Abstract:
The present invention relates to pharmaceutical agents useful for therapy and/or prophylaxis in a mammal, and in particular to inhibitors of NF-κB-inducing kinase (NIK - also known as MAP3K14) useful for treating diseases such as cancer, inflammatory disorders, metabolic disorders and autoimmune disorders. The invention is also directed to pharmaceutical compositions comprising such compounds, to processes to prepare such compounds and compositions, and to the use of such compounds or pharmaceutical compositions for the prevention or treatment of diseases such as cancer, inflammatory disorders, metabolic disorders including obesity and diabetes, and autoimmune disorders.

Inventors:
HYND, George; 8/9 Spire Green CentreFlex Meadow, Harlow Essex CM195TR (GB).
TISELLELLI, Patricia; 8/9 Spire Green Centre Flex Meadow, Harlow Essex CM195TR (GB).
KULAGOWSKI, Janusz, Jozef; 8/9 Spire Green Centre Flex Meadow, Harlow Essex CM195TR (GB).
MACLEOD, Calum; 8/9 Spire Green CentreFlex Meadow, Harlow Essex CM195TR (GB).
MANN, Samuel, Edward; 8/9 Spire Green Centre Flex Meadow, Harlow Essex CM195TR (GB).
MONTANA, John, Gary; 8/9 Spire Green CentreFlex Meadow, Harlow Essex CM195TR (GB).
PRICE, Stephen, Colin; 8/9 Spire Green CentreFlex Meadow, Harlow Essex CM195TR (GB).
ROUSSEL, Fabien, Jean, Ghislain; 8/9 Spire Green CentreFlex Meadow, Harlow Essex CM195TR (GB).

Agent: LENAERTS, Philip; J&J Patent Law Department

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(b))
Published:
— with international search report (Art. 21(3))
NEW PYRAZOLE DERIVATIVES AS NIK INHIBITORS

FIELD OF THE INVENTION

The present invention relates to pharmaceutical agents useful for therapy and/or prophylaxis in a mammal, and in particular to inhibitors of NF-κB-inducing kinase (NIK - also known as MAP3K14) useful for treating diseases such as cancer, inflammatory disorders, metabolic disorders including obesity and diabetes, and autoimmune disorders. The invention is also directed to pharmaceutical compositions comprising such compounds, to processes to prepare such compounds and compositions, and to the use of such compounds or pharmaceutical compositions for the prevention or treatment of diseases such as cancer, inflammatory disorders, metabolic disorders including obesity and diabetes, and autoimmune disorders.

BACKGROUND OF THE INVENTION

The present invention relates to pharmaceutical agents useful for therapy and/or prophylaxis in a mammal, and in particular to inhibitors of NF-κB-inducing kinase (NIK - also known as MAP3K14) useful for treating diseases such as cancer and inflammatory disorders. Nuclear factor-kappa B (NF-κB) is a transcription factor regulating the expression of various genes involved in the immune response, cell proliferation, apoptosis, and carcinogenesis. NF-κB dependent transcriptional activation is a tightly controlled signaling pathway, through sequential events including phosphorylation and protein degradation. NIK is a serine/threonine kinase which regulates NF-κB pathway activation. There are two NF-κB signaling pathways, the canonical and the non-canonical. NIK has a role in both but has been shown to be indispensable for the non-canonical signaling pathway where it phosphorylates IKKα, leading to the partial proteolysis of p100; liberating p52 which then heterodimerizes with RelB, translocates to the nucleus and mediates gene expression. The non-canonical pathway is activated by only a handful of ligands such as CD40 ligands, B-cell activating factor (BAFF), lymphotoxin β receptor ligands and TNF-related weak inducer of apoptosis (TWEAK) and NIK has been shown to be required for activation of the pathway by these ligands. Because of its key role, NIK expression is tightly regulated. Under normal non-stimulated conditions NIK protein levels are very low, this is due to its interaction with a range of TNF receptor associated factors (TRAF), which are ubiquitin ligases and result in degradation of NIK. It is believed that when the non-canonical pathway is stimulated by ligands, the activated receptors now compete for TRAFs, dissociating the TRAF-NIK complexes and thereby increasing the levels of NIK. (Thu and Richmond, Cytokine Growth F. R. 2010, 21, 213-226)
Research has shown that blocking the NF-\(\kappa\)B signaling pathway in cancer cells can cause cells to stop proliferating, to die and to become more sensitive to the action of other anti-cancer therapies. A role for NIK has been shown in the pathogenesis of both hematological malignancies and solid tumours.

The NF-\(\kappa\)B pathway is dysregulated in multiple myeloma due to a range of diverse genetic abnormalities that lead to the engagement of the canonical and non-canonical pathways (Annuiziata et al. Cancer Cell 2007, 12, 115-130; Keats et al. ibid 2007, 12, 131-144; Demchenko et al. Blood 2010, 115, 3541-3552). Myeloma patient samples frequently have increased levels of NIK activity. This can be due to chromosomal amplification, translocations (that result in NIK proteins that have lost TRAF binding domains), mutations (in the TRAF binding domain of NIK) or TRAF loss of function mutations. Researchers have shown that myeloma cell lines can be dependent on NIK for proliferation; in these cell lines if NIK activity is reduced by either shRNA or compound inhibition, this leads to a failure in NF-\(\kappa\)B signaling and the induction of cell death (Annuiziata 2007).

In a similar manner, mutations in TRAF and increased levels of NIK have also been seen in samples from Hodgkin lymphoma (HL) patients. Once again proliferation of cell lines derived from HL patients is susceptible to inhibition of NIK function by both shRNA and compounds (Ranuncolo et al. Blood First Edition Paper, 2012, DOI 10.1 182/blood-2012-01-405951).

NIK levels are also enhanced in adult T cell leukemia (ATL) cells and targeting NIK with shRNA reduced ATL growth in vivo (Saitoh et al. Blood 2008, 111, 5118-5129). It has been demonstrated that the API2-MALT1 fusion oncoprotein created by the recurrent translocation t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-\(\kappa\)B-inducing kinase (NIK) at arginine 325. NIK cleavage generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation (due to loss of TRAF binding region). The presence of this truncated NIK leads to constitutive non-canonical NF-\(\kappa\)B signaling, enhanced B cell adhesion, and apoptosis resistance. Thus NIK inhibitors could represent a new treatment approach for refractory t(11;18)-positive MALT lymphoma (Rosebeck et al. Science 2011, 331, 468-472).

NIK aberrantly accumulates in diffuse large B-cell lymphoma (DLBCL) cells due to constitutive activation of B-cell activation factor (BAFF) through interaction with autochthonous B-lymphocyte stimulator (BLyS) ligand. NIK accumulation in human DLBCL cell lines and patient tumor samples suggested that constitutive NIK kinase activation is likely to be a key signaling mechanism involved in abnormal lymphoma
tumor cell proliferation. Growth assays showed that using shRNA to inhibit NIK kinase protein expression in GCB- and ABC-like DLBCL cells decreased lymphoma cell growth in vitro, implicating NIK-induced NF-κB pathway activation as having a significant role in DLBCL proliferation (Pham et al. Blood 2011, 117, 200-210).

As mentioned a role of NIK in tumour cell proliferation is not restricted to hematological cells, there are reports that NIK protein levels are stabilised in some pancreatic cancer cell lines and as seen in blood cells proliferation of these pancreatic cancer lines are susceptible to NIK siRNA treatment (Nishina et al. Biochem. Biophys. Res. Co. 2009, 388, 96-101). Constitutive activation of NF-κB, is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines, including elevated NIK protein levels in specific lines (Yamamoto et al. Cancer Sci. 2010, 101, 2391-2397). In melanoma tumours, tissue microarray analysis of NIK expression revealed that there was a statistically significant elevation in NIK expression when compared with benign tissue. Moreover, shRNA techniques were used to knock-down NIK, the resultant NIK-depleted melanoma cell lines exhibited decreased proliferation, increased apoptosis, delayed cell cycle progression and reduced tumor growth in a mouse xenograft model (Thu et al. Oncogene 2011, 1-13). A wealth of evidence showed that NF-κB is often constitutively activated in non-small cell lung cancer tissue specimens and cell lines. Depletion of NIK by RNAi induced apoptosis and affected efficiency of anchorage-independent NSCLC cell growth.

In addition research has shown that NF-κB controls the expression of many genes involved in inflammation and that NF-κB signalling is found to be chronically active in many inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, sepsis and others. Thus pharmaceutical agents capable of inhibiting NIK and thereby reducing NF-κB signaling pathway can have a therapeutic benefit for the treatment of diseases and disorders for which over-activation of NF-κB signaling is observed.

Dysregulated NF-κB activity is associated with colonic inflammation and cancer, and it has been shown that Nlrp12 deficient mice were highly susceptible to colitis and colitis-associated colon cancer. In this context work showed that NLRP12 functions as a negative regulator of the NF-κB pathway through its interaction and regulation of NIK and TRAF3, and as a checkpoint of critical pathways associated with inflammation and inflammation-associated tumorigenesis (Allen et al. Immunity 2012, 36, 742-754).

Tumor necrosis factor (TNF)-a, is secreted in response to inflammatory stimuli in diseases such as rheumatoid arthritis and inflammatory bowel disease. In a series of experiments in colonic epithelial cells and mouse embryonic fibroblasts, TNF-a
mediates both apoptosis and inflammation, stimulating an inflammatory cascade through the non-canonical pathway of NF-κB activation, leading to increased nuclear ReIB and p52. TNF-α induced the ubiquitination of TRAFs, which interacts with NIK, leading to increased levels of phospho-NIK (Bhattacharyya et al. J Biol. Chem. 2011, 285, 3951-39522).

Inflammatory responses are a key component of chronic obstructive pulmonary disease (COPD) as such it has been shown that NIK plays a key role in exacerbating the disease following infection with the Gram-negative bacterium nontypeable Hemophilus influenza (Shuto et al. PNAS 2001, 98, 8774-8779). Likewise cigarette smoke (CS) contains numerous reactive oxygen/nitrogen species, reactive aldehydes, and quinones, which are considered to be some of the most important causes of the pathogenesis of chronic inflammatory lung diseases, such as COPD and lung cancer. Increased levels of NIK and p-IKKα have been observed in peripheral lungs of smokers and patients with COPD. In addition it has been shown that endogenous NIK is recruited to promoter sites of pro-inflammatory genes to induce post-translational modification of histones, thereby modifying gene expression profiles, in response to CS or TNFa (Chung et al. PLoS ONE 2011, 6(8): e23488. doi:10.1371/journal.pone.0023488). A shRNA screen was used in an in vitro model of oxidative stress induced cell death (as a model of COPD) to interrogate a human druggable genome siRNA library in order to identify genes that modulate the cellular response to stress. NIK was one of the genes identified in this screen as a potential new therapeutic target to modulate epithelial apoptosis in chronic lung diseases (Wixted et al. Toxicol. In Vitro 2010, 24, 310-318).

Diabetic individuals can be troubled by a range of additional manifestations associated with inflammation. One such complication is cardiovascular disease and it has been shown that there are elevated levels of p-NIK, p-IKK-α/β and p-IκB-α in diabetic aortic tissues (Bitar et al. Life Sci. 2010, 86, 844-853). In a similar manner, NIK has been shown to regulate proinflammatory responses of renal proximal tubular epithelial cells via mechanisms involving TRAF3. This suggests a role for NF-κB noncanonical pathway activation in modulating diabetes-induced inflammation in renal tubular epithelium (Zhao et al. Exp. Diabetes Res. 2011, 1-9). The same group has shown that NIK plays a critical role in noncanonical NF-κB pathway activation, induced skeletal muscle insulin resistance in vitro, suggesting that NIK could be an important therapeutic target for the treatment of insulin resistance associated with inflammation in obesity and type 2 diabetes (Choudhary et al. Endocrinology 2011, 152, 3622-3627).
NF-κB is an important component of both autoimmunity and bone destruction in rheumatoid arthritis (RA). Mice lacking functional NIK have no peripheral lymph nodes, defective B and T cells, and impaired receptor activator of NF-κB ligand-stimulated osteoclastogenesis. Aya et al. (J. Clin. Invest. 2005, 115, 1848-1854) investigated the role of NIK in murine models of inflammatory arthritis using Nik-A mice. The serum transfer arthritis model was initiated by preformed antibodies and required only intact neutrophil and complement systems in recipients. While Nik-A mice had inflammation equivalent to that of Nik+/+ controls, they showed significantly less periarticular osteoclastogenesis and less bone erosion. In contrast, Nik-/− mice were completely resistant to antigen-induced arthritis (AIA), which requires intact antigen presentation and lymphocyte function but not lymph nodes. Additionally, transfer of Nik+/+ splenocytes or T cells to Rag2-A mice conferred susceptibility to AIA, while transfer of Nik-/− cells did not. Nik-/− mice were also resistant to a genetic, spontaneous form of arthritis, generated in mice expressing both the KRN T cell receptor and H-2g7. The same group used transgenic mice with OC-lineage expression of NIK lacking its TRAF3 binding domain (NT3), to demonstrate that constitutive activation of NIK drives enhanced osteoclastogenesis and bone resorption, both in basal conditions and in response to inflammatory stimuli (Yang et al. PLoS One 2010, 5, 1-9, e15383). Thus this group concluded that NIK is important in the immune and bone-destructive components of inflammatory arthritis and represents a possible therapeutic target for these diseases.

It has also been hypothesized that manipulating levels of NIK in T cells may have therapeutic value. Decreasing NIK activity in T cells might significantly ameliorate autoimmune and alloresponses, like GVHD (Graft Versus Host Disease) and transplant rejection, without crippling the immune system as severely as do inhibitors of canonical NF-κB activation.

WO2009/158011 describes alkynyl alcohols as kinase inhibitors.

WO2012/123522 describes 6,5-heterocyclic propargylic alcohol compounds and uses therefor.

DESCRIPTION OF THE INVENTION

The present invention concerns novel compounds of Formula (I):
and tautomers and stereoisomeric forms thereof, wherein

R1 is selected from the group of hydrogen; C\textsubscript{i-4}alkyl; and C\textsubscript{i-4}alkyl substituted with one or more fluoro substituents;

R2 is selected from the group of hydrogen; C\textsubscript{i-4}alkyl; C\textsubscript{i-4}alkyl substituted with one or more fluoro substituents; C\textsubscript{3-6}cycloalkyl; and Het1;

Het1 is a heteroaryl selected from the group of thienyl, thiazolyl, pyrrolyl, oxazolyl, pyrazolyl, imidazolyl, oxadiazolyl, isoxazolyl, isothiazolyl, pyridinyl and pyrimidinyl each of which may be optionally substituted with one or two substituents independently selected from halogen and C\textsubscript{i-4}alkyl;

or R1 and R2 together with the carbon atom to which they are attached form a C\textsubscript{3-6}cycloalkyl or a Het2 group; wherein

Het2 is a heterocyclyl selected from the group of piperidinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetanyl, each of which may be optionally substituted with one C\textsubscript{i-4}alkyl; or Het2 is 2-oxo-3-pyrrolidinyl optionally substituted with one C\textsubscript{i-4}alkyl;

R3 is selected from the group of hydrogen; halogen; cyano; C\textsubscript{i-4}alkyl; and C\textsubscript{i-4}alkyl substituted with one or more fluoro substituents;

R\textsuperscript{4\text{a}}} is selected from the group of hydrogen and halogen;

R\textsuperscript{4\text{b}}} is selected from the group of hydrogen and halogen;

R5 is selected from the group of hydrogen; cyano; C\textsubscript{i-4}alkyl; C\textsubscript{i-4}alkyl substituted with one or more fluoro substituents; C\textsubscript{i-4}alkyl substituted with one substituent selected from the group of -NR\textsubscript{5\text{a}}R\textsubscript{5\text{b}}, -OC\textsubscript{i-4}alkyl and Het3; wherein

R\textsubscript{5\text{a}} and R\textsubscript{5\text{b}} are each independently selected from the group of hydrogen and C\textsubscript{i-4}alkyl;

Het3 is a heterocyclyl selected from the group of piperidinyl, morpholinyl, piperazinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetanyl, each of
which may be optionally substituted with one or two substituents selected from fluoro, Ci₄alkyl, -OCi₄alkyl, C₃₋₆cycloalkyl and Ci₄alkyl substituted with one or more fluoro substituents;

R₆ is selected from the group of hydrogen and halogen;

R⁷ is selected from the group of hydrogen; halogen; cyano; Ci₄alkyl; Ci₄alkyl substituted with one or more fluoro substituents; and -NR⁷aR⁷b; wherein

R⁷a and R⁷b are each independently selected from hydrogen and Ci₄alkyl;

R⁸ is selected from the group of hydrogen; -SO₂Ci₆alkyl; Het⁴; R⁹; Ci₆alkyl optionally substituted with one or more substituents independently selected from the group of (i) Ar¹ and (ii) Het⁵; and

C₂₋₄alkyl substituted with one or more substituents independently selected from the group of

(iii) fluoro,

(iv) -NR⁸aR⁸b,

(v) -NR⁸C(=0)R⁸d,

(vi) -NR⁸C(=0)NR⁸aR⁸b,

(vii) -NR⁸C(=0)OR⁸e,

(viii) -NR⁸S(=0)₂NR⁸aR⁸b,

(ix) -NR⁸S(=0)₂R⁸d,

(x) -OR⁸f,

(xi) -OC(=0)NR⁸aR⁸b,

(xii) -C(=0)NR⁸aR⁸b,

(xiii) -S(0)₂R⁸d, and

(xiv) -S(0)₂NR⁸aR⁸b;

R⁸a, R⁸b, R⁸c and R⁸f are each independently selected from the group of hydrogen; Ci₆alkyl; C₃₋₆cycloalkyl; and C₂₋₄alkyl substituted with one substituent selected from -NR⁸S⁻R⁸y, -OH, and -OC₁₋₄alkyl;

R⁸d is selected from the group of Ci₆alkyl, which may be optionally substituted with one substituent selected from -NR⁸S⁻R⁸y, -OH, and -OC₁₋₄alkyl; and C₃₋₆cycloalkyl;

R⁸e is selected from the group of Ci₆alkyl; C₃₋₆cycloalkyl; and C₂₋₄alkyl substituted with one substituent selected from -NR⁸S⁻R⁸y, -OH, and -OC₁₋₄alkyl;

wherein R⁸x and R⁸y are each independently selected from hydrogen and Ci₄alkyl;

R⁹ is C₃₋₆cycloalkyl optionally substituted with one or two substituents independently selected from fluoro, Ci₄alkyl, -OC₁₋₄alkyl,
Ci₄-alkyl substituted with one -OCi₄-alkyl,
and Ci₄-alkyl substituted with one or more fluoro substituents;
Ar¹ is selected from the group of phenyl, thienyl, thiazolyl, pyrrolyl, oxazolyl,
pyrazolyl, imidazolyl, isoxazolyl, isothiazolyl, pyridinyl, pyrimidinyl, pyridazinyl and
pyrazinyl, each of which may be optionally substituted with one or two substituents
independently selected from halogen, cyano, Ci₄-alkyl, Ci₄-alkyl substituted with one or
more fluoro substituents, -OCi₄-alkyl, and -OCi₄-alkyl substituted with one or more
fluoro substituents;
Het⁴ is a heterocyclyl, bound through any available carbon atom, selected from the
group of piperidinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and
oxetany, each of which may be optionally substituted with one or two substituents
independently selected from fluoro, Ci₄-alkyl, -OCi₄-alkyl, C₃₋₆-cycloalkyl, Ci₄-alkyl
substituted with one -OCi₄-alkyl, Ci₄-alkyl substituted with one or more fluoro
substituents, and Ci₄-alkyl substituted with one C₃₋₆-cycloalkyl;
Het⁵ is a heterocyclyl selected from the group of morpholinyl, piperidinyl, piperazinyl,
tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetany, each of
which may be optionally substituted with one or two substituents independently
selected from fluoro, Ci₄-alkyl, -OCi₄-alkyl, C₃₋₆-cycloalkyl, Ci₄-alkyl substituted with
one -OCi₄-alkyl, Ci₄-alkyl substituted with one or more fluoro substituents, and
Ci₄-alkyl substituted with one C₃₋₆-cycloalkyl;
and the pharmaceutically acceptable salts, and the solvates thereof.

DETAILED DESCRIPTION OF THE INVENTION

The term 'halo' or 'halogen' as used herein represents fluoro, chloro, bromo and iodo.
The prefix 'Cₓᵧ' (where x and y are integers) as used herein refers to the number of
carbon atoms in a given group. Thus, a Ciₓ-alkyl group contains from 1 to 6 carbon
atoms, a C₃₋₆-cycloalkyl group contains from 3 to 6 carbon atoms, and so on.
The term 'Ciₓ-alkyl' as used herein as a group or part of a group represents a straight or
branched chain saturated hydrocarbon radical having from 1 to 4 carbon atoms, such as
methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl and the like.
The term 'Ciₓ-alkyl' as used herein as a group or part of a group represents a straight or
branched chain saturated hydrocarbon radical having from 1 to 6 carbon atoms such as
the groups defined for Ciₓ-alkyl and n-pentyl, n-hexyl, 2-methylbutyl and the like.
The term 'Cₓ₋₆-alkyl' as used herein as a group or part of a group represents a straight or
branched chain saturated hydrocarbon radical having from 2 to 6 carbon atoms such as
ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl, n-pentyl, n-hexyl, 2-methylbutyl and the like.

The term 'C3 to C6 cycloalkyl' as used herein as a group or part of a group represents cyclic saturated hydrocarbon radicals having from 3 to 6 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

The term 'Ci6 alkyl substituted with one or more substituents' as used herein as a group or part of a group refers to a Ci6 alkyl group as defined herein wherein one or more than one hydrogen atom is replaced with another group. The term therefore includes monosubstituted Ci6 alkyl and also polysubstituted Ci6 alkyl. There may be one, two, three or more hydrogen atoms replaced with a substituent, so the fully or partially substituted Ci6 alkyl may have one, two, three or more substituents. Examples of such groups wherein the substituent is for example, fluoro include fluoromethyl, difluoromethyl, trifluoromethyl, fluoroethyl, trifluoroethyl and the like.

In general, whenever the term "substituted" is used in the present invention, it is meant, unless otherwise is indicated or is clear from the context, to indicate that one or more hydrogens, in particular from 1 to 4 hydrogens, more in particular from 1 to 3 hydrogens, preferably 1 or 2 hydrogens, more preferably 1 hydrogen, on the atom or radical indicated in the expression using "substituted" are replaced with a selection from the indicated group, provided that the normal valency is not exceeded, and that the substitution results in a chemically stable compound, i.e. a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into a therapeutic agent.

Combinations of substituents and/or variables are permissible only if such combinations result in chemically stable compounds. "Stable compound" is meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into a therapeutic agent.

C(O) or C(=0) represents a carbonyl moiety.

S(0) or S02 represents a sulfonyl moiety.

Substituents covered by the term "Hetx" (where x is an integer), "heterocyclyl" or "heteroaryl" may be attached to the remainder of the molecule of Formula (I) through any available ring carbon or heteroatom as appropriate, if not otherwise specified. "Arx" may be attached to the remainder of the molecule of Formula (I) through any available ring carbon atom or through a 'NFT' group (e.g. in pyrrolyl, pyrazolyl, imidazolyl) as appropriate, if not otherwise specified.
Whenever substituents are represented by chemical structure, "—" represents the bond of attachment to the remainder of the molecule of Formula (I).

When any variable occurs more than one time in any constituent, each definition is independent.

When any variable occurs more than one time in any formula (e.g. Formula (I)), each definition is independent.

The term "subject" as used herein, refers to an animal, preferably a mammal (e.g. cat, dog, primate or human), more preferably a human, who is or has been the object of treatment, observation or experiment.

The term "therapeutically effective amount" as used herein, means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue system, animal or human that is being sought by a researcher, veterinarian, medicinal doctor or other clinician, which includes alleviation or reversal of the symptoms of the disease or disorder being treated.

The term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combinations of the specified ingredients in the specified amounts.

The term "treatment", as used herein, is intended to refer to all processes wherein there may be a slowing, interrupting, arresting or stopping of the progression of a disease, but does not necessarily indicate a total elimination of all symptoms.

The term "compound(s) of the (present) invention" or "compound(s) according to the (present) invention" as used herein, is meant to include the compounds of Formula (I) and the pharmaceutically acceptable salts, and the solvates thereof.

As used herein, any chemical formula with bonds shown only as solid lines and not as solid wedged or hashed wedged bonds, or otherwise indicated as having a particular configuration (e.g. R, S) around one or more atoms, contemplates each possible stereoisomer, or mixture of two or more stereoisomers.

Hereinbefore and hereinafter, the term "compound(s) of Formula (I)" is meant to include the tautomers thereof and the stereoisomeric forms thereof.

The terms "stereoisomers", "stereoisomeric forms" or "stereochemically isomeric forms" hereinbefore or hereinafter are used interchangeably.

The invention includes all stereoisomers of the compounds of the invention either as a pure stereoisomer or as a mixture of two or more stereoisomers.
Enantiomers are stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a racemate or racemic mixture.

Atropisomers (or atropo-isomers) are stereoisomers which have a particular spatial configuration, resulting from a restricted rotation about a single bond, due to large steric hindrance. All atropisomeric forms of the compounds of Formula (I) are intended to be included within the scope of the present invention.

Diastereomers (or diastereoisomers) are stereoisomers that are not enantiomers, i.e. they are not related as mirror images. If a compound contains a double bond, the substituents may be in the E or the Z configuration.

Substituents on bivalent cyclic (partially) saturated radicals may have either the cis- or trans-configuration; for example if a compound contains a disubstituted cycloalkyl group, the substituents may be in the cis or trans configuration.

Therefore, the invention includes enantiomers, atropisomers, diastereomers, racemates, E isomers, Z isomers, cis isomers, trans isomers and mixtures thereof, whenever chemically possible.

The meaning of all those terms, i.e. enantiomers, atropisomers, diastereomers, racemates, E isomers, Z isomers, cis isomers, trans isomers and mixtures thereof are known to the skilled person.

The absolute configuration is specified according to the Cahn-Ingold-Prelog system.

The configuration at an asymmetric atom is specified by either R or S. Resolved stereoisomers whose absolute configuration is not known can be designated by (+) or (-) depending on the direction in which they rotate plane polarized light. For instance, resolved enantiomers whose absolute configuration is not known can be designated by (+) or (-) depending on the direction in which they rotate plane polarized light.

When a specific stereoisomer is identified, this means that said stereoisomer is substantially free, i.e. associated with less than 50%, preferably less than 20%, more preferably less than 10%, even more preferably less than 5%, in particular less than 2% and most preferably less than 1%, of the other stereoisomers. Thus, when a compound of Formula (I) is for instance specified as (R), this means that the compound is substantially free of the (S) isomer; when a compound of Formula (I) is for instance specified as E, this means that the compound is substantially free of the Z isomer; when a compound of Formula (I) is for instance specified as cis, this means that the compound is substantially free of the trans isomer.

Some of the compounds according to Formula (I) may also exist in their tautomeric form. Such forms in so far as they may exist, although not explicitly indicated in the
above Formula (I) are intended to be included within the scope of the present invention. It follows that a single compound may exist in both stereoisomeric and tautomeric form.

For use in medicine, the salts of the compounds of this invention refer to non-toxic "pharmaceutically acceptable salts". Other salts may, however, be useful in the preparation of compounds according to this invention or of their pharmaceutically acceptable salts. Suitable pharmaceutically acceptable salts of the compounds include acid addition salts which may, for example, be formed by mixing a solution of the compound with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulfuric acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, citric acid, tartaric acid, carbonic acid or phosphoric acid.

Conversely, said salt forms can be converted into the free base form by treatment with an appropriate base.

Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g., sodium or potassium salts; alkaline earth metal salts, e.g., calcium or magnesium salts; and salts formed with suitable organic ligands, e.g., quaternary ammonium salts.

Representative acids which may be used in the preparation of pharmaceutically acceptable salts include, but are not limited to, the following: acetic acid, 2,2-dichloroacetic acid, acetylated amino acids, adipic acid, alginic acid, ascorbic acid, L-aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, (+)-camphoric acid, camphorsulfonic acid, capric acid, caproic acid, caprylic acid, cinnamic acid, citric acid, cyclamatic acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxy-ethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, D-gluconic acid, D-glucoronic acid, L-glutamic acid, beta-oxo-glutaric acid, glycolic acid, hippuric acid, hydrobromic acid, hydrochloric acid, (+)-L-lactic acid, (±)-DL-lactic acid, lactobionic acid, maleic acid, (+)-L-malic acid, malonic acid, (±)-DL-mandelic acid, methanesulfonic acid, naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic acid, l-hydroxy-2-naphthoic acid, nicotinic acid, nitric acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, phosphoric acid, L-pyroglutamic acid, salicylic acid, 4-amino-salicylic acid, sebacic acid, stearic acid, succinic acid, sulfuric acid, tannic acid, (+)-L-tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoromethylsulfonic acid, and undecylenic acid.

Representative bases which may be used in the preparation of pharmaceutically acceptable salts include, but are not limited to, the following: ammonia, L-arginine, benethamine, benzathine, calcium hydroxide, choline, dimethylethanolamine,
diethanolamine, diethylamine, 2-(diethylamino)-ethanol, ethanolamine, ethylene-
diamine, N-methyl-glucamine, hydrabamine, 1H-imidazole, L-lysine, magnesium hydroxide, 4-(2-hydroxyethyl)-morpholine, piperazine, potassium hydroxide, 1-(2-
hydroxyethyl)-pyrroloidine, secondary amine, sodium hydroxide, triethanolamine, tromethamine and zinc hydroxide.

Conversely, said salt forms can be converted into the free acid forms by treatment with an appropriate acid.

The term solvate comprises the solvent addition forms as well as the salts thereof, which the compounds of Formula (I) are able to form. Examples of such solvent addition forms are e.g. hydrates, alcoholates and the like.

In the framework of this application, an element, in particular when mentioned in relation to a compound according to Formula (I), comprises all isotopes and isotopic mixtures of this element, either naturally occurring or synthetically produced, either with natural abundance or in an isotopically enriched form. Radiolabelled compounds of Formula (I) may comprise a radioactive isotope selected from the group of 2H (D), 3H, 11C, 18F, 122I, 123I, 125I, 131I, 75Br, 76Br, 77Br and 82Br. Preferably, the radioactive isotope is selected from the group of 2H, 3H, 11C and 18F. More preferably, the radioactive isotope is 2H. In particular, deuterated compounds are intended to be included within the scope of the present invention.

The present invention relates in particular to compounds of Formula (I) as defined herein, and tautomers and stereoisomeric forms thereof, wherein

R1 is selected from the group of hydrogen; Ci$_{1-4}$alkyl; and Ci$_{1-4}$alkyl substituted with one or more fluoro substituents;

R2 is selected from the group of hydrogen; Ci$_{1-4}$alkyl; Ci$_{1-4}$alkyl substituted with one or more fluoro substituents; C$_{3-6}$cycloalkyl; and Het1;

Het1 is a heteroaryl selected from the group of thiienyl, thiazolyl, pyrrolyl, oxazolyl, pyrazolyl, imidazolyl, oxadiazolyl, isoxazolyl, isothiazolyl, and pyrimidinyl, each of which may be optionally substituted with one or two substituents independently selected from halogen and Ci$_{1-4}$alkyl;

or R1 and R2 together with the carbon atom to which they are attached form a C$_{3-6}$cycloalkyl; wherein
R^3 is selected from the group of hydrogen; halogen; cyano; Ci_4 alkyl; and Ci_4 alkyl substituted with one or more fluoro substituents;

R^4^a is selected from the group of hydrogen and halogen;

R^4^b is selected from the group of hydrogen and halogen;

R^5 i s selected from the group of hydrogen;

R^6 is selected from the group of hydrogen;

R^7 is selected from the group of hydrogen; halogen; cyano; Ci_4 alkyl; Ci_4 alkyl substituted with one or more fluoro substituents; and -NR^7^a-R^7^b; wherein

R^7^a and R^7^b are each independently selected from hydrogen and Ci_4 alkyl;

R^8 is selected from the group of hydrogen; -SO_2 Ci_6 alkyl; Het^4^; R^9^; Ci_6 alkyl optionally substituted with one or more substituents independently selected from the group of (i) Ar_1 and (ii) Het^5^; and C_2_6 alkyl substituted with one or more -OR^8^f substituents;

R^8^f is selected from the group of hydrogen and Ci_6 alkyl;

R^9 is C_3_6 cycloalkyl optionally substituted with one or two substituents independently selected from fluoro, Ci_4 alkyl, -OCi_4 alkyl, Ci_4 alkyl substituted with one -OCi_4 alkyl, and Ci_4 alkyl substituted with one or more fluoro substituents;

Ar_1 is selected from the group of phenyl, thienyl, thiazolyl, pyrrolyl, oxazolyl, pyrazolyl, imidazolyl, isoxazolyl, isothiazolyl, pyridinyl, pyrimidinyl, pyridazinyl and pyrazinyl, each of which may be optionally substituted with one or two substituents independently selected from halogen, cyano, Ci_4 alkyl, Ci_4 alkyl substituted with one or more fluoro substituents, -OCi_4 alkyl, and -OCi_4 alkyl substituted with one or more fluoro substituents;

Het^4^ is a heterocyclyl, bound through any available carbon atom, selected from the group of piperidinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetanyl, each of which may be optionally substituted with one or two substituents independently selected from fluoro, Ci_4 alkyl, -OCi_4 alkyl, C_3_6 cycloalkyl, Ci_4 alkyl substituted with one -OCi_4 alkyl, and Ci_4 alkyl substituted with one or more fluoro substituents;

Het^5^ is a heterocyclyl selected from the group of morpholmyl, piperidinyl, piperazinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetanyl, each of which may be optionally substituted with one or two substituents independently
selected from fluoro, C\textsubscript{i-4}alkyl, -O\textsubscript{Ci-4}alkyl, C\textsubscript{i-4}alkyl substituted with one -O\textsubscript{Ci-4}alkyl, and C\textsubscript{i-4}alkyl substituted with one or more fluoro substituents;
and the pharmaceutically acceptable salts, and the solvates thereof.

5 The present invention relates in particular to compounds of Formula (I) as defined herein, and tautomers and stereoisomeric forms thereof, wherein

R1 is selected from the group of hydrogen; C\textsubscript{i-4}alkyl; and C\textsubscript{i-4}alkyl substituted with one or more fluoro substituents;

R2 is selected from the group of hydrogen; C\textsubscript{i-4}alkyl; C\textsubscript{i-4}alkyl substituted with one or more fluoro substituents; C\textsubscript{3-6}cycloalkyl; and Het1;

Het1 is a heteroaryl selected from the group of thienyl, thiazolyl, pyrrolyl, oxazolyl, pyrazolyl, imidazolyl, oxadiazolyl, isoxazolyl, and isothiazolyl, each of which may be optionally substituted with one or two substituents independently selected from halogen and C\textsubscript{i-4}alkyl;
or R1 and R2 together with the carbon atom to which they are attached form a C\textsubscript{3-6}cycloalkyl; wherein

R3 is selected from the group of hydrogen; halogen; cyano; C\textsubscript{i-4}alkyl; and C\textsubscript{i-4}alkyl substituted with one or more fluoro substituents;

R4a is selected from the group of hydrogen and halogen;

R4b is selected from the group of hydrogen and halogen;

R5 is selected from the group of hydrogen;

R6 is selected from the group of hydrogen;

R7 is selected from the group of hydrogen; halogen; cyano; C\textsubscript{i-4}alkyl; C\textsubscript{i-4}alkyl substituted with one or more fluoro substituents; and -NR\textsubscript{a}R\textsubscript{b}; wherein

R7a and R7b are each independently selected from hydrogen and C\textsubscript{i-4}alkyl;

R8 is selected from the group of hydrogen; -SO\textsubscript{2}C\textsubscript{i-6}alkyl; Het4; R9; C\textsubscript{i-6}alkyl optionally substituted with one or more substituents independently selected from the group of (i) Ar1 and (ii) Het5; and C\textsubscript{2,6}alkyl substituted with one or more -OR\textsubscript{8f} substituents;

R9f is selected from the group of hydrogen and C\textsubscript{i-4}alkyl;
R^9 is C_{3\,6} cycloalkyl optionally substituted with one or two substituents independently selected from fluoro, Ci-4 alkyl, -OCi-4 alkyl,
Ci-4 alkyl substituted with one -OCi-4 alkyl, and Ci-4 alkyl substituted with one or more fluoro substituents;

Ar^1 is selected from the group of phenyl, thienyl, thiazolyl, pyrrolyl, oxazolyl, pyrazolyl, imidazolyl, isoxazolyl, isothiazolyl, pyridinyl, pyrimidinyl, pyridazinyl and pyrazinyl, each of which may be optionally substituted with one or two substituents independently selected from halogen, cyano, Ci-4 alkyl, Ci-4 alkyl substituted with one or more fluoro substituents, -OCi-4 alkyl, and -OCi-4 alkyl substituted with one or more fluoro substituents;

Het^4 is a heterocyclyl, bound through any available carbon atom, selected from the group of piperidinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetanyl, each of which may be optionally substituted with one or two substituents independently selected from fluoro, Ci-4 alkyl, -OCi-4 alkyl, C_{3\,6} cycloalkyl, Ci-4 alkyl substituted with one -OCi-4 alkyl, and Ci-4 alkyl substituted with one or more fluoro substituents;

Het^5 is a heterocyclyl selected from the group of morpholmyl, piperidinyl, piperazinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetanyl, each of which may be optionally substituted with one or two substituents independently selected from fluoro, Ci-4 alkyl, -OCi-4 alkyl, Ci-4 alkyl substituted with one -OCi-4 alkyl, and Ci-4 alkyl substituted with one or more fluoro substituents;

and the pharmaceutically acceptable salts, and the solvates thereof.

The present invention relates in particular to compounds of Formula (I) as defined herein, and tautomers and stereoisomeric forms thereof, wherein

R^1 is selected from the group of Ci-4 alkyl;
R^2 is selected from the group of Ci-4 alkyl; C_{3\,6} cycloalkyl; and Het^1;
Het^1 is a heteroaryl selected from the group of thiazolyl, oxadiazolyl, isoxazolyl, and pyrimidinyl, each of which may be optionally substituted with one or two Ci-4 alkyl substituents;
or R^1 and R^2 together with the carbon atom to which they are attached form a C_{3\,6} cycloalkyl;
R^3 is selected from the group of hydrogen; halogen; cyano; and Ci-4 alkyl substituted with one or more fluoro substituents;
R^{ab} is hydrogen;
R^{ab} is selected from the group of hydrogen and halogen;
R^5 is hydrogen;
R^6 is hydrogen;
R^7 is selected from the group of hydrogen; halogen; C_{1-4} alkyl; C_{1-4} alkyl substituted with one or more fluoro substituents; and -NR^7aR^7b; wherein
R^7a and R^7b are each independently selected from hydrogen;
R^8 is selected from the group of hydrogen; Het^4; C_{1-6} alkyl optionally substituted with one or more Het^5 substituents; and C_{2-6} alkyl substituted with one or more -OR^8f substituents;
R^8f is selected from the group of hydrogen and C_{1-6} alkyl;
Het^4 is a heterocycl, bound through any available carbon atom, selected from the group of piperidinyl and azetidinyl, each of which are substituted with one or two substituents independently selected from C_{1-4} alkyl and C_{3-6} cycloalkyl;
Het^5 is a heterocycl selected from the group of tetrahydrofuranyl and oxetanyl; and the pharmaceutically acceptable salts, and the solvates thereof.

The present invention relates in particular to compounds of Formula (I) as defined herein, and tautomers and stereoisomeric forms thereof, wherein
R^1 is selected from the group of C_{1-4} alkyl;
R^2 is selected from the group of C_{1-4} alkyl; C_{3-6} cycloalkyl; and Het^1;
Het^1 is a heteroaryl selected from the group of thiazolyl, oxadiazolyl, and isoxazolyl, each of which may be optionally substituted with one or two C_{1-4} alkyl substituents; or R^1 and R^2 together with the carbon atom to which they are attached form a C_{3-6} cycloalkyl;
R^3 is selected from the group of hydrogen; halogen; cyano; and C_{1-4} alkyl substituted with one or more fluoro substituents;
R^4a is hydrogen;
R^4b is selected from the group of hydrogen and halogen;
R^5 is hydrogen;
R^6 is hydrogen;
R^7 is selected from the group of hydrogen; halogen; C_{1-4} alkyl; C_{1-4} alkyl substituted with one or more fluoro substituents; and -NR^7aR^7b; wherein
R^7a and R^7b are each independently selected from hydrogen;
R^8 is selected from the group of hydrogen; Het^4; C_{1-6} alkyl optionally substituted with one or more Het^5 substituents; and C_{2-6} alkyl substituted with one or more -OR^8f substituents;
R^8f is selected from the group of hydrogen and C_{1-6} alkyl;
Het is a heterocyclyl, bound through any available carbon atom, selected from the
group of piperidinyl and azetidinyl, each of which are substituted with one or two
substituents independently selected from Ci₄alkyl and C₃₋₅cycloalkyl;
Het is a heterocyclyl selected from the group of tetrahydrofuranyl and oxetanyl;
and the pharmaceutically acceptable salts, and the solvates thereof.

Another embodiment of the present invention relates to those compounds of Formula
(I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any
subgroup thereof as mentioned in any of the other embodiments wherein one or more
of the following restrictions apply:
(a) R is selected from the group of Ci₄alkyl;
R is selected from the group of Ci₄alkyl; C₃₋₅cycloalkyl; and Het;
Het is a heteroaryl selected from the group of thiazolyl, oxadiazolyl, and isoxazolyl,
each of which may be optionally substituted with one or two Ci₄alkyl substituents;
or R and R together with the carbon atom to which they are attached form a
C₃₋₅cycloalkyl;
(b) R is selected from the group of hydrogen; halogen; cyano; and Ci₄alkyl substituted
with one or more fluoro substituents;
(c) R is selected from the group of hydrogen;
(d) R is selected from the group of hydrogen and halogen;
(e) R is selected from the group of hydrogen;
(f) R is selected from the group of hydrogen;
(g) R is selected from the group of hydrogen; halogen; Ci₄alkyl; Ci₄alkyl substituted
with one or more fluoro substituents; and -NR₆R₇;
(h) R and R are each independently selected from hydrogen;
(i) R is selected from the group of hydrogen; Het; Ci₄alkyl optionally substituted
with one or more Het substituents; and C₂₋₅alkyl substituted with one or more -OR₆
substituents;
(j) R is selected from the group of hydrogen and Ci₆alkyl;
k) Het is a heterocyclyl, bound through any available carbon atom, selected from the
group of piperidinyl and azetidinyl, each of which are substituted with one or two
substituents independently selected from Ci₄alkyl and C₃₋₅cycloalkyl;
l) Het is a heterocyclyl selected from the group of tetrahydrofuranyl and oxetanyl.
The present invention relates in particular to compounds of Formula (I) as defined
herein, and tautomers and stereoisomeric forms thereof, wherein
R is selected from the group of Ci₄alkyl;
R is selected from the group of Ci₄alkyl; and Het;
Het is thiazolyl; R is hydrogen; R is hydrogen; R is selected from the group of hydrogen and halogen; R is hydrogen; R is hydrogen; R is selected from the group of hydrogen and halogen; R is selected from the group of hydrogen; Het; Ci alkyl; and C alkyl substituted with one or more \(-\text{OR}^s\) substituents; R is Ci alkyl; Het is a heterocyclyl, bound through any available carbon atom, selected from the group of piperidinyl and azetidinyl, each of which are substituted on the nitrogen atom with one Ci alkyl; and the pharmaceutically acceptable salts, and the solvates thereof.

Another embodiment of the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments wherein one or more of the following restrictions apply:

(a) R is selected from the group of Ci alkyl;
(b) R is selected from the group of Ci alkyl; and Het;
(c) Het is thiazolyl;
(d) R is hydrogen;
(e) R is hydrogen;
(f) R is selected from the group of hydrogen and halogen;
(g) R is hydrogen;
(h) R is hydrogen;
(i) R is selected from the group of hydrogen and halogen;
(j) R is selected from the group of hydrogen; Het; Ci alkyl; and C alkyl substituted with one or more \(-\text{OR}^s\) substituents;
(k) R is Ci alkyl;
(l) Het is a heterocyclyl, bound through any available carbon atom, selected from the group of piperidinyl and azetidinyl, each of which are substituted on the nitrogen atom with one Ci alkyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any
subgroup thereof as mentioned in any of the other embodiments, wherein \(R^3 \) is hydrogen; \(R^{4a} \) is hydrogen; \(R^5 \) is hydrogen; \(R^6 \) is hydrogen.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein

\[R^1 \] is selected from the group of hydrogen; \(C_{i-4} \)alkyl; and \(C_{i-4} \)alkyl substituted with one or more fluoro substituents;

\[R^2 \] is selected from the group of hydrogen; \(C_{i-4} \)alkyl; \(C_{i-4} \)alkyl substituted with one or more fluoro substituents; \(C_{3-6} \)cycloalkyl; and Het

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein

\[R^1 \] is selected from the group of \(C_{i-4} \)alkyl; and \(C_{i-4} \)alkyl substituted with one or more fluoro substituents;

\[R^2 \] is selected from the group of \(C_{i-4} \)alkyl; \(C_{i-4} \)alkyl substituted with one or more fluoro substituents; \(C_{3-6} \)cycloalkyl; and Het

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein

\[R^1 \] is selected from the group of \(C_{i-4} \)alkyl; and \(C_{i-4} \)alkyl substituted with one or more fluoro substituents;

\[R^2 \] is selected from the group of \(C_{i-4} \)alkyl; \(C_{i-4} \)alkyl substituted with one or more fluoro substituents; \(C_{3-6} \)cycloalkyl; and Het

or \(R^1 \) and \(R^2 \) together with the carbon atom to which they are attached form a

\[C_{3-6} \]cycloalkyl or a Het\(^2\) group.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein

\[R^1 \] is \(C_{i-4} \)alkyl;

\[R^2 \] is selected from the group of \(C_{i-4} \)alkyl; \(C_{3-6} \)cycloalkyl; and Het

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein

\[R^1 \] is \(C_{i-4} \)alkyl.
In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein

R¹ is \(\text{Ci}_{-4}\text{alkyl} \);

R² is selected from the group of \(\text{Ci}_{-4}\text{alkyl} \) and \(\text{C}_{3-6}\text{cycloalkyl} \).

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein

R¹ is \(\text{Ci}_{-4}\text{alkyl} \);

R² is \(\text{Ci}_{-4}\text{alkyl} \).

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein

R¹ is \(\text{Ci}_{-4}\text{alkyl} \);

R² is selected from the group of \(\text{Ci}_{-4}\text{alkyl} \); \(\text{C}_{3-6}\text{cycloalkyl} \); and thiazolyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein

R¹ is \(\text{Ci}_{-4}\text{alkyl} \);

R² is selected from the group of \(\text{Ci}_{-4}\text{alkyl} \); \(\text{C}_{3-6}\text{cycloalkyl} \); and \(\text{Het}^1 \);

\(\text{Het}^1 \) is a heteroaryl selected from the group of thiazolyl, oxadiazolyl, and isoxazolyl, each of which may be optionally substituted with one or two \(\text{Ci}_{-4}\text{alkyl} \) substituents.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein \(\text{Het}^1 \) is thiazolyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein \(\text{Het}^1 \) is a heteroaryl selected from the group of thiazolyl, oxadiazolyl, and isoxazolyl, each of which may be optionally substituted with one or two \(\text{Ci}_{-4}\text{alkyl} \) substituents.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein \(R^1 \) and \(R^2 \)
together with the carbon atom to which they are attached form a C3-6 cycloalkyl or a Het2 group.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R1 and R2 together with the carbon atom to which they are attached form a C3-6 cycloalkyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R1 and R2 together with the carbon atom to which they are attached form a Het2 group.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R4 is hydrogen; R5 is hydrogen; and R6 is hydrogen.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R5 is hydrogen or halo.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein Het5 is attached to the remainder of the molecule via a carbon atom.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein Het4 is a heterocyclyl, bound through any available carbon atom, selected from the group of piperidinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetanyl, each of which is substituted on a nitrogen atom with a substituent selected from fluoro, Ci4 alkyl, -OCi4 alkyl, C3-6 cycloalkyl, Ci4 alkyl substituted with one -OCi4 alkyl, and Ci4 alkyl substituted with one or more fluoro substituents.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein Het4 is a...
heterocyclyl, bound through any available carbon atom, selected from the group of piperidinyl and azetidinyl, each of which are substituted with one or two substituents independently selected from Ci₄alkyl and C₃₋₄cycloalkyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein Het₄ is a heterocyclyl, bound through any available carbon atom, selected from the group of piperidinyl and azetidinyl, each of which are substituted on the nitrogen atom with one substituent selected from Ci₄alkyl and C₃₋₄cycloalkyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein Het¹ is a heteroaryl selected from the group of thienyl, thiazolyl, pyrrolyl, oxazolyl, pyrazolyl, imidazolyl, isoaxazolyl, and isothiazolyl, each of which may be optionally substituted with one or two substituents independently selected from halogen and Ci₄alkyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R⁸ is selected from the group of -SO₂Ci₄alkyl; Het⁴; R⁹; Ci₄alkyl optionally substituted with one or more substituents independently selected from the group of (i) Ar¹ and (ii) Het⁵; and C₂₋₄alkyl substituted with one or more substituents independently selected from the group of

(iii) fluoro,

(iv) -NR₈aR₈b,
(v) -NR₈aC(=0)R₈d,
(vi) -NR₈aC(=0)NR₈aR₈b,
(vii) -NR₈aC(=0)OR₈c,
(viii) -NR₈aS(=0)₂NR₈aR₈b,
(ix) -NR₈aS(=0)₂R₈d,
(x) -OR₈f,
In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R⁸ is selected from the group of hydrogen; Het⁴; R⁹; Ci₆₆₆₆alkyl optionally substituted with one Het⁵; and C₂₆₆₆₆₆alkyl substituted with one or more substituents independently selected from the group of fluoro, -NR⁸₆₆₆₆₆R⁸b, and -OR⁸f, wherein R⁸₆₆₆₆₆, R⁸b and R⁸f are each independently selected from the group of hydrogen and Ci₄₆₆₆alkyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R⁸₆₆₆₆₆, R⁸b and R⁸f are each independently selected from the group of hydrogen and Ci₆₆₆₆alkyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R⁸₆₆₆₆₆, R⁸b, R⁸c and R⁸f are each independently selected from the group of hydrogen and Ci₆₆₆₆alkyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R⁸ is selected from the group of hydrogen; -SO₂Ci₆₆₆₆alkyl; Het⁴; C₃₆₆₆₆cycloalkyl optionally substituted with one -OCi₄₆₆₆alkyl; Ci₆₆₆₆alkyl optionally substituted with one or more substituents independently selected from the group of (i) Ar¹ and (ii) Het⁵; and C₂₆₆₆₆₆alkyl substituted with one or more substituents independently selected from the group of fluoro.

(iv) -NR⁸₆₆₆₆₆R⁸b,
(v) -NR⁸₆₆₆₆₆C(=0)R⁸d,
(vi) -NR⁸₆₆₆₆₆C(=0)NR⁸₆₆₆₆₆R⁸b,
(vii) -NR⁸₆₆₆₆₆C(=0)OR⁸e,
(viii) -NR⁸₆₆₆₆₆S(=0)₂NR⁸₆₆₆₆₆R⁸b,
(ix) -NR⁸₆₆₆₆₆S(=0)₂R⁸d,
(x) -OR⁸f,
(xi) -OC(=0)NR \(^8\)R\(^{8b}\),
(xii) -C(=0)NR \(^8\)R\(^{8b}\),
(xiii) -S(0) \(^2\)R\(^{d}\), and
(xiv) -S(0) \(^2\)NR\(^8\)R\(^{8b}\).

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R\(^9\) is C\(_{3-6}\)cycloalkyl optionally substituted with one -OCi\(_{4}\)alkyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R\(^8\) is selected from the group of hydrogen; -SO\(_2\)Ci\(_{6}\)alkyl; Het\(^4\); R\(^9\); Ci\(_{6}\)alkyl optionally substituted with one or more substituents independently selected from the group of (i) Ar\(^1\) and (ii) Het\(^5\); and C\(_{2,6}\)alkyl substituted with one or more -OR\(^{8f}\) substituents.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R\(^8\) is selected from the group of Het\(^4\); and Ci\(_{6}\)alkyl optionally substituted with one or more substituents independently selected from the group of (i) Ar\(^1\) and (ii) Het\(^5\).

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R\(^8\) is hydrogen or Ci\(_{6}\)alkyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R\(^{8f}\) is Ci\(_{6}\)alkyl.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R\(^8\) is selected from the group of hydrogen, -CH\(_3\), -CH\(_2\)CH\(_3\), -CH(CH\(_3\))\(_2\),
In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R^8 is selected from the group of hydrogen, -CH$_3$, -CH(CH$_3$)$_2$, -O-,

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R^8 is other than hydrogen.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any
subgroup thereof as mentioned in any of the other embodiments, wherein R^7 is other than hydrogen.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R^7 is selected from the group of halogen; cyano; C_4alkyl; C_4alkyl substituted with one or more fluoro substituents; and $-\text{NR}^a\text{R}^b$.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R^7 is selected from the group of halogen; C_4alkyl; and $-\text{NH}_2$.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R^{4b} is other than fluoro.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R^{4b} is hydrogen.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein R^{4b} is fluoro.

In an embodiment, the present invention relates to those compounds of Formula (I) and the pharmaceutically acceptable addition salts, and the solvates thereof, or any subgroup thereof as mentioned in any of the other embodiments, wherein Het^5 is a heterocyclyl, bound through any available carbon atom.

Specific compounds according to the invention include:

![Chemical structures](image_url)
tautomers and stereoisomeric forms thereof,
and the pharmaceutically acceptable salts, and the solvates thereof.

More specific compounds according to the invention include:
tautomers and stereoisomeric forms thereof, and the pharmaceutically acceptable salts, and the solvates thereof.

Methods of Synthesis

Compounds of Formula (I) can be prepared by methods known to those who are skilled in the art. The following schemes are only meant to represent examples of the invention and are in no way meant to be a limit of the invention.

For clarity, only one specific regioisomer of the intermediates is shown in the general schemes. However, the skilled person will realize that some intermediates may appear as mixtures of regioisomers as is also clear from the examples in the specific experimental part.

Herein, the term 'Me' means methyl, 'DMF' means N,N-dimethylformamide, 'Pd(PPh$_3$)$_4$' means tetrakis(triphenylphosphine)palladium, 'Boc' means t-butoxycarbonyl, '[Ir(OMe)cod]$_2$' means (1,5-cyclooctadiene)(methoxy) iridium(I) dimer (also bis(1,5-cyclooctadiene)di-µ-methoxydiiridium(I)), 'TFA' means trifluoroacetic acid, 'SEM' means 2-(trimethylsilyl)ethoxy]-methyl, 'TBAF' means tetrabutylammonium fluoride, 'THF' means tetrahydrofuran, 'PdCl$_2$(dppf)' means [l,r-bis(diphenylphosphino -Kp)ferrocene]dichloropalladium, 'KOAc' means potassium acetate and 'Ts' means tosyl.

Scheme 1 illustrates methods of preparing compounds of Formula (Ia), wherein R1-R8 are as defined in Formula (I). Intermediates of Formula (Ila), wherein PG1 is a suitable protecting group, such as a Boc or SEM, can be treated with reagents, such as TBAF in THF, with heating, or TFA in DCM, to furnish compounds of Formula (Ia).
Scheme 1

Scheme 2 illustrates alternative methods of preparing compounds of Formula (Ia), wherein R′-R⁸ are as defined in Formula (I). Intermediates of Formula (Ilia), wherein L₁ is a suitable leaving group such as chloro or bromo, can be coupled with alkynes of Formula (IV) under palladium-catalyzed Sonogashira coupling conditions, using for example Pd(PPh₃)₄, Cul and a base such as triethylamine in acetonitrile, with heating, to furnish compounds of Formula (Ia).

Scheme 2

Scheme 3 illustrates methods of preparing compounds of Formula (Ib), wherein R′-R⁷ are as defined in Formula (I) and R⁸ is hydrogen. Intermediates of Formula (lib), wherein PG¹ is a suitable protecting group, such as SEM, and PG² is a suitable protecting group, such as Ts, can be treated with a suitable reagent, such as TBAF in THF, to furnish compounds of Formula (Ib).
Additional compounds of Formula (I) can be prepared from compounds of Formula (la) and (lb) by elaboration of functional groups present. Such elaboration includes, but is not limited to, hydrolysis, reduction, oxidation, alkylation, amidation and dehydration. Such transformations may in some instances require the use of protecting groups.

Intermediates of Formula (IIa), wherein R'-R are as defined in Formula (I) and PG\(^1\) is a suitable protecting group, can be prepared by reaction of intermediates of Formula (IIIb) wherein L\(^1\) is a suitable leaving group such as chloro or bromo, with alkynes of Formula (IV) under palladium-catalyzed Sonogashira coupling conditions, using for example Pd(PPh\(_3\))\(_4\), Cul and a base such as triethylamine in acetonitrile, with heating (Scheme 4).

Intermediates of Formula (lib), wherein R'-R\(^7\) are as defined in Formula (I), PG\(^1\) and PG\(^2\) are suitable protecting groups, can be prepared by means of a Sonogashira palladium-catalyzed coupling of intermediates of Formula (IIIc), wherein L\(^1\) is a suitable leaving group such as chloro or bromo, with alkynes of Formula (IV), using a suitable palladium catalyst, copper catalyst, base and solvent (for example, Pd(PPh\(_3\))\(_4\), Cul, triethylamine and acetonitrile, respectively) (Scheme 5).
Scheme 5

Scheme 6

5 Alkynes of Formula (IV) are commercially available or can be prepared by known methods.

Scheme 6 illustrates methods of preparing intermediates of Formula (IlIb) and (IlIa) from intermediates of Formula (IlIc). Intermediates of Formula (IlIc), wherein R1-R7 are as defined above, PG1 is Boc, PG2 is Ts and L1 is a suitable leaving group, can be selectively deprotected in the presence of a suitable reagent, such as TBAF in THF, to furnish intermediates of Formula (V). Intermediates of Formula (V) can be reacted in a variety of ways to yield intermediates of Formula (IlIb). For example, N-alkylation of (V) by treatment with an appropriate alkylating agent of Formula (VI) wherein L2 is a suitable leaving group, for example sulfonate esters (e.g., mesylate, tosylate, or triflate), or alkyl halides (e.g., bromo or iodo), in the presence of a suitable base such as NaH or K\textsubscript{2}CO\textsubscript{3}, in an appropriate solvent such as DMF, yields intermediates of Formula (IlIb). Intermediates of Formula (V) can also be alkylated by reacting with an epoxide, for example 1,2-epoxy-2-methylpropane, employing a suitable base such as NaH, in an appropriate solvent such as DMF. Alternatively, intermediates of Formula (V) can be reacted with alcohols, wherein R8 is C\textsubscript{6}alkyl or C\textsubscript{2}alkyl optionally substituted as in R8 in Formula (I), under standard Mitsunobu reaction conditions to yield intermediates of Formula (IlIb). Furthermore, intermediate of Formula (V) can be reacted with sulfonyl chlorides, in an appropriate solvent such as DMF, in the presence of a suitable base such as NaH, to yield intermediates of Formula (IlIb), wherein R8 is -SO\textsubscript{2}C\textsubscript{6}alkyl
optionally substituted as in R^8 in Formula (I). Intermediates of Formula (Ilia) can be prepared from intermediates of Formula (Illb), using the methods described above for the preparation of compounds of Formula (Ia) from intermediates of Formula (Ha).

5 **Scheme 7**

Intermediates of Formula (Illb), wherein R^3-R^8 are as defined in Formula (I), PG1 is a suitable protecting group and L1 is a suitable leaving group, can also be prepared according to scheme 7. Heating intermediates of Formula (Vila) with the appropriate pyrazole boronate of Formula (VIII), protected with a suitable protecting group, such as SEM, under palladium-catalyzed Suzuki coupling conditions, using for example $\text{PdCl}_2(\text{dpff})$, K_2CO_3 in water and DMF as a solvent, yields intermediates of Formula (Illb).

10 **Scheme 8**

Intermediates of Formula (IIIc), wherein R^3-R^7 are as defined in Formula (I), PG1 and PG2 are suitable protecting groups, and L1 is a suitable leaving group, can be prepared from intermediates of Formula (VIIb) and (VIII), using the methods described above for the preparation of intermediates of Formula (Illb) from intermediates of Formula (Vila) and (VIII) (Scheme 8).
Scheme 9

Scheme 9 illustrates methods of preparing intermediates of Formula (Vila) and (VIIb), wherein \(R^3 \)-\(R^5 \) and \(R^8 \) are as defined in Formula (I), PG\(^2\) is a suitable protecting group and L\(^1\) is a suitable leaving group. Treatment of intermediates of Formula (IX) with a mixture of iodine and potassium hydroxide in a suitable solvent such as DMF yields intermediates of Formula (X). Intermediates of Formula (Vila) can be prepared from intermediates of Formula (X), using the methods described above for the preparation of intermediates of Formula (IIIb) from intermediates of Formula (V) and (VI). Intermediates of Formula (X) can be converted to intermediates of Formula (VIIb), wherein \(R^3 \)-\(R^5 \) and L\(^1\) are as defined above, and PG\(^2\) is Ts, by reaction with tosyl chloride, in an appropriate solvent such as DMF, in the presence of a suitable base such as NaH.

Scheme 10

Scheme 10 illustrates a further method for preparing intermediates of Formula (IIIb), wherein \(R^3 \)-\(R^8 \) are as defined in Formula (I), PG\(^1\) is a suitable protecting group and L\(^1\) is a suitable leaving group. Intermediates of Formula (XI) can be prepared from intermediates of Formula (IX), using the methods described above for the preparation
of intermediates of Formula (Illb) from intermediates of Formula (V) and (VI). Heating intermediates of Formula (XI) with an appropriate borane species, such as 4,4,5,5-tetramethyl-1,3,2-dioxaborolane, under Iridium-catalyzed conditions using for example [Ir(OMe)cod]₂ with an appropriate ligand, and cyclohexane as solvent, yields boronates of Formula (XII). In turn, heating boronates of Formula (XII) with pyrazoles of Formula (XIII), wherein L³ is a suitable leaving group such as chloro or bromo and PG¹ is a suitable protecting group such as SEM, under palladium-catalyzed Suzuki coupling conditions using for example PdCl₂(dppf), K₂CO₃ in water and DMF as solvent, furnishes intermediates of Formula (Illb).

Indoles of Formula (IX) are commercially available or can be prepared by known methods.

Scheme 11

![Scheme 11](image)

Scheme 11 illustrates a method of preparing intermediates of Formula (VIII), wherein ν⁶ and ν⁷ are as defined in Formula (I) and PG¹ is a suitable protecting group. Heating pyrazoles of Formula (XIII), wherein L³ is a suitable leaving group such as chloro or bromo, with the appropriate borane species, such as bis(pinacolato) diborane, under palladium-catalyzed conditions using for example PdCl₂(dppf), KOAc base, in DMF as a solvent, furnishes pyrazole boronates of Formula (VIII).

Scheme 12

![Scheme 12](image)

Scheme 12 illustrates a further method for preparing pyrazole boronates of Formula (VIII). Heating of intermediates of Formula (XIV), wherein R⁶ and R⁷ are as defined in Formula (I) and PG¹ is a suitable protecting group, with an appropriate borane species, such as 4,4,5,5-tetramethyl-1,3,2-dioxaborolane, under Iridium-catalyzed conditions
using for example [Ir(OMe)cod]2 with an appropriate ligand, and cyclohexane as
solvent yields pyrazole boronates of Formula (VIII).

One skilled in the art will appreciate that alternative methods may be applicable for
preparing intermediates of Formula (VIII), for example halogen-metal exchange and
subsequent quench with boron electrophiles such as tri-isopropyl borate. Pyrazoles of
Formula (XIII) and (XIV) can be sourced from commercial suppliers or synthesized by
those skilled in the art employing methods described in the literature [J. Elguero,
2011, 111, 6984-7034].

It will be appreciated that where appropriate functional groups exist, compounds of
various formulae or any intermediates used in their preparation may be further
derivatised by one or more standard synthetic methods employing condensation,
substitution, oxidation, reduction, or cleavage reactions. Particular substitution
approaches include conventional alkylation, arylation, heteroarylation, acylation,
sulfonylation, halogenation, nitration, formylation and coupling procedures.

The compounds of Formula (I) may be synthesized in the form of racemic mixtures of
enantiomers which can be separated from one another following art-known resolution
procedures. The racemic compounds of Formula (I) containing a basic nitrogen atom
may be converted into the corresponding diastereomeric salt forms by reaction with a
suitable chiral acid. Said diastereomeric salt forms are subsequently separated, for
example, by selective or fractional crystallization and the enantiomers are liberated
therefrom by alkali. An alternative manner of separating the enantiomeric forms of the
compounds of Formula (I) involves liquid chromatography using a chiral stationary
phase. Said pure stereochemically isomeric forms may also be derived from the
corresponding pure stereochemically isomeric forms of the appropriate starting
materials, provided that the reaction occurs stereospecifically.

In the preparation of compounds of the present invention, protection of remote
functionality (e.g., primary or secondary amine) of intermediates may be necessary.
The need for such protection will vary depending on the nature of the remote
functionality and the conditions of the preparation methods. Suitable amino-protecting
groups (NH-Pg) include acetyl, trifluoroacetyl, t-butoxycarbonyl (Boc),
benzyloxyacarbonyl (CBz) and 9-fluorenlymethyleneoxycarbonyl (Fmoc). The need for
such protection is readily determined by one skilled in the art. For a general description

Compounds of the invention may be prepared from commercially available starting materials using the general methods illustrated herein.

Pharmacology

It has been found that the compounds of the present invention inhibit NF-κB-inducing kinase (NIK - also known as MAP3K14). The compounds according to the invention and the pharmaceutical compositions comprising such compounds may be useful for treating or preventing diseases such as cancer, inflammatory disorders, metabolic disorders including obesity and diabetes, and autoimmune disorders. In particular, the compounds according to the present invention and the pharmaceutical compositions thereof may be useful in the treatment of a haematological malignancy or solid tumour.

In a specific embodiment said haematological malignancy is selected from the group consisting of multiple myeloma, Hodgkin lymphoma, T-cell leukaemia, mucosa-associated lymphoid tissue lymphoma, diffuse large B-cell lymphoma and mantle cell lymphoma, in a particular embodiment mantle cell lymphoma. In another specific embodiment of the present invention, the solid tumour is selected from the group consisting of pancreatic cancer, breast cancer, melanoma and non-small cell lung cancer.

Examples of cancers which may be treated (or inhibited) include, but are not limited to, a carcinoma, for example a carcinoma of the bladder, breast, colon (e.g. colorectal carcinomas such as colon adenocarcinoma and colon adenoma), kidney, urothelial, uterus, epidermis, liver, lung (for example adenocarcinoma, small cell lung cancer and non-small cell lung carcinomas, squamous lung cancer), oesophagus, head and neck, gall bladder, ovary, pancreas (e.g. exocrine pancreatic carcinoma), stomach, gastrointestinal (also known as gastric) cancer (e.g. gastrointestinal stromal tumours), cervix, endometrium, thyroid, prostate, or skin (for example squamous cell carcinoma or dermatofibrosarcoma protuberans); pituitary cancer, a hematopoietic tumour of lymphoid lineage, for example leukemia, acute lymphocytic leukemia, chronic lymphocytic leukemia, B-cell lymphoma (e.g. diffuse large B-cell lymphoma, mantle cell lymphoma), T-cell leukaemia/lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma, or Burkett's lymphoma; a hematopoietic tumour of myeloid lineage, for example leukemias, acute and chronic myelogenous leukemias, chronic myelomonocytic leukemia (CMML), myeloproliferative disorder, myeloproliferative syndrome, myelodysplasia syndrome, or promyelocytic leukemia;
multiple myeloma; thyroid follicular cancer; hepatocellular cancer, a tumour of mesenchymal origin (e.g. Ewing's sarcoma), for example fibrosarcoma or rhabdomyosarcoma; a tumour of the central or peripheral nervous system, for example astrocytoma, neuroblastoma, glioma (such as glioblastoma multiforme) or schwannoma; melanoma; seminoma; teratocarcinoma; osteosarcoma; xeroderma pigmentosum; keratoctanthoma; thyroid follicular cancer; or Kaposi's sarcoma.

Hence, the invention relates to compounds of Formula (I), the tautomers and the stereoisomeric forms thereof, and the pharmaceutically acceptable salts, and the solvates thereof, for use as a medicament.

The invention also relates to the use of a compound of Formula (I), or a tautomer or a stereoisomeric form thereof, or a pharmaceutically acceptable salt, or a solvate thereof, or a pharmaceutical composition according to the invention, for the manufacture of a medicament.

The present invention also relates to a compound of Formula (I), or a tautomer or a stereoisomeric form thereof, or a pharmaceutically acceptable salt, or a solvate thereof, or a pharmaceutical composition according to the invention, for use in the treatment, prevention, amelioration, control or reduction of the risk of disorders associated with NF-\(\text{KB}\) -inducing kinase dysfunction in a mammal, including a human, the treatment or prevention of which is affected or facilitated by inhibition of NF-\(\text{KB}\) -inducing kinase.

Also, the present invention relates to the use of a compound of Formula (I), or a tautomer or a stereoisomeric form thereof, or a pharmaceutically acceptable salt, or a solvate thereof, or a pharmaceutical composition according to the invention, for the manufacture of a medicament for treating, preventing, ameliorating, controlling or reducing the risk of disorders associated with NF-\(\text{KB}\) -inducing kinase dysfunction in a mammal, including a human, the treatment or prevention of which is affected or facilitated by inhibition of NF-\(\text{KB}\) -inducing kinase.

The invention also relates to a compound of Formula (I), or a tautomer or a stereoisomeric form thereof, or a pharmaceutically acceptable salt, or a solvate thereof, for use in the treatment or prevention of any one of the diseases mentioned hereinbefore.

The invention also relates to a compound of Formula (I), or a tautomer or a stereoisomeric form thereof, or a pharmaceutically acceptable salt, or a solvate thereof, for use in treating or preventing any one of the diseases mentioned hereinbefore.

The invention also relates to the use of a compound of Formula (I), or a tautomer or a stereoisomeric form thereof, or a pharmaceutically acceptable salt, or a solvate thereof,
for the manufacture of a medicament for the treatment or prevention of any one of the
disease conditions mentioned hereinbefore.

The compounds of the present invention can be administered to mammals, preferably
humans, for the treatment or prevention of any one of the diseases mentioned
hereinbefore.

In view of the utility of the compounds of Formula (I), or a tautomer or a
stereoisomeric form thereof, or a pharmaceutically acceptable salt, or a solvate thereof,
there is provided a method of treating warm-blooded animals, including humans,
suffering from any one of the diseases mentioned hereinbefore.

Said method comprises the administration, i.e. the systemic or topical administration,
preferably oral administration, of a therapeutically effective amount of a compound of
Formula (I), or a tautomer or a stereoisomeric form thereof, or a pharmaceutically
acceptable salt, or a solvate thereof, to warm-blooded animals, including humans.

Therefore, the invention also relates to a method for the treatment of any one of the
diseases mentioned hereinbefore comprising administering a therapeutically effective
amount of compound according to the invention to a patient in need thereof.

One skilled in the art will recognize that a therapeutically effective amount of the
compounds of the present invention is the amount sufficient to have therapeutic
activity and that this amount varies inter alia, depending on the type of disease, the
concentration of the compound in the therapeutic formulation, and the condition of the
patient. Generally, the amount of a compound of the present invention to be
administered as a therapeutic agent for treating the disorders referred to herein will be
determined on a case by case by an attending physician.

Those of skill in the treatment of such diseases could determine the effective
therapeutic daily amount from the test results presented hereinafter. An effective
therapeutic daily amount would be from about 0.005 mg/kg to 50 mg/kg, in particular
0.01 mg/kg to 50 mg/kg body weight, more in particular from 0.01 mg/kg to 25 mg/kg
body weight, preferably from about 0.01 mg/kg to about 15 mg/kg, more preferably
from about 0.01 mg/kg to about 10 mg/kg, even more preferably from about
0.01 mg/kg to about 1 mg/kg, most preferably from about 0.05 mg/kg to about 1 mg/kg
body weight. The amount of a compound according to the present invention, also
referred to here as the active ingredient, which is required to achieve a therapeutically
effect may vary on case-by-case basis, for example with the particular compound, the
route of administration, the age and condition of the recipient, and the particular
disorder or disease being treated. A method of treatment may also include
administering the active ingredient on a regimen of between one and four intakes per
day. In these methods of treatment the compounds according to the invention are preferably formulated prior to administration. As described herein below, suitable pharmaceutical formulations are prepared by known procedures using well known and readily available ingredients.

The present invention also provides compositions for preventing or treating the disorders referred to herein. Said compositions comprising a therapeutically effective amount of a compound of Formula (I), or a tautomer or a stereoisomeric form thereof, or a pharmaceutically acceptable salt, or a solvate thereof, and a pharmaceutically acceptable carrier or diluent.

While it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical composition. Accordingly, the present invention further provides a pharmaceutical composition comprising a compound according to the present invention, together with a pharmaceutically acceptable carrier or diluent. The carrier or diluent must be "acceptable" in the sense of being compatible with the other ingredients of the composition and not deleterious to the recipients thereof.

The pharmaceutical compositions of this invention may be prepared by any methods well known in the art of pharmacy, for example, using methods such as those described in Gennaro et al. Remington's Pharmaceutical Sciences (18th ed., Mack Publishing Company, 1990, see especially Part 8: Pharmaceutical preparations and their Manufacture). A therapeutically effective amount of the particular compound, in base form or addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, preferably, for systemic administration such as oral, percutaneous or parenteral administration; or topical administration such as via inhalation, a nose spray, eye drops or via a cream, gel, shampoo or the like. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions: or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose
solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wettable agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not cause any significant deleterious effects on the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on or as an ointment.

It is especially advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.

The present compounds can be used for systemic administration such as oral, percutaneous or parenteral administration; or topical administration such as via inhalation, a nose spray, eye drops or via a cream, gel, shampoo or the like. The compounds are preferably orally administered. The exact dosage and frequency of administration depends on the particular compound of Formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight, sex, extent of disorder and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said effective daily amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention.

The compounds of the present invention may be administered alone or in combination with one or more additional therapeutic agents. Combination therapy includes administration of a single pharmaceutical dosage formulation which contains a compound according to the present invention and one or more additional therapeutic agents, as well as administration of the compound according to the present invention and each additional therapeutic agent in its own separate pharmaceutical dosage formulation. For example, a compound according to the present invention and a therapeutic agent may be administered to the patient together in a single oral dosage
composition such as a tablet or capsule, or each agent may be administered in separate oral dosage formulations.

For the treatment of the above conditions, the compounds of the invention may be advantageously employed in combination with one or more other medicinal agents, more particularly, with other anti-cancer agents or adjuvants in cancer therapy. Examples of anti-cancer agents or adjuvants (supporting agents in the therapy) include but are not limited to:

- platinum coordination compounds for example cisplatin optionally combined with amifostine, carboplatin or oxaliplatin;
- taxane compounds for example paclitaxel, paclitaxel protein bound particles (AbraxaneTM) or docetaxel;
- topoisomerase I inhibitors such as camptothecin compounds for example irinotecan, SN-38, topotecan, topotecan hcl;
- topoisomerase II inhibitors such as anti-tumour epipodophyllotoxins or podophyllotoxin derivatives for example etoposide, etoposide phosphate or teniposide;
- anti-tumour vinca alkaloids for example vinblastine, vincristine or vinorelbine;
- anti-tumour nucleoside derivatives for example 5-fluorouracil, leucovorin, gemcitabine, gemcitabine hcl, capecitabine, cladribine, fludarabine, nelarabine;
- alkylating agents such as nitrogen mustard or nitrosourea for example cyclophosphamide, chlorambucil, carmustine, thiota, melphalan (melphalan), lomustine, altretamine, busulfan, dacarbazine, estramustine, ifosfamide optionally in combination with mesna, pipobroman, procarbazine, streptozocin, temozolomide, uracil;
- anti-tumour anthracycline derivatives for example daunorubicin, doxorubicin optionally in combination with dexrazoxane, doxil, idarubicin, mitoxantrone, epirubicin, epirubicin hcl, valrubicin;
- molecules that target the IGF-1 receptor for example picropodophilin;
- tetracarcin derivatives for example tetrocarcin A;
- glucocorticoiden for example prednisone;
- antibodies for example trastuzumab (HER2 antibody), rituximab (CD20 antibody), gemtuzumab, gemtuzumab ozogamicin, cetuximab, pertuzumab, bevacizumab, alemtuzumab, ecilizumab, ibritumomab tiuxetan, nofetumomab, panitumumab, tositumomab, CNTO 328;
- estrogen receptor antagonists or selective estrogen receptor modulators or inhibitors of estrogen synthesis for example tamoxifen, fulvestrant, toremifene, droloxifene, faslodex, raloxifene or letrozole;
- aromatase inhibitors such as exemestane, anastrozole, letrozole, testolactone and vorozole;
- differentiating agents such as retinoids, vitamin D or retinoic acid and retinoic acid metabolism blocking agents (RAMBA) for example acutane;
- DNA methyl transferase inhibitors for example azacytidine or decitabine;
- antifolates for example premetrexed disodium;
- antibiotics for example antinomycin D, bleomycin, mitomycin C, dactinomycin, carminomycin, daunomycin, levamisole, plicamycin, mithramycin;
- antimitabolites for example clofarabine, aminopterin, cytosine arabinoside or methotrexate, azacitidine, cytarabine, floxuridine, pentostatin, thioguanine;
- apoptosis inducing agents and antiangiogenic agents such as Bcl-2 inhibitors for example YC 137, BH 312, ABT 737, gossypol, HA 14-1, TW 37 or decanoic acid;
- tubuline-binding agents for example combrestatin, colchichines or nocodazole;
- kinase inhibitors (e.g. EGFR (epithelial growth factor receptor) inhibitors, MTKI (multi target kinase inhibitors), mTOR inhibitors) for example flavoperidol, imatinib mesylate, erlotinib, gefitinib, dasatinib, lapatinib, lapatinib ditosylate, sorafenib, sunitinib, sunitinib maleate, temsirolimus;
- farnesyltransferase inhibitors for example tipifarnib;
- histone deacetylase (HDAC) inhibitors for example sodium butyrate,
- suberoylanilide hydroxamic acid (SAHA), depsipeptide (FR 901228), NVP-LAQ824, R306465, quisinostat, trichostatin A, vorinostat;
- Inhibitors of the ubiquitin-proteasome pathway for example PS-341, MLN 41 or bortezomib;
- Yondelis;
- Telomerase inhibitors for example telomestatin;
- Matrix metalloproteinase inhibitors for example batimastat, marimastat, prinostat or metastat;
- Recombinant interleukins for example aldesleukin, denileukin diftitox, interferon alfa 2a, interferon alfa 2b, peginterferon alfa 2b;
- MAPK inhibitors;
- Retinoids for example alitretinoin, bexarotene, tretinoin;
- Arsenic trioxide;
- Asparaginase;
- Steroids for example dromostanolone propionate, megestrol acetate, nandrolone (decanoate, phenpropionate), dexamethasone;
- Gonadotropin releasing hormone agonists or antagonists for example abarelix, goserelin acetate, histrelin acetate, leuprolide acetate;
- Thalidomide, lenalidomide;
- Mercaptopurine, mitotane, pamidronate, pegademase, pegasparagase, rasburicase;
- BH3 mimetics for example ABT-737;
- MEK inhibitors for example PD98059, AZD6244, CI-1040;
- colony-stimulating factor analogs for example filgrastim, pegfilgrastim, sargramostim; erythropoietin or analogues thereof (e.g. darbepoetin alfa); interleukin 11; oprelvekin; zoledronate, zoledronic acid; fentanyl; bisphosphonate; palifermin;
- a steroidal cytochrome P450 17alpha-hydroxylase-17,20-lyase inhibitor (CYP17), e.g. abiraterone, abiraterone acetate.

Therefore, an embodiment of the present invention relates to a product containing as first active ingredient a compound according to the invention and as further active ingredient one or more anticancer agent, as a combined preparation for simultaneous, separate or sequential use in the treatment of patients suffering from cancer.

The one or more other medicinal agents and the compound according to the present invention may be administered simultaneously (e.g. in separate or unitary compositions) or sequentially in either order. In the latter case, the two or more compounds will be administered within a period and in an amount and manner that is sufficient to ensure that an advantageous or synergistic effect is achieved. It will be appreciated that the preferred method and order of administration and the respective dosage amounts and regimes for each component of the combination will depend on the particular other medicinal agent and compound of the present invention being administered, their route of administration, the particular tumour being treated and the particular host being treated. The optimum method and order of administration and the dosage amounts and regime can be readily determined by those skilled in the art using conventional methods and in view of the information set out herein.

The weight ratio of the compound according to the present invention and the one or more other anticancer agent(s) when given as a combination may be determined by the person skilled in the art. Said ratio and the exact dosage and frequency of administration depends on the particular compound according to the invention and the other anticancer agent(s) used, the particular condition being treated, the severity of the condition being treated, the age, weight, gender, diet, time of administration and general physical condition of the particular patient, the mode of administration as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that the effective daily amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention. A particular weight ratio for the present compound of Formula (I) and another anticancer
agent may range from 1/10 to 10/1, more in particular from 1/5 to 5/1, even more in particular from 1/3 to 3/1.

The platinum coordination compound is advantageously administered in a dosage of 1 to 500 mg per square meter (mg/m²) of body surface area, for example 50 to 400 mg/m², particularly for cisplatin in a dosage of about 75 mg/m² and for carboplatin in about 300 mg/m² per course of treatment.

The taxane compound is advantageously administered in a dosage of 50 to 400 mg per square meter (mg/m²) of body surface area, for example 75 to 250 mg/m², particularly for paclitaxel in a dosage of about 175 to 250 mg/m² and for docetaxel in about 75 to 150 mg/m² per course of treatment.

The camptothecin compound is advantageously administered in a dosage of 0.1 to 400 mg per square meter (mg/m²) of body surface area, for example 1 to 300 mg/m², particularly for irinotecan in a dosage of about 100 to 350 mg/m² and for topotecan in about 1 to 2 mg/m² per course of treatment.

The anti-tumour podophyllotoxin derivative is advantageously administered in a dosage of 30 to 300 mg per square meter (mg/m²) of body surface area, for example 50 to 250 mg/m², particularly for etoposide in a dosage of about 35 to 100 mg/m² and for teniposide in about 50 to 250 mg/m² per course of treatment.

The anti-tumour vinca alkaloid is advantageously administered in a dosage of 2 to 30 mg per square meter (mg/m²) of body surface area, particularly for vinblastine in a dosage of about 3 to 12 mg/m², for vincristine in a dosage of about 1 to 2 mg/m², and for vinorelbine in dosage of about 10 to 30 mg/m² per course of treatment.

The anti-tumour nucleoside derivative is advantageously administered in a dosage of 200 to 2500 mg per square meter (mg/m²) of body surface area, for example 700 to 1500 mg/m², particularly for 5-FU in a dosage of 200 to 500 mg/m², for gemcitabine in a dosage of about 800 to 1200 mg/m² and for capecitabine in about 1000 to 2500 mg/m² per course of treatment.

The alkylating agents such as nitrogen mustard or nitrosourea is advantageously administered in a dosage of 100 to 500 mg per square meter (mg/m²) of body surface area, for example 120 to 200 mg/m², particularly for cyclophosphamide in a dosage of about 100 to 500 mg/m², for chlorambucil in a dosage of about 0.1 to 0.2 mg/kg, for carmustine in a dosage of about 150 to 200 mg/m², and for lomustine in a dosage of about 100 to 150 mg/m² per course of treatment.
The anti-tumour anthracycline derivative is advantageously administered in a dosage of 10 to 75 mg per square meter (mg/m²) of body surface area, for example 15 to 60 mg/m², particularly for doxorubicin in a dosage of about 40 to 75 mg/m², for daunorubicin in a dosage of about 25 to 45 mg/m², and for idarubicin in a dosage of about 10 to 15 mg/m² per course of treatment.

The antiestrogen agent is advantageously administered in a dosage of about 1 to 100 mg daily depending on the particular agent and the condition being treated. Tamoxifen is advantageously administered orally in a dosage of 5 to 50 mg, preferably 10 to 20 mg twice a day, continuing the therapy for sufficient time to achieve and maintain a therapeutic effect. Toremifene is advantageously administered orally in a dosage of about 60 mg once a day, continuing the therapy for sufficient time to achieve and maintain a therapeutic effect. Anastrozole is advantageously administered orally in a dosage of about 1 mg once a day. Droloxifene is advantageously administered orally in a dosage of about 20-100 mg once a day. Raloxifene is advantageously administered orally in a dosage of about 60 mg once a day. Exemestane is advantageously administered orally in a dosage of about 25 mg once a day.

Antibodies are advantageously administered in a dosage of about 1 to 5 mg per square meter (mg/m²) of body surface area, or as known in the art, if different. Trastuzumab is advantageously administered in a dosage of 1 to 5 mg per square meter (mg/m²) of body surface area, particularly 2 to 4 mg/m² per course of treatment.

These dosages may be administered for example once, twice or more per course of treatment, which may be repeated for example every 7, 14, 21 or 28 days.

The following examples further illustrate the present invention.

Examples
Several methods for preparing the compounds of this invention are illustrated in the following examples. Unless otherwise noted, all starting materials were obtained from commercial suppliers and used without further purification.

Herein, the term 'Boc' means tert-butoxycarbonyl, 'DCE' means 1,2-dichloroethane, 'CS₂CO₃' means cesium carbonate, 'DCM' means dichloromethane, 'BEH' means bridged ethylsiloxane/silica hybrid, 'DIAD' means diisopropylazodicarboxylate, 'DIPEA' means diisopropylethylamine, 'DMAP' means N,N-dimethylpyridin-4-amine, 'DMF' means N,N-dimethylformamide, 'DMSO' means dimethylsulfoxide, 'UPLC' means ultra performance liquid chromatography, 'LC' means liquid chromatography, 'EtOAc' means ethyl acetate, 'flash-NH₂' means ISOLUTE® silica polypropylamino weak anion exchange column, 'HPLC' means high performance liquid
chromatography, 'LCMS' means liquid chromatography/mass spectrometry, 'MeCN' means acetonitrile, 'MeOH' means methanol, 'R_t' means retention time, 'ISOLUTE® SCX-2 SPE' means ISOLUTE® silica propylsulfonic acid strong cation exchange column, 'SEM' means 2-(trimethylsilyl)ethoxy]-methyl, 'TBAF' means tetrabutylammonium fluoride, 'TFA' means trifluoroacetic acid, 'Na_2SO_4' means sodium sulfate, 'HATU' means 1-[bis(dimethylamino)methylene]-1H-[1,2,3]triazolo[4,5-b]pyridin-l-ium 3-oxide hexafluorophosphate, 'SFC' means supercritical fluid chromatography, and 'THF' means tetrahydrofuran.

In the structures of the intermediates and the compounds of the present invention, deuterium (^2H) is represented by the chemical symbol D.

Some intermediates are indicated in the experimental part to appear as mixtures of regioisomers (position isomers). This means that there are two or more positions in the intermediate to which the substituent may be attached, and that the intermediate referred to actually is a mixture of different potential products formed during the synthesis. For example, intermediate 6, which is indicated as a mixture of regioisomers, is a mixture of

Intermediates were obtained as mixtures of regioisomers or as single regioisomers. The skilled person will realize that mixtures of regioisomers can be easily separated into single regioisomers if desired by methods well-known by the skilled person and as illustrated for some intermediates in the sections below.
Preparation of intermediates

Example A1

a) Preparation of intermediate 1

A stirred solution of (methyl diphenylsilyl)acetylene \((2.0 \text{ ml, } 9.08 \text{ mmol})\) in anhydrous THF \((40 \text{ ml})\) under an argon atmosphere at \(-78 ^\circ \text{C}\) was treated with a \(1.6 \text{ M}\) solution of n-butyllithium in hexanes \((6.25 \text{ ml, } 10.0 \text{ mmol})\) maintaining the temperature below \(-70 ^\circ \text{C}\). After 1 hour, the mixture was treated with acetone-\(^\#\) \((0.79 \text{ ml, } 10.91 \text{ mmol})\) and the resulting mixture stirred at \(0 ^\circ \text{C}\) for 1.5 hours. The mixture was quenched by the addition of water and partitioned between water and EtOAc. The organic phase was washed with brine, dried over \(\text{Na}_2\text{SO}_4\) and concentrated \textit{in vacuo}. The residue was purified by column chromatography on silica gel, eluting with a mixture of EtOAc and cyclohexane \((0:1 \text{ to } 3:7 \text{ by volume})\), to afford the desired product as a colourless oil \((2.51 \text{ g, } 96\%)\).

Example A2

a) Preparation of intermediate 2

A stirred mixture of iodine \((0.21 \text{ g, } 1.66 \text{ mmol})\), pyrazole-\(^\#\) \((0.20 \text{ g, } 2.77 \text{ mmol})\) and MeCN \((3.0 \text{ ml})\) at ambient temperature was treated with ammonium erie nitrate \((0.91 \text{ g, } 1.66 \text{ mmol})\), and the resulting mixture stirred for 3 hours. The mixture was concentrated \textit{in vacuo} and the residue partitioned between 5% aqueous sodium bisulphite solution and EtOAc. The organic phase was washed with brine, dried over \(\text{Na}_2\text{SO}_4\) and concentrated \textit{in vacuo}. The residue was purified by column chromatography on silica gel, eluting with a mixture of EtOAc and pentane \((0:1 \text{ to } 7:3 \text{ by volume})\), to afford the desired product as an off-white solid \((0.26 \text{ g, } 47\%)\).

LCMS (Method B): \(R_t = 2.12 \text{ min, } m/z [M+H]^+ = 197\).

b) Preparation of intermediate 3
A stirred solution of intermediate 2 (0.26 g, 1.32 mmol) in DMF (3.0 ml) under a nitrogen atmosphere at 0 °C was treated with sodium hydride (0.06 g, 1.58 mmol, 60% in mineral oil). After 15 minutes, the mixture was treated with 2-(trimethylsilyl)ethoxymethyl chloride (0.26 ml, 1.45 mmol) and the resulting mixture was stirred at ambient temperature for 18 hours. The mixture was partitioned between EtOAc and brine. The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with a mixture of pentane and EtOAc (1:0 to 4:1 by volume), to afford the desired product as a yellow oil (0.29 g, 91%).

LCMS (Method B): Rₓ = 4.09 min, m/z [M+H]⁺ = 327.

Example A3

a) Preparation of intermediates 4a, 4b and 4c

A degassed solution of intermediate 10 (50.0 g, 161 mmol) in anhydrous THF (400 ml) under an argon atmosphere at ambient temperature was treated dropwise with a 2.0 M solution of isopropylmagnesium chloride in THF (121 ml, 242 mmol). After stirring for 1 hour, 2-methoxy-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (50.9 g, 322 mmol) was added dropwise and the resulting mixture stirred for 1 hour. The mixture was diluted with saturated aqueous ammonium chloride solution and partitioned between water and EtOAc. The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with a mixture of EtOAc and pentane (0:1 to 1:1 by volume), to afford 4a as a colourless oil (57.6 g, 100%, mixture of two regioisomers). The regioisomers 4b and 4c (regiochemistry of the SEM groups assumed for intermediates 4b and 4c) were isolated from the isomeric mixture 4a by purification by column chromatography on silica gel, eluting with a mixture of EtOAc and petroleum ether (b.p. 40-60 °C) (1:100 to 1:10 by volume).
Intermediate 5 was prepared by using an analogous reaction protocol as described in Example A3 using the appropriate starting material (Table 1).

Table 1:

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Material</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>Intermediate 3</td>
<td>R\textsubscript{t} = 4.14 min, m/z [M+H]+ = 327 (Method B)</td>
</tr>
</tbody>
</table>

Example A4

a) **Preparation of intermediate 6**

A mixture of 3-methylpyrazole-4-boronic acid pinacol ester (0.50 g, 2.40 mmol), 2-(trimethylsilyl)ethoxymethyl chloride (0.53 ml, 3.00 mmol) and DIPEA (1.3 ml, 7.21 mmol) in DCM (10 ml) was stirred at ambient temperature for 1.5 hours. The mixture was partitioned between DCM and water. The organic phase was washed with brine, dried over Na\textsubscript{2}SO\textsubscript{4} and concentrated \textit{in vacuo} to afford the desired product as a pale brown oil (0.81 g, 100%, mixture of two regioisomers).

LCMS (Method D): R\textsubscript{t} = 4.21 and 4.32 min, m/z [M+H]+ = 339.

b) **Preparation of intermediate 7**

A degassed suspension of intermediate 5 (0.50 g, 1.43 mmol), intermediate 6 (0.65 g, 1.93 mmol), [1,1’-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (0.12 g, 0.14 mmol) and potassium carbonate (0.39 g, 2.86 mmol) in DMF (5.5 ml) and water (1.4 ml) was heated at 50 °C for 3.5 hours. The mixture was cooled to ambient temperature and partitioned between water and EtOAc. The organic phase was washed with brine, dried over Na\textsubscript{2}SO\textsubscript{4} and concentrated \textit{in vacuo}. The residue was purified by column chromatography on silica gel, eluting with a mixture of cyclohexane and EtOAc (19:1 to 7:3 by volume), to afford the desired product as a pale brown oil (0.18 g, 28%, mixture of two regioisomers).
LCMS (Method D): $R_t = 4.53$ and 4.61 min, m/z [M+H]$^+ = 434/436$.

Intermediates 8 to 10 were prepared by using an analogous reaction protocol as described for intermediate 6 using the appropriate starting material (Table 2).

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Material</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-pyrazole</td>
<td>$R_t = 4.16$ min, m/z [M+H]$^+ = 325$ (Method C)</td>
</tr>
<tr>
<td>9</td>
<td>Mixture of regioisomers</td>
<td>4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-5-trifluoromethyl-1H-pyrazole</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mixture of regioisomers</td>
<td>4-Bromo-3-chloro-1H-pyrazole</td>
<td>$R_t = 4.44$ min, m/z [M+H]$^+ = 311/313/315$ (Method C)</td>
</tr>
</tbody>
</table>

Intermediates 11 to 15 were prepared by using an analogous reaction protocol as described for intermediate 7 using the appropriate starting materials (Table 3).

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Materials</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td>a) Intermediate 65 b) Intermediate 8</td>
<td>$R_t = 4.93$ min, m/z [M+H]$^+ = 438/440$ (Method C)</td>
</tr>
<tr>
<td>12</td>
<td>Mixture of regioisomers</td>
<td>a) Intermediate 62 b) Intermediate 4a</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>a) Intermediate 63 b) Intermediate 8</td>
<td></td>
</tr>
</tbody>
</table>
Example A5

a) Preparation of intermediate 16

A stirred solution of 5-bromo-6-fluoro-lH-indole (2.5 g, 11.7 mmol) in DMF (30 ml) at ambient temperature was treated with potassium hydroxide (2.5 g, 44.6 mmol). After 10 minutes, iodine (4.45 g, 17.5 mmol) was added and the resulting mixture was stirred for 18 hours. The mixture was diluted with water and extracted with EtOAc. The combined extracts were washed with 5% aqueous sodium metabisulphite solution and brine, dried over Na$_2$SO$_4$ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel, eluting with a mixture of EtOAc and cyclohexane (0:1 to 2:3 by volume), to afford the desired product as an off-white solid (1.88 g, 47%).

LCMS (Method B): $R_t = 3.94$ min, m/z [M-H]$^-$ = 338/340.

b) Preparation of intermediate 17

A stirred mixture of intermediate 16 (2.1 g, 6.18 mmol), CS$_2$CO$_3$ (8.05 g, 24.7 mmol), 4-methanesulfonyloxy-piperidine-1-carboxylic acid t-butyl ester (4.31 g, 15.43 mmol) and DMF (50 ml) was heated at 90 °C for 16 hours. A second aliquot of 4-
methanesulfonyloxy-piperidine-l-carboxylic acid tert-butyl ester (1.39 g, 5.0 mmol) and CS₂CO₃ (2.93 g, 9.0 mmol) was added and the resulting mixture was heated at 90 °C for 6 hours. The mixture was cooled to ambient temperature and partitioned between EtOAc and water. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with a mixture of cyclohexane and EtOAc (1:0 to 1:1 by volume). Further purification by column chromatography on silica gel, eluting with DCM, afforded the desired product as a white solid (0.89 g, 27%).

c) Preparation of intermediate 18

A stirred solution of intermediate 17 (0.89 g, 1.69 mmol) in DCM (20 ml) at ambient temperature was treated with TFA (1.5 ml, 19.6 mmol) and the resulting mixture was stirred for 2 hours. The mixture was concentrated in vacuo and the residue purified by ISOLUTE® SCX-2 SPE column, eluting with a mixture of MeOH and 2.0 M ammonia solution in MeOH (1:0 to 0:1 by volume), to afford the desired product as a pale brown solid (0.67 g, 94%).

LCMS (Method B): Rₜ = 2.42 min, m/z [M+H]+ = 423/425.

d) Preparation of intermediate 19

A stirred solution of intermediate 18 (0.67 g, 1.59 mmol) in a mixture of MeOH (7.0 ml) and acetic acid (7.0 ml) under a nitrogen atmosphere at ambient temperature was treated with (1-ethoxycyclopropoxy)trimethylsilane (0.59 g, 3.38 mmol). After 10 minutes, the mixture was treated with sodium cyanoborohydride (0.50 g, 7.96 mmol) and the resulting mixture was stirred at 55 °C for 18 hours. The mixture was cooled to ambient temperature and concentrated in vacuo. The residue was partitioned between 1.0 M aqueous sodium hydroxide solution and EtOAc. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with a mixture of 2.0 M ammonia
solution in MeOH and DCM (0:1 to 1:4 by volume), to afford the desired product as a yellow oil (0.61 g, 58%).

LCMS (Method B): $R_t = 2.60$ min, m/z [M+H]$^+$ = 463/465.

c) Preparation of intermediate 20

A degassed suspension of intermediate 19 (0.61 g, 0.93 mmol), intermediate 4b or 4c (0.40 g, 1.12 mmol), [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (0.08 g, 0.10 mmol) and Cs$_2$CO$_3$ (0.90 g, 2.76 mmol) in 1,4-dioxane (8.0 ml) and water (2.0 ml) was heated at 85 °C for 3 hours. The mixture was cooled to ambient temperature and partitioned between water and EtOAc. The organic phase was washed with brine, dried over Na$_2$SO$_4$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with a mixture of DCM and MeOH (1:0 to 9:1 by volume). Further purification by reverse phase preparative HPLC, eluting with a mixture of MeCN and water containing 0.1% formic acid (1:19 to 49:1 by volume) afforded the desired product as a pale yellow solid (0.09 g, 16%>; regiochemistry of the SEM group assumed).

LCMS (Method B): $R_t = 3.1$ min, m/z [M+H]$^+$ = 567/569/571.

d) Preparation of intermediate 21

A degassed mixture of intermediate 20 (0.13 g, 0.23 mmol), intermediate 1 (0.49 g, 1.72 mmol), tetrakis(triphenylphosphine) palladium (0.26 g, 0.23 mmol), copper(I) iodide (0.02 g, 0.11 mmol), triethylamine (1.11 ml, 7.96 mmol) and MeCN (8.0 ml) at ambient temperature was treated with 1.0 M solution of tetrabutylammonium fluoride in THF (1.6 ml, 1.6 mmol), and the resulting mixture was heated by microwave irradiation at 100 °C for 1.5 hour. The mixture cooled to ambient temperature and
concentrated *in vacuo*. The residue was purified by column chromatography on silica gel, eluting with a mixture of EtOAc and cyclohexane (0:1 to 1:0 by volume), to afford the desired product as a brown oil (0.03 g, 20%; regiochemistry of the SEM group assumed).

LCMS (Method B): $R_t = 2.88 \text{ min}$, m/z [M+H]$^+$ = 577/579.

Intermediates 22 to 26 were prepared by using an analogous reaction protocol as described for intermediate 16 using the appropriate starting materials (Table 4).

Table 4:

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Material</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td></td>
<td>Intermediate 30</td>
<td>$R_t = 2.66 \text{ min}$, m/z [M+H]$^+$ = 437/439 (Method A)</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>5-Bromo-7-chloro-1H-indole</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>5-Bromo-6,7-difluoro-1H-indole</td>
<td>$R_t = 4.17 \text{ min}$, m/z [M-H]$^-$ = 356/358 (Method C)</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>5-Bromo-7-trifluoromethyl-1H-indole</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>5-Bromo-1H-indole-7-carbonitrile</td>
<td></td>
</tr>
</tbody>
</table>
Intermediate 27 was prepared by using an analogous reaction protocol as described for intermediate 17 using the appropriate starting materials (Table 5).

Table 5:

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Materials</th>
<th>LCMS Data</th>
</tr>
</thead>
</table>
| 27 | ![Regiochemistry of the SEM group assumed](image) | a) Intermediate 34
b) 3-Methanesulfonyloxy-piperidine-1-carboxylic acid tert-butyl ester | R_t = 5.42 min, m/z [M+H]⁺ = 627/629/631 (Method C) |

5 Example A6

a) Preparation of intermediate 28

A stirred mixture of 5-bromo-6-fluoro-1H-indole (1.0 g, 4.67 mmol), powdered KOH (0.52 g, 9.34 mmol) and toluene (40 ml) under a nitrogen atmosphere at ambient temperature was treated with 4-methanesulfonyloxy-piperidine-1-carboxylic acid tert-butyl ester (1.31 g, 4.67 mmol), and the resulting mixture was heated at 100 °C 18 hours. The mixture was cooled to ambient temperature and concentrated in vacuo. The residue was partitioned between water and EtOAc. The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with a mixture of DCM and cyclohexane (3:7 to 1:0 by volume). Further purification by column chromatography on silica gel, eluting with a mixture of DCM and cyclohexane (1:1 to 4:1 by volume), afforded the desired product as a white solid (0.65 g, 31%).

b) Preparation of intermediate 29

A stirred solution of intermediate 28 (0.57 g, 1.45 mmol) in DCM (10 ml) at ambient temperature was treated with TFA (5.0 ml, 65 mmol) and the resulting mixture was stirred for 10 minutes. The mixture was concentrated in vacuo and the residue purified...
by ISOLUTE® SCX-2 SPE column, eluting with a mixture of MeOH and 2.0 M ammonia solution in MeOH (1:0 to 0:1 by volume), to afford the desired product as a pale brown solid (0.53 g, 99%).

c) Preparation of intermediate 30

A stirred mixture of intermediate 29 (0.89 g, 3.0 mmol), 37% aqueous formaldehyde (2.23 ml, 30 mmol), acetic acid (0.01 ml, 0.3 mmol) and DCM (30 ml) at ambient temperature was treated with sodium triacetoxyborohydride (1.27 g, 6.0 mmol), and the resulting mixture was stirred for 1 hour. The mixture was concentrated in vacuo and the residue partitioned between saturated aqueous sodium hydrogen carbonate solution and EtOAc. The organic phase was washed with brine, dried over Na$_2$SO$_4$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with a mixture of 2.0 M ammonia solution in MeOH and DCM (0:1 to 1:12 by volume), to afford the desired product as a white solid (0.42 g, 45%).

Example A7

a) Preparation of intermediate 31

A stirred solution of intermediate 66 (3.92 g, 7.17 mmol) in THF (150 ml) at ambient temperature was treated with 1.0 M TBAF solution in THF (35.9 ml, 35.9 mmol), and the resulting mixture was heated at 50 °C for 3 hours. A second aliquot of 1.0 M TBAF solution in THF (18.0 ml, 18.0 mmol) was added and the resulting mixture was heated at 60 °C for 78 hours. The mixture was cooled to ambient temperature and partitioned between EtOAc and water. The organic phase was washed with brine, dried over Na$_2$SO$_4$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with a mixture of petroleum ether (b.p. 40-60°C) and EtOAc (1:0 to 3:2 by volume), to afford the desired product (2.03 g, 72%).

LCMS (Method C): $R_t = 4.18$ min, m/z [M+H]$^+$ = 392/394.
Example A8

a) Preparation of intermediate 32

A mixture of intermediate 16 (29.4 g, 86.7 mmol), 4-methylbenzenesulfonyl chloride (16.5 g, 86.7 mmol), NaOH (6.8 g, 152 mmol), benzyltriethylammonium chloride (1.64 g, 8.67 mmol) and anhydrous DCM (52 ml) was stirred at 0 °C for 1 hour and then at ambient temperature for 2 hours. The mixture was partitioned between water and EtOAc. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by crystallisation from a mixture of EtOAc and petroleum ether (1:1 by volume) to afford the desired product as a white solid (20 g, 47%).

b) Preparation of intermediate 33

A degassed suspension of intermediate 32 (2.50 g, 5.06 mmol), intermediate 4b or 4c (1.99 g, 5.57 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (0.42 g, 0.51 mmol) and cesium carbonate (4.95 g, 15.2 mmol) in 1,4-dioxane (35 ml) and water (7.0 ml) was heated at 80 °C for 24 hours. The mixture was cooled to ambient temperature and partitioned between water and EtOAc. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with a mixture of cyclohexane and EtOAc (1:0 to 4:1 by volume) to afford the desired product as a yellow oil (2.14 g, 71%; regiochemistry of the SEM group assumed).
c) Preparation of intermediate 34

A stirred solution of intermediate 33 (2.1 g, 3.51 mmol) in THF (15 ml) at ambient temperature was treated with sodium methoxide (25% wt. in MeOH, 8.0 ml, 35.0 mmol) and the resulting mixture was stirred for 30 minutes. The mixture was concentrated *in vacuo* and the residue partitioned between EtOAc and a saturated aqueous sodium hydrogen carbonate solution. The organic phase was washed with brine, dried over Na$_2$SO$_4$ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel, eluting with a mixture of cyclohexane and EtOAc (1:0 to 3:2 by volume), to afford the desired product as a purple solid (0.78 g, 50%; regiochemistry of the SEM group assumed).

d) Preparation of intermediate 35

A stirred mixture of intermediate 34 (0.78 g, 1.75 mmol), 3-iodo-azetidine-l-carboxylic acid tert-butyl ester (0.42 ml, 2.45 mmol) and Cs$_2$CO$_3$ (1.14 g, 3.50 mmol) in DMF (5.0 ml) was heated at 110 °C for 18 hours. The mixture was cooled to ambient temperature and partitioned between EtOAc and water. The organic phase was washed with brine, dried over Na$_2$SO$_4$ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel, eluting with a mixture of cyclohexane and EtOAc (1:0 to 3:2 by volume), to afford the desired product as a beige foam (0.74 g, 71%; regiochemistry of the SEM group assumed).

LCMS (Method B): R$_t$ = 4.94 min, m/z [M+H]$^+$ = 599/601/603.
Preparation of intermediate 36

A stirred solution of intermediate 35 (0.74 g, 1.24 mmol) in DCM (14 ml) at ambient temperature was treated with TFA (1.42 ml, 18.6 mmol). After 30 minutes, a second aliquot of TFA (1.42 ml, 18.6 mmol) was added and the resulting mixture was stirred for 2 hours. The mixture was diluted with DCM and purified by ISOLUTE® SCX-2 SPE column, eluting with a mixture of MeOH and 2.0 M ammonia solution in MeOH (1:0 to 0:1 by volume), to afford the desired product as a brown oil (0.46 g, 100%).

LCMS (Method B): R_t = 2.12 min, m/z [M+H]^+ = 369/371/373.

Preparation of intermediate 37

A stirred mixture of intermediate 36 (0.22 g, 0.58 mmol), 37% aqueous formaldehyde (0.08 ml, 1.16 mmol), sodium acetate (0.09 g, 0.16 mmol), MeOH (5.0 ml) and DCE (3.0 ml) at 0 °C was treated with sodium triacetoxyborohydride (0.25 g, 1.16 mmol), and the resulting mixture was stirred at ambient temperature for 18 hours. The mixture was concentrated in vacuo and the residue purified by ISOLUTE® SCX-2 SPE column, eluting with a mixture of MeOH and 2.0 M ammonia solution in MeOH (1:0 to 1:1 by volume), to afford the desired product as a pink solid (0.20 g, 90%).

LCMS (Method B): R_t = 2.02 min, m/z [M+H]^+ = 383/385/387.

Intermediates 38 to 43 were prepared by using an analogous reaction protocol as described for intermediate 33 using the appropriate starting materials (Table 6).

Table 6:

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Materials</th>
<th>LCMS Data</th>
</tr>
</thead>
</table>
| 38 | ![Structure](image) | a) Intermediate 59
 b) Intermediate 5 | R_t = 4.62 min,
 m/z [M+H]^+ = 440/442
 (Method D) |
Intermediate 44 was prepared by using an analogous reaction protocol as described for intermediate 36 using the appropriate starting material (Table 7).

Table 7:

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Material</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td></td>
<td>Intermediate 27</td>
<td>R<sub>t</sub> = 2.20 min, m/z [M+H]<sup>+</sup> = 397/399/401 (Method A)</td>
</tr>
</tbody>
</table>
Intermediate 45 was prepared by using an analogous reaction protocol as described for intermediate 37 using the appropriate starting materials (Table 8).

Table 8:

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Materials</th>
<th>LCMS Data</th>
</tr>
</thead>
</table>
| 45 | ![Structure](image) | a) Intermediate 44
b) Acetaldehyde | R_t = 2.39 min, m/z [M+H]⁺ = 425/427/429 (Method A) |

Example A9

a) Preparation of intermediate 46

A stirred mixture of intermediate 31 (0.30 g, 0.77 mmol), K₂CO₃ (0.21 g, 1.53 mmol), iodoethane (0.07 ml, 0.84 mmol) and DMF (4.0 ml) was heated at 100 °C for 19 hours. A second aliquot of iodoethane (0.07 ml, 0.84 mmol) was added and the resulting mixture was heated at 100 °C for 6.5 hours. The mixture was cooled to ambient temperature and partitioned between EtOAc and water. The organic phase was washed with brine, dried over Na₂S0₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with a mixture of cyclohexane and EtOAc (1:0 to 7:3 by volume), to afford the desired product (0.25 g, 76%).

LCMS (Method C): R_t = 4.69 min, m/z [M+H]⁺ = 420/422.

Intermediates 47 to 49 were prepared by using an analogous reaction protocol as described in Example A9 using the appropriate starting materials (Table 9).

Table 9:

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Materials</th>
<th>LCMS Data</th>
</tr>
</thead>
</table>
| 47 | ![Structure](image) | a) Intermediate 31
b) 2,2-Dimethyl-oxirane | R_t = 4.31 min, m/z [M+H]⁺ = 464/466 (Method C) |
Example A10

a) Preparation of intermediates 93a and 93b

A stirred solution of 3-amino-4-bromo-1 H-pyrazole (1.00 g, 6.17 mmol) and DMAP (0.15 g, 1.23 mmol) in THF (17 ml) at ambient temperature was treated with α-tert-butyl dicarbonate (1.48 g, 6.79 mmol), and the resulting mixture was stirred for 2 hours. The mixture was partitioned between DCM and water. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash chromatography on silica gel, eluting with a mixture of cyclohexane and EtOAc (4:1 to 2:3 by volume) to afford the desired product as a mixture of regioisomers (93a, 1.0 g, 63% and 93b, 0.55 g, 33%; regiochemistry of the Boc group assumed).

LCMS (Method D): Rₜ = 2.74 min, m/z [M+H-ter-t-butyl]+ = 206/208.

b) Preparation of intermediate 50

A degassed suspension of intermediate 93a (0.25 g, 0.95 mmol), α-[pinacolato]diboron (0.30 g, 1.19 mmol), potassium acetate (0.28 g, 2.86 mmol) and [1,1]-

bis(diphenylphosphino)ferrocene)dichloropalladium(II) (0.70 g, 0.01 mmol) in DMF (9.5 ml) was heated at 70 °C for 3.5 hours. The mixture was cooled to ambient temperature and partitioned between DCM and water. The organic phase was washed with brine, dried over Na₂S₀₄ and concentrated in vacuo to afford the desired product as a brown oil (2.02 g, 100%; regiochemistry of the boc group assumed).

LCMS (Method A): Rₜ = 2.94 min, m/z [M+H]+ = 309.

Example A11

a) Preparation of intermediate 94

A stirred mixture of intermediate 34 (2.0 g, 4.50 mmol), CS₂CO₃ (5.86 g, 17.9 mmol), 4-methanesulfonyloxy-piperidine-l-carboxylic acid tert-butyl ester (2.51 g, 8.98 mmol) and DMF (20 ml) was heated at 90 °C for 18 hours. A second portion of 4-methanesulfonyloxy-piperidine-l-carboxylic acid tert-butyl ester (2.51 g, 8.98 mmol) and CS₂CO₃ (2.93 g, 8.98 mmol) was added and the resulting mixture was heated at 90 °C for 24 hours. The mixture was cooled to ambient temperature and partitioned between EtOAc and water. The organic phase was washed with brine, dried over Na₂S₀₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with a mixture of cyclohexane and EtOAc (1:0 to 0:1 by volume), to afford the desired product as a pale yellow oil (2.80 g, 99%).

LCMS (Method C): Rₜ = 5.26 min, m/z [M+H]+ = 627/629/631.

b) Preparation of intermediate 95

A stirred solution of intermediate 94 (2.80 g, 4.46 mmol) in DCM (5.0 ml) at ambient temperature was treated with TFA (2.5 ml, 32.7 mmol) and the resulting mixture was
stirred for 20 hours. The mixture was concentrated *in vacuo* and the residue purified by ISOLUTE® SCX-2 SPE column, eluting with a mixture of MeOH and 2.0 M ammonia solution in MeOH (1:0 to 0:1 by volume), to afford the desired product as a white solid (1.74 g, 98%).

LCMS (Method C): $R_t = 2.27 \text{ min}, m/z [M+H]^+ = 397/399/401$.

c) Preparation of intermediate 96

![Intermediate 96](image)

A stirred mixture of intermediate 95 (1.74 g, 4.39 mmol), 37% aqueous formaldehyde (0.20 g, 6.57 mmol), sodium acetate (0.72 g, 8.78 mmol), DCM (20 ml) and MeOH (10 ml) at ambient temperature was treated with sodium triacetoxyborohydride (1.40 g, 6.60 mmol), and the resulting mixture was stirred for 20 hours. The mixture was concentrated *in vacuo* and the residue purified by ISOLUTE® SCX-2 SPE column, eluting with a mixture of MeOH and 2.0 M ammonia solution in MeOH (1:0 to 0:1 by volume), to afford the desired product as a pale yellow solid (1.69 g, 94%).

LCMS (Method C): $R_t = 2.26 \text{ min}, m/z [M+H]^+ = 411/413/415$.

Example A12

a) Preparation of intermediate 51

![Intermediate 51](image)

A stirred solution of 5-bromo-3-iodo-1H-indole (7.88 g, 24.48 mmol) in DMF (100 ml) at 0 °C was treated with sodium hydride (1.96 g, 49.0 mmol, 60% in mineral oil). After 30 minutes, the mixture was treated with a second aliquot of iodoethane (3.94 ml, 49.0 mmol) and the resulting mixture was stirred at ambient temperature for 1.5 hour. The mixture was partitioned between EtOAc and brine. The organic phase was dried over Na$_2$SO$_4$ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel, eluting with a mixture of cyclohexane and EtOAc (1:0 to 4:1 by volume), to afford the desired product (7.38 g, 86%).

LCMS (Method D): $R_t = 4.34 \text{ min}, m/z [M+H]^+ = 349/351$.

b) Preparation of intermediate 52

A degassed suspension of intermediate 51 (0.36 g, 1.03 mmol), intermediate 50 (0.43 g, 1.39 mmol), [1,1’-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (0.08 g, 0.10 mmol) and potassium carbonate (0.28 g, 2.06 mmol) in DMF (4.0 ml) and water (1.0 ml) was heated at 50 °C for 5.5 hours. The mixture was cooled to ambient temperature and partitioned between water and EtOAc. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with a mixture of cyclohexane and EtOAc (1:0 to 4:1 by volume), to afford the desired product as a pale brown oil (0.06 g, 14%; regiochemistry of the Boc group assumed).

c) Preparation of intermediate 53

A degassed suspension of intermediate 52 (0.06 g, 0.15 mmol), 2-methyl-3-butyn-2-ol (0.10 ml, 1.02 mmol), tetrakis(triphenylphosphine)palladium(0) (0.025 g, 0.022 mmol), copper(I) iodide (0.003 g, 0.015 mmol) and triethylamine (0.14 ml, 1.02 mmol) in MeCN (2.0 ml) was heated at 75 °C by microwave irradiation for 1.5 hours. The mixture was cooled to ambient temperature and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with a mixture of cyclohexane and EtOAc (1:1 to 0:1 by volume), to afford the desired product (0.04 g, 64%; regiochemistry of the Boc group assumed).

LCMS (Method D): Rₜ = 3.30 min, m/z [M+H]⁺ = 409.
Intermediates 54 to 65 were prepared by using an analogous reaction protocol as described for intermediate 51 using the appropriate starting materials (Table 10).

Table 10:

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Materials</th>
<th>LCMS Data</th>
</tr>
</thead>
</table>
| 54 | ![Structure 54](image) | a) Intermediate 31
b) 3-Bromomethyl-tetrahydrofuran | $R_t = 4.50$ min,
m/z [M+H]$^+$ = 476/478
(Method C) |
| 55 | ![Structure 55](image) | a) Intermediate 31
b) Toluene-4-sulfonic acid oxetan-3-yl methyl ester | $R_t = 4.23$ min,
m/z [M+H]$^+$ = 462/464
(Method B) |
| 56 | ![Structure 56](image) | a) Intermediate 31
b) 1-Bromo-2-methoxy-ethane | $R_t = 4.41$ min,
m/z [M+H]$^+$ = 450/452
(Method B) |
| 57 | ![Structure 57](image) | a) Intermediate 31
b) 2-Iodo propane | $R_t = 4.80$ min,
m/z [M+H]$^+$ = 434/436
(Method C) |
| 58 | ![Structure 58](image) | a) Intermediate 16
b) 1-Bromo-3-methoxypropane | $R_t = 4.55$ min,
m/z [M+H]$^+$ = 367/369
(Method C) |
| 59 | ![Structure 59](image) | a) Intermediate 16
b) Iodoethane | $R_t = 4.55$ min,
m/z [M+H]$^+$ = 367/369
(Method C) |
| 60 | ![Structure 60](image) | a) Intermediate 16
b) (3-Bromo-propoxy)- tert-butyl-dimethyl-silane | $R_t = 4.55$ min,
m/z [M+H]$^+$ = 367/369
(Method C) |
| 61 | ![Structure 61](image) | a) Intermediate 23
b) Iodoethane | $R_t = 4.55$ min,
m/z [M+H]$^+$ = 367/369
(Method C) |
| 62 | ![Structure 62](image) | a) Intermediate 24
b) Iodoethane | $R_t = 4.55$ min,
m/z [M+H]$^+$ = 367/369
(Method C) |
Intermediate 66 was prepared by using an analogous reaction protocol as described for intermediate 52 using the appropriate starting materials (Table 11).

Table 11:

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Materials</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td></td>
<td>a) 5-Bromo-3-iodo-1-(toluene-4-sulfonyl)-1H-indole b) Intermediate 8</td>
<td>R<sub>t</sub> = 4.90 min, m/z [M+H]<sup>+</sup> = 546/548 (Method B)</td>
</tr>
</tbody>
</table>

Intermediates 67 to 92 were prepared by using an analogous reaction protocol as described for intermediate 53 using the appropriate starting materials (Table 12).

Table 12:

<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Materials</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td></td>
<td>a) Intermediate 66 b) 2-Methyl-but-3-yn-2-ol</td>
<td>R<sub>t</sub> = 4.49 min, m/z [M+H]<sup>+</sup> = 550 (Method C)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Structure</td>
<td>Starting Materials</td>
<td>LCMS Data</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| 68 | ![Structure](image1) | a) Intermediate 15
b) 2-Methyl-but-3-yne-2-ol | \[R_s = 4.38/4.45 \text{ min}, \text{m/z [M-OH]}^- = 474 \text{ (Method D)} \] |
| 69 | ![Structure](image2) | a) Intermediate 54
b) 2-Methyl-but-3-yne-2-ol | \[R_s = 3.97 \text{ min}, \text{m/z [M+H]}^+ = 480 \text{ (Method C)} \] |
| 70 | ![Structure](image3) | a) Intermediate 7
b) 2-Methyl-but-3-yne-2-ol | \[R_s = 4.01/4.10 \text{ min}, \text{m/z [M+H]}^+ = 438 \text{ (Method D)} \] |
| Mixture of regioisomers | | | |
| 71 | ![Structure](image4) | a) Intermediate 55
b) 2-Methyl-but-3-yne-2-ol | \[R_s = 3.81 \text{ min}, \text{m/z [M+H]}^+ = 466 \text{ (Method C)} \] |
| 72 | ![Structure](image5) | a) Intermediate 56
b) 2-Methyl-but-3-yne-2-ol | \[R_s = 4.01 \text{ min}, \text{m/z [M+H]}^+ = 454 \text{ (Method C)} \] |
| 73 | ![Structure](image6) | a) Intermediate 57
b) 2-Methyl-but-3-yne-2-ol | \[R_s = 4.24 \text{ min}, \text{m/z [M+H]}^+ = 438 \text{ (Method B)} \] |
| 74 | ![Structure](image7) | a) Intermediate 46
b) 2-Methyl-but-3-yne-2-ol | \[R_s = 4.12 \text{ min}, \text{m/z [M+H]}^+ = 424 \text{ (Method B)} \] |
| 75 | ![Structure](image8) | a) Intermediate 47
b) 2-Methyl-but-3-yne-2-ol | \[R_s = 3.81 \text{ min}, \text{m/z [M+H]}^+ = 468 \text{ (Method C)} \] |
<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Materials</th>
<th>LCMS Data</th>
</tr>
</thead>
</table>
| 76 | ![Structure](image) | a) Intermediate 48
b) 2-Methyl-but-3-yne-2-ol | $R_t = 3.56 \text{ min,}$
m/z [M+H]$^+$ = 440 (Method B) |
| 77 | ![Structure](image) | a) Intermediate 49
b) 2-Methyl-but-3-yne-2-ol | $R_t = 4.04 \text{ min,}$
m/z [M+H]$^+$ = 410 (Method C) |
| 78 | ![Structure](image) | a) Intermediate 31
b) 2-Thiazol-2-yl-but-3-yne-2-ol | $R_t = 3.75 \text{ min,}$
m/z [M+H]$^+$ = 465 (Method C) |
| 79 | ![Structure](image) | a) Intermediate 31
b) 1-Ethynyl-cyclopentanol | $R_t = 3.83 \text{ min,}$
m/z [M+H]$^+$ = 422 (Method D) |
| 80 | ![Structure](image) | a) Intermediate 38
b) 2-Methyl-but-3-yne-2-ol | $R_t = 4.24 \text{ min,}$
m/z [M+H]$^+$ = 444 (Method B) |
| 81 | ![Structure](image) | a) Intermediate 39
b) 2-Cyclopropyl-but-3-yne-2-ol | |
| | | Mixture of regioisomers | |
| 82 | ![Structure](image) | a) Intermediate 39
b) 2-Methyl-but-3-yne-2-ol | |
| | | Mixture of regioisomers | |
| 83 | ![Structure](image) | a) Intermediate 40
b) 2-Cyclopropyl-but-3-yne-2-ol | $R_t = 2.95 \text{ min,}$
m/z [M+H]$^+$ = 571/573 (Method C) |
<table>
<thead>
<tr>
<th>Intermediate</th>
<th>Structure</th>
<th>Starting Materials</th>
<th>LCMS Data</th>
</tr>
</thead>
</table>
| 84 | ![Structure](image.png) | a) Intermediate 40
 b) 2-Methyl-but-3-yn-2-ol | $R_t = 2.83$ min, m/z $[M+H]^+ = 545/547$ (Method A) |
| 85 | ![Structure](image.png) | a) Intermediate 41
 b) 2-Cyclopropyl-but-3-yn-2-ol | |
| 86 | ![Structure](image.png) | a) Intermediate 41
 b) 2-Methyl-but-3-yn-2-ol | |
| 87 | ![Structure](image.png) | a) Intermediate 42
 b) 2-Methyl-but-3-yn-2-ol | |
| 88 | ![Structure](image.png) | a) Intermediate 43
 b) 2-Methyl-but-3-yn-2-ol | |
| 89 | ![Structure](image.png) | a) Intermediate 12
 b) 2-Methyl-but-3-yn-2-ol | |
| 90 | ![Structure](image.png) | a) Intermediate 11
 b) 2-Methyl-but-3-yn-2-ol | $R_t = 4.30$ min, m/z $[M+H]^+ = 442$ (Method C) |
Preparation of compounds

The values of acid content (e.g. formic acid or acetic acid) in the compounds as provided herein, are those obtained experimentally and may vary when using different analytical methods. The content of formic acid or acetic acid reported herein was determined by H NMR integration and is reported together with the H NMR results. Compounds with an acid content of below 0.5 equivalents may be considered as free bases.

Example B1

a) Preparation of compound 1

A mixture of intermediate 67 (0.13 g, 0.24 mmol), 1.0 M TBAF solution in THF (1.18 ml, 1.18 mmol) and 1,2-ethylenediamine (0.08 ml, 1.17 mmol) in THF (10 ml) was heated at reflux for 24 hours. The mixture was cooled to ambient temperature, concentrated in vacuo and the residue partitioned between EtOAc and brine. The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with a mixture of cyclohexane and EtOAc (1:1 to 0:1 by volume), followed by a mixture MeOH and EtOAc (0:1 to 1:9 by volume). Further purification by HPLC on C18 column, eluting with a mixture of MeCN and water containing 0.1% ammonia (1:9 to 19:1 by volume), afforded the desired product as an off-white solid (0.017 g, 27%).
\(^{1}H \) NMR (400 MHz, OMSO-\(d_6 \)) \(\delta \) ppm: 12.84 (s, 1H), 11.29 (s, 1H), 7.95 (br. s, 2H), 7.76 (d, \(J = 0.8 \) Hz, 1H), 7.57 (s, 1H), 7.36 (d, \(J = 8.4 \) Hz, 1H), 7.1 1 (dd, \(J = 1.5, 8.4 \) Hz, 1H), 5.35 (s, 1H), 1.48 (s, 6H).

LCMS (Method E): \(R_t = 3.15 \) min, \(m/z \) [M+H]\(^+\) = 266.

Compounds 3 to 28 were prepared by using an analogous reaction protocol as described in Example B1 using the appropriate starting material (Table 13).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Starting Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>Intermediate 70</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Intermediate 68</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Intermediate 69</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Intermediate 71</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Intermediate 72</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Intermediate 73</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Intermediate 74</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>Starting Material</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>10</td>
<td>![Structure Image]</td>
<td>Intermediate 75</td>
</tr>
<tr>
<td>11</td>
<td>![Structure Image]</td>
<td>Intermediate 76</td>
</tr>
<tr>
<td>12</td>
<td>![Structure Image]</td>
<td>Intermediate 77</td>
</tr>
<tr>
<td>13</td>
<td>![Structure Image]</td>
<td>Intermediate 78</td>
</tr>
<tr>
<td>14</td>
<td>![Structure Image]</td>
<td>Intermediate 79</td>
</tr>
<tr>
<td>15</td>
<td>![Structure Image]</td>
<td>Intermediate 21</td>
</tr>
<tr>
<td>16</td>
<td>![Structure Image]</td>
<td>Intermediate 80</td>
</tr>
<tr>
<td>17</td>
<td>![Structure Image]</td>
<td>Intermediate 81</td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>Starting Material</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Intermediate 82</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Intermediate 83</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Intermediate 84</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Intermediate 85</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Intermediate 86</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Intermediate 87</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>Intermediate 88</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Intermediate 89</td>
</tr>
</tbody>
</table>
Example B2

a) Preparation of compound 2

A suspension of intermediate 53 (0.037 g, 0.091 mmol) in MeCN (2.5 ml) was heated by microwave irradiation at 150 °C for 1 hour. The mixture was cooled to ambient temperature and purified by column chromatography on silica gel, eluting with a mixture of DCM and MeOH (1:0 to 9:1 by volume), to afford the desired product as a pale yellow solid (0.013 g, 46%).

\[\text{HNMR (400 MHz, CDCl}_3] \delta \text{ ppm: 7.75 (s, 1H), 7.54 (s, 1H), 7.32-7.29 (m, 1H), 7.29-7.25 (m, 2H), 7.20 (s, 1H), 5.67 (d, J = 2.2 Hz, 2H), 4.15 (q, J = 7.3 Hz, 2H), 1.64 (s, 6H), 1.46 (t, J = 7.3 Hz, 3H).} \]

LCMS (Method E): \(R_t = 3.20 \) min, m/z \([\text{M+H}]^+ = 309\).
Example B3

a) Preparation of compound 29

A mixture of intermediate 37 (0.20 g, 0.52 mmol), 2-methylbut-3-yn-2-ol (0.11 ml, 1.04 mmol), tetrakis(triphenylphosphine) palladium (0.12 g, 0.10 mmol), copper(I) iodide (0.01 g, 0.05 mmol), triethylamine (0.51 ml, 3.64 mmol) and MeCN (4.5 ml) was heated by microwave irradiation at 100 °C for 1 hour. The mixture was cooled to ambient temperature and concentrated in vacuo. The residue was purified by ISOLUTE® SCX-2 SPE column eluting with a mixture of MeOH and 2.0 M ammonia solution in MeOH (1:0 to 0:1 by volume). Further purification by column chromatography on silica gel, eluting with a mixture of 2.0 M ammonia solution in MeOH and DCM (0:1 to 1:9 by volume), followed by HPLC on C18 column, eluting with a mixture of MeCN and water containing 0.1% of formic acid (1:9 to 7:3), afforded the desired product as a white solid (0.03 g, 13%, 0.9 equivalents of formic acid present).

1H NMR (400 MHz, DMSO-d_6) δ ppm: 13.19 (s, 1H), 8.22 (s, 1H), 8.17 (s, 0.9H), 7.87 (s, 1H), 7.64 (d, J = 6.9 Hz, 1H), 7.60 (d, J = 10.9 Hz, 1H), 5.43 (s, 1H), 5.16-5.08 (m, 1H), 3.78-3.72 (m, 2H), 3.41-3.33 (m, 2H), 2.35 (s, 3H), 1.47 (s, 6H).

LCMS (Method E): $R_t = 2.62$ min, m/z [M+H]$^+$ = 387/389.

Compounds 33 to 37 were prepared by using an analogous reaction protocol as described in Example B3 using the appropriate starting materials (Table 14).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Starting Materials</th>
</tr>
</thead>
</table>
| 33 | ![Structure Image] | a) Intermediate 96
b) 2-Thiazol-2-yl-but-3-yn-2-ol |
A degassed mixture of intermediate 45 (0.24 g, 0.56 mmol), intermediate 1 (0.32 g, 1.11 mmol), tetrakis(triphenylphosphine) palladium (0.13 g, 0.11 mmol), copper iodide (0.01 g, 0.06 mmol), triethylamine (0.54 ml, 3.89 mmol) and MeCN (3.0 ml) under an argon atmosphere at ambient temperature was treated with 1.0 M solution of TBAF in THF (0.28 ml, 0.28 mmol). The resulting mixture was heated by microwave irradiation at 100 °C for 1 hour. The mixture was cooled to ambient temperature and partitioned between water and EtOAc. The organic phase was washed with brine, dried over
Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with a mixture of MeOH and DCM (0:1 to 1:9 by volume). Further purification by reverse phase preparative HPLC, eluting with a mixture of acetonitrile and water containing 0.1% formic acid (1:9 to 3:1 by volume), afforded the desired product (0.05 g, 17%, 0.8 equivalents of formic acid present).

Example C1

a) Preparation of compounds 31 and 32

Compound 30 (0.04 g, 0.09 mmol) was purified by chiral preparative SFC with the following conditions: column, Phenomenex Lux® 5u Cellulose-4, 250 x 21.2 mm, 5 \(\mu \)m; mobile phase, \(\text{CO}_2 \) (70%), MeOH containing 0.1% diethanol amine (30%), 100 mL/min, 120 bar, 40 °C; detector, UV 240 nm. This afforded Compound 31 (first eluting enantiomer) as an off-white solid (0.01 g, 35%) and Compound 32 (second eluting enantiomer) as an off-white solid (0.01 g, 34%).

Compound 31

\(^{1}H \) NMR (400 MHz, DMSO-\(_{d6} \)) \(\delta \) ppm: 13.16 (s, 1H), 8.20 (s, 1H), 7.89 (s, 1H), 7.64 (d, \(J = 6.9 \) Hz, 1H), 7.55 (d, \(J = 11.0 \) Hz, 1H), 5.40 (s, 1H), 4.57-4.48 (m, 1H), 2.90 (dd, \(J = 3.1, 10.7 \) Hz, 1H), 2.70 (d, \(J = 11.1 \) Hz, 1H), 2.47-2.36 (m, 3H), 2.23-2.13 (m, 1H), 1.98-1.90 (m, 1H), 1.83-1.61 (m, 3H), 1.01 (t, \(J = 7.1 \) Hz, 3H).

LCMS (Method E): \(R_f = 2.73 \) min, m/z [M+H]+ = 435/437.

Compound 32

\(^{1}H \) NMR (400 MHz, DMSO-\(_{d6} \)) \(\delta \) ppm: 13.17 (s, 1H), 8.20 (s, 1H), 7.89 (s, 1H), 7.64 (d, \(J = 6.9 \) Hz, 1H), 7.55 (d, \(J = 11.0 \) Hz, 1H), 5.40 (s, 1H), 4.57-4.48 (m, 1H), 2.90 (dd, \(J = 2.7, 10.5 \) Hz, 1H), 2.71 (d, \(J = 11.0 \) Hz, 1H), 2.45-2.36 (m, 3H), 2.20-2.15 (m, 1H), 1.96-1.89 (m, 1H), 1.82-1.62 (m, 3H), 1.01 (t, \(J = 7.1 \) Hz, 3H).

LCMS (Method E): \(R_f = 2.73 \) min, m/z [M+H]+ = 435/437.
Analytical Part

LCMS

Mass Spectrometry (LCMS) experiments to determine retention times and associated mass ions were performed using the following methods:

Method A: Experiments were performed on a Waters ZMD quadrupole mass spectrometer linked to a Waters 1525 LC system with a diode array detector. The spectrometer had an electrospray source operating in positive and negative ion mode. Additional detection was achieved using a Sedex 85 evaporative light scattering detector. LC was carried out using a Luna 3micron 30 x 4.6mm C18 column and a 2 mL/minute flow rate. The initial solvent system was 95% water containing 0.1% formic acid (solvent A) and 5% MeCN containing 0.1% formic acid (solvent B) for the first 0.5 minute followed by a gradient up to 5% solvent A and 95% solvent B over the next 4 min. The final solvent system was held constant for a further 1 minute.

Method B: Experiments were performed on a Waters VG Platform II quadrupole spectrometer linked to a Hewlett Packard 1050 LC system with a diode array detector. The spectrometer had an electrospray source operating in positive and negative ion mode. Additional detection was achieved using a Sedex 85 evaporative light scattering detector. LC was carried out using a Luna 3micron 30 x 4.6mm C18 column and a 2 mL/minute flow rate. The initial solvent system was 95% water containing 0.1% formic acid (solvent A) and 5% MeCN containing 0.1% formic acid (solvent B) for the first 0.3 minute followed by a gradient up to 5% solvent A and 95% solvent B over the next 4 min. The final solvent system was held constant for a further 1 minute.

Method C: Experiments were performed on a Waters Platform LC quadrupole mass spectrometer linked to a Hewlett Packard HP1100 LC system with diode array detector. The spectrometer had an electrospray source operating in positive and negative ion mode. Additional detection was achieved using a Sedex 85 evaporative light scattering detector. LC was carried out using a Phenomenex Luna 3micron 30 x 4.6mm C18 column and a 2 mL/minute flow rate. The initial solvent system was 95% water containing 0.1% formic acid (solvent A) and 5% MeCN containing 0.1% formic acid (solvent B) for the first 0.5 minute followed by a gradient up to 5% solvent A and 95% solvent B over the next 4 min. The final solvent system was held constant for a further 1 minute.
Method D: Experiments were performed on a Waters ZQ quadrupole mass spectrometer linked to a Hewlett Packard HP1100 LC system with quaternary pump and PDA detector. The spectrometer had an electrospray source operating in positive and negative ion mode. Additional detection was achieved using a Sedex 65 evaporative light scattering detector. LC was carried out using a Phenomenex Luna 3micron 30 x 4.6mm C18 column and a 2 mL/minute flow rate. The initial solvent system was 95% water containing 0.1% formic acid (solvent A) and 5% MeCN containing 0.1% formic acid (solvent B) for the first 0.3 minute followed by a gradient up to 5% solvent A and 95% solvent B over the next 4 min. The final solvent system was held constant for a further 1 minute.

Method E: Experiments were performed on a Waters Micromass ZQ2000 quadrupole mass spectrometer linked to a Waters Acquity UPLC system with a PDA UV detector. The spectrometer had an electrospray source operating in positive and negative ion mode. LC was carried out using an Acquity BEH 1.7micron C18 column, an Acquity BEH Shield 1.7micron RP18 column or an Acquity HST 1.8micron column. Each column has dimensions of 100 x 2.1mm and was maintained at 40°C with a flow rate of 0.4 mL/minute. The initial solvent system was 95% water containing 0.1% formic acid (solvent A) and 5% MeCN containing 0.1% formic acid (solvent B) for the first 0.4 minute followed by a gradient up to 5% solvent A and 95% solvent B over the next 5.2 min. The final solvent system was held constant for a further 0.8 min.

NMR Data
The NMR experiments herein were carried out using a Varian Unity Inova spectrometer with standard pulse sequences, operating at 400 MHz at ambient temperature. Chemical shifts (δ) are reported in parts per million (ppm) downfield from tetramethylsilane (TMS), which was used as internal standard. CDCl₃ (deuterated chloroform), CD₃OD (methanol-d) or DMSO-de (deuterated DMSO, dimethyl-d6 sulfoxide) was used as solvent.

The values of acid content (e.g. formic acid or acetic acid) in the compounds as provided herein, are those obtained experimentally and may vary when using different analytical methods. The content of formic acid or acetic acid reported herein was determined by H NMR integration. Compounds with an acid content of below 0.5 equivalents may be considered as free bases.
Compound 3
\[\text{H} \text{ NMR (400 MHz, CDCl}_3\text{)} \delta \text{ ppm: } 7.75 \text{ (s, 2H), 7.34-7.28 (m, 2H), 7.10 \text{ (s, 1H), 6.08 (br. s, 1H), 4.18 (q, J = 7.3 Hz, 2H), 2.38 (s, 3H), 1.64 (s, 6H), 1.48 (t, J = 7.3 Hz, 3H).} \]
LCMS (Method E): \(R_t = 3.89 \text{ min, m/z } [\text{M+H}]^+ = 308. \)

Compound 4

\[\text{H} \text{ NMR (400 MHz, CDCl}_3\text{)} \delta \text{ ppm: } 12.25 \text{ (s, 1H), 7.91 \text{ (s, 1H), 7.73 \text{ (s, 1H), 7.31 \text{ (s, 2H), 7.29 \text{ (s, 1H), 4.20 (q, J = 7.3 Hz, 2H), 1.64 (s, 6H), 1.49 (t, J = 7.3 Hz, 3H).}} \]
LCMS (Method E): \(R_t = 4.52 \text{ min, m/z } [\text{M+H}]^+ = 362. \)

Compound 5

\[\text{H} \text{ NMR (400 MHz, DMSO-}d_6\text{)} \delta \text{ ppm: } 12.86 \text{ (s, 1H), 8.05 \text{ (s, 1H), 7.82 \text{ (s, 1H), 7.78 (d, J = 1.1 Hz, 1H), 7.68 \text{ (s, 1H), 7.53 (d, J = 8.6 Hz, 1H), 7.18 (dd, J = 1.4, 8.6 Hz, 1H), 5.36 \text{ (s, 1H), 4.15 (d, J = 7.1 Hz, 2H), 3.87-3.80 (m, 1H), 3.68-3.61 (m, 2H), 3.50-3.45 (m, 1H), 2.81-2.67 (m, 1H), 1.96-1.86 (m, 1H), 1.68-1.58 (m, 1H), 1.49 (s, 6H).}} \]
LCMS (Method E): \(R_t = 3.57 \text{ min, m/z } [\text{M+H}]^+ = 350. \)

Compound 6

\[\text{H} \text{ NMR (400 MHz, DMSO-}d_6\text{)} \delta \text{ ppm: } 12.84 \text{ (s, 1H), 8.07 \text{ (s, 1H), 7.77 \text{ (s, 1H), 7.75 (d, J = 1.0 Hz, 1H), 7.64 \text{ (s, 1H), 7.53 (d, J = 8.6 Hz, 1H), 7.17 (dd, J = 1.4, 8.6 Hz, 1H), 5.35 \text{ (s, 1H), 4.62 (dd, J = 6.2, 7.7 Hz, 2H), 4.47 (d, J = 7.2 Hz, 2H), 4.38 (t, J = 6.2 Hz, 2H), 3.50-3.39 (m, 1H), 1.47 (s, 6H).}} \]
LCMS (Method E): \(R_t = 3.31 \text{ min, m/z } [\text{M+H}]^+ = 336. \)

Compound 7

\[\text{H} \text{ NMR (400 MHz, DMSO-}d_6\text{)} \delta \text{ ppm: } 12.84 \text{ (s, 1H), 8.07 \text{ (s, 1H), 7.80 \text{ (s, 1H), 7.75 (d, J = 0.9 Hz, 1H), 7.58 \text{ (s, 1H), 7.48 (d, J = 8.6 Hz, 1H), 7.15 (dd, J = 1.4, 8.6 Hz, 1H), 5.35 \text{ (s, 1H), 4.32 (t, J = 5.2 Hz, 2H), 3.66 (t, J = 5.3 Hz, 2H), 3.21 \text{ (s, 3H), 1.47 (s, 6H).}} \]
LCMS (Method E): \(R_t = 3.60 \text{ min, m/z } [\text{M+H}]^+ = 324. \)

Compound 8

\[\text{H} \text{ NMR (400 MHz, DMSO-}d_6\text{)} \delta \text{ ppm: } 12.82 \text{ (s, 1H), 8.08 \text{ (s, 1H), 7.81 \text{ (s, 1H), 7.75 (d, J = 2.4 Hz, 2H), 7.50 (d, J = 8.6 Hz, 1H), 7.15 (dd, J = 1.4, 8.6 Hz, 1H), 5.35 \text{ (s, 1H), 4.81-4.70 (m, 1H), 1.45(s, 6H), 1.43 (d, J = 6.7 Hz, 6H).}} \]
LCMS (Method E): \(R_t = 4.08 \text{ min, m/z } [\text{M+H}]^+ = 308. \)
Compound 9

\(^{1}H\) NMR (400 MHz, DMSO-\(d_{6}\)) \(\delta\) ppm: 12.83 (s, 1H), 8.03 (s, 1H), 7.78 (s, 1H), 7.75 (d, \(J = 0.9\) Hz, 1H), 7.63 (s, 1H), 7.47 (d, \(J = 8.5\) Hz, 1H), 7.16 (dd, \(J = 1.4, 8.5\) Hz, 1H), 5.35 (s, 1H), 4.19 (q, \(J = 7.2\) Hz, 2H), 1.47 (s, 6H), 1.37 (t, \(J = 7.2\) Hz, 3H).

LCMS (Method E): \(R_t = 3.93\) min, \(m/z [M+H]^+ = 294\).

Compound 10

\(^{1}H\) NMR (400 MHz, DMSO-\(d_{6}\)) \(\delta\) ppm: 12.83 (s, 1H), 8.05 (s, 1H), 7.78 (s, 1H), 7.73 (d, \(J = 1.0\) Hz, 1H), 7.52 (d, \(J = 8.9\) Hz, 2H), 7.13 (dd, \(J = 1.4, 8.6\) Hz, 1H), 5.34 (s, 1H), 4.66 (s, 1H), 4.05 (s, 2H), 1.47 (s, 6H), 1.10 (s, 6H).

LCMS (Method E): \(R_t = 3.45\) min, \(m/z [M+H]^+ = 338\).

Compound 11

\(^{1}H\) NMR (400 MHz, DMSO-\(d_{6}\)) \(\delta\) ppm: 12.83 (s, 1H), 8.06 (br. s, 1H), 7.80 (br. s, 1H), 7.75 (d, \(J = 1.0\) Hz, 1H), 7.59 (s, 1H), 7.46 (d, \(J = 8.5\) Hz, 1H), 7.15 (dd, \(J = 1.4, 8.5\) Hz, 1H), 5.35 (s, 1H), 4.90 (t, \(J = 5.3\) Hz, 1H), 4.20 (t, \(J = 5.4\) Hz, 2H), 3.72 (q, \(J = 5.5\) Hz, 2H), 1.47 (s, 6H).

LCMS (Method E): \(R_t = 3.07\) min, \(m/z [M+H]^+ = 310\).

Compound 12

\(^{1}H\) NMR (400 MHz, DMSO-\(d_{6}\)) \(\delta\) ppm: 12.83 (s, 1H), 8.07 (br. s, 1H), 7.78 (br. s, 1H), 7.75 (d, \(J = 0.9\) Hz, 1H), 7.55 (s, 1H), 7.42 (d, \(J = 8.6\) Hz, 1H), 7.17 (dd, \(J = 1.4, 8.5\) Hz, 1H), 5.34 (s, 1H), 3.78 (s, 3H), 1.47 (s, 6H).

LCMS (Method E): \(R_t = 3.65\) min, \(m/z [M+H]^+ = 280\).

Compound 13

\(^{1}H\) NMR (400 MHz, DMSO-\(d_{6}\)) \(\delta\) ppm: 12.80 (s, 1H), 11.32 (d, \(J = 1.6\) Hz, 1H), 8.06 (s, 1H), 7.78 (s, 1H), 7.77 (s, 1H), 7.76 (d, \(J = 3.5\) Hz, 1H), 7.65 (d, \(J = 3.3\) Hz, 1H), 7.58 (d, \(J = 2.3\) Hz, 1H), 7.38 (d, \(J = 8.4\) Hz, 1H), 7.13 (dd, \(J = 1.5, 8.5\) Hz, 1H), 6.89 (s, 1H), 1.88 (s, 3H).

LCMS (Method E): \(R_t = 3.22\) min, \(m/z [M+H]^+ = 335\).

Compound 14

\(^{1}H\) NMR (400 MHz, DMSO-\(d_{6}\)) \(\delta\) ppm: 12.80 (br. s, 1H), 11.26 (d, \(J = 1.5\) Hz, 1H), 8.07 (br. s, 1H), 7.81 (br. s, 1H), 7.76 (s, 1H), 7.57 (d, \(J = 2.4\) Hz, 1H), 7.36 (d, \(J = 8.4\) Hz, 1H), 7.11 (dd, \(J = 1.5, 8.4\) Hz, 1H), 5.20 (s, 1H), 1.96-1.84 (m, 4H), 1.79-1.62 (m, 4H).

LCMS (Method E): \(R_t = 3.62\) min, \(m/z [M+H]^+ = 292\).
Compound 15

1H NMR (400 MHz, DMSO-d_6) δ ppm: 8.14 (s, 1H), 7.66-7.58 (m, 3H), 5.40 (s, 1H), 4.44-4.35 (m, 1H), 3.06 (d, $J = 11.6$ Hz, 2H), 2.47-2.39 (m, 3H), 1.89-1.87 (m, 2H), 1.60-1.51 (m, 1H), 1.35-1.26 (m, 1H), 0.48-0.42 (m, 2H), 0.35-0.29 (m, 2H).

LCMS (Method E): $R_t = 2.80$ min, m/z [M+H]$^+$ = 447/449.

Compound 16

1H NMR (400 MHz, DMSO-d_6) δ ppm: 13.18 (s, 1H), 7.54 (d, $J = 7.1$ Hz, 1H), 7.46 (d, $J = 10.9$ Hz, 1H), 6.51 (s, 1H), 5.43 (s, 1H), 4.23 (q, $J = 7.1$ Hz, 2H), 1.47 (s, 6H), 1.19 (t, $J = 7.1$ Hz, 3H).

LCMS (Method E): $R_t = 3.87$ min, m/z [M+H]$^+$ = 314.

Compound 17

1H NMR (400 MHz, DMSO-d_6) δ ppm: 13.16 (s, 1H), 8.22 (s, 1H), 7.64 (d, $J = 7.0$ Hz, 1H), 7.61 (s, 1H), 7.45 (d, $J = 10.7$ Hz, 1H), 5.30 (s, 1H), 4.22 (t, $J = 6.8$ Hz, 2H), 3.24 (t, $J = 5.9$ Hz, 2H), 3.21 (s, 3H), 2.00-1.91 (m, 2H), 1.50 (s, 3H), 1.16-1.08 (m, 1H), 0.59-0.53 (m, 1H), 0.46-0.36 (m, 3H).

LCMS (Method E): $R_t = 4.54$ min, m/z [M+H]$^+$ = 416/418.

Compound 18

1H NMR (400 MHz, DMSO-d_6) δ ppm: 13.17 (s, 1H), 8.23 (s, 1H), 7.66 (d, $J = 7.0$ Hz, 1H), 7.62 (s, 1H), 7.45 (d, $J = 10.8$ Hz, 1H), 5.41 (s, 1H), 4.22 (t, $J = 6.8$ Hz, 2H), 3.24 (t, $J = 6.0$ Hz, 2H), 3.21 (s, 3H), 2.00-1.91 (m, 2H), 1.47 (s, 6H).

LCMS (Method E): $R_t = 4.23$ min, m/z [M+H]$^+$ = 390/392.

Compound 19

1H NMR (400 MHz, DMSO-d_6) δ ppm: 13.15 (s, 1H), 8.16 (s, 1H), 7.67 (s, 1H), 7.62-7.57 (m, 2H), 5.29 (s, 1H), 4.39-4.30 (m, 1H), 2.88 (d, $J = 11.5$ Hz, 2H), 2.22 (s, 3H), 2.18-2.09 (m, 2H), 2.02-1.89 (m, 4H), 1.50 (s, 3H), 1.16-1.08 (m, 1H), 0.59-0.52 (m, 1H), 0.47-0.35 (m, 3H).

LCMS (Method E): $R_t = 2.89$ min, m/z [M+H]$^+$ = 441/443.

Compound 20

1H NMR (400 MHz, DMSO-d_6) δ ppm: 13.16 (s, 1H), 8.18 (s, 1H), 7.68 (s, 1H), 7.64-7.58 (m, 2H), 5.42 (s, 1H), 4.40-4.29 (m, 1H), 2.88 (d, $J = 11.5$ Hz, 2H), 2.22 (s, 3H), 2.18-2.05 (m, 2H), 2.02-1.87 (m, 4H), 1.47 (s, 6H).

LCMS (Method E): $R_t = 2.64$ min, m/z [M+H]$^+$ = 415/417.
Compound 1
'H NMR (400 MHz, DMSO-d$_6$) δ ppm: 13.16 (s, 1H), 8.21 (s, 1H), 7.65-7.62 (m, 2H), 7.47 (d, J = 10.7 Hz, 1H), 5.30 (s, 1H), 4.61(t, J = 4.9 Hz, 1H), 4.23 (t, J = 6.8 Hz, 2H), 3.37 (q, J = 5.7 Hz, 2H), 1.92-1.83 (m, 2H), 1.50 (s, 3H), 1.16-1.08 (m, 1H), 0.59-0.53 (m, 1H).
LCMS (Method E): R_t = 3.78 min, m/z [M+H]$^+$ = 402/404.

Compound 22
'H NMR (400 MHz, DMSO-d$_6$) δ ppm: 13.16 (s, 1H), 8.23 (s, 1H), 7.66 (d, J = 7.0 Hz, 1H), 7.64 (s, 1H), 7.48 (d, J = 10.7 Hz, 1H), 5.42 (s, 1H), 4.62 (t, J = 4.6 Hz, 1H), 4.23 (t, J = 6.9 Hz, 2H), 3.42-3.35 (m, 2H), 1.93-1.84 (m, 2H), 1.48 (s, 3H).
LCMS (Method E): R_t = 3.48 min, m/z [M+H]$^+$ = 376/378.

Compound 23
'H NMR (400 MHz, CD$_3$OD) δ ppm: 7.94 (s, 1H), 7.60 (d, J = 1.4 Hz, 1H), 7.54 (s, 1H), 7.21 (d, J = 1.3 Hz, 1H), 4.62 (q, J = 7.3 Hz, 2H), 1.57 (s, 6H), 1.47 (t, J = 7.1 Hz, 3H).
LCMS (Method E): R_t = 4.88 min, m/z [M+H]$^+$ = 362/364.

Compound 24
'H NMR (400 MHz, CD$_3$OD) δ ppm: 7.95 (s, 1H), 7.66 (d, J = 6.7 Hz, 1H), 7.53 (s, 1H), 7.22 (d, J = 10.3 Hz, 1H), 4.20 (q, J = 7.3 Hz, 2H), 1.57 (s, 6H), 1.44 (t, J = 7.3 Hz, 3H).
LCMS (Method E): R_t = 4.31 min, m/z [M+H]$^+$ = 346/348.

Compound 25
'H NMR (400 MHz, CD$_3$OD) δ ppm: 7.94 (s, 1H), 7.53 (s, 1H), 7.43 (dd, J = 1.4, 5.7 Hz, 1H), 4.36 (q, J = 7.2 Hz, 2H), 1.57 (s, 6H), 1.46 (t, J = 7.1 Hz, 3H).
LCMS (Method E): R_t = 4.64 min, m/z [M+H]$^+$ = 364/366.

Compound 26
'H NMR (400 MHz, CD$_3$OD) δ ppm: 7.90 (s, 2H), 7.57 (d, J = 1.2 Hz, 1H), 7.44 (s, 1H), 6.90 (dd, J = 1.1, 13.3 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H), 1.56 (s, 6H), 1.44 (t, J = 7.1 Hz, 3H).
LCMS (Method E): R_t = 4.13 min, m/z [M+H]$^+$ = 312.
Compound 27
\(^1\)H NMR (400 MHz, CD\(_3\)OD) \(\delta\) ppm: 8.00 (s, 1H), 7.90 (br. s, 2H), 7.58 (s, 1H), 7.56 (s, 1H), 4.36 (q, \(J = 7.1\) Hz, 2H), 1.58 (s, 6H), 1.42 (t, \(J = 7.1\) Hz, 3H).
LCMS (Method E): \(R_t = 4.61\) min, m/z [M+H]^+ = 362.

Compound 28
\(^1\)H NMR (400 MHz, CD\(_3\)OD) \(\delta\) ppm: 8.05 (d, \(J = 1.5\) Hz, 1H), 7.98-7.85 (m, 2H), 7.60 (s, 2H), 4.57 (q, \(J = 7.2\) Hz, 2H), 1.58 (s, 6H), 1.52 (t, \(J = 7.2\) Hz, 3H).
LCMS (Method E): \(R_t = 3.85\) min, m/z [M+H]^+ = 319.

Compound 33 (Formic acid 1.0 equivalents)
\(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) ppm: d 13.22 (s, 1H), 9.51 (s, 1H), 8.26 (s, 1H), 7.77 (d, \(J = 3.2\) Hz, 1H), 7.72 (d, \(J = 6.9\) Hz, 1H), 7.68 (d, \(J = 3.3\) Hz, 1H), 7.64 (d, \(J = 6.2\) Hz, 1H), 7.00 (s, 1H), 4.77-4.67 (m, 1H), 3.62 (d, \(J = 12.1\) Hz, 2H), 3.22-3.12 (m, 2H), 2.88 (s, 3H), 2.29-2.17 (m, 4H), 1.90 (s, 3H).
LCMS (Method E): \(R_t = 2.68\) min, m/z [M+H]^+ = 484/486.

Compound 34 (Formic acid 1.0 equivalents)
\(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) ppm: 13.23 (s, 1H), 9.51 (br. s, 1H), 8.26 (s, 1H), 7.73 (d, \(J = 6.6\) Hz, 1H), 7.69-7.62 (m, 2H), 6.48 (s, 1H), 6.35 (d, \(J = 0.9\) Hz, 1H), 4.76-4.67 (m, 1H), 3.63-3.57 (m, 1H), 2.86 (s, 3H), 2.41 (d, \(J = 0.8\) Hz, 3H), 2.28-2.23 (m, 4H), 1.81 (s, 3H).
LCMS (Method E): \(R_t = 2.77\) min, m/z [M+H]^+ = 482/484.

Compound 35 (Formic acid 1.0 equivalents)
\(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) ppm: 13.23 (s, 1H), 9.54 (s, 1H), 8.26 (s, 1H), 7.73 (d, \(J = 6.8\) Hz, 1H), 7.71-7.64 (m, 2H), 6.68 (s, 1H), 4.77-4.68 (m, 1H), 3.62 (d, \(J = 11.5\) Hz, 2H), 3.19 (br. s, 2H), 2.88 (s, 3H), 2.62 (s, 3H), 2.28-2.20 (m, 4H), 1.85 (s, 3H).
LCMS (Method E): \(R_t = 2.58\) min, m/z [M+H]^+ = 483/485.

Compound 36 (Formic acid 0.5 equivalents)
\(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) ppm: 13.18 (br. s, 1H), 8.20 (s, 1.5H), 7.69 (s, 1H), 7.66-7.64 (m, 1H), 7.63-7.59 (m, 1H), 5.29 (br. s, 1H), 4.42-4.32 (m, 1H), 2.95-2.87 (m, 2H), 2.25 (s, 3H), 2.21-2.12 (m, 2H), 2.03-1.88 (m, 8H), 1.77-1.66 (m, 4H).
LCMS (Method E): \(R_t = 2.93\) min, m/z [M+H]^+ = 441/443.
Compound 37
LCMS (Method E): R_t = 2.50 min, m/z [M+H]⁺ = 479/481

Pharmacological Part

5 Biological assay A

Inhibition of recombinant human NF-kappaB-inducing kinase (NIK/MAP3K14) activity

Assay buffer was 50 mM Tris pH 7.5 containing 1 mM EGTA (ethylene glycol tetraacetic acid), 1 mM DTT (dithiothreitol), 0.1 mM Na₃VO₄, 5 mM MgCl₂, 0.01% Tween[®] 20. Assays were carried out in 384 well Mesoscale high binding plates which had been coated with myelin basic protein (MBP) and blocked with bovine serum albumin to prevent non-specific protein binding. All compounds tested were dissolved in dimethyl sulfoxide (DMSO) and further dilutions were made in assay buffer. Final DMSO concentration was 1% (v/v) in assays. Incubations consisted of compound (1% DMSO in control and blank wells), 25 µM Adenosine-5’-triphosphate (ATP), and 10 nM NIK/MAP3K14 substituting enzyme with buffer in the blank wells. Incubations were carried out for 1 h at 25°C and were followed by washing and sequential incubation with rabbit anti-phospho-MBP and anti-rabbit Ig Sulfotag antibody before reading bound Sulfotag on a Mesoscale Discovery. Signal obtained in the wells containing blank samples was subtracted from all other wells and IC₅₀'s were determined by fitting a sigmoidal curve to % inhibition of control versus Logio compound concentration.

Biological assay A2

Inhibition of auto-phosphorylation of recombinant human NF-kappaB-inducing kinase (NIK/MAP3K14) activity (AlphaScreen[®])

NIK/MAP3K14 auto-phosphorylation activity was measured using the AlphaScreen[®] (ascreen) format (Perkin Elmer). All compounds tested were dissolved in dimethyl sulfoxide (DMSO) and further dilutions were made in assay buffer. Final DMSO concentration was 1% (v/v) in assays. Assay buffer was 50 mM Tris pH 7.5 containing 1 mM EGTA (ethylene glycol tetraacetic acid), 1 mM DTT (dithiothreitol), 0.1 mM Na₃VO₄, 5 mM MgCl₂, 0.01% Tween[®] 20. Assays were carried out in 384 well Alphaplates (Perkin Elmer). Incubations consisted of compound, 25 microM Adenosine-5’-triphosphate (ATP), and 0.2 nM NIK/MAP3K14. Incubations were initiated by addition of GST-tagged NIK/MAP3K14 enzyme, carried out for 1 h at 25°C and terminated by addition of stop buffer containing anti-phospho-IKK Ser176/180 antibody. Protein A Acceptor and Glutathione-Donor beads were added before reading
using an EnVision Multilabel Plate Reader (Perkin Elmer). Signal obtained in the wells containing blank samples was subtracted from all other wells and IC50's were determined by fitting a sigmoidal curve to % inhibition of control versus Logio compound concentration.

Biological assay B

Effect of compounds on P-IKKα levels in L363 cells

All compounds tested were dissolved in DMSO and further dilutions were made in culture medium. Final DMSO concentration was 1% (v/v) in cell assays. The human L363 cells (ATCC) were cultured in RPMI 1640 medium supplemented with GlutaMax and 10% fetal calf serum (PAA). Cells were routinely maintained at densities of 0.2x10⁶ cells per ml - 1x10⁶ cells per ml at 37°C in a humidified 5% CO2 atmosphere. Cells were passaged twice a week splitting back to obtain the low density. Cells were seeded in 96 well plates (Nunc 167008) at 2x10⁶ per ml media in a volume of 75 µl per well plus 25 µl 1 µg/ml recombinant human B-cell activating factor (BAFF/BLyS/TNFSF 13B). Seeded cells were incubated at 37°C in a humidified 5% CO2 atmosphere for 24 hr. Drugs and/or solvents were added (20 µl) to a final volume of 120 µl. Following 2 hr treatment plates were removed from the incubator and cell lysis was achieved by the addition of 30 µl 5x lysis buffer followed by shaking on a plate shaker at 4°C for 10 min. At the end of this incubation lysed cells were centrifuged at 800 x g for 20 min at 4°C and the lysate was assessed for P-IKKα levels by sandwich immuno-assay carried out in anti-rabbit antibody coated Mesoscale plates. Within an experiment, the results for each treatment were the mean of 2 replicate wells. For initial screening purposes, compounds were tested using an 8 point dilution curve (serial 1:3 dilutions). For each experiment, controls (containing MG132 and BAFF but no test drug) and a blank incubation (containing MG132 and BAFF and 10µM ADS 1251 17, a test concentration known to give full inhibition) were run in parallel. The blank incubation value was subtracted from all control and sample values. To determine the IC₅₀ a sigmoidal curve was fitted to the plot of % inhibition of control P-IKKα levels versus Logio compound concentration.

Biological assay C

Determination of antiproliferative activity on LP-1, L-363 and JJN-3 cells

All compounds tested were dissolved in DMSO and further dilutions were made in culture medium. Final DMSO concentration was 0.3% (v/v) in cell proliferation assays. Viability was assessed using CellTiter-Glo cell viability assay kit (Promega). The human LP-1, L-363 and JJN-3 cells (DSMZ) were cultured in RPMI 1640 medium
supplemented with 2 mM L-glutamine, and 10% fetal calf serum (PAA). Cells were routinely kept as suspension cells at 37°C in a humidified 5% CO₂ atmosphere. Cells were passaged at a seeding density of 0.2x10⁶/ml twice a week. Cells were seeded in black tissue culture treated 96-well plates (Perkin Elmer). Densities used for plating ranged from 2,000 to 6,000 cells per well in a total volume of 75 μl medium. After twenty four hours, drugs and/or solvents were added (25 μl) to a final volume of 100 μl. Following 72 hr of treatment plates were removed from the incubator and allowed to equilibrate to room temperature for approx 10 min. 100 μl CellTiter-Glo reagent was added to each well that was then covered (Perkin Elmer Topseal) and shaken on plate shaker for 10 min. Luminescence was measured on a HTS Topcount (Perkin Elmer). Within an experiment, the results for each treatment were the mean of 2 replicate wells. For initial screening purposes, compounds were tested using a 9 point dilution curve (serial 1:3 dilutions). For each experiment, controls (containing no drug) and a blank incubation (containing cells read at the time of compound addition) were run in parallel. The blank value was subtracted from all control and sample values. For each sample, the mean value for cell growth (in relative light units) was expressed as a percentage of the mean value for cell growth of the control.

Data for the compounds of the invention in the above assays are provided in Table 14 (the values in Table 15 are averaged values over all measurements on all batches of a compound).

Table 15:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Biochemical (MSD MBP) IC₅₀ (nM)</th>
<th>Alpha-Screen IC₅₀ (nM)</th>
<th>IKKa Cellular IC₅₀ (nM)</th>
<th>JJN-3 EC₅₀ (nM)</th>
<th>L-363 EC₅₀ (nM)</th>
<th>LP-1 EC₅₀ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>22</td>
<td>122</td>
<td>432</td>
<td>245</td>
<td>320</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>43</td>
<td>87</td>
<td>733</td>
<td>990</td>
<td>1420</td>
</tr>
<tr>
<td>3</td>
<td>71</td>
<td>35</td>
<td>139</td>
<td>1858</td>
<td>3124</td>
<td>3163</td>
</tr>
<tr>
<td>4</td>
<td>581</td>
<td>350</td>
<td>n.c.</td>
<td>n.c.</td>
<td>n.c.</td>
<td>n.c.</td>
</tr>
<tr>
<td>5</td>
<td>38</td>
<td>25</td>
<td>145</td>
<td>1408</td>
<td>1828</td>
<td>1886</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>66</td>
<td>73</td>
<td>1082</td>
<td>704</td>
<td>1951</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>73</td>
<td>175</td>
<td>1408</td>
<td>1175</td>
<td>2179</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>14</td>
<td>18</td>
<td>218</td>
<td>221</td>
<td>219</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>43</td>
<td>54</td>
<td>418</td>
<td>332</td>
<td>298</td>
</tr>
<tr>
<td>Compound</td>
<td>Biochemical (MSD MBP) IC$_{50}$ (nM)</td>
<td>Alpha-Screen IC50 (nM)</td>
<td>IKKa Cellular IC$_{50}$ (nM)</td>
<td>JNJ-3 EC$_{50}$ (nM)</td>
<td>L-363 EC$_{50}$ (nM)</td>
<td>LP-1 EC$_{50}$ (nM)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>10</td>
<td>38</td>
<td>110</td>
<td>111</td>
<td>723</td>
<td>759</td>
<td>947</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>65</td>
<td>83</td>
<td>394</td>
<td>340</td>
<td>483</td>
</tr>
<tr>
<td>12</td>
<td>41</td>
<td>65</td>
<td>38</td>
<td>754</td>
<td>700</td>
<td>769</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>7</td>
<td>16</td>
<td>704</td>
<td>5518</td>
<td>9907</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>28</td>
<td>300</td>
<td>2199</td>
<td>4051</td>
<td>5438</td>
</tr>
<tr>
<td>15</td>
<td>n.c.</td>
<td>71</td>
<td>n.c.</td>
<td>608</td>
<td>265</td>
<td>581</td>
</tr>
<tr>
<td>16</td>
<td>n.c.</td>
<td>8508</td>
<td>n.c.</td>
<td>n.c.</td>
<td>n.c.</td>
<td>14175</td>
</tr>
<tr>
<td>17</td>
<td>n.c.</td>
<td>183</td>
<td>n.c.</td>
<td>1517</td>
<td>3242</td>
<td>1397</td>
</tr>
<tr>
<td>18</td>
<td>n.c.</td>
<td>33</td>
<td>n.c.</td>
<td>706</td>
<td>1185</td>
<td>1514</td>
</tr>
<tr>
<td>19</td>
<td>n.c.</td>
<td>190</td>
<td>n.c.</td>
<td>811</td>
<td>632</td>
<td>749</td>
</tr>
<tr>
<td>20</td>
<td>n.c.</td>
<td>21</td>
<td>n.c.</td>
<td>61</td>
<td>43</td>
<td>111</td>
</tr>
<tr>
<td>21</td>
<td>n.c.</td>
<td>67</td>
<td>n.c.</td>
<td>1093</td>
<td>1932</td>
<td>3509</td>
</tr>
<tr>
<td>22</td>
<td>n.c.</td>
<td>11</td>
<td>32</td>
<td>255</td>
<td>430</td>
<td>1351</td>
</tr>
<tr>
<td>23</td>
<td>n.c.</td>
<td>204</td>
<td>n.c.</td>
<td>2738</td>
<td>5402</td>
<td>3612</td>
</tr>
<tr>
<td>24</td>
<td>n.c.</td>
<td>11</td>
<td>127</td>
<td>734</td>
<td>683</td>
<td>1578</td>
</tr>
<tr>
<td>25</td>
<td>n.c.</td>
<td>86</td>
<td>n.c.</td>
<td>2232</td>
<td>4346</td>
<td>3231</td>
</tr>
<tr>
<td>26</td>
<td>n.c.</td>
<td>51</td>
<td>n.c.</td>
<td>1571</td>
<td>1130</td>
<td>2212</td>
</tr>
<tr>
<td>27</td>
<td>n.c.</td>
<td>552</td>
<td>n.c.</td>
<td>n.c.</td>
<td>n.c.</td>
<td>n.c.</td>
</tr>
<tr>
<td>28</td>
<td>n.c.</td>
<td>554</td>
<td>n.c.</td>
<td>n.c.</td>
<td>n.c.</td>
<td>n.c.</td>
</tr>
<tr>
<td>29</td>
<td>n.c.</td>
<td>50</td>
<td>n.c.</td>
<td>375</td>
<td>176</td>
<td>758</td>
</tr>
<tr>
<td>30</td>
<td>n.c.</td>
<td>126</td>
<td>n.c.</td>
<td>379</td>
<td>201</td>
<td>397</td>
</tr>
<tr>
<td>31</td>
<td>n.c.</td>
<td>146</td>
<td>n.c.</td>
<td>606</td>
<td>436</td>
<td>731</td>
</tr>
<tr>
<td>32</td>
<td>n.c.</td>
<td>76</td>
<td>n.c.</td>
<td>437</td>
<td>310</td>
<td>407</td>
</tr>
<tr>
<td>33</td>
<td>n.c.</td>
<td>18</td>
<td>n.c.</td>
<td>624</td>
<td>875</td>
<td>1611</td>
</tr>
<tr>
<td>34</td>
<td>n.c.</td>
<td>42</td>
<td>n.c.</td>
<td>1385</td>
<td>1224</td>
<td>2451</td>
</tr>
<tr>
<td>35</td>
<td>n.c.</td>
<td>84</td>
<td>n.c.</td>
<td>1361</td>
<td>1093</td>
<td>4585</td>
</tr>
<tr>
<td>36</td>
<td>n.c.</td>
<td>n.c.</td>
<td>n.c.</td>
<td>1222</td>
<td>845</td>
<td>1213</td>
</tr>
<tr>
<td>Compound</td>
<td>Biochemical (MSD MBP) IC₅₀ (nM)</td>
<td>Alpha-Screen IC₅₀ (nM)</td>
<td>IKKa Cellular IC₅₀ (nM)</td>
<td>JJN-3 EC₅₀ (nM)</td>
<td>L-363 EC₅₀ (nM)</td>
<td>LP-1 EC₅₀ (nM)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>37</td>
<td>n.c.</td>
<td>162</td>
<td>n.c.</td>
<td>4467</td>
<td>2884</td>
<td>2512</td>
</tr>
</tbody>
</table>

n.c : not calculated

Prophetic composition examples

"Active ingredient" (a.i.) as used throughout these examples relates to a compound of Formula (I), including any tautomer or stereoisomeric form thereof, or a pharmaceutically acceptable addition salt, or a solvate thereof; in particular to any one of the exemplified compounds.

Typical examples of recipes for the formulation of the invention are as follows:

1. Tablets

<table>
<thead>
<tr>
<th>Active ingredient</th>
<th>5 to 50 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di-calcium phosphate</td>
<td>20 mg</td>
</tr>
<tr>
<td>Lactose</td>
<td>30 mg</td>
</tr>
<tr>
<td>Talcum</td>
<td>10 mg</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>5 mg</td>
</tr>
</tbody>
</table>

| Potato starch | ad 200 mg |

2. Suspension

An aqueous suspension is prepared for oral administration so that each milliliter contains 1 to 5 mg of active ingredient, 50 mg of sodium carboxymethyl cellulose, 1 mg of sodium benzoate, 500 mg of sorbitol and water ad 1 ml.

3. Injectable

A parenteral composition is prepared by stirring 1.5 % (weight/volume) of active ingredient in 0.9 % NaCl solution or in 10 % by volume propylene glycol in water.

4. Ointment

<table>
<thead>
<tr>
<th>Active ingredient</th>
<th>5 to 1000 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stearyi alcohol</td>
<td>3 g</td>
</tr>
<tr>
<td>Lanoline</td>
<td>5 g</td>
</tr>
<tr>
<td>White petroleum</td>
<td>15 g</td>
</tr>
<tr>
<td>Water</td>
<td>ad 100 g</td>
</tr>
</tbody>
</table>

In this Example, active ingredient can be replaced with the same amount of any of the compounds according to the present invention, in particular by the same amount of any of the exemplified compounds.
CLAIMS

1. A compound of Formula (I):

 \[
 \text{HO} + R^1 \quad R^2 \quad \overset{\text{C}}{\text{C}} \quad R^{4\text{a}} \quad R^{4\text{b}} \quad R^3 \quad R^8 \quad R^7 \quad R^6 \quad R^5 \quad \text{Het} \quad N \quad \text{Het} \quad \text{NH}
 \]

 or a tautomer or a stereoisomeric form thereof, wherein

 \(R^1 \) is selected from the group of hydrogen; \(\text{Ci}_{1-4} \text{alkyl} \); and \(\text{Ci}_{1-4} \text{alkyl} \) substituted with one or more fluoro substituents;

 \(R^2 \) is selected from the group of hydrogen; \(\text{Ci}_{1-4} \text{alkyl} \); \(\text{Ci}_{1-4} \text{alkyl} \) substituted with one or more fluoro substituents; \(\text{C}_{3-6} \text{cycloalkyl} \); and \(\text{Het}^1 \);

 \(\text{Het}^1 \) is a heteroaryl selected from the group of thienyl, thiazolyl, pyrrolyl, oxazolyl, pyrazolyl, imidazolyl, oxadiazolyl, isoxazolyl, isothiazolyl, pyridinyl and pyrimidinyl each of which may be optionally substituted with one or two substituents independently selected from halogen and \(\text{Ci}_{1-4} \text{alkyl} \);

 or \(R^1 \) and \(R^2 \) together with the carbon atom to which they are attached form a \(\text{C}_{3-6} \text{cycloalkyl} \) or a \(\text{Het}^2 \) group; wherein

 \(\text{Het}^2 \) is a heterocyclyl selected from the group of piperidinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetanyl, each of which may be optionally substituted with one \(\text{Ci}_{1-4} \text{alkyl} \); or \(\text{Het}^2 \) is 2-oxo-3-pyrrolidinyl optionally substituted with one \(\text{Ci}_{1-4} \text{alkyl} \);

 \(R^3 \) is selected from the group of hydrogen; halogen; cyano; \(\text{Ci}_{1-4} \text{alkyl} \); and \(\text{Ci}_{1-4} \text{alkyl} \) substituted with one or more fluoro substituents;

 \(R^{4\text{a}} \) is selected from the group of hydrogen and halogen;

 \(R^{4\text{b}} \) is selected from the group of hydrogen and halogen;
R5 is selected from the group of hydrogen; cyano; C\textsubscript{1-4}alkyl; C\textsubscript{1-4}alkyl substituted with one or more fluoro substituents; C\textsubscript{1-4}alkyl substituted with one substituent selected from the group of \(-\text{NR}^{5a}\text{R}^{5b}\), \(-\text{OCi}_{1-4}\)alkyl and Het3; wherein

R5a and R5b are each independently selected from the group of hydrogen and C\textsubscript{1-4}alkyl;

Het3 is a heterocyclyl selected from the group of piperidinyl, morpholinyl, piperazinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetanyl, each of which may be optionally substituted with one or two substituents selected from fluoro, C\textsubscript{1-4}alkyl, \(-\text{OCi}_{1-4}\)alkyl. C\textsubscript{3-7}cycloalkyl and C\textsubscript{1-4}alkyl substituted with one or more fluoro substituents;

R6 is selected from the group of hydrogen and halogen;

R7 is selected from the group of hydrogen; halogen; cyano; C\textsubscript{1-4}alkyl; C\textsubscript{1-4}alkyl substituted with one or more fluoro substituents; and \(-\text{NR}^{7a}\text{R}^{7b}\); wherein

R7a and R7b are each independently selected from hydrogen and C\textsubscript{1-4}alkyl;

R8 is selected from the group of hydrogen; \(-\text{SO}^{2}\), C\textsubscript{3-6}cycloalkyl; Het4, R9;

C\textsubscript{1-6}alkyl optionally substituted with one or more substituents independently selected from the group of (i) Ar1 and (ii) Het5; and

C\textsubscript{2-6}alkyl substituted with one or more substituents independently selected from the group of

(iii) fluoro,

(iv) \(-\text{NR}^{8a}\text{R}^{8b}\),
(v) \(-\text{NR}^{8c}\text{C}(=\text{O})\text{R}^{8d}\),
(vi) \(-\text{NR}^{8c}\text{C}(=\text{O})\text{NR}^{8a}\text{R}^{8b}\),
(vii) \(-\text{NR}^{8c}\text{C}(=\text{O})\text{OR}^{8e}\),
(viii) \(-\text{NR}^{8c}\text{S}(=\text{O})\text{NR}^{8a}\text{R}^{8b}\),
(ix) \(-\text{NR}^{8c}\text{S}(=\text{O})\text{R}^{8d}\),
(x) \(-\text{OR}^{8f}\),
(xi) \(-\text{OC}(=\text{O})\text{NR}^{8a}\text{R}^{8b}\),
(xii) \(-\text{C}(=\text{O})\text{NR}^{8a}\text{R}^{8b}\),
(xiii) \(-\text{S}(=\text{O})\text{R}^{8d}\), and
(xiv) \(-\text{S}(=\text{O})\text{R}^{8a}\text{R}^{8b}\);

R8a, R8b, R8c and R8f are each independently selected from the group of hydrogen; C\textsubscript{1-4}alkyl; C\textsubscript{3-7}cycloalkyl; and C\textsubscript{2-6}alkyl substituted with one substituent selected from \(-\text{NR}^{8a}\text{R}^{8y}\), \(-\text{OH}\), and \(-\text{OCi}_{1-4}\)alkyl;
R^{8d} is selected from the group of C_{1-6}alkyl, which may be optionally substituted with one substituent selected from -NR^{8s}R^{8y}, -OH, and -OCi_{4}alkyl; and C_{3-6}cycloalkyl;

R^{8e} is selected from the group of C_{1-6}alkyl; C_{3-6}cycloalkyl; and C_{2-6}alkyl substituted with one substituent selected from -NR^{8s}R^{8y}, -OH, and -OCi_{4}alkyl;

wherein R^{8s} and R^{8y} are each independently selected from hydrogen and C_{1-4}alkyl;

R^{9} is C_{3-6}cycloalkyl optionally substituted with one or two substituents independently selected from fluoro, Ci_{4}alkyl, -OCi_{4}alkyl, Ci_{4}alkyl substituted with one -OCi_{4}alkyl, and Ci_{4}alkyl substituted with one or more fluoro substituents;

Ar^{1} is selected from the group of phenyl, thienyl, thiazolyl, pyrrolol, oxazolyl, pyrazolyl, imidazolyl, isoxazolyl, isothiazolyl, pyridinyl, pyrimidinyl, pyridazinyl and pyrazinyl, each of which may be optionally substituted with one or two substituents independently selected from halogen, cyano, Ci_{4}alkyl, Ci_{4}alkyl substituted with one or more fluoro substituents, -OCi_{4}alkyl, and -OCi_{4}alkyl substituted with one or more fluoro substituents;

Het^{4} is a heterocyclyl, bound through any available carbon atom, selected from the group of piperidinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetany, each of which may be optionally substituted with one or two substituents independently selected from fluoro, Ci_{4}alkyl, -OCi_{4}alkyl, C_{3-6}cycloalkyl, Ci_{4}alkyl substituted with one -OCi_{4}alkyl, Ci_{4}alkyl substituted with one or more fluoro substituents, and Ci_{4}alkyl substituted with one C_{3-6}cycloalkyl;

Het^{5} is a heterocyclyl selected from the group of morpholinyl, piperidinyl, pyrazinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetany, each of which may be optionally substituted with one or two substituents independently selected from fluoro, Ci_{4}alkyl, -OCi_{4}alkyl, C_{3-6}cycloalkyl, Ci_{4}alkyl substituted with one -OCi_{4}alkyl, Ci_{4}alkyl substituted with one or more fluoro substituents, and Ci_{4}alkyl substituted with one C_{3-6}cycloalkyl; or a pharmaceutically acceptable addition salt, or a solvate thereof.

2. The compound according to claim 1, wherein

R^{1} is selected from the group of hydrogen; Ci_{4}alkyl; and Ci_{4}alkyl substituted with one or more fluoro substituents;

R^{2} is selected from the group of hydrogen; Ci_{4}alkyl; Ci_{4}alkyl substituted with one or more fluoro substituents; C_{3-6}cycloalkyl; and Het^{1};
Het\(^1\) is a heteroaryl selected from the group of thienyl, thiazolyl, pyrrolyl, oxazolyl, pyrazolyl, imidazolyl, oxadiazolyl, isoxazolyl, and isothiazolyl, each of which may be optionally substituted with one or two substituents independently selected from halogen and Ci\(_4\)alkyl; or R\(^1\) and R\(^2\) together with the carbon atom to which they are attached form a C\(_{3-6}\)cycloalkyl; wherein

R\(^3\) is selected from the group of hydrogen; halogen; cyano; Ci\(_4\)alkyl; and Ci\(_4\)alkyl substituted with one or more fluoro substituents; R\(^4\) is selected from the group of hydrogen and halogen; R\(^4b\) is selected from the group of hydrogen and halogen; R\(^5\) is selected from the group of hydrogen; R\(^6\) is selected from the group of hydrogen; R\(^7\) is selected from the group of hydrogen; halogen; cyano; Ci\(_4\)alkyl; Ci\(_4\)alkyl substituted with one or more fluoro substituents; and -NR\(^a\) substituted with one or more fluoro substituents; and -NR\(^a\) substituted with one or more fluoro substituents; and -OR\(^8\) substituted with one or more fluoro substituents; R\(^8\) is selected from the group of hydrogen; halogen; cyano; Ci\(_4\)alkyl; Ci\(_4\)alkyl substituted with one or more fluoro substituents; and -OR\(^8\) substituted with one or more fluoro substituents; R\(^8\) is selected from the group of hydrogen and Ci\(_6\)alkyl; R\(^9\) is selected from the group of hydrogen; halogen; cyano; Ci\(_4\)alkyl; Ci\(_4\)alkyl substituted with one or more fluoro substituents; and -OR\(^8\) substituted with one or more fluoro substituents; R\(^9\) is selected from the group of hydrogen and Ci\(_6\)alkyl; R\(^9\) is selected from the group of phenyl, thienyl, thiazolyl, pyrrolyl, oxazolyl, pyrazolyl, imidazolyl, isoxazolyl, isothiazolyl, pyridinyl, pyrimidinyl, pyridazinyl and pyrazinyl, each of which may be optionally substituted with one or two substituents independently selected from halogen, cyano, Ci\(_4\)alkyl, Ci\(_4\)alkyl substituted with one or more fluoro substituents, -OCi\(_4\)alkyl, and -OCi\(_4\)alkyl substituted with one or more fluoro substituents; Het\(^4\) is a heterocyclol, bound through any available carbon atom, selected from the group of piperidinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetanyl, each of which may be optionally substituted with one or two substituents independently selected from fluoro, Ci\(_4\)alkyl, -OCi\(_4\)alkyl, C\(_3-6\)cycloalkyl, Ci\(_4\)alkyl substituted with one -OCi\(_4\)alkyl, and Ci\(_4\)alkyl substituted with one or more fluoro substituents; Het\(^5\) is a heterocyclol selected from the group of morpholmyl, piperidinyl, piperazinyl, tetrahydropyranyl, pyrrolidinyl, tetrahydrofuranyl, azetidinyl and oxetanyl, each of
which may be optionally substituted with one or two substituents independently selected from fluoro, Ci-4 alkyl, -OCi-4 alkyl, Ci-4 alkyl substituted with one -OCi-4 alkyl, and Ci-4 alkyl substituted with one or more fluoro substituents.

3. The compound according to claim 1, wherein
R^1 is selected from the group of Ci-4 alkyl;
R^2 is selected from the group of Ci-4 alkyl; C_{3-6} cycloalkyl; and Het^1;
Het^1 is a heteroaryl selected from the group of thiazolyl, oxadiazolyl, and isoxazolyl, each of which may be optionally substituted with one or two Ci-4 alkyl substituents;
or R^1 and R^2 together with the carbon atom to which they are attached form a C_{3-6} cycloalkyl;
R^3 is selected from the group of hydrogen; halogen; cyano; and Ci-4 alkyl substituted with one or more fluoro substituents;
R^{4a} is hydrogen;
R^{4b} is selected from the group of hydrogen and halogen;
R^5 is hydrogen;
R^6 is hydrogen;
R^7 is selected from the group of hydrogen; halogen; Ci-4 alkyl; Ci-4 alkyl substituted with one or more fluoro substituents; and -NR^7aR^7b; wherein
R^{7a} and R^{7b} are each independently selected from hydrogen;
R^8 is selected from the group of hydrogen; Het^4; Ci-6 alkyl optionally substituted with one or more Het^5 substituents; and C_{2-6} alkyl substituted with one or more -OR^8f substituents;
R^{8f} is selected from the group of hydrogen and Ci-6 alkyl;
Het^4 is a heterocyclil, bound through any available carbon atom, selected from the group of piperidinyl and azetidinyl, each of which are substituted with one or two substituents independently selected from Ci-4 alkyl and C_{3-6} cycloalkyl;
Het^5 is a heterocyclil selected from the group of tetrahydrofuranyl and oxetanyl.

4. The compound according to claim 1, wherein
R^1 is selected from the group of Ci-4 alkyl;
R^2 is selected from the group of Ci-4 alkyl; and Het^1;
Het^1 is thiazolyl;
R^3 is hydrogen;
R^{4a} is hydrogen;
R^{4b} is selected from the group of hydrogen and halogen;
R^5 is hydrogen;
R⁵ is hydrogen;
R⁷ is selected from the group of hydrogen and halogen;
R⁸ is selected from the group of hydrogen; Het⁴; Ci₄alkyl; and C₂₋₆alkyl substituted with one or more -OR⁸f substituents;
R⁹f is Ci₆alkyl;
Het⁴ is a heterocyclyl, bound through any available carbon atom, selected from the group of piperidinyl and azetidinyl, each of which are substituted on the nitrogen atom with one Ci₄alkyl.

5. The compound according to claim 1, wherein
R¹ is selected from the group of hydrogen; Ci₄alkyl; and Ci₄alkyl substituted with one or more fluoro substituents;
R² is selected from the group of hydrogen; Ci₄alkyl; Ci₄alkyl substituted with one or more fluoro substituents; C₃₋₆cycloalkyl; and Het¹.

6. The compound according to claim 1, wherein R¹ and R² together with the carbon atom to which they are attached form a C₃₋₆cycloalkyl or a Het² group.

7. The compound according to claim 1, wherein R⁸ is selected from the group of hydrogen; Het⁴; R⁹; Ci₄alkyl optionally substituted with one Het⁵; and C₂₋₆alkyl substituted with one or more substituents independently selected from the group of fluoro, -NR⁸aR⁸b, and -OR⁸f,
wherein R⁸a, R⁸b and R⁸f are each independently selected from the group of hydrogen and Cu.alkyl.

8. The compound according to any one of claims 1 to 7 wherein R³ is hydrogen; R⁴a is hydrogen; R⁵ is hydrogen; R⁶ is hydrogen.

9. The compound according to any one of claims 1 to 8 wherein R⁷ is selected from the group of halogen; Ci₄alkyl; and –NIK
10. The compound according to claim 1, wherein the compound is selected from tautomers and stereoisomeric forms thereof, and the pharmaceutically acceptable addition salts, and the solvates thereof.

11. A pharmaceutical composition comprising a compound as claimed in any one of claims 1 to 10 and a pharmaceutically acceptable carrier or diluent.

12. A compound as claimed in any one of claims 1 to 10 for use as a medicament.

13. A compound as claimed in any one of claims 1 to 10 for use in the prevention or treatment of cancer.

15. A method of treating or preventing a cell proliferative disease in a warm-blooded animal which comprises administering to the said animal an effective amount of a compound as claimed in any one of claims 1 to 10.
INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2015/074433

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D401/14 C07D413/14 C07D403/04 C07D403/14 C07D407/14 C07D417/14

ADD.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Special categories of cited documents:
- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited in the establishment of the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed
- **“I”** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **“X”** document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **“Y”** document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **“A”** document member of the same patent family

Date of the actual completion of the international search: 16 November 2015

Date of mailing of the international search report: 25/11/2015

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer:
Bel gny, Samuel
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2009158011 Al</td>
<td>30-12-2009</td>
<td>AU 2009263037 Al</td>
<td>30-12-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2728767 Al</td>
<td>30-12-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2315751 Al</td>
<td>04-05-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011525915 A</td>
<td>29-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011086834 Al</td>
<td>14-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009158011 Al</td>
<td>30-12-2009</td>
</tr>
<tr>
<td>US 2012214762 Al</td>
<td>23-08-2012</td>
<td>AR 085908 Al</td>
<td>06-11-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2827161 Al</td>
<td>20-09-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103476768 A</td>
<td>25-12-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2686314 Al</td>
<td>22-01-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014508183 A</td>
<td>03-04-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130133051 A</td>
<td>05-12-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2013142648 A</td>
<td>27-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201247650 A</td>
<td>01-12-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012214762 Al</td>
<td>23-08-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015038460 Al</td>
<td>05-02-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012123522 Al</td>
<td>20-09-2012</td>
</tr>
</tbody>
</table>