发明名称

一种用 50CrVA 钢材制作耐高温弹簧的加工工艺

摘要

本发明公开了一种用 50CrVA 钢材制作耐高温弹簧的加工工艺，其包括以下步骤：盘圆、整圈、磨圆、开裆，热处理，抛丸，高温压缩，冷却，定型，表面处理，抽芯，包装。利用在开档步骤中使预制成弹簧的预制成品节距 P等于成品弹簧的成品节距 P 的 1.3 倍，且在后续生产工艺中增加的高温压缩、冷却、定型三个工序，使预制成弹簧的预制成品节距 P 逐渐向成品弹簧的成品节距 P 变化，并最终形成成品弹簧的成品节距 P，并将其定型。使其不再容易发生弹簧失效的问题。使用本发明加工工艺，即使是用普通的 50CrVA 弹簧钢材生产出来的弹簧也能在 150℃～300℃的工作环境下中工作。
1. 一种用 50CrVa 钢材制作耐高温弹簧的加工工艺，其特征在于：其包括以下步骤：
 1) 扭曲：将弹簧钢丝并紧盘绕芯棒成长条螺旋状；
 2) 整圆：将盘圈长条螺旋状的弹簧按预制圈数分割；
 3) 磨削：将分割得到的预制弹簧的两端面磨平；
 4) 开槽：将两端面磨平的预制弹簧开出预制节距 P₀，并对预制弹簧的预制节距 P₀ 和垂直度进行校正，使 P₀ 满足公式：P₀ = 1.3P，其中 P 为成品弹簧的成品节距；
 5) 热处理：包括淬火和回火，淬火为将开槽后的预制弹簧在 875℃—885℃的温度下保持 40 分钟，再用淬火油冷却 10 分钟取出，回火为将淬火出来的预制弹簧在 375℃—385℃的温度下保温 35 分钟；
 6) 抛丸：将热处理后的预制弹簧进行抛丸处理，去除预制弹簧表面的氧化皮；
 7) 高温压缩：将抛丸后的弹簧用芯棒串起固定后压紧，在 295℃—305℃的温度下保温 30 分钟；
 8) 冷却：将高温压缩后的预制弹簧取出，常压下室温冷却；
 9) 定型：将冷却后的预制弹簧在 265℃—275℃的温度下保温 30 分钟定型；
 10) 表面处理：将定型完成的预制弹簧进行表面电泳处理，形成成品弹簧；
 11) 抽检：对成品弹簧进行外观检测和性能检测；
 12) 包装：将检验合格的弹簧进行分包装。

2. 根据权利要求 1 所述的一种用 50CrVa 钢材制作耐高温弹簧的加工工艺，其特征在于：所述开槽和热处理步骤之间还设有弹簧的预制节距检测步骤。

3. 根据权利要求 1 或 2 所述的一种用 50CrVa 钢材制作耐高温弹簧的加工工艺，其特征在于：所述冷却与定型步骤之间还设有成品节距检测步骤。

4. 根据权利要求 1 所述的一种用 50CrVa 钢材制作耐高温弹簧的加工工艺，其特征在于：所述抽检步骤的性能检测包括力值检测。
一种用 50CrVA 钢材制作耐高温弹簧的加工工艺

技术领域
[0001] 本发明涉及一种弹簧的加工工艺，尤其涉及一种在 150℃～300℃工作环境下工作的耐高温弹簧的加工工艺。

背景技术
[0002] 弹簧在各个工业领域有着普遍的应用，弹簧的高度等于弹簧的圈数乘以弹簧的节距。有些弹簧的应用领域，需要弹簧具有耐高温（使用环境温度在 150℃～300℃）的作用。目前弹簧的生产工艺包括：盘圈—整圈—开档—热处理—抛丸—表面处理—检验—包装。其中开档是指将预制的弹簧开出预制节距，其开档开出的节距习惯和最终成品弹簧的节距是相等的（即其开出的预制弹簧的预制高度和最终形成的成品弹簧的自由高度是相等的）。在弹簧的制作工艺中，采用普通弹簧钢材制成的弹簧不能在高温条件下工作，或者使用寿命很短，很快就失效了。现有技术中用普通弹簧钢材制成的弹簧根本无法胜任高温的工作环境，人们习惯不改变弹簧的生产工艺，而改变弹簧的原材料即用耐高温弹簧材料（耐高温弹簧的材质一般为 60Si2CrVA、65Si2MnWA、30Cr2VA 高温合金材料）制作耐高温弹簧。但是耐高温的弹簧材料相对于普通弹簧钢材的材料贵很多，一般普通弹簧钢材的价格为 12 元/公斤，而高温弹簧材料的价格为 35 元/公斤，使用耐高温弹簧材料会给生产弹簧的企业增加很多生产成本。利用普通弹簧钢材用普通的工艺制作出来的弹簧很难在高温环境下取得较短的使用寿命，如果能够研制出一种利用普通的弹簧钢材，也能加工出耐高温的弹簧的工艺。其将大大降低生产耐高温弹簧企业的生产成本，具有很大的市场价值，值得人们朝这个方向研究。

发明内容
[0003] 为了克服现有技术的不足，本发明的目的是提供一种利用普通的 50CrVA 弹簧钢材就可以制作出能在 150℃～300℃高温环境下工作的耐高温弹簧加工工艺，且其可靠性高，制作出的成品弹簧的使用寿命长。
[0004] 为达到上述目的，本发明的技术方案为：一种用 50CrVA 钢材制作耐高温弹簧的加工工艺包括以下步骤：
[0005] 1）盘圈：将弹簧钢丝并紧盘绕成芯棒，成长条螺旋状；
[0006] 2）整圈：将盘圈长条螺旋状的弹簧按预制圈数分割；
[0007] 3）磨筒：将分割得到的预制弹簧的两端面磨平；
[0008] 4）开档：将两端面磨平的预制弹簧开出预制节距 P0，并对预制弹簧的预制节距 P0 和垂直度进行校正，使 P0 满足公式：P0 = 1.3P，其中 P 为成品弹簧的成品节距；
[0009] 5）热处理：包括淬火和回火，淬火为将开档后的预制弹簧在 875℃—885℃的温度下保持 45 分钟，再用淬火油冷却 10 分钟取出，回火为将淬火出来的预制弹簧在 375℃—385℃的温度下保温 35 分钟；
[0010] 6）抛丸：将热处理后的预制弹簧进行抛丸处理，去除预制弹簧表面的氧化皮；
7) 高温压缩：将抛丸后的弹簧用芯棒串起固定后压紧，在 295℃—305℃的温度下保温 30 分钟；
8) 冷却：将高温压缩后的预压缩弹簧取出，常压下室温冷却；
9) 定型：将冷却后的预压缩弹簧在 265℃—275℃的温度下保温 30 分钟定型；
10) 表面处理：将定型完成的预压缩弹簧进行表面电泳处理，形成成品弹簧；
11) 抽检：对成品弹簧进行外观检测和性能检测；
12) 包装：将检验合格的弹簧进行分包装。

所述开档和热处理步骤之间还设有弹簧的预压缩节距检测步骤。其剔除预压缩节距不合格的预压缩弹簧，可以降低后续产品的不合格率，降低生产成本。

所述冷却与定型步骤之间还设有成品节距检测步骤。提前检测出成品节距不合格的弹簧，减少定型和表面处理中的坏品比率，减少了生产成本。

所述抽检步骤的性能检测包括力值检测。增加了企业出货时成品质量的可靠性，有利于提升企业形象。

采用以上技术方案，利用在开档步骤中使预压缩弹簧的预压缩节距 \(P_0 \) 等于成品弹簧的成品节距 \(P \) 的 1.3 倍，且在后续生产流程中增加的高温压缩、冷却、定型等三个工序，使预压缩弹簧的预压缩节距 \(P_0 \) 逐渐向成品弹簧的成品节距 \(P \) 变化，并最终形成成品弹簧的成品节距 \(P \) ；并将其定型。使其不再容易发生弹簧失效的问题。使用本发明加工工艺，即使是用普通的 50CrVA 弹簧钢材生产出来的弹簧也能在 150℃～300℃的工作环境中工作。50CrVA 弹簧钢材的价格仅仅是耐高温弹簧材料的 0.3 倍，故采用本发明工艺利用 50CrVA 弹簧钢材生产耐高温弹簧，其大大降低了耐高温弹簧的生产成本。同时本发明利用 50CrVA 弹簧钢材制作出的高温弹簧在高温环境下使用的寿命也较一般制作工艺加工出来的弹的使用使用寿命长。

具体实施方式

本发明的技术方案为：一种用 50CrVA 钢材制作耐高温弹簧的加工工艺包括以下步骤：

1) 盘圈：将弹簧钢丝并紧盘绕芯棒成长条螺旋状；
2) 整圈：将盘圈长条螺旋状的弹簧按预压缩圈数分割；
3) 磨光：将分割得到的预压缩弹簧的两端面磨平；
4) 开档：将两端面磨平的预压缩弹簧切出预压缩节距 \(P_0 \) 并对预压缩弹簧的预压缩节距 \(P_0 \) 和垂直度进行校正，使 \(P_0 \) 满足公式：\(P_0 = 1.3P \)，其中 \(P \) 为成品弹簧的成品节距；
5) 热处理：包括淬火和回火，淬火为将开档后的预压缩弹簧在 875℃—885℃的温度下保持 45 分钟，再用淬火油冷却 10 分钟取出，回火为将淬火出来的预压缩弹簧在 375℃—385℃的温度下保温 35 分钟；
6) 抛丸：将热处理后的预压缩弹簧进行抛丸处理，去除预压缩弹簧表面的氧化皮；
7) 高温压缩：将抛丸后的弹簧用芯棒串起固定后压紧，在 295℃—305℃的温度下保温 30 分钟；
8) 冷却：将高温压缩后的预压缩弹簧取出，常压下室温冷却；
9) 定型：将冷却后的预压缩弹簧在 265℃—275℃的温度下保温 30 分钟定型；
10) 表面处理：将定型完成的预压缩弹簧进行表面电泳处理，形成成品弹簧；
说明书

[0032] 11) 抽检:对成品弹簧进行外观检查和性能检测；

[0033] 12) 包装:将检验合格的弹簧进行分包装。

[0034] 所述开档和热处理步骤之间还设有弹簧的预制节距检测步骤。其剔除预制节距不合格的预制弹簧，可以降低后续产品的不合格率，降低生产成本。

[0035] 所述冷却与定型步骤之间还设有成品节距检测步骤。提前检测出成品节距不合格的弹簧，减少定型和表面处理中的坏品比率，减少了生产成本。

[0036] 所述抽检步骤的性能检测包括力值检测。增加了企业出货时成品质量的可靠性，有利于提升企业形象。

[0037] 为了更详细理解本发明，下面举一下详细实施例对本发明做进一步详细说明：

[0038] 实施例1，用普通的50CrVA弹簧钢材料制作一种能在150℃～300℃环境下工作的

[0039] 一种用50CrVA钢材料制作耐高温弹簧的加工工艺包括以下步骤：

[0040] 1) 盘圈:在车床上进行盘圈，将材料为50CrVA，横截面积为21mm²弹簧钢丝并紧盘

[0041] 2) 整圆:用弹簧裁切机将盘圈长条螺旋状的弹簧按预制圈数等于成品弹簧的圈

[0042] 3) 磨边:在弹簧端面磨床上将分割得到的预制弹簧的两端面磨平；

[0043] 4) 开档:用弹簧开档机将两端面磨平的预制弹簧开出预制节距P₀，并对预制弹簧

[0044] 5) 热处理:包括淬火和回火，淬火为在带式淬火炉中将开档后的预制弹簧在

[0045] 6) 抛丸:用抛丸机将热处理后的预制弹簧进行抛丸处理，去除预制弹簧表面的氧

[0046] 7) 高温压缩:将抛丸后的弹簧用芯棒串起固定后压紧，在295℃～305℃的温度下保温30分钟；

[0047] 8) 冷却:将高温压缩后的预制弹簧取出，常压下室温冷却；

[0048] 9) 定型:在带式回火炉中将冷却后的预制弹簧在265℃～275℃的温度下保温30分钟定型；

[0049] 10) 表面处理:将定型完成的预制弹簧在电泳槽中进行表面电泳处理，形成成品

[0050] 11) 抽检:对成品弹簧进行外观检查和性能检测；

[0051] 12) 包装:将检验合格的弹簧进行分包装。

[0052] 当然，所述开档和热处理步骤之间还可以设有弹簧的预制节距检测步骤。因为

[0053] 预制弹簧的预制高度 h₀ = 预制弹簧的预制节距 P₀ × 预制弹簧的预制圈数，成品弹簧的自由高
度 $h_0 = \text{成品弹簧的成品节距} \times \text{成品弹簧的圆数} + \text{预制弹簧的圆数}$，且成品弹簧的圆数 = 预制弹簧的圆数，故预制成节距的检测也就是通过检测开档后的预制弹簧的预制高度 h_0 是否满足 $h_0 = 1.3h$，其中 h 为需要制作的成品弹簧的自由高度，h_0 为预制弹簧的预制高度。利用这个检测剔除预制成节距不合格的预制弹簧（即预制成弹簧的节距不等于 14.4mm 的），也就是检测出预制成弹簧的预制高度不合格的预制弹簧（预制成弹簧的预制高度不等于成品弹簧的自由高度的 1.3 倍，本实施例中预制成节距不等于 130mm 的预制成弹簧即为不合格的预制成弹簧），可以降低后续产品不合格率，降低生产成本。

[0053] 所述冷却与定型步骤之间还可以设有成品节距检测步骤。即检测冷却后的弹簧是否满足我们需要制作的弹簧的成品节距，其是通过检测冷却后弹簧的自由高度是否满足设计要求自由高度来检测的。提前检测出成品节距不合格的弹簧，减少定型和表面处理中的坏品比率，减少了生产成本。

[0054] 所述抽检步骤还的性能检测包括力值检测，增加的抽检内容增加了企业出货时成品质量的可靠性，有利于提升企业形象。

[0055] 利用 50CrVA 弹簧钢材，采用本发明的加工工艺制作出来的本实施例的弹簧制作出来后，应用于鞋模的模具装配中（其环境温度为 $260\text{℃} - 280\text{℃}$），使用寿命达到 3 万次以上；而利用普通弹簧钢材采用现有技术中的工艺制作出来的弹簧，其最高使用次数仅仅达到 1 千次，弹簧就产生形变失效了。