
different page. A corresponding page of data is written to each page of memory cells
at a different starting location for each page. When the data is filled to the end of the
page, it continues by wrapping around from the first address of the page until just

before the starting location.

[00174] FIG. 26 illustrates a method of scrambling the data on a memory page,
according to one preferred embodiment of writing from different starting location for

cach page.

STEP 700: Providing an integrated-circuit memory chip having an array of
nonvolatile memory cells accessible page by page, each page being a group of
memory cells, each memory cell of the group being in a column of the array and

along a row accessible by a common word line.

STEP 710: Generating on-chip a sequence of starting column positions so that

cach page to be programmed has an associated starting column position.

STEP 720: Staging data to be programmed into each page by starting from the

associated starting column position and wrapping around until the page is filled.
STEP 730: Programming the staged data in parallel into each page.

[00175] FIG. 27 is a table illustrating an example of different pages having
different starting locations for writing data. For example, on Page 0, byte 0 will be
loaded starting from Column 0. On Page 1, byte 0 will be loaded starting from
Column 1. The data will continue to load through Column n-1 and wrapped back to
Column 0. In this example, each page has a designated shift to help misalign any
repeated pattern in the data from page to page. In general, the starting column address
is given as function of the page number. When the end of the physical column is

reached, the data wraps around to the beginning of the physical column. For example,

- 46 -

WO 2009/035834 PCT/US2008/073750

Starting Column_Address(Page Number) = Page Number (MOD (n-1)) + k,
where k is a predetermined number and (n-1) is the total number of memory cells
being programmed in parallel. For example, when k=0, each page is shifted by one

column from the previous page.

[00176] In a preferred embodiment, the shifting of the starting column position
for a given page is implemented by controlling the 1/O circuits 440 shown in FIG. 9.
Typically the address decoder 314 issues the starting address of the physical page to
the I/O circuit in a data load operation. Data is clocked into the I/O circuit column by
column according to the starting address. In the case of wrapping around, a second

starting address is issued when the end of the physical column is reached.

[00177] FIG. 23D illustrates the starting column address for each page can be
stored in a portion of the page reserved for system use. For example, the starting

column address for page 630 is stored in a portion 634 of the memory array.

[00178] In another preferred embodiment, a sequence of starting physical column
addresses, one for each page, is provided by a pseudo-random generator such as that

shown in FIG. 23A.

[00179] Shifting the starting position of each page can avoid undesirable data
patterns to line up within NAND chains and help to alleviate boosting problems

during programming.

[00180] In addition to alleviating channel boosting issues during programming,
scrambling of data within a page also helps to control the source loading error during

sensing.

[00181] The source loading errors are introduced by a finite resistance between
the source line and the ground pad of the chip. One potential problem with sensing
memory cells is source line bias caused by source loading across the finite resistance.
When a large number memory cells are sensed in parallel, their combined currents can
result in significant voltage drop in a ground loop with finite resistance. This results
in a source line bias which causes errors in a read operation employing threshold

voltage sensing.

-47 -

WO 2009/035834 PCT/US2008/073750

[00182] FIG. 28A illustrates the problem of source voltage error due to current
flow in the source line having a finite resistance to ground. The read/write circuits
370A and 370B operate on a page of memory cells simultancously. Each sense
modules 480 in the read/write circuits is coupled to a corresponding cell via a bit line
36. In terms of the read/write stack 400 shown in FIG. 8, cach sense module 480
includes a sense amplifier 212 connected to one of the bit lines, a set of data latches
430 and sharing the common processor 500 and I/O circuits 440. There will be a

sense module for each of the memory cells in a page for parallel operation.

[00183] For example, a sense module 480 senses the conduction current &
(source-drain current) of a memory cell 10. The conduction current flows from the
sense module through the bit line 36 into the drain of the memory cell 10 and out
from the source 14 before going through a source line 34 to ground. In an integrated
circuit chip, the sources of the cells in a memory array are all tied together as multiple
branches of the source line 34 connected to some external ground pad (e.g. Vss pad)
of the memory chip. Even when metal strapping is used to reduce the resistance of
the source line, a finite resistance, R, remains between the source clectrode of a
memory cell and the ground pad. Typically, the ground loop resistance R is around

10 ohm.

[00184] For the entire page of memory being sensed in parallel, the total current
flowing through the source line 34 is the sum of all the conduction currents, i.e. iror =
i; +i,+ .., +i, Generally each memory cell has a conduction current dependent on
the amount of charge programmed into its charge storage element. For a given
control gate voltage of the memory cell, a small charge will yield a comparatively
higher conduction current (see FIG. 4.) When a finite resistance exists between the
source clectrode of a memory cell and the ground pad, the voltage drop across the

resistance 1s given by Vywp = iror R.

[00185] For example, if 64000 bit lines discharge at the same time, each with a
current of 1 pA, then the source line voltage drop will be equal to 64000 lines x 1
nA/line x 10 ohms ~ 0.64 volts. This source line bias will contribute to a sensing

error of 0.96 volts when threshold voltages of the memory cells are sensed, assuming

- 48 -

WO 2009/035834 PCT/US2008/073750

that the body effect is such that 0.64V rise in source voltage results in a 0.96V rise in
threshold voltage.

[00186] FIG. 28B illustrates the error in the threshold voltage level of a memory
cell caused by a source line voltage drop. The threshold voltage V1 supplied to the
control gate 30 of the memory cell 10 is relative to GND. However, the effective Vr
seen by the memory cell is the voltage difference between its control gate 30 and
source 14. There is a difference of approximately 1.5xV4.op between the supplied and
effective Vr (ignoring the smaller contribution of voltage drop from the source 14 to
the source line.) This Vgp or source line bias will contribute to a sensing error of, for

example, 0.96 volts when threshold voltages of the memory cells are sensed.

[00187] The bias cannot be easily removed as it is data-dependent, i.¢., dependent
on the memory states of the memory cells of the page. The bias is highest in one
extreme case when all the memory cells of the page are in the erased state. In this
case, each cell is highly conductive, contributing to a large V.o, and therefore a high
source line bias. On the other hand, in the other extreme, when all the memory cells
in the page are in the most programmed state, then each cell is non conductive,

resulting in a minimum or no source line bias.

[00188] According to another aspect of the invention, the data bits in the page are
randomized such that on average the page contains an equal mix of cells with erased
and programmed states. In this way, the source line bias or loading does not vary
substantially and can be allowed for with appropriate adjustment during the sensing

operation.

[00189] This is accomplished by randomizing the individual bits within a page.
Preferably, a sequence of pseudo random bits, ecach specifying a certain polarity is
employed to encode bits within the page. In one embodiment, there is a polarity bit
for cach data bit in the page. In another embodiment, there is a polarity bit for each
byte of data in the page. In this embodiment, if the polarity bit specifies a flipping of
the bits, then all bits within the data byte will get flipped.

[00190] FIG. 29 illustrates a method of randomizing bits within a page.

-49 .

WO 2009/035834 PCT/US2008/073750

STEP 750: Providing an integrated-circuit memory chip having an array of
nonvolatile memory cells accessible page by page, each page being a group of
memory cells, each memory cell of the group being in a column of the array and

along a row accessible by a common word line.

STEP 760: Providing first and second encodings for each set of data bits of a

page to be programmed.

STEP 762: Generating on-chip a sequence of polarity bits, one for each set of data
bits.

STEP 764: Encoding cach set of data bits with either first or second encoding
according to whether the polarity bit for each set of data bits is in a first or second

state.
STEP 770: Programming all encoded sets of data bits in parallel into the page.

[00191] The sequence of polarity bits, one for each set of data bits, is preferably
provided by a pseudo-random generator such as that shown in FIG. 23A. Each set of
data bits contains a predetermined number of bits. For example, in one embodiment,
the predetermined number of bits is one. In another embodiment, the predetermined

number of bits is 8 bits.

ON-CHIP PSEUDO-RANDOMIZATION OF DATA WITHIN A PAGE AND
BETWEEN PAGES

[00192] For some extremely regular data pattern, such as pages with all erased

states, the scheme of scrambling within a page is not sufficient.

[00193] According to another aspect of the invention, randomization within a
page is combined with randomization form page to page. In particular, given the
limited resource of the on-chip circuitry, randomization within a page is preferably
accomplished by each page having an independent starting position and
randomization from page to page is preferably accomplished by each page having an

independent encoding polarity.

-50 -

WO 2009/035834 PCT/US2008/073750

[00194] FIG. 30 illustrates a method of randomizing data page-by-page and

within each page, according to another aspect of the invention.

STEP 800: Providing an integrated-circuit memory chip having an array of
nonvolatile memory cells accessible page by page, each page being a group of
memory cells, each memory cell of the group being in a column of the array and

along a row accessible by a common word line.

STEP 810: Providing first and second encodings for each page of data to be

programmed.
STEP 812: Generating on-chip a sequence of polarity bits, one for each page.

STEP 814: Encoding the page of data with either first or second encoding

according to whether the polarity bit for the page is in a first or second state.

STEP 820: Generating on-chip a sequence of starting column positions so that

cach page to be programmed has an associated starting column position.

STEP 822: Staging data to be programmed into each page by starting from the

associated starting column position and wrapping around until the page is filled.
STEP 830: Programming the staged data in parallel into each page.

[00195] In yet another embodiment, the data bits randomization within a page is
also implemented by inserting STEP 760, STEP 762 and STEP 764 shown in FIG.
29 among STEP 810 to STEP 822. In this embodiment, the bits in the word line

direction and in the column direction are both randomized.

[00196] All patents, patent applications, articles, books, specifications, other
publications, documents and things referenced herein are hereby incorporated herein
by this reference in their entirety for all purposes. To the extent of any inconsistency
or conflict in the definition or use of a term between any of the incorporated
publications, documents or things and the text of the present document, the definition

or use of the term in the present document shall prevail.

-51 -

WO 2009/035834 PCT/US2008/073750

[00197] While embodiments of the invention have been described, it should be
understood that the present invention is not limited to these illustrative embodiments

but is defined by the appended claims.

-50-

WO 2009/035834 PCT/US2008/073750
IT IS CLAIMED:
1. An integrated-circuit memory chip, comprising:

an array of nonvolatile memory cells accessible page by page, each page being
a group of memory cells, each memory cell of the group being in a column of the

array and along a row accessible by a common word line;

a sequence of starting column positions so that each page to be programmed

has an associated starting column position;

an address generator for generating an address for the associated starting

column position;

a set of data latches associated with each column responsive to the address
generator for staging data to be programmed into each page, the staged data starting
from the associated starting column position and wrapping around until the page is

filled; and

a programming circuit to program in parallel the staged data into each page.

2. The memory chip as in claim 1, wherein the pages are numbered
consecutively and the starting column position associated with a page is a function of

the page number.

3. The memory chip as in claim 2, wherein the function is such that the
column position is modulo of the number of cells in the group plus a predetermined

number.

4. The memory chip as in claim 3, wherein the predetermined number is zero.

-53-

WO 2009/035834 PCT/US2008/073750
5. The memory chip as in claim 1, further comprising:
a pseudo random generator; and

the sequence of starting column positions is generated on-chip by the pseudo

random generator.

6. The memory chip as in claim 5, wherein:

the pseudo random generator is also responsive to a timing triggered by an

event external to the memory chip; and

the sequence of starting column positions is also a function the timing.

7. The memory chip as in claim 1, further comprising:
first and second encodings for each page of data to be programmed;
a sequence of polarity bits, one for each page; and

an encoder to encode the page of data with either first or second encoding

according to whether the polarity bit for the page is in a first or second state.

8. An integrated-circuit memory chip, comprising:

an array of nonvolatile memory cells accessible page by page, each page being
a group of memory cells, each memory cell of the group being in a column of the

array and along a row accessible by a common word line;

first and second encodings for each set of columns in which data is to be

programmed;

a sequence of polarity bits, one for a set of columns of a page;

-54 -

WO 2009/035834 PCT/US2008/073750

an encoder to encode the data bits associated with each set of columns with
either first or second encoding according to whether the polarity bit for the set of

columns is in a first or second state; and

a programming circuit to program in parallel the encoded data into each page.

9. The memory chip as in claim &, wherein the first encoding is to leave the
data bit associated with each column unchanged and the second encoding is to flip the

data bit.

10. The memory chip as in claim 8, further comprising:
a pseudo random generator; and wherein

the sequence of polarity bits is generated by the pseudo random generator.

11. The memory chip as in claim 1, wherein the memory cells of the array are

organized in a NAND architecture.

12. In an integrated-circuit memory chip having an array of nonvolatile
memory cells accessible page by page, each page being a group of memory cells, each
memory cell of the group being in a column of the array and along a row accessible

by a common word line, a method for programming data into the array comprising:

generating on-chip a sequence of starting column positions so that each page

to be programmed has an associated starting column position;

staging data to be programmed into each page by starting from the associated

starting column position and wrapping around until the page is filled; and
programming the staged data in parallel into each page.

-55-

WO 2009/035834 PCT/US2008/073750

13. The method as in claim 12, wherein the pages are numbered consecutively
and the starting column position associated with a page is a function of the page

number.

14. The method as in claim 13, wherein the function is such that the column

position is modulo of the number of cells in the group plus a predetermined number.

15. The method as in claim 14, wherein the predetermined number is zero.

16. The method as in claim 12, wherein:

the sequence of starting column positions is generated on-chip by a pseudo

random generator.

17. The method as in claim 16, wherein:

the pseudo random generator is also responsive to a timing triggered by an

event external to the memory chip; and

the sequence of starting column positions is also a function the timing.

18. The method as in claim 17, wherein the external event is initiated by a user

of the memory chip.

19. The method as in claim 17, wherein the external event is initiated by an

external memory controller.

-56-

WO 2009/035834 PCT/US2008/073750

20. The method as in claim 12, further comprising:
providing first and second encodings for each page of data to be programmed;
generating on-chip a sequence of polarity bits, one for each page; and

encoding the page of data with either first or second encoding according to

whether the polarity bit for the page is in a first or second state.

21. In an integrated-circuit memory chip having an array of nonvolatile
memory cells accessible page by page, each page being a group of memory cells, each
memory cell of the group being in a column of the array and along a row accessible

by a common word line, a method for programming data into the array comprising:

providing first and second encodings for each set of columns in which data is

to be programmed;

generating on-chip a sequence of polarity bits, one for each set of columns of a

page,

encoding the data bit associated with each set of columns with either first or
second encoding according to whether the polarity bit for each set of columns is in a

first or second state; and

programming in parallel the encoded data into each page.

22. The method as in claim 21, wherein the first encoding is to leave the data
bits associated with each set of columns unchanged and the second encoding is to flip

the data bits.

-57-

WO 2009/035834 PCT/US2008/073750

23. The method as in claim 21, wherein the sequence of polarity bits is

generated on-chip by a pseudo random generator.

-58 -

WO 2009/035834

Source

PCT/US2008/073750

1/30

Controi
Gate

foating
Gate

Drain

FIG. 1A

Control

Select Gate (Stsering)

{(Word Line)

40 \

Gate

Bl -lsft

Right Controt

BL-right

FIG. 1B

Right Conftrol

{Steering) SelectGate (Sieering)

Gate

a0
s

{Word Ling}

49’
N\

(Gate

30°
4

207
<

fti- L T2 |
left

| 1. |

right

Bl -left .

BL-right

FIG. 1C

WO 2009/035834

2/30
Drain
NANDCELL | ~56
50\
Drain :
Select _'{ 32
Control :
Gate 1 LMY
Contro! '
Gaie 2 ' M2
[-3
[-3
-
Contral .
Gate n « | Mn
Source
Select 51
™\ 54

FIG. 1D S;:rurce

Control
Gate
Dielectric
Source I l Drain

FIG. 1E

PCT/US2008/073750

PCT/US2008/073750

3/30

WO 2009/035834

160
/—

et e —

i i
-
e ®— P £ —
é & w
] L] [
» o [
;Mﬂilli —‘ﬂ] E,Itif‘ll'l%il!‘“l iiiiiiii W s Mg
1_] {
T » & @

—— |

WO 2009/035834

PCT/US2008/073750
4/30
56 ~ /- 100
.] 4 $
Word 50 PR a1t
Lines | :
B -.
‘ Source
5 /i_ l l Line
» 4 T
- J +
| | |
[—-—h 1————-«
: . 4 & | Y
1 :* 4? _*
I 1]
Bit Line

FIG. 3

WO 2009/035834 PCT/US2008/073750

5/30

- ID wqn ueyn :s3n «4-: «Sn g

j=
&
' 18} Memory Array-
8 100
3‘
(=]
[
Adidr L ‘ Column Dacoder 180
Read/Write Circuits 170
f 180 f 180
Read/ Read/ Read/
Write Write - Write
Stack Stack Stack
Data
- YO

FIG. 5

WO 2009/035834 PCT/US2008/073750
6/30

Read/Write Module
190 Selecied
TN Bit Line

A

Sense Amplifier

Verify & Bit(s)
Conversion Logic

Datz Laich e
A

Data IO : FIG. 6 A

' (PRIOR ART)

Bit Lines :
1 3 5 2ke-1

Readf\Write Data,

Module,

B e o e

ReadfWrite Datag

Moduleg\

¥

.——-—-lnb—m_

Read/Write Datag

Maduleg

L
.

.—-nln———-n——ﬂw-.-—uimi—ﬂw—in—uum

Read/Write Datagy 4
Module, 4

w’ FG 68

(PRIOR ART)

WO 2009/035834

Control
Circuitry
810

Power
Control

¥

PCT/US2008/073750

7/30

316

- On-Chip
Address

Decoder

Row Decoder 330

Memory Array
300

214

Addy

Block Multiplexer {Optional) 350

State
Machine

Read/Write Circuits 370

400 400 430
I - -

312 -

Addr

1 4

Stack

R R/W Stack Bus
Stack | Stack || Controller

I

Host/
Controlier

L1

Column Decoder 360

FIG.

Cata
231 Vo

7A

WO 2009/035834

PCT/US2008/073750
8/30
Data
/O
Control - Column Dacoder 3608
Circuitry ——
310

1

Read/Write Circuits 3708

Biock Multiplexer (Optional) 3508

< a
[o
= 8
K 2
M 8 Memory Array 8
a 300 4
Z 2
=]
& c

Block Muliiplexer {Optional} 3504

Read/Write Circuits 3704

o Column Decoder 3604

|

Cata
. . 231 /o
Host/

Controlier
FIG. 7B

WO 2009/035834

9/30
Bit Lines
Read/Write Stack ﬁ K
{/400 “—— T
Stack Bus
b o1
¥
Stack Bus / Sense
Controlier

212

E
1
1
£

411:

Common § /~ 500
"1 Processor

4

430

PCT/US2008/073750

WO 2009/035834 PCT/US2008/073750

10/30
Bit Lines
1 Kk -k pErK
CDﬂtFO“erfs’TU sreRERD .-
rrﬁOG-r
212-k F | Sense
/ | Amp
H
® e 1
State t
Machine
311
4 /’410 f 500
_ 507 550
Stack Bus Common / Comemon
Cantroller > Processar cese Processaor ‘
411 v v
DBus
f423 _
[4304
| Data 430-k | | | Date
| Latches / v 1 Latches
t t
- 3 Geee) X
¥ e i e
VO Bus L ¥ ¥ ¥
-~ s~ o]
231 l] l
440~

FiG. 9

WO 2009/035834 PCT/US2008/073750

11/30
sense Amp 147 Data Latches = %0
Bit Line 1 Data
DLt O
‘ 4341 (231
r"214~1
SA Laich [:
.
: ‘
. CTRL _’ﬁ Dln OTRL
& CLK 454 & CLK
] 11 ; 411
SBus DBus
422 423
e e
Common Processor r 500
SAP- DTP
501 l 1 502
_\\ FBus B
J
? 505 T
SAN DTN
v
510 $ 530
N ¥ f'
. — [1/0/Z)
input Logic
Output Logic
—[110/Z]
503 '} T I T
esi NDIR
520 PINV PDIR
) O NINY CTRL
SET ety & CLK
' PlLateh 1 MTCH. MTCH*] ‘Tﬁ
RESET-—= l 491
- 524

FIG. 10

WO 2009/035834

PCT/US2008/073750
12/30
FBus
/505
Input Logic e 520 3
524
\
522
ONE — —— ONEB<0>
525 -
N F— ONE
526 :
. = ONEB<1>
527~
\Y%
/523
FIG. 11A |
B3I
input Logic Truth Table
Transfer PBus BSi
Mode ONE ONEB<(> ONEB<1> (Input} (Output)
Through || © 0 PBus PBus
nvert 0 1 1 PBus PBus™
Flaat 1 1 g PBus Ficat

FIG. 11B

WO 2009/035834 PCT/US2008/073750

13/30
PBus
4
Output Logic /-530 505
o]
531 : 533
AN - PDIR N\ = MTCH*
532 534
(| mros N (i
535 ' 537 |
N ‘—-— NDIR N | b vToH
536 838
N '——— MTCH* AN — NINV
Outpit Logic Truth Tabte
Transt PB
et BNy | NINV | PDIR | NDIR | MTCH (Outont)
Pass- D D D 1 0 G
Through 0 D D D 1 1
D 0 0 D 0 1
Invert
D 1 D O 1 g
Float D D D D X pid
Pre-
Chargs 0 D 0 D X 1

{Default Values: PINV=1, NINV=0, PDIR=1, NDIR=0}

FIG. 12B

WO 2009/035834 PCT/US2008/073750

14/30
Upper Page va 434-0
Load IN Input
' DLO e
. 231
VH Vertfy 435] { Output
DOLS Sl 434-2
pt2 4
VL Lockout
422 990 4341
a oy
Prog. DU Lower Page
N 423 Lockout Data
VH Verity
Lower Page . .. 434-0
Lockout Data Input
DLo
. 231
VH Verify - 435~ Output
| 214 l——-——-———>
DLS | 4342
DL2
500 VL. Lockout
422 £ 434-1
4 s
Proc. \\ DL Upper Page
~423 Lockout Data
VH Verity

FIG. 14

PCT/US2008/073750

WO 2009/035834

15/30

94 Ol

r~ ™
T DA
| 7 nwodaLl =
N UOISIBALOY) DISTINLS 0 189m0
AL
- 8 EN h o) 5 L B
B b o i i]
oAad o/aAmd g1Aiad vAIAd

LS

1sddpy weibosd

iamo wieibBoid

—

Y

U9pp uo sebay
Jaddpy proi

Ashg
and}

Asng

UMM U sobiey SUCED

18MmoT peon

PCT/US2008/073750

16/30

WO 2009/035834

AusA HA
B1B(] IN0YH0T] czy ~
abe lemo? 171 D0
Ayep IA 008
7 [L8]
S VER s1d
= ad
g sififo mano_ | |~ SEY AsIBA HA
igg .
o S 01a
Sus\ abed paN
o-ver HiPEsY
A
. . _ N
Nw mu mw ﬁw mw Nw : O«
) U : i U o b N
vhind DAAd / o/afnd grvAad vhgAd
-« > i >
blqan wiesBoud Y10 wesBoud Asng
Yers oniy
_ 7 Asng
F+yan uo sebed : U-1AA Uo sabey U-1a4 uo sefiey SUOBD
laddn peoT Jaddn peony BmoT) peo

PCT/US2008/073750

WO 2009/035834

17/30

V6L "Oi4
A

™
2l by 0 6 8 4 9 5
_ _ L | | ” |
okad | T orakiad T Takad
: : | i Asng
T {e H : e DN
{1) Z+N abed weiboly apesy _ 1 | epesy | {N} L +N ebed welbold : 4
n i fopesy | i
! ; : [Asng
| syoen
Apoly 9 £+ AUPOW 3 T :
alied 1o aifboy afied 1ng aiBBo @
! k¢! g 4 b 0
_ ﬂ _ ! | M
m W w | Asng
(n) L+N ebed weiBoiy | m ' 1 gpesy ¢ pesyopeay | ML
b (1) N oBed weibord \ | fsng
: L+ 8Bed (D W sbed | 8yoed
: astag asueyg

@

AjIpoi 3
L+ wbed inp efboy

Aipoin g
N abied Ing) 9)bbo)

®

PCT/US2008/073750

WO 2009/035834

18/30

g6} "Old

A -
zl, Hy Oy & N 4 9 N
_ I L ! m m _
ohnd | © omAnd avAnd
_ ; : i Asng
; ™ I= H > end
(1) z+N sbeg weiboig | ApesH Gpesw | () 1aN D N sebed weibord }
souanbag iy — : i fopesy | Asng
{ oyoeD
Alpoy B £+ Apo 3 2+ m
afied inQ sjfboy abed in afbog @
| | _ | |
) grvAnd T vhjnd 7 m
m ", i Asng
L+N 'N ‘weibaig sousnbeg Ny L o gpesy epeapjopeay | ML
i (1) N ebeq weiboid \ | feng
Lrpy obed | | (Dwebeg :oyoed
asuag : aslag :

aigm

Aipaiy g
Bed inQ 916803

Apow 8
i abeg o &;b6o)

©

WO 2009/035834 PCT/US2008/073750

19/30
of Cells Upper Bit — ,— Lower Bit
31 17! . Ho1n HOOH i{? O"
B D)
| % ; > Vi

Threshold Voltage

Muitistate Memory (LM Gray Code)

FIG. 20

WO 2009/035834 PCT/US2008/073750

20/30
600——\
o~
HIDDEN AREA | — €04
_— 608
*..___
*__,,,,....__
‘__.____
602 “m——F MULTIPLEXER
USER DATA AREA ¢ «
4,,,,,..._
f‘ AN 814
N

e]

FIG. 21

WO 2009/035834 PCT/US2008/073750

21/30

Tres el ol A A e I T dO

pagelt Pagel2 Pagein-1

| Polarity, bit

FIG. 22A

Register 1121314576718 19101111213 14}115116}17
position

Code tlotrioioi1 i1 (10 (0 (0 11 11 10 110
{polarity bit) .
UD Origigal |0 {1 (0 |1 01 0201 0 |1 0 }1 0 1)0/
encoding

uD 1i1 i1t (0j0 3210111 10 41 31 1040 10 (0
Subsequent '

encoding B

| State ER |ER |B C ER A C B

FIG. 22B

WO 2009/035834

22/30
Drain
NAND STRING
Drain
Select ‘! 52
User
Data
\ 1
Controt Gate 5 oms
: 0
. 1
Control Gate 4 1 M4
! 0
' 1
Control Gate3 v M3
H 0
1 1
Control Gate 2. £ M2 0
[}
1 1
Control Gate 1 YoM 0
’ §
S |
Control Gate 0 t1 MO
' 0
Source
Select S1

Source

PCT/US2008/073750

Randomization

>

User
Data Poiarity Saved Saved
State Bit Data Data

State
1 0
€ reremsemmenemennne s > A
1 i
0
Greme e ! ER
1 1
1 1
Gremrmeeseme st > c
1 #]
1 0
C remeeemerem e B
o b
0 1
C-- 3 ER
1
' 0 1
o e > ER
1 1

FIG. 22C

WO 2009/035834 PCT/US2008/073750

23/30

mput { o | pomity_bit
1 o T s
1 .
CiLk .S!GNAL,.. e r) {

FIG. 23A

COMMAND COMMAND COMMAND
e CLK SIGNAL L i - L=

FIG. 23B

—
PAGE vssroatAArEs | 00
530 4
832
/
-
- e34

FIG. 23D

FIG. 23E

WO 2009/035834 PCT/US2008/073750
24/30 :

COMMAND i COMMAND i COMMAND
—L CLK SIGNAL b - : el | —

3

=10 t=t1 =

esveo FIG. 24A rsu=1 FSM=0

FSM__QLE! IPoladity_bit

FF

COMMAND CLK BIGNAL -
P

FIG. 24B

WO 2009/035834 PCT/US2008/073750

25/30

CONTROL CIRCUITRY 310

State Machine
312

On-Chip Address
Decoder
314

Data Scrambler
318

FIG. 25

WO 2009/035834 PCT/US2008/073750

26/30

Providing an integrated-circuit memory chip having an array of

nonvolatiie memory cells accessible page by page, each page

being a group of memory cells, each memory cell of the group

being in a column of the array and along a row accessibie by a
common word line

Y.

Generating on-chip a sequence of starting column positions so
that each page fo be programmed has an associated starting
column position

h 4

Staging data to be programmed into each page by starting from
the associated starting column position and wrapping around until
the page is filled

Programming the staged data in parailel into each page

700

710

720

730

Scrambling of data in a page by shifting the starting location

FIG. 26

WO 2009/035834 PCT/US2008/073750
27/30
Col 0 Col 1 Col 2 Col 3 Col n+1
Starting column

v /
Page D oY 1/ 2 Y [o
Page 1 n-1 0¥ | 1 - —— N2
Page 2 n-2 n-1 < PE n-3
Page 3 n-3 n-2 n-1 [T . ol
Page 4 n-4 n-3 n-2 AL TN O —— n-5
Page m-1i H n-m+1 | n-m+2 N-M+3 | n-Mm+4 | —oeemmmeeenees [hem

FIG. 27

WO 2009/035834 28/30 PCT/US2008/073750
READMWRITE CIRCUITS 370A. 3708
| 480
Sense |/ Sense Sense
Module Moduie | ---eeememn- Module
1 2 D
.38 Bit fine
drain
10
] Cell Cell | Cell
1 2 P
source | Js iz Iy
14 34
CfRC Source /
] Line
fror

’"T‘

50 ohm é i

Vdrop = jpr R

\ j
GND
Drain | __ 45
0 Control Gate
K 10
| —
Effective 14
Supplied Ve Vs "“};/
Vi 4 ‘ Source
. i ¢V l Line
VYdrop
Y GND

FIG. 28B

WO 2009/035834 PCT/US2008/073750

29/30

Providing an integrated-circui{ memory chip having an array of

nonvoiaiile memory cells accessible page by page, each page

being a group of memory cells, each memcry cell of the group

being in a column of the array and along a row accessible by a
common word line

l

Providing first and second encodings for each set of data bits of a L 50
7

750

page o be programmed

A

Generating on-chip a sequence of polarity bits, one for each set of o 762
data bits

l

Encoding each set of data bits with either first or second encoding - 764
according to whether the polarity bit for each set of data bits is in -
& Tirst or second state

!

Programming all encoded sets of data bits in paraliel into the page!

770

Randomizing bits within each page

FIG. 29

WO 2009/035834 PCT/US2008/073750

30/30

Providing an integrated-circuit memory chip having an array of

nonvolatiie memory cells accessible page by page, each page ©750

being a group of memory cells, each memory call of the group

being in a column of the array and along a row accessible by a
common word line

4

Providing first and second encodings for each page of data to be

programmed 760

. : o 762
Generating on-chip a sequence of polarity bits, one for each page

Encoding the page of data with either first ar second encoding w 764

according to whether the polarity bit for the page is in a first or
second state

h 4
Generating on-chip a saquence of starting cofumn positions so

that each page to be programimed has an associated starting 770
column position

Staging data fo be programmed intc each page by starting from | 772
the associated starting column position and wrapping around until
the page is filled

A

Programming the staged data in parallel into each page L 780

Randomizing page-by-page and within each page

FIG. 30

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings

