

ΚΥΠΡΙΑΚΟ ΓΡΑΦΕΙΟ ΔΙΠΛΩΜΑΤΩΝ ΕΥΡΕΣΙΤΕΧΝΙΑΣ THE PATENT OFFICE OF CYPRUS

AΡΙΘΜΟΣ ΔΗΜΟΣΙΕΥΣΗΣ PUBLICATION NUMBER

PUBLICATION NUMBER

CY1173

ΑΡΙΘΜΟΣ ΔΗΜΟΣΙΕΥΣΗΣ ΓΡΑΦΕΙΟΥ ΔΙΠΛΩΜΑΤΩΝ ΕΥΡΕΣΙΤΕΧΝΙΑΣ ΗΝΩΜΕΝΟΥ ΒΑΣΙΛΕΙΟΥ UK PATENT OFFICE

GB2023132

Το έγγραφο που παρουσιάζεται πιο κάτω καταχωρήθηκε στο «Γραφείο Διπλωμάτων Ευρεσιτεχνίας» στην Αγγλία σύμφωνα με το Νόμο Κεφ. 266 πριν την 1^η Απριλίου 1998. Δημοσίευση έγινε μετέπειτα από το Γραφείο Διπλωμάτων Ευρεσιτεχνίας του Ηνωμένου Βασιλείου μόνο στην Αγγλική γλώσσα.

The document provided hereafter was filed at "The Patent Office" in England under the law CAP.266 before the 1st of April 1998. It was published afterwards by the UK patent office only in English.

- Application No 7903575
- (22) Date of filing 1 Feb 1979
- Claims filed 1 Feb 1979 (23)
- **Priority data** (30)
- (31) 19896 25295
- (32)2 Feb 1978 4 Jul 1978
- (33)Italy (IT)
- Application published (43)28 Dec 1979
- INT CL C07C 103/30 A01N 9/20
- C07D 307/54 333/24
- Domestic classification C2C 1470 1510 200 215 220 221 225 226 227 22Y 253 254 25Y 270 280 281 282 304 30Y 313 31Y 328 338 339 342 34Y 351 355 363 364 366 368 36Y 583 591 593 594 628 62X 634 638 652 658 65X 689 699 710 805 80Y KK KM KQ KR MG
- **Documents cited** GB 1500581 GB 1500576 GB 1498199 GB 1404916 GB 1164160 GB 1088397
- (58) Field of search C₂C
- **Applicants** Montedison S.p.A., 31 Foro Buonaparte, Milan, Italy
- (72) Inventors Enrico Bosone Giovanni Camaggi Lambertus De Vries Carlo Garavaglia Luigi Garlaschelli Franco Gozzo Jan Cornelis Overeem Simone Lorusso
- Agents Lloyd Wise, Bouly & Haig

- Acyl anilines exerting a fungicidal action
- (57) Compounds endowed with fungicidal activity and low phytoxicity having the general formula:

$$x - (CH_2)_n - C - N - C - Z$$

R

(1)

in which R and R1 may be the same or different and each represent a hydrogen atom or a CH₃, C₂H₅, n-C₃H₇, _CH2-CH=CH2 or -CH=CH-CH3 group,

R3 and R4 may be the same or different and each represent a hydrogen, chlorine or fluorine atom, an alkyl group having 1 to 3 carbon atoms or a halomethyl, alkoxymethyl, CN, O-alkyl or S-alkyl group, or R3 and R4 together represent CH₂=,

X represents

(in which R® represents an alkyl group having 1 to 3 carbon atoms), CN,

-CH(OR⁵)₂ (in which R⁵ represents an alkyl or alkylidene group) or

(in which R⁶ and R⁷ may be the same or different and each represent a hydrogen atom or an alkyl group),

n is 0 or 1, Z represents an optionally substituted phenyl group,

(in which R2 represents a hydrogen atom or CH3 group, m is 1 or 2 and Y represents an alkynyl group having 2 to 8 carbon atoms, an optionally substituted phenyl group, a cycloalkyl group having 3 to 8 carbon atoms, a phenylacetyl, furyl, thienyl or pyridyl group or a heterocyclic group containing 2 or 3 heteroatoms one of which is other than nitrogen) or

(in which R^a represents a CH₃, alkoxymethyl, halomethyl or O-alkyl group).

SPECIFICATION

Acyl anilines exerting a fungicidal action

5 The present invention relates to acyl anilines and in particular to acyl anilines having a fungicidal action, to their use and to their preparation.

The bactericidal and fungicidal activity of some derivatives of aniline and of glycine having, on the 10 nitrogen atom, a substituted phenyl and an acyl group has been recently disclosed. For example, German Offenlegungsschrift No. 2 513 789 discloses such compounds in which the acyl group comprises an alpha or beta - haloalkanoyl group, French Patent 15 Application No. 7 510 722 discloses such compounds.

- 15 Application No. 7 510 722 discloses such compounds in which the acyl group comprises an acetyl group substituted in the alpha position by an oxygen or sulphur atom bound to various groups and German Offenlegungsschrift Nos. 2 513 732 and 2 513 788
- 20 disclose compounds in which the acyl group comprises a 2 - furoyl group, a 2 - thienoyl group or a pyridyl 2 - carboxylic group. The microbicidal activity of methylalaninates carrying, on the nitrogen atom, a 2, 6 - dialkyl - phenyl and one of the follow-
- 25 ing groups, cyclopropanoyl, acryloyl, crotonoyl, has been disclosed in Swiss Patent Application Nos. 4998/74 and 2906/75. The interest in the research of new derivatives of acyl anilines having a fungicidal action is due to the desirability of finding compou-
- 30 nds having a high fungicidal activity combined with the absence of phytotoxicity. Several known products though exhibiting an excellent fungicidal activity, are also toxic on the plants it is desired to protect from infections due to fungi.

We have now found new series of compounds which are endowed with a high fungicidal activity and a low phytotoxicity.

Therefore according to the invention there is provided a compound of the general formula:

$$x - (CH_2)_n - C - N - C - Z$$

in which:

40

45

R and R¹ may be the same or different and each represent a hydrogen atom or a CH₃, C₂H₅, n - C₃H₇, - 50 CH₂ - CH=CH₂ or - CH=CH - CH₃ group,

R³ and R⁴ may be the same or different and each represent hydrogen, chlorine or fluorine atom, an alkyl group having 1 to 3 carbon atoms or a halomethyl, alkoxymethyl, CN, O - alkyl or S - alkyl 55 group, or R³ and R⁴ together represent CH₂=,

represents

60 an alkyl group having 1 to 3 carbon atoms), CN, -CH(OR⁵)₂, (in which R⁵ represents an alkyl or alkylidene group) or

65

90

95

(in which R⁶ and R⁷ may be the same or different and each represent a hydrogen atom or an alkyl group), n is 0 or 1,

Z represents an optionally substituted phenyl 70 group,

(in which R² represents a hydrogen atom or CH₃ group, m is 1 or 2 and Y represents an alkynyl group having 2 to 8 carbon atoms, an optionally substituted phenyl group, a cycloalkyl group having 3 to 8 carbon atoms, a phenylacetyl, furyl, thienyl or pyridyl group or a heterocyclic group containing 2 or 3 heteroatoms one of which is other than nitrogen) or

(in which R^s represents a CH₃, alkoxymethyl, 5 halomethyl or 0-alkyl group).

The synthesis of the acyl anilines of formula (I) may be carried out by condensing anilines of the general formula:

$$x-(CH_2)_n-C$$

$$R$$

$$R$$

$$R$$

$$R$$

$$R$$

$$R$$

$$R$$

in which X, R, R¹, R³, R⁴ and n are as defined above, with a compound of the formula:

in which Z is as defined above, in the presence of a halogenhydric acid-accepting base or dimethylformamide.

Some of the anilines of formula (II) are commercially available and others are readily obtained by known reactions starting from 2, 6 - disubstituted anilines. The anilines substituted in one or both of the 2 and 6 positions by alkenyl groups have been described in Italian Patent Application Nos. 23809 A/77 and 28817 A/77.

Examples of compounds of formula (III) include benzoyl chloride, phenylacetylchloride, the monochloride of a malonic ester (CI - CO - CH₂ - COO - alkyl) and the chloride of chloro - acetoacetic acid (CI

alkyl) and the chloride of chloro - acetoacetic acid (C - CO - CH₂ - CO - CH₂ - CI).

The synthesis of compounds of formula (I) in which Z represents CH₂ - CO - R⁰ and R⁰ represents CH₃, can also be carried out by reacting an aniline of the general formula (II) with diketene

The compounds reported on Table 1 have been pre-

Certain of the chemical formula (e) appearing in the printed specification were submitted in formal form after the date of filing

Table 1

Compound	Formula	(a) Melting point OC	E	lement	al ana	lysis (Z)		IR ^(b) Hax (cm ⁻¹)	(c)
			calcu	lated		foun	đ		(ca_1)	NMR
			C	н	H	С	R	N		(б.ррш) [THS]
1	ČH.3	96-100	73.29	6.80	4.50	73.8	7.0	4.4	1635	1.04 (d, 3H, CH ₃ -CH)
_	1 -								1730	2.23 (s, 3H, CH ₃ -Ø)
	H3C-0-C-CH N C-C6H5	i i							1745	2.29 (s, 39, CH ₃ -Ø)
	H3€								[3.79 (s, 3H, CH ₃ -0)
	O						Ì		ļ	4.30 (q, 1H, CH)
										6.83-7.33 (m, 8H, aromatic protons)
2	ĊH3	97-100	74.31	7.42	4,13	74.45	7.77	4.25	1630	1.2 (d, 3H, CH ₃ -CH)
	1 1 "	eHe						ļ	1715	I.3 [d, 68, (CH ₃) ₂ -CR]
	(CH ₃) ₂ CH-O-C-CH C-C		}	1			ŀ	1	1720	2.3 (s, 3H, CH ₃ -Ø)
	H ₃ C C	H ₃			Ì		l			2.32 (s, 3H, CH ₃ -Ø)
										4.4 (q, 1H, CH ₃ -CH)
}	_									5.2 [m, 1H, (CH ₃) ₂ CH]
										6.8-7.5 (m, 8H, aromatic protons)

Table 1 Contd.

3	H ₃ C-O-C-CH CH ₃ H ₃ C-O-C-CH CH ₃	114-115								1.20 (d, 3H, CE ₃ -CE) 2.27 (s, 3H, CE ₃ -Ø) 2.37 (s, 3H, CE ₃ -Ø) 2.47 (s, 3H, CE ₃ -Ø) 3.83 (s, 3H, CE ₃ -O) 4.30 (q, 1H, CE ₃ -CE) 6.63-7.20 (m, 7H, aromatic protons)
4	E ₃ C-O-C-CH ₂ B ₃ C-O-C-CH ₂ C-CH ₂ C-CH ₃	78-80 -C ₆ H ₅	78.32	7.12	4.30	75.34	7.47	4.67	1660 1750	0.98 (d, 3H, CH ₃ -CH) 1.85 (s, 3H, CH ₃ -Ø) 2.40 (s, 3H, CH ₃ -Ø) 3.25 (s, 2H, CH ₂) 3.80 (s, 3H, CH ₃ -O) 4.45 (q, 1H, CH ₃ -CH) 6.85-7.3 (m, 8H, eromatic protons)

Table 1 Contd.

5	H ₃ C-0 CH ₃ C-C ₆ H ₅	oil	73.37	7.70	4.18	75.4	8.4	4.3	
6	H ₃ C-O CH-CH ₂ C-C ₆ H ₃ CCH ₃	58-59	72,81	7.40	4.47	73.14	7.66	4.69	2.2 (s, 6H, CH ₃ -0) 3.3 (s, 6H, CH ₃ -0) 3.9 (d, 2H, CH ₂ -N) 0 4.95 (t, 1H, CH 7-7.3 (m, 8H, aromatic protons)

Table 1 Contd

7	CH ₃ C-C-C-CH	oil	74.28	6.54	4.33	73.6	6-6	4.6		1.35; 1.65 (d,d,3H,CH ₃ -CH) 3.3 (m, 2H, CH ₂ -CH=CH ₂) 3.8 (s, 3H, CR ₃ -O) 4.8 (q, 1H, CH ₃ -CH) 4.9; 5.15 (m,m,2H, -CH=CH ₂) 5.6 (m, 1H, CH=CH ₂) 7.1-7.35 (m, 9H, aromatic protons)
8	H ₃ C-O-C-CH ₂ H ₃ C-CH ₂ CCH ₃ CC-CH ₂ CCH ₃ CC-CH ₂ CCH ₃	63.64	65.23	6.39	4.23	66.53	6.74	4.54	1655 1745	1.0 (d, 3H, CH ₃ -CH) 2.0 (s, 3H, CH ₃ -Ø) 2.45 (s, 3H, CH ₃ -Ø) 3.4 (s, 2H, CH ₂) 3.8 (s, 3H, COOCH ₃) 4.5 (q, 1H, CH ₃ -CE) 6.5-7.3 (m, 6H)

Table 1 Contd.

	9	CH ₃	105-108	70.36	6.79	4.10	70.5	6.9	4.0	1630	1.3 (d, 3H, CH ₃ -CH)
		H ₃ C-O-C-CH C-O	⁸ 3							1750	2.3 (s, 6H, CH ₃ -Ø)
		מיא" מ ן									3.7 (s, 3H, CH ₃ -0-0)
		H3C CH3			'						3.85 (s, 3H, COOCH ₃)
											4.45 (q, 1H, CH ₃ -CH)
		•									6.75-7.6 (m, 7H, aromatic protons)
l											
Ī	10	CH3	oil	74.76	7.70	3.96	73.84	7.91	3.99	1650	1.2-1.45 (9н)
ļ		(CH ₃) ₂ CH-O-C-CH C-CH ₂ -	$\langle \circ \rangle$							1730	2.3 (s, 6H, CH ₃ -Ø)
1		N N N									4.4 (q, 1H. N-CH)
		H ₃ C CH ₃	1				,				5.2 (m, 1H, COOCH)
											6.8-7.5 (m, 8H, aromatic protons)
					<u> </u>	<u> </u>		L			

Table 1 Contd

11	H ₃ C-O-C-C C CH ₂ C-CH ₂ -CO CH ₃	56-57							2.05 (s, 6H, CH ₃ -Ø) 3.4 (s, 2H, CH ₂ -Ø) 3.85 (s, 3R, COOCH ₃) 4.6-5.4 (d,d, 2H, CH ₂ =C) 7.1-7.3 (m, 6H, aromatic protons)
12	C2H5 H3C-O-C-CR N CCH3	51-52	74.31	7.42	4.13	74.03	7.52	4.07	

Table 1 Contd.

13	H ₅ C ₂ -0-C-CH ₂ C-CH ₂ O	oil	74.31	7.42	4.13	72.96	7.16	4.34		·
14	H ₅ C ₂ -0-C-CH C-CH ₃	69-70	73.82	7.12	4.30	73.41	7.28	4.31		·
15 ^(d)	H ₃ C-O-CEH CO-CI	97–100	65.99	5.83	4.05	67.0	5.9	3.7	1630 1730 1745	1.27 (d, 3H, CH ₃ -CH 2.3 (s, 6H, CH ₃ -Ø) 3.8 (s, 3H, COCCH ₃) 4.45 (q, 1H, CH ₃ -CH) 6.9-7.4 (m, 7H, aromatic protons)

Table 1 Contd.

				•					•	•
16	H ₃ C-O-CH ₃ H ₃ C-O-CH ₃ H ₃ C-O-CH ₃	60-64	72.47	8.82	4.22	71.75	9,12	3.81	1650 1750	
17	H ₃ C-O-C-CH CH ₃	90-93 OCH ₃	70.96	7.09	3,94	70.59	7.28	3.70	1655 1745	
18 ^(e)	H ₃ C-O-C-CH C-CH ₂ -C-CH ₃	oil								0.98 (d, 3H, CE ₃ -CH) 2.12) 2.15) (6H, CE ₃ -Ø) 2.39) 2.43)
	H ₃ C CH ₃									1.71) (3H, CE ₃ -CO) 2.09) 2.92 (CE ₂) 3.70 (s, 3H, CE ₃ O) 4.33 (<u>CE</u> -C-OH) 4.40 (CE ₃ -CE)

Table I Contd.

18 Contd.						6.96-7.26 (3E aromatic protons) 13.93 (s, OE)
19 ^(e) CE3	oil 3		-	-	-	0.99 (d, 3H, CH ₃ -CH) 1.29 (t, 3H, CH ₃ -CH ₂) 2.08) 2.25) (CH ₃ -Ø + CH ₃ -C) 2.40) 0 2.08 - 2.25 (CH ₃ -C) 1.71 (CH ₃ -G-) 0 1.71 (CH ₃ -G-) 4.16 (CH ₃ -CH ₂) 4.37 (CH ₃ -CH) 6.93-7.24 (m, 3H, aromatic protons) 13.90 (OH) 4.30 (CH-C-OH)

Table 1 Contd.

20	H ₃ C-O-C-CH ₂ CH ₂ -CH-CH ₂ H ₃ C-O-C-CH ₂ CH ₂ -CH-CH ₂	oil	64.85	6.95	4.20	64.84	7.24	4.51	1660 1745	
21	CH ₃ C-O-C-CH C-CH ₂ C-OCH ₃ CH ₂ =CH-CH ₂ CH ₂ -CH-CH ₂	oil	66.83	7.01	3.90	67.93	7.72	4.67	1660 1745	
22	H ₃ C-O-C-CH ₃ C-CH ₂ C-CCH ₃	oil								0.97 (3H, d, CH ₃ -CH) 4.36 (1E, q, CH ₃ -CH) 2.87 (2H, s, CH ₂) 3.60) (6H, s, s, OCH ₃) 2.20 (3H, s, CH ₃ -Ø) 2.45 (3H, s, CH ₃ -Ø) 7.0-7.2 (3H, m, aromatic protons)

Table 1 Contd.

23	H ₃ C-O-C-CH C-CH ₂ -C-OCH ₃		0.97-0.99 (3H,d,d,CH ₃ -CH) 1.27 (3H, t, CH ₃ -CH ₂) 2.27-2.46 (3H, s,s, CH ₃ -Ø) 2.85 (2H, s, CH ₂ -CO) 2.27-3.17 (2H, m CH ₂ -CH ₃) 3.60-3.72 (6H, s, s, OCH ₃) 4.37 (1H, m, CH ₃ -CH) 6.93-7.30 (3H, m, aromatic protons)
24	CH ₃ -CH ₂ -C-OCH ₃		0.97 (3H, d, CH ₃ -CH) 1.23 (6H, t, CH ₃ -CH ₂) 2.83 (2H, s, CH ₂ -CO) 2.13-3.17 (4H, m, CH ₂ -CH ₃) 3.57-3.70 (6H, s, s, CCH ₃) 4.33 (1H, m, CH-CH ₃) 4.97-7.37 (3H, m, aromatic protons)

Table 1 Contd.

25	H ₃ C-O-C-CH	105110								
26	CH ₂ -CH-CH ₂ CH ₂ -CH-CH ₂ CH ₂ -CH-CH ₂	oil	69.95	7.34	4.08	68.60	7.30	4.32	1630 1650 1720 1745	
27	H ₃ C-O-C-CH ₃ H ₃ C-O-C-CH ₃ C-CH ₂ -C-CH ₃ H ₃ C CH=CH-CH ₃	oil	68.12	7.30	4.41	65.85	7.49	4.35	1630 1650 1715 1745	

Table 1 Contd.

28	(CH) CH-O-C-CH CH CH 3 C-CH2-C-CH3	oil	67.69	7.89	4.38	67.71	8.32	4.40	1630 1655 1740	
29	H ₃ C-O-C-CH ₃ C-CH ₂ -C-CH ₃ H ₃ C-CH ₂ -CH-CH ₂	oil	68.12	7.30	4.41	67.70	7.33	4.36	1630 1750	
30	CH ₃ C-O-C-CH	oil	67.31	6.98	4.62	66.2	6.90	4.90	1630 1650 1720 1740	

Table 1 Contd.

31	H ₃ C-O-C-CH ₃ H ₃ C-O-C-CH ₃ CH ₃ C-O-CH ₃	84-87								
32	H ₃ C-O H ₃ C-O H ₃ C-O CH-CH ₂ C-CH ₂ -C-OCH ₃ CH ₃ C-O CH ₃	oil	62.12	7-49	4.53	61.06	7.84	4.47	1660 1745	
33	H ₃ C-O CH ₃	Lio	66.43	8.20	4.56	65.76	8.43	4.89		

Table 1 Contd.

34(6		65.68								2.19 (s, 3H, CH ₃ -Ø)
	H ₃ C-O-C-CH ₂ -C-CH ₃ H ₃ C-CH ₃									2.22 (s, 3E, CE ₃ -Ø) 2.65 (t, 2E, CE ₂) 3.78 (t, 2E, CE ₂) 2.10 (s, CE ₃ -CO) 1.73 (s, CE ₃ -C) 0H 2.89 (s, CE ₂ -CO) 4.27 (s, CE+C-) 0H 4.99-7.20 (m, 3H, axomatic protons)
35	H ₃ C-O-C-CH CH ₂ U	oil	68.55	6.71	4.44	67,61	6.70	4.57	1655 1740	14.25 (OH) 3.55 (e, 3H, OCH ₃) 1.0 (d, 3H, CH ₃ -CH) 2.1 (e, 3H, CH ₃ -Ø) 2.4 (s, 3H, CH ₃ -Ø) 3.3 (e, 2H, CH ₂ CO) 3.8 (s, 3H, OCH ₃) 4.4 (q, 1H, CH ₃ -CH) 5.9-7.5 (m, 6H, aromatic protons)

Notes to Table 1

- The melting points have not been corrected.
- Only the most meaningful bands are recorded.
- 5 (c) The NMR spectra of compounds 1 and 3 have been recorded by using CCI₄ as a solvent, the other spectra by using CDCl₃;

s = singlet,

d = doublet,

t = triplet, 10

q = quadruplet,

m = multiplet.

- Elemental analysis: calculated chlorine = 10.25; found chlorine = 9.68
- 15 (e) Mixture of tautomers.

The compounds of general formula (I) are endowed with an excellent fungicidal activity towards phytopathogenous fungi, and the action exerted by same is both preventive, as it prevents the dis-20 ease from arising, and curative, as it combats infec-

tion already present.

Furthermore the compounds possess good systemic characteristics, i.e. they are transported to the various parts of the plant and therefore the compou-25 nds may be applied to the leaves of the plant or to the soil in which the plants are grown.

The invention will be illustrated by the following Examples.

Example 1

30 Preparation of N - (2, 6 - dimethylphenyl) - N acetoacetyl - a - amino - methylpropionate (Compound 18, Table 1)

7.06 g of just distilled diketene were added to 14.5 g of N - (2, 6 - dimethylphenyl) - 2 - amino - propion-35 ate of methyl in 25 ml of toluene. The reaction mixture was heated at reflux for 24 hours. After cooling and evaporation of the solvent, the residue was purified by chromatography on a silica gel column using chloroform as an eluent.

20g of the desired product were obtained in the form of oil, with a yield of 98% in respect of the theoretical yield.

The structure ascribed to the product was confirmed by NMR spectroscopy. Under the operative 45 conditions adopted, the compound appears as a mixture of tautomers, as will be seen from the signals corresponding to the various protons listed in Table 1.

Example 2

50 Preparation of N - (2, 6 - diallylphenyl) - N acetoacetyl - \alpha - amino - methylpropionate (Compound 26, Table 1)

0.02 mole of methyl ester of N - (2, 6 - diallylphenyl) - α - amino propionic acid were dissolved in 55 toluene (10ml). 0.025 mole of just distilled diketene were added to the solution and the mixture was heated at reflux temperature for 24 hours. After cooling and evaporation of the solvent, the residue was purified by chromatography on a silica gel column

60 using a mixture of hexane and ethyl - acetate (4:1) as eluent.

3 g of the desired product were obtained in the form of oil.

Example 3

65 Preparation of N - (2 - allyl - phenyl) - N - acetoacetyl -

α - aminomethy/propionate (Compound 30, Table 1) 0.02 mole of methyl ester of N - (2 - allyl - phenyl) -

α - amino - methylpropionic acid were dissolved in 20 ml of benzene. 0.5 mole of pyridine and 0.25 mole 70 of just distilled diketene were added to the solution and the reaction mixture was heated at reflux for 10 hours. After cooling the mixture was diluted with benzene, washed with a hydrogen chloride solution (1% conc.) and with water. The organic phase was

75 separated, anhydrified with Na2SO4 and the solvent was evaporated. The residue was purified by chromatography on a silica gel column using hexane - ethylacetate (4:1) as eluent.

3 g of the desired product were obtained in the 80 form of an oil.

Example 4

Starting from the corresponding intermediates and following the procedures described in Examples 1, 2 or 3, compounds 19, 27, 28, 29, 31, 33 and 34 (Table 1) were prepared.

Example 5

Preparation of N - (2 - methyl - 6 - allyl - phenyl) - N -(carboxy - methyl - acetal) - α - amino - methylpropionate (Compound 20, Table 1)

5g (0.021 mole) of a methyl ester of N - (2 - methyl -6 - allyl - phenyl) - α - amino propionic acid were dissolved in toluene (120 ml). 3.5 g (0.027 mole) of malonic acid methyl ester monochloride (CICO - CH₂ - COOCH₃) were added to the solution under stirring,

dropwise, over a period of 15 minutes at room temperature. The reaction mixture was then stirred at room temperature for 1 hour followed by heating at reflux for 5 hours.

After cooling the solution was filtered and the sol-100 vent evaporated. The oily residue was purified by chromatography on a silica gel column using hexane-ethyl acetate (3:1) as eluent.

4.6 g of the desired product were obtained in the form of a red oil.

Example 6

105

Preparation of N - (2, 6 - dimethyl - phenyl) - N - (2, 2 dimethoxyethyl) - carbomethoxyacetamide (Compound 32, Table 1)

Malonic acid methyl ester monochloride (2.1 ml, 110 0.02 mole) was added dropwise over a period of 15 minutes at 0 to 5°C under stirring to a solution of N -(2, 2 - dimethoxyethyl) - 2, 6 - dimethyl aniline (4.45 g, 0.02 mole), triethylamine (2.76 ml, 0.02 mole) in ethyl ether (25 ml).

115 The reaction mixture was then stirred for 1 hour at 0°C and 10 minutes at room temperature, then it was filtered, washed twice with 10 ml of a hydrogen chloride solution (5%), then with water till a neutral pH (3 x 10 ml).

120 The organic phase was anhydrified on anhydrous Na₂SO₄ and the solvent was evaporated. The residue (yellow oil) was purified by chromatography on a silica gel column using hexane-ethyl acetate (7:3) as eluent.

125 2.1 g of the desired product in the form of an oil were obtained.

Example 7

Starting from the corresponding intermediates and adopting the procedures described in Examples 130 5 or 6, compounds 21, 22, 23, 24 and 25 were

obtained.

Example 8

Preparation of N - (2, 6 - dimethylphenyl) - N - (1 - carbomethoxyethyl) - phenylacetamide (Compound 5 4, Table 1)

17 g (0.11 mole) of phenylacetylchloride were added dropwise in 30 minutes and at room temperature, to a solution of N - (1 - carbomethoxy - ethyl) - 2, 6 - dimethylaniline (21.2 g at a purity of 95%, 0.1 10 mole) in toluene (150 ml) and dimethylformamide (1 ml).

The reaction mixture was stirred 1 hour at room temperature and 3 hours at reflux temperature, then it was cooled to room temperature and washed with an aqueous solution of NaHCO₃ at 5% and successively with water.

The organic phase was separated and anhydrified with anhydrouse Na₂SO₄. The solvent was evaporated and the rough product obtained was recrystal-lized from ligroin (75 to 120°C), to yield 26 g of the desired product as a white solid, melting at 78 to 80°C.

Example 9

Operating as described in Example 8 and starting
25 from the corresponding intermediates, the compounds 1, 2, 3, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 and 34 of
Table 1 were obtained. Compounds 10, 13 and 34
were obtained as oils at room temperature and were
purified by chromatography on a silica gel column
30 (eluent:hexane - ethyl acetate (3:1) instead of crystallization.

Example 10

Preparation of N - (2', 2' - dimethoxyethyl) - N - (2, 6 - dimethylphenyl) - benzamide (Compound 6, Table 1)

2.81 g (0.02 mole) of benzoyl chloride were added dropwise in 20 minutes at a temperature of 0 to 5°C to a solution of N - (2', 2' - dimethoxy - ethyl) - 2, 6 - dimethyl aniline (4.45 g, 0.02 mole) in ethyl ether (20 ml) containing triethylamine (2.76 ml, 0.02 mole).

40 The reaction mixture was stirred at room temperature for 15 minutes. The resulting salt was filtered and the solution was washed with 8 ml of an aqueous solution of hydrochloric acid at 5% and then with water up to neutral pH. The organic phase was

45 anhydrified with anhydrous Na₂SO₄ and the solvent was evaporated, to yield 5.2 g of a white solid which, recrystallized from petroleum ether (25 ml) provided 4.5 g of product (purity = 91% by GLC) with a yield of 65.5% as a white solid, melting at 58 to 59°C).

Example 11

Operating according to Example 10 and starting from N - (1' - methyl - 2', 2' - dimethoxy - ethyl) - 2, 6 - dimethyl - aniline and from benzoyl chloride, N - (1' - methyl - 2', 2' - dimethoxy - ethyl) - N - (2, 6 - 55 dimethyl - phenyl) - benzamide (Compound 5, Table 1) was prepared in the form of clear oil.

Example 12

Preparation of N - (methyl - methoxycarbonyl - methylene) - 2, 6 - dimethyl aniline

A solution of 2, 6 - dimethyl aniline (37.2 ml, 0.3 mole) in benzene (200 ml) was mixed with 0.5 g of ZnCl₂ and added dropwise at room temperature to 33.2 ml (0.33 mole) of methyl pyruvate. The reaction mixture was heated at reflux for 7 hours whilst azeotropically distilling the water that formed during the reaction, then the solvent was evaporated, to yield 65 g of an oil, which was distilled, collecting the fraction that boiled at 87 to 88°C at a pressure of 0.07 mmHg.

42.5 g of product having a purity of 92% by GLC (yield = 63.5%) were obtained.

75

95

Example 13

Preparation of N - (2, 6 - dimethylphenyl) - N - (1' - carbomethoxyvinyl) - phenylacetamide (Compound 11. Table 1)

4.35 ml of phenyacetyl - chloride (0.033 mole) were added dropwise at room temperature to a solution of 6.7 g (0.03 mole) of N - (methyl - methoxycarbonyl - methylene) - 2, 6 - dimethyl aniline (prepared as described in Example 12 and at 92% purity) in toluene (100 ml). The reaction mixture was heated at reflux and kept under a nitrogen stream for 3 hours, whereupon the solvent was evaporated, to yield 10.8 g of a light yellow oil which solidified by rubbing. The rough product obtained was crystallized from petroleum ether, to yield 2 g of product (a white solid pure by TLC), the yield being of 21% (TLC = thin layer chromatography).

Example 14

Preventive activity on vine mildew. (Plasmopara viticola (B et C) Berl et de Toni).

Leaves of vines cv. Dolcetto, cultivated in pots in a conditioned environment at 25°C and 60% relative humidity, were treated by spraying onto both faces the products being tested in an aqueous solution of acetone (20% by volume of acetone). At different periods of time from the treatment the leaves were sprayed on their lower faces with an aqueous suspension of conids Plasmopara viticola (200,000 conids/cc); after a 24-hour residence time in a humidity-saturated environment, at 21°C, the plants were transferred to 70% relative humidity and 21°C for the incubation period (7 days). Finally, the intensity of the infection was evaluated according to indexes of an evaluation scale ranging from 100 (sound plant) to 0 (thoroughly infected plant). The results

are reported in Table 2. Example 15

115 Curative activity on vine mildew.

(Plasmopara viticola (B et C) Berl et de Toni).

The leaves of vine plants cv. Dolcetto, cultivated in pots in a conditioned environment at 25°C and 60% relative humidity, were sprayed on their lower faces with an aqueous suspension of conids of *Plasmop*.

o with an aqueous suspension of conids of *Plasmopara viticola* (200,000 conids/cc); after a 24-hour residence time in a humidity-saturated environment at 21°C, the plants were divided into three groups. The plants of each group were treated by spraying the

125 leaf faces with the products being tested in an aqueous solution of acetone (20% of acetone vol./vol.) after 1, 2 and 3 days respectively from the infection.

At the conclusion of the incubation period (7 days) the seriousness of the infection was evaluated visu130 ally according to indexes of an evaluation scale rang-

65

50

ing from 100 (sound plant) to 0 (fully infected plant). The results are reported in Table 2).

Example 16

Immuninzing activity on vine mildew.

5 (Plasmopara viticola (B et C) Berl et de Toni).

The leaves of vine plants cv. Dolcetto, cultivated in pots in a conditioned environment, were sprayed on their upper faces with the product being tested in an aqueous solution of acetone (20% acetone vol./vol.).

10 The plants were then kept in a conditioned environment for 6 days; on the 7th day they were sprayed on their lower faces with a suspension of conids of *Plasmompara viticola* (200,000 conids/cc); after a 24-hour residence period in a humidity-saturated

15 environment, the plants were brought again into a conditioned environment. At the conclusion of the incubation period (7 days) the seriousness of the infection was evaluated visually according to indexes of an evaluation scale ranging from 100 (sound

20 plant) to 0 (fully infected plant.) The results are reported in Table 2.

Example 17

Preventive systemic activity on vine mildew. Plasmopara viticola (B et C) Berl et de Toni).

25 Vine plants cv. Dolcetto, cultivated in pots in a conditioned environment at 25°C and 60% relative humidity, were treated by introducing into the soil in an aqueous solution of acetone (10% acetone vol./vol.) the product being tested, at a concentration of 0.01% (referred to the earth volume).

The plants were maintained in a conditioned environment and at different time stretches from the treatment, the leaves were sprayed on their lower faces with an aqueous suspension of conids of

35 Plasmopara viticola (200,000 conids/cc). After a 24-hour residence time in a humidity-saturated environment at 21°C, the plants were transferred to 70% relative humidity and 21°C for the duration of the incubation period (7 days). Finally, the intensity

of the infection was evaluated according to indexes of an evaluation scale ranging from 100 (sound plant) to 0 (thoroughly infected plant). The results are reported in the following Table 2.

Table 2
Fungicidal activity against Plasmopara viticola on vine

Compound	Type of action	Preventive	Curative	Immunizing Systemic	Systemic	
No.	Treatment	on leaves	on leaves	on upper leaves	soil	
	Dose (%)	days (a) 1 7	days (a) 1 7	days (a) 1 7	days (a)	
18 ^(b)	1	100 100	100 100	100 100	100 100	
	0.5	100 100	100	100 100	100	
	0.1	100 100	100	100 100		
19 ^(c)	1	100 100		100		
	0.5	100		ļ		
	0.1	100] .	{	1	
ineb	1	90				
reference	0.5	70	1			
ungicide)	0.1	30	}	l .	Ì	

- (a) days elapsed from the treatment to the infection or vice-versa.
- N (2, 6 dimethylphenyl) N acetacetyl α amino methylproprionate.
- (c) N (2, 6 dimethylphenyl) N acetacetyl α amino ethylpropionate.

The data obtained from a comparison with Zineb, a commercial fungicide widely utilized prove that the compounds of the present invention are by far more active, the doses being equal.

Example 18

45 Preventive activity on tobacco mildew. (Peronospora tabacina Adam).

The leaves of tobacco plants cv. Burley, cultivated in pots in a conditioned environment, were treated by spraying onto both leaf faces the product being tested in an aqueous solution of acetone (20% acetone vol./vol.). 2 days after the treatment the leaves were sprayed on their lower faces with an aqueous suspension of conids of *Peronospora tabacina* (200,000 conids/cc). After a 6-hour residence period in a humidity-saturated environment, the plants were transferred to a conditioned environment at 20°C and 70% relative humidity for the incubation of the fungus. At the conclusion of the incubation period (6 days) the seriousness of the infection was evaluated visually according to inde-

xes of an evaluation scale ranging from 100 (sound

plant) to 0 (fully infected plant). The results are reported in Table 3.

Example 19

65 Curative activity on tobacco mildew. (Peronospora tabacina Adam).

The leaves of tobacco plants cv. Burley, cultivated in pots in a conditioned environment were sprayed on their lower faces with an aqueous suspension of conids of *Peronospora tabacina* (200,000 conids/cc). After a 6-hour residence in a humidity-saturated environment, the plants were divided into 2 groups and transferred into a conditioned environment at 20°C and 70% relative humidity for the incubation of the fungus. 24 and 48 hours after the infection the first and the second group respectively were treated by spraying the product being tested in an aqueous solution of acetone (20% acetone vol./vol.) on both leaf faces.

At the conclusion of the incubation period (6 days) the seriousness of the infection was evaluated visually according to an evaluation scale range from 100 (sound plant) to 0 (thoroughly infected plant). The 5 results are reported in Table 3.

Table 3
Fungicidal activity against Peronospora tabacina

Compound No.	Type of action	Preventive	Curative
AU.	Treatment	on leaves	on leaves
	Dose (%)	days ^(a) 2	days ^(a) 2
₁₈ (b)	1	100	. 100
	0.5	100	100

- (a) days elapsed from the treatment to the infection or vice-versa.
- (b) N-(2, 6-dimethylphenyl)-N-acetacetyl-α-amino-methyl-propion-

Example 20

Preventive activity on tomato mildew. (Phytophthora infestans (Mont) de Bary).

Leaves of tomato plants cv. Marmande, cultivated 10 in pots in a conditioned environment at 26°C and 6% relative humidity, were sprayed with an aqueous solution of acetone (20% acetone vol./vol.) of the products being tested. After 1 day the infection was effected by spraying the lower faces of the leaves with an aqueous suspension of conids of *Phytophthora infestans* (200,000 conids/cc); after a 24-hour residence in a humidity-saturated environment at 21°C, the plants were transferred, for the incubation period (4 days), to another conditioned environment 20 at 70% relative humidity and 21°C.

At the conclusion of such period, the seriousness of the infection was evaluated according to indexes of an evaluation scale ranging from 100 (sound plant) to 0 (fully infected plant). The results are reported in Table 4.

Example 21

Curative activity on tomato mildew. (Phytophthora infestans (Mont) de Bary).

Leaves of tomato plants cv. Marmande, cultivated 30 in pots in a conditioned environment at 26°C and 60% relative humidity, were sprayed on their lower faces with an aqueous suspension of conids of *Phytophthora infestans* (200,000 conids/cc).

After a 24-hour residence period in a humidity35 saturated environment, the leaves were treated with
the product being tested in an aqueous solution of
acetone (20% acetone vol./vol.) by spraying both leaf
faces. At the conclusion of the incubation period (4
days) the seriousness of the infection was evaluated
visually according to indexes of an evaluation scale
ranging from 100 (sound plant) to 0 (fully infected
plant). The results are reported in Table 4.

Example 22

Preventive systemic activity on tomato mildew. 45 (Phytophthora infestans (Mont) de Bary).

Tomato plants cv. Marmande, cultivated in pots in a conditioned environment at 26°C and 60% relative humidity, were treated by adding to the soil in an aqueous solution of acetone (10% acetone vol./vol.) 50 the product being tested, at a concentration of 0.01% (referred to the earth volume).

The plants were kept in a conditioned environment and, after 3 days from the treatment, the leaves were sprayed, on their lower faces, with an aqueous suspension of conids of *Phytophthora infestans* (200,000 conids/cc).

After a 24-hour residence in a humidity-saturated environment at 21°C, the plants were transferred into another conditioned environment at 70% relative 60 humidity and 21°C, where they were left over the incubation period (4 days). At the end of the period, the intensity of the infection was evaluation according to indexes of an evaluation scale ranging from 100 (sound plant) to 0 (completely infected plant).

65 The results are reported in the following Table 4.

Table 4
Fungicidal activity against Phytophthora infestans on tomato

Compound	Type of action	Preventive	Curative	Systemic soil	
No.	Treatment	on leaves	on leaves		
	Dose (%) .	days ^(a) 1	days ^(a) 1	days (a)3	
18 ^(b)	1	100	100	100	
	0.5	100	100	100	
	0.1		-	100	

(a) days elapsed from the treatment to the infection or vice-versa.

(b) N - (2, 6 - dimethylphenyl) - N - acetactyl - α - amino - methyl - propionate.

Example 23

Determination of the phytotoxicity

The leaves of vine plants cv. Dolcetto, cultivated in pots in a room conditioned at 25°C and 60% relative humidity, were treated by spraying both their faces with the products being tested in an aqueous solution of acetone (20% acetone vol./vol.).

The seriousness of the phytotoxic symptoms
was visually evaluated after 7 days according to
indexes of an evaluation scale ranging from 100
(fully damaged plant) to 0 (sound plant).

Table 5 shows the fungicidal activity of compounds of the present invention and the phytotoxicity of same. Both these data are compared with those of "Furalaxyl". a known product disclosed in German Offenlegungsschrift No. 2 513 788 and "Ridomil" disclosed in German Offenlekungsschrift No. 2 515 85 091. The values concerning the fungicidal activity and the phytotoxicity have been determined as described in Examples 23 and 15. From the comparison between the recorded data it is clear that, with equal application does, the compounds of this invention exhibit a fungicidal activity equal to the one of "Furalaxyl" and "Ridomil", but possess a much lower phytotoxicity.

Table 5

Products	Curative activity against Plasmopara viticals on vine, by application to leaves effected 24 hours after infection, at doses of 0.1%.	Phytotoxicity index at doses of 3%.
Compound 1	100	25
Compound 2	100	· 0
Compound 3	100	5
Compound 4	100	10
Ridomil *	100	100
Furalaxyl *	100	100

* "Furalaxyl" = N - (2, 6 - dimethylpheny - N - (1' - carbomethoxy - ethyl)

- 2 - furoylamide

* "Ridomit" = N - (2, 6 - dimethylphenyl) - N - (1' - carbomethoxy - ethyl) - methoxyacetamide

The damage caused by phytotoxicity to the plants cannot be avoided by using the dose of fungicidal product, which results to be the best compromise between the fungicidal activity of the product and its phytotoxicity.

In the practical application in agriculture, the amount of fungicidal product which actually remains on the plant varies markedly depending upon the weather conditions (especially frequency of precipitations) and the correctness and frequency of the treatments effected by the farmer. It is therefore necessary to have fungicidal products endowned with a good activity as well as with a wide margin of safety, so that even high doses of product cannot damage the plants.

The following Table 6 shows a comparison between the fungicidal activity of compounds according to the present invention and the activity of "Furalaxyl" and "Ridomil" at different application doses, and the phytotoxicity of the same compounds at increasing doses.

From the comparison between the data recorded on Table 6 it is evidence that the fungicidal activity of the compounds of this invention is of the same order of magnitude as the one of the comparison compounds, but the phytotoxicity is substantially lower as the application dose increases.

Table 6

Compound	Plasm	opara v	ivity a viticola i doses	on vine	Phytotoxicity index at the indicated doses (%).					
	0.1	0.1 0.05 0.01 0.005			0.75	1.5	3	9		
1	100	98	76	41			25			
2	100	80	70	60			0	0		
4	100	100	100	100	D	0	10	37		
8	100	100	100	100	<u> </u>		30			
Furalaxyl	100	100	100	100	32	53	100	100		
Ridomil	100	100	100	100	30	54	100	100		
		<u> </u>	<u> </u>	ļ	<u> </u>			<u> </u>		

30 CLAIMS

35

1. A compound of the general formula:

in which:

40 R and R¹ may be the same or different and each represent a hydrogen atom or a CH₃, C_2H_5 , $n \cdot C_3H_7$, $\cdot CH_2 \cdot CH = CH_2$ or $\cdot CH = CH \cdot CH_3$ group,

R³ and R⁴ may be the same or different and each represent a hydrogen, chlorine or fluorine atom, an alkyl group having 1 to 3 carbon atoms or a halomethyl, alkoxymethyl, CN, O-alkyl or S-alkyl group, or R³ and R⁴ together represent CH₂ =,

50 X represents

(in which R ° represents an alkyl group having 1 to 3 carbon atoms), CN, - CH(OR⁵)₂ (in which R⁵ represents an alkyl or alkylidene group) or

(in which R⁶ and R⁷ may be the same or different and each represent a hydrogen atom or an alkyl group),

n is 0 or 1,

Z represents an optionally substituted phenyl group,

(in which R² represents a hydrogen atom or CH₃
 group, m is 1 or 2 and Y represents an alkynyl group having 2 to 8 carbon atoms, an optionally substituted phenyl group, a cycloalkyl group having 3 to 8 carbon atoms, a phenylacetyl, furyl, thienyl or pyridyl group or a heterocyclic
 group containing 2 or 3 heteroatoms one of which is other than nitrogen) or

(in which R⁸ represents a CH₃, alkoxymethyl, halomethyl or O-alkyl group).

2. A compound as claimed in Claim 1 in which Z is

and Rº is as defined in Claim 1.

3. A compound as claimed in Claim 1 or 10 Claim 2 in which n is 0 and X is

15 in which R° is as defined in Claim 1.

4. A compound as claimed in Claim 1 having the formula:

25

40

in which R, R¹ and R² are as defined in Claim 1 and R² represents an alkyl group having 1 to 3 carbon atoms and R³ represents CH_3 or C_2H_5 .

30 5. N - (2, 6 - dimethylphenyl) - N - acetoacetyl - α - amino - methylpropionate.

6. N - (2, 6 - dimethylphenyl) - N - acetoacetyl - α - amino - ethylpropionate.

7. N - (2 - methyl - 6 - allyl - phenyl) - N -

35 carboxymethylacetyl - α - amino - methylpropionate.

8. $N - (2, 6 - diallyl - phenyl) - N - carboxymethyl - acetyl - <math>\alpha$ - amino - methylpropionate.

9. N - (2, 6 - dimethyl - phenyl) - N -

carboxymethylacetyl - α - amino - methylpropionate. 10. N - (2 - methyl - 6 - ethylphenyl) - N -

10. N - (2 - metryl - θ - etrylphetryl) - N 11. N - (2, 6 - diethylphenyl) - N -

carboxymethylacetyl – α – amino – methylpropionate.

12. N - (2, 6 - dimethylphenyl) - N -

45 chloroacetoacetyl - α - amino - methylpropionate.
 13. N - (2, 6 - diallylphenyl) - N - acetoacetyl - α -

13. N - (2, 6 - diallylphenyl) - N - acetoacetyl - α - amino - methylpropionate.

14. N - (2 - methyl 6 - allyl - phenyl) - N - acetoacetyl - α - amino - methylpropionate.

50 15. N - (2, 6 - dimethylphenyl) - N - acetoacetyl - α - amino - iso - propyl - propionate

16. $N-[2-methyl-6-(1'propenyl)-phenyl]-N-acetoacetyl-<math>\alpha$ -amino-methylpropionate.

17. N - $(2 - \text{allyl} - \text{phenyl}) - \text{N} - \text{acetoacetyl} - \alpha - \text{amino} - \text{methylpropionate}$.

18. N - (2, 6 - dimethyl - phenyl) - N - acetoacetyl - α - amino - methylbutyrate

19. A compound as claimed in Claim 2 in which X represents

CH

CHCOR5

in which R5 represents an alkyl group.

20. A compound as claimed in Claim 19, having 65 the formula:

70

85

in which R, R¹ and R⁵ are as defined in Claim 1 and R³ represents a hydrogen atom or CH₃ group.

21. N - (2, 2 - dimethoxy - ethyl) - N - (2, 6 - 75 dimethylphenyl) - carboxymethylacetamide.

22. N - (1 - methyl - 2, 2 - dimethoxy - ethyl) - N - (2, 6 - dimethylphenyl) - acetoacetamide.

23. A compound as claimed in Claim 2 in which n is 1.

80 · 24. A compound as claimed in Claim 23 having the formula:

in which R, R¹ and R⁵ are as defined in Claim 1, R³ represents a hydrogen atom or CH₃ group, and R⁵ represents an alkyl group having 1 to 3 carbon atoms.

25. N - (2, 6 - dimethylphenyl) - N - acetoacetyl - β - amino - methylpropionate.

36. A compound as claimed in Claim 1 in which Z is an optionally substituted phenyl group.

27. A compound as claimed in Claim 26 in which R⁴ represents a hydrogen atom and n is 0.

28. A compound as claimed in Claim 27, having 100 the formula:

105

in which R, R¹ and R² are as defined in Claim 1 and Z represents an optionally substituted phenyl group.

110 29. N - (2, 6 - dimethylphenyl) - N - (1 - carbomethoxyethyl) - benzamide.

30. N - (2, 6 - dimethylphenyl) - N - (1 - carboisopropoxy - ethyl) - benzamide.

31. N - (2, 6 - dimethylphenyl) - N - (1 -

115 carbomethoxy - ethyl) - 2 - methyl - benzamide.

32. N - (2 - allyl - phenyl) - N - (1 - carbomethoxy - ethyl) - benzamide.

N - (2, 6 - dimethylphenyl) - N - (1 - carbomethoxy - ethyl) - 4 - methoxy - benzamide.

20 34. N - (2, 6 - dimethylphenyl) - N - (1 - carboethoxy - ethyl) - benzamide.

35. N - (2, 6 - dimethylphenyl) - N - (1 - carbomethoxy - ethyl) - 4 - chloro - benzamide.

36. A compound as claimed in Claim 26 in which 125 X represents

in which R^s represents an alkyl group.

37. A compound as claimed in Claim 36 having 130 the formula:

60

5

in which R, R1, R3 and n are as defined in Claim 1.

38. N - (1 - methyl - 2, 2 - dimethoxy - ethyl) - N - 10 (2, 6 - dimethylphenyl) - benzamide.

39. N - (2,2 - dimethoxy - ethyl) - N - (2,6-

dimethylphenyl) - benzamide.

40. A compound as claimed in Claim 1 in which Z

15 - (CH)_m - Y in which R², Y and m are as defined in Claim 1.

41. A compound as claimed in Claim 40 in which n is 0.

42. A compound as claimed in Claim 41 having 20 the formula:

25

in which R, R¹, R³, R⁴ and R⁹ are as defined in Claim 1 and Y represents a furyl or thienyl group or a 30 cycloalkyl group having 3 to 8 carbon atoms.

43. N - (2, 6 - dimethylphenyl) - N - (1 - carbomethoxy - ethyl) - (2) - furylacetamide.

44. N - (2, 6 - dimethylphenyl) - N - (1 - carbomethoxy - ethyl) - (2) - thienylacetamide.

45. N - (2, 6 - dimethylphenyl) - N - (1 -

carbomethoxy - ethyl) - cyclohexylacetamide.
46. A compound as claimed in Claim 40 havi

46. A compound as claimed in Claim 40 having the formula:

45

in which R, R¹, R³, R⁴ and R⁹ are as defined in Claim 1 and Y is an optionally substituted phenyl group.

47. N - (2, 6 - dimethylphenyl) - N - (1 - carbomethoxy - ethyl) - phenylacetamide.

48. N - (2, 6 - dimethylphenyl) - N - (1 -

carboisopropoxy - ethyl) - phenylacetamide. 49. N - (2, 6 - dimethylphenyl) - N - (1 -

49. N - (2, 6 - dimethylphenyl) - N - (1 - carbomethoxy - vinyl) - phenylacetamide.

50. N - (2, 6 - dimethylphenyl) - N - (1 -

55 carbomethoxy - propyl) - phenylacetamide.

51. N - (2, 6 - dimethylphenyl) - N - (1 - carboethoxy - ethyl) phenylacetamide.

52. N - (2, 6 - dimethylphenyl) - N - (1 - carbomethoxy - ethyl) - 4 - methoxy 60 phenylacetamide.

53. A compound as claimed in Claim 1 substantially as herein described with reference to any one of the Examples.

54. A process for preparing a compound of the 65 general formula:

70

80

in which R, R¹, R³, R⁴, X, Y and n are as defined in Claim 1,

75 comprising reacting an aniline of the general formula:

$$R^3$$
 R^4
 (II)
 R
 R^1

in which R, R^1 , R^3 , R^4 , X and n are as defined in 85 Claim 1,

in an inert solvent and in the presence of dimethylformamide or of a halogenhydric acid accepting base, with a compound of the formula:

in which Z is defined in Claim 1.

55. A process for preparing a compound of the general formula:

100

110

115

95

in which R, R¹, R³, R⁴, X and n are as defined in Claim 1.

comprising reacting an aniline of the formula:

in which R, R¹, R², R⁴, X and n are as defined in Claim 1, in an inert solvent with diketene of the formula:

56. A process as claimed in Claim 54 or Claim 55 substantially as herein described with reference to120 any one of Examples 1 to 13.

57. A method for combatting infections of phytopathogenous fungi on plants, when the infection has not yet begun or when the infection is already in progress comprising applying to the

125 plants or to the soil in which they are growing an effective amount of one or more of the compounds as claimed in any of claims 1 to 54.

 A method as claimed in Claim 57 in which the phytopathogenous fungi is vine mildew (*Plasmop-*130 ara viticola (B et C) Berl et de Toni).

BNSDOCID: <GB___2023132A__l_>

- 59. A method as claimed in Claim 57 in which the phytopathogenous fungi is tobacco mildew (*Peronospora tabacina* Adam).
- 60. A method as claimed in Claim 57 in which the phytopathogenous fungi is tomato mildew (*Phytophthora infestant* (Mont) de Bary).
 - 61. A fungicidal composition containing as active principle one or more of the compounds as claimed in any of claims 1 to 54.

Printed for Her Majesty's Stationery Office by The Tweeddale Press Ltd., Berwick-upon-Tweed, 1979. Published at the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.