PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

HO4L 12/56 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/42746

20 July 2000 (20.07.00)

(21) International Application Number: PCT/US00/00971

(22) International Filing Date: 14 January 2000 (14.01.00)

(30) Priority Data:

09/232,397 15 January 1999 (15.01.99) us

(71) Applicant: MONTEREY NETWORKS, INC. [US/US}; 2280
Campbell Creek Boulevard, Richardson, TX 75082 (US).

(72) Inventors: SALEH, Ali, Najib; 31565 Hipshot Drive, Castaic,
CA 91384 (US). ZADIKIAN, Haig, Michael; 919 Parkwood
Court, McKinney, TX 75070 (US). BAGHDASARIAN,
Zareh; 238 Valley Creek Place, Richardson, TX 75080 (US).
PARSI, Vahid; 411 Buckingham Road #534, Richardson,
TX 75081 (US).

(74) Agents: MACPHERSON, Alan, H. et al.; Skjerven, Morrill,
MacPherson, Franklin & Friel LLP, Suite 700, 25 Metro
Drive, San Jose, CA 95110 (US).

(81) Designated States: AU, CA, JP, European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: A METHOD FOR ROUTING INFORMATION OVER A NETWORK

(57) Abstract

A method of operating a network is de-
scribed. The network includes a number of nodes
connected by a number of links. A method ac-
cording to the present invention provisions a vir-
tual path between a first and a second one of the
plurality of nodes by: identifying the first and the
second nodes, discovering a physical path from
the first node to the second node, and establishing
the virtual path. The method discovers a physi-
cal path from the first node to the second node by

automatically identifying nodes forming the phys- Yor

ical path. The method establishes the virtual path
by configuring a set of connections between the
nodes forming the physical path.

HOP_COUNT
<
MAX_HOP

1005
/_

Perform target
node

processing

[

1015
»| Send NAK with Flush V
1o originating neighbor

(End)
1055
/— 1085

Simllar Instanc® of
RPR

1080
Yos 1025 Yes 1070 /
¥ / ¥
Create RPRE Send NAK with Wrong NAK ;:c’:‘e'l:v;d for No» Record RPR
Instance to originating l
Add Input ink 1D to the neighbor “— 1080 i,
path in the packet 1030 I ¥ Send copy of RPR
Reject RPR by sending n'°| ";’;"9’?}"3'
a Terminate response oighbors thal
Is fo originating nelghbor have not senta
farget node a ciredi>~Nos] Send copy of RPR to gnaing Flush o
eighbor? all eligible neighbors \ 1075 the current node
for the same
1035 \ 1040 instance of this
Yes RPR
Send copy of RPR to -/
target node N\ 1085
l 1045
Update the RPRE
ponding to the
RPR

1050
End

AL
AM
AT
AU
AZ
BA
BB

BE
BF

BG
BJ

BY
CA
CF
CG
CH
Cl

CM
CN
Cu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
Nz
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
T
™
TR

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 00/42746 PCT/US00/00971

A METHOD FOR ROUTING INFORMATION OVER A NETWORK

TECHNICAL FIELD

This invention relates to the field of information networks, and more particularly relates to a protocol for

configuring routes over a network.

BACKGROUND ART

Today’s networks carry vast amounts of information. High bandwidth applications supported by these
networks include streaming video, streaming audio, and large aggregations of voice traffic. In the future, these
demands are certain to increase. To meet such demands, an increasingly popular alternative is the use of
lightwave communications carried over fiber optic cables. The use of lightwave communications provides several

benefits, including high bandwidth, ease of installation, and capacity for future growth.

The synchronous optical network (SONET) protocol is among those protocols employing an optical
infrastructure. SONET is a physical transmission vehicle capable of transmission speeds in the multi-gigabit
range, and is defined by a set of electrical as well as optical standards. SONET's ability to use currently-installed
fiber optic cabling, coupled with the fact that SONET significantly reduces complexity and equipment
functionality requirements, gives local and interexchange carriers incentive to employ SONET. Also attractive is
the immediate savings in operational cost that this reduction in complexity provides. SONET thus allows the

realization of a new generation of high-bandwidth services in a more economical manner than previously existed.

*

SONET networks have traditionally been protected from failures by using topologies that dedicate
something on the order of half the network's available bandwidth for protection, such as a ring topology. Two
approaches in common use today are diverse protection and self-healing rings (SHR), both of which offer
relatively fast restoration times with relatively simple control logic, but do not scale well for large data networks.
This is mostly due to their inefficiency in capacity allocation. Their fast restoration time, however, makes most
failures transparent to the end-user, which is important in applications such as telephony and other voice
communications. The existing schemes rely on 1-plus-1 and 1-for-1 topologies that carry active traffic over two
separate fibers (line switched) or signals (path switched), and use a protocol (Automatic Protection Switching or

APS), or hardware (diverse protection) to detect, propagate, and restore failures.

A SONET network using an SHR topology provides very fast restoration of failed links by using
redundant links between the nodes of each ring. Thus, each ring actually consists of two rings, a ring supporting
information transfer in a "clockwise” direction and a ring supporting information transfer in a "counter-clockwise"
direction. The terms "east” and "west" are also commonly used in this regard. Each direction employs its own set
of fiber optic cables, with traffic between nodes assigned a certain direction (either clockwise or counter

clockwise). If a cable in one of these sub-rings is damaged, the SONET ring "heals" itself by changing the

10

15

20

25

30

WO 00/42746 PCT/US00/00971
-

direction of information flow from the direction taken by the information transferred over the failed link to the

sub-ring having information flow in the opposite direction.

The detection of such faults and the restoration of information flow thus occurs very quickly, on the
order of 10 ms for detection and 50 ms for restoration for most ring implementations. The short restoration time
is critical in supporting applications, such as current telephone networks, that are sensitive to quality of service
(QoS) because it prevents old digital terminals and switches from generating red alarms and initiating Carrier
Group Alarms (CGA). These alarms are undesirable because such alarms usually result in dropped calls, causing
users down time aggravation. Restoration times that exceed 10 seconds can lead to timeouts at higher protocol
layers, while those that exceed 1 minute can lead to disastrous results for the entire network. However, the price
of such quickly restored information flow is the high bandwidth requirements of such systems. By maintaining

completely redundant sub-rings, an SHR topology requires 100% excess bandwidth.

An alternative to the ring topology is the mesh topology. The mesh topology is similar to the point-to-
point topology used in inter-networking. Each node in such a network is connected to one or more other nodes.
Thus, each node is connected to the rest of the network by one or more links. In this manner, a path from a first

node to a second node uses all or a portion of the capacity of the links between those two nodes.

Networks based on mesh-type restoration are inherently more capacity-efficient than ring-based designs,
mainly because each network link can potentially provide protection for fiber cuts on several different links. By
sharing the capacity between links, a SONET network using a mesh topology can provide redundancy for failure
restoration at less than 100% of the bandwidth capacity originally required. Such networks are even more
efficient when traffic transits several links. One study found that for an 11-node, 22-span network, only 51%
redundant net capacity was required for 100% restorability, as reported in, “The design and simulation of an
intelligent transport network with distributed control,” by T. Chujo, H. Komine, K. Miyazaki, T. Ogura, and T.
Soejima, presented at the Network Operations Management Symposium, San Diego, February 11-14, 1990, which
is included herein by reference, in its entirety and for all purposes. The corresponding ring-based design required
five rings and a total DS-3 redundancy of 330%. However, path restoration often consumes several minutes in
such a topology. This is much slower than the restoration times exhibited by ring topologies and is so long that

connections are often lost during the outage.
Various kinds of networking equipment can be used to support the ring and mesh topologies just
described. Options include:

1. Back-to-back wavelength division multiplexers (WDMs) and optical cross connects (OXCs) for use in

mesh topologies.
2. Back-to-back optical add/drop multiplexers (O-ADM) for ring topologies.

3. Other combinations (e.g., WDM combined with OXC, digital cross connect systems (DCSs), and other

such equipment)

10

15

20

25

30

35

WO 00/42746 PCT/US00/00971
-3-

WDMs may be connected in back-to-back configurations to allow the connection of various wavelength
routes to one another (also known as “patching” or “nailing up” connections). Provisioning paths in such
architectures is done manually using a patch panel. Thus, provisioning is slow and prone to mistakes due to
human error and equipment failure. In the event of a failure, restoration is performed manually in such
architectures, and is again slow and error-prone. Such architectures scale poorly because additional bandwidth is
added by either adding to the number of wavelengths supported (requiring the replacement of equipment at nodes,
and possibly the replacement of fiber optic cables as well) or adding new fiber optic cables and supporting node
equipment. Such architectures are also inherently unmanageable, due to the lack of centralized control. And
while the initial capital investment tends to be relatively low (as a result of their simplicity), operating expenses
for such architectures tends to be relatively high because of the costs associated with configuration, expansion,
and management. Thus, a mesh topology employing back-to-back WDMs will tend to be slow to deploy and

difficult to manage due to the need for manually “nailing up” paths and lack of centralization.

Another architectural element that may be used to create a mesh topology is the optical cross connect
(OXC). OXCs allow provisioning using a centralized scheme to accomplish provisioning in a matter of minutes.
Restoration in the event of a failure may be performed manually or may be effected using a centralized
management system. However, restoration still requires on the order of minutes per wavelength route restored.
As with the back-to-back WDM architecture, a mesh topology that employs OXCs scales poorly due, in part, to

the large increase in size and cost such scaling entails.

An OXC can be either transparent (purely optical, in which the signals are never converted from optical
signals) or opaque (in which the optical signals are converted from optical signals into electrical signals, switched,
and then converted back into optical signals). Transparent optical cross connects provide little in the way
manageability because the information is never made accessible to the OXC’s operator. In contrast, opaque
OXCs can be configured to permit access to the information being switched. However, neither type of OXC
maintains information regarding the topology of the network and, in fact, OXCs possess no intrinsic network
intelligence. Moreover, OXC technology is expensive, making initial investment quite high, as well as the cost of

future expansion.

Alternatively, a SONET network may be configured in a ring (SHR) topology by using add/drop
multiplexers (ADMs). An ADM is a SONET multiplexer that allows signals to be added into or dropped from a
higher rate signal. ADMs have two bidirectional ports, commonly referred to as an east and a west port. Using
ADMs, a SONET network in a SHR topology uses a collection of nodes equipped with ADMs in a physical
closed loop such that each node is connected to two adjacent nodes with a duplex connection. Any loss of
connection due to a single failure of a node or a connection between nodes is automatically restored. The traffic
terminated at a failed node, however, is lost. Two types of SHRs are unidirectional (UPSR) and bidirectional
(BLSR), as defined by the traffic flow in normal conditions. Bidirectional rings have a capacity carrying
advantage over unidirectional rings because of the ability to share protection capacity among the links between

nodes, as opposed to unidirectional rings, which dedicate capacity all the way around the ring.

10

15

20

25

30

35

WO 00/42746 PCT/US00/00971

—4-

Provisioning in such architectures is centralized and can be performed in minutes. While restoration can
also be performed quickly (on the order of 50 ms, as previously noted), 100% spare bandwidth is required. For
all intents and purposes, then, the user must install fiber optic cabling for two networks, one for normal traffic and
one to be used in the event of a failure. Moreover, the cabling for each link should be physically diverse in order
to minimize the possibility that a cause of physical damage will damage both links and cause both directions of a
ring to fail. These issues detrimentally affect cost, manageability, and scalability. With regard to expansion,
ADMs are stacked in an SHR in order to increase capacity. However, stacked ADMs are blocking. In other
words, the switching function may not be transparent as a result of the ADMs not being available on a full-time
basis (i.e., occasionally blocking). Thus, an architecture employing ADMs is best suited for small offices or other
situations that do not require the relatively large amounts of bandwidth (implying the need for stacked ADMs).
As noted, stacked ADMs are also difficult to manage and expensive due to the extra hardware required for 100%

spare capacity.

Other combinations can also be employed. For example, WDMs can be combined with OXCs (either
transparent or opaque) in order to create a network having a mesh topology. Such an architecture supports the
cross-connection of wavelength routes by either manual connection or under centralized control. However, such
an architecture is also difficult to expand due to the need to add WDMs/fiber optic cables and the increase in size
of the OXC, and cannot restore failed links quickly enough to avoid dropping or interrupting telecommunications

connections.

Another option is the use of a digital cross-connect system (DCS). A DCS is used to terminate digital
signals and cross-connect them, integrating multiple functionalities such as signal adding and dropping, cross-
connection capabilities, and multiplexing and demultiplexing of signals. DCS based networks enjoy an advantage
over networks employing back-to-back WDMs because the use of DCS eliminates the need for additional back-to-
back electrical multiplexing, thus reducing the need for labor-intensive jumpers. Operational cost savings are
realized by a DCS through electronically controlling cross-connections, test access and loopbacks, and
maintenance. Two types of DCSs are wideband DCSs and broadband DCSs. Wideband DCS (W-DCS)
terminates full duplex OC-Ns and DS3s, has VT cross-connection capability, and provides DS1 interfaces. A
broadband DCS (B-DCS) terminates full-duplex OC-N signals and provides DS3 interfaces. The B-DCS makes
two-way cross connection at the DS3, STS-1, and concatenated STS-Nc levels. STS-Nc may be used, for
example, in broadband services such as high definition television (HDTV), where an STS-3c cross connection

may be used to cross connect the signal as a single, high-capacity channel.

Various attempts have been made to use DCSs in a mesh configuration to create a fault-tolerant network,
but have not met with broad success in reducing restoration times below a few seconds. Some of these
configurations rely on a central database and a central controller (usually an Operations System or OS) to restore
failures. Although these schemes often exhibit restoration times exceeding 10 minutes, such restoration times are
an improvement over manual restoration, which requires hours, or even days to effect restoration. However, these

results are not enough to meet the 50-200 ms restoration time required by existing telecommunication network

10

15

20

25

30

WO 00/42746 PCT/USGG/00971

-5-

equipment. Other implementations employ distributed architectures in which control is shared among multiple
network nodes. This results in faster restoration times (on the order of about 2-10 seconds), but still does not

address the need for restoration times below 200 ms.

A routing protocol that supports relatively simple provisioning and relatively fast restoration (on the
order of , for example, 50 ms), while providing relatively efficient bandwidth usage (i.e., minimizing excess
bandwidth requirements for restoration, on the order of less than 100% redundant capacity and preferably less
than 50% redundant capacity). Such a routing protocol is, in one embodiment, easily be scaled to accommodate

increasing bandwidth requirements.

DISCLOSURE OF INVENTION

According to one embodiment of the present invention, an apparatus and method are described for
configuring routes over a network. Such a method, embodied in a protocol of the present invention, provides
several advantages. A protocol according to the present invention provides relatively fast restoration (on the
order of 50 ms), while providing relatively efficient bandwidth usage (i.e., minimizing excess bandwidth
requirements for restoration, on the order of less than 100% redundant capacity and preferably less than 50%
redundant capacity). Moreover, a protocol according to one embodiment of the present invention scales well to

accommodate increasing bandwidth demands of the services being supported.

In one embodiment of the present invention, a method of operating an optical network is described. The
network includes a number of nodes coupled by a number of links. A method according to this embodiment of
the present invention provisions a virtual path between a first and a second one of the plurality of nodes by:
identifying the first and the second nodes, discovering a physical path from the first node to the second node, and
establishing the virtual path. The method discovers a physical path from the first node to the second node by
automatically identifying nodes forming the physical path. The method establishes the virtual path by configuring

a set of connections between the nodes forming the physical path.

In another embodiment of the present invention, a method is described that terminates the virtual path by
sending a termination message from one of the first and second nodes to the other of the first and second nodes.
The termination message is sent along the physical path and resources for the virtual path are deallocated by each
one of the nodes forming the physical path as the termination message is sent to the next one of the nodes that

form the physical path.

In yet another embodiment of the present invention, a method is described that restores a virtual path in
response to a failure along the physical path created between a first node and a second node by a provisioning
operation such as that described above (although a virtual path restored by a method according to the present
invention may be provisioned in any manner deemed desirable). Such a method begins by discovering an

alternate physical path from the first node to the second node. The alternate physical path is discovered by

10

15

20

25

WO 00/42746 PCT/US00/00971
-6-

automatically identifying nodes forming the alternate physical path. This may be based on any number of criteria,
such as cost, quality of service, latency, or other metric. The method then re-establishes the virtual path by
configuring a set of connections between the nodes forming the alternate physical path. This may require an
entirely new end-to-end alternate physical path, or may simply be the addition of a node or link to the existing

physical path.

The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and
omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and
is not intended to be in any way limiting. Other aspects, inventive features, and advantages of the present
invention, as defined solely by the claims, will become apparent in the non-limiting detailed description set forth

below.

BRIEF DESCRIPTION OF DRAWINGS

The present invention may be better understood, and its numerous objects, features, and advantages

made apparent to those skilled in the art by referencing the accompanying drawings.
Fig. 1 illustrates the layout of a Node Identifier (Node ID).
Fig. 2 is a block diagram of a zoned network consisting of four zones and a backbone.
Fig. 3 is a flow diagram illustrating the actions performed by a neighboring node in the event of a failure.
Fig. 4 is a flow diagram illustrating the actions performed by a downstream node in the event of a failure.
Fig. 5 is a flow diagram illustrating the actions performed in sending a Link State Advertisement (LSA).
Fig. 6 is a flow diagram illustrating the actions performed in receiving an LSA.

Fig. 7 is a flow diagram illustrating the actions performed in determining which of two LSAs is the more

recent.

Fig. 8 is a state diagram of a Hello Machine according to the present invention.

—

Fig. 9 is a flow diagram illustrating the actions performed in preparation for path restoration in response

to a link failure.

Fig. 10 is a flow diagram illustrating the actions performed in processing received Restore-Path Requests

(RPR) executed by tandem nodes.

Fig. 11 is a flow diagram illustrating the actions performed in the processing of an RPR by the RPR’s

target node.

10

20

25

WO 00/42746 PCT/US00/00971
-7-

Fig. 12 is a flow diagram illustrating the actions performed in returning a negative response in response

to an RPR.

Fi

a

g. 13 is a flow diagram illustrating the actions performed in returning a positive response to a received

RPR.
Fig. 14 is a block diagram illustrating an exemplary network according to the present invention.

Fig. 15 is a flow diagram illustrating the actions performed in calculating the shortest path between nodes

based on Quality of Service (QoS) for a given Virtual Path (VP).

o

Fig. 16 illustrates the layout of a protocol header according to the present invention.

Fig. 17 illustrates the layout of an initialization packet according to the present invention.

Fig. 18 illustrates the layout of a Hello Packet of a protocol according to the present invention.

Fig. 19 illustrates the layout of an RPR Packet of a protocol accerding to the present invention.

Fig. 20 illustrates the layout of a GET_LSA Packet of a protocol according to the present invention.
Ei

g. 21 illustrates the layout of a CREATE_PATH packet of a protocol according to the present

(=}

—

invention.

The use of the same reference symbols in different drawings indicates similar or identical items.

MODES FOR CARRYING OUT THE INVENTION

The following is intended to provide a detailed description of an example of the invention and should not
be taken to be limiting of the invention itself. Rather, any number of variations may fall within the scope of the

invention which is defined in the claims following the description.

In one embodiment, a routing protocol is described that provides many advantages, including restoration
times on the order of 50 ms or less (e.g., comparable to those of SHRs) and relatively high utilization efficiency
(e.g. by reducing the amount redundant bandwidth, preferably to, for example, 50% or less). The protocol
achieves the former by using a physical network layer (e.g., SONET) for communications between network nodes.
Preferably, no other protocols are interspersed between the routing protocol and the transmission medium. Also
preferably, all protocol-related status and control messages are communicated in-band (e.g., carried by the
physical network layer, for example, in certain of a SONET frame’s overhead bytes), which allows events to be
sent between network nodes at hardware speeds. However, out-of-band communication ¢hannels can also be

successfully employed to carry such information.

10

20

25

30

WO 00/42746 PCT/US00/00971

-8-

Another mechanism employed by the protocol to improve restoration time is distributed intelligence,
which also supports end-to-end provisioning. The protocol, in one embodiment, relies on a distributed routing
protocol, which employs event pipelining and parallel execution of protocol processes. Because multiple actions
occur in parallel, event delays are minimized. In one embodiment, the protocol also uses a distributed database
and relies on distributed control to restore failures. In such an embodiment, every node maintains an up-to-date
view of network topology, (i.¢., available nodes and links, and configured connections). Changes that occur in the
network, whether caused by failed links, newly provisioned connections, or added/failed/removed nodes, are
“broadcast” throughout the network, using special protocol packets and procedures. Topology distribution

normally runs concurrently with, and in parallel to, failure restoration activities, but at a much lower priority.

This is achieved by making the protection bandwidth a user-configurable parameter, and attaching a
priority (or QoS) metric to all configured connections (referred to herein as virtual paths or VPs) and links. The
QoS parameter makes it possible to reduce the required percentage of protection bandwidth even further, while
maintaining the same quality of service for those connections that need and, more importantly, can afford such
treatment. Thus, availability is mapped into a cost metric and only made available to users who can justify the

cost of a given level of service.

Network architecture

To limit the size of the topology database and the scope of broadcast packets, networks like the protocol
described herein can be divided into smaller logical groups called “zones.” Each zone runs a separate copy of the
topology distribution algorithm, and nodes within each zone are only required to maintain information about their
own zone. There is no need for a zone's topology to be known outside its boundaries, and nodes within a zone

need not be aware of the network's topology external to their respective zones.

Nodes that attach to multiple zones are referred to herein as border nodes. Border nodes are required to
maintain a separate topological database, also called a link-state or connectivity database, for each of the zones
they attach to. Border nodes use the connectivity database(s) for inira-zone routing. Border nodes are also
required to maintain a separate database that describes the connectivity of the zones themselves. This database,
which is called the network database, is used for inter-zone routing. It describes the topology of a special zone,
referred to herein as the backbone, which is always assigned an ID of 0. The backbone has all the characteristics
of a zone. There is no need for a backbone's topology to be known outside the backbone, and its border nodes

need not be aware of the topologies of other zones.

A network is referred to herein as flat if it consists of a single zone (i.e., zone 0 or the backbone zone).
Conversely, a network is referred to herein as hierarchical if it contains two or more zones, not including the

backbone. The resulting multi-level hierarchy (i.e., nodes and one or more zones) provides the following benefits:

1. The size of the link state database maintained by each network node is reduced, which allows

the protocol to scale well for large networks.

10

15

20

30

WO 00/42746 PCT/US00/00971

-9-

2. The scope of broadcast packets is limited, reducing their impact.
* Broadcast packets impact bandwidth by spawning offspring exponentially - the smaller scope
results in a fewer number of hops and, therefore, less traffic.
* The shorter average distance between nodes also results in a much faster restoration time,

especially in large networks (which are more effectively divided into zones).

3. Different sections of a long route (i.e., one spanning multiple zones) can be computed

separately and in parallel, speeding the calculations.

4, Restricting routing to be within a zone prevents database corruption in one zone from affecting
the intra-zone routing capability of other zones because routing within a zone is based solely on information

maintained within the zone.

As noted, the protocol routes information at two different levels: inter-zone and intra-zone. The former
is only used when the source and destination nodes of a virtual path are located in different zones. Inter-zone
routing supports path restoration on an end-to-end basis from the source of the virtual path to the destination by
isolating failures between zones. In the latter case, the border nodes in each transit zone originate and terminate
the path-restoration request on behalf of the virtual path's source and destination nodes. A border node that
assumes the role of a source {or destination) node during the path restoration activity is referred to herein as a
proxy source (destination) node. Such nodes are responsible for originating (terminating) the RPR request with
their own zones. Proxy nodes are also required to communicate with border nodes in other zones to establish an

inter-zone path for the VP.

In one embodiment, every node in a network employing the protocol is assigned a globally unique 16-bit
ID referred to herein as the node ID. A node ID is divided into two parts, zone ID and node address. Logically,
each node ID is a pair (zone ID, node address), where the zone ID identifies a zone within the network, and the
node address identifies a node within that zone. To minimize overhead, the protocol defines three types of node
IDs, each with a different size zone ID field, although a different number of zone types can be employed. The

network provider selects which packet type to use based on the desired network architecture.

Fig. 1 illustrates the layout of a node ID 100 using three types of node IDs. As shown in Fig. 1, a field
referred to herein as type ID 110 is allocated either one or two bits, a zone ID 120 of between 2-6 bits in length,
and a node address 130 of between about 8-13 bits in length. Type 0 IDs allocate 2 bits to zone ID and 13 bits to
node address, which allows up to 2" or 8192 nodes per zone. As shown in Fig. 1, type 1 IDs devote 4 bits to
zone ID and 10 bits to node address, which allows up to 2'° (i.e. 1024) nodes to be placed in each zone. Finally,
type 2 IDs use a 6-bit zone ID and an 8-bit node address, as shown in Fig. 1. This allows up to 256 nodes to be
addressed within the zone. It will be obvious to one skilled in the art that the node ID bits can be apportioned in

several other ways to provide more levels of addressing.

15

20

25

30

35

WO 00/42746 PCT/US00/00971

-10-

Type 0 IDs work well for networks that contain a small number of large zones (e.g., less than about 4
zones). Type 2 IDs are well suited for networks that contain a large number of small zones (e.g., more than about
15). Type 1 IDs provide a good compromise between zone size and number of available zones, which makes a
type 1 node ID a good choice for networks that contain an average number of medium size zones (e.g., between
about 4 and about 15). When zones being described herein are in a network, the node IDs of the nodes in a zone

may be delineated as two decimal numbers separated by a period (e.g., ZoneID.NodeAddress).

Fig. 2 illustrates an exemplary network that has been organized into a backbone, zone 200, and four
configured zones, zones 201-204, which are numbered 0-4 under the protocol, respectively. The exemplary
network employs a type 0 node ID, as there are relatively few zones (4). The solid circles in each zone represent
network nodes, while the numbers within the circles represent node addresses, and include network nodes 211-
217,221-226, 231-236, and 241-247. The dashed circles represent network zones. The network depicted in Fig.
2 has four configured zones (zones 1-4) and one backbone (zone 0). Nodes with node IDs 1.3, 1.7, 2.2, 2,4, 3.4,
3.5, 4.1, and 4.2 (network nodes 213, 217, 222, 224, 234, 235, 241, and 242, respectively) are border nodes
because they connect to more than one zone. All other nodes are interior nodes because their links attach only to
nodes within the same zone. Backbone 200 consists of 4 nodes, zones 201-204, with node IDs of 0.1, 0.2, 0.3,

and 0.4, respectively.

Once a network topology has been defined, the protocol allows the user to configure one or more end-to-
end connections that can span multiple nodes and zones. This operation is referred to herein as provisioning.
Each set of physical connections that are provisioned creates an end-to-end connection between the two end nodes
that supports a virtual point-to-point link (referred to herein as a virtual path or VP). The resulting VP has an
associated capacity and an operational state, among other attributes. The end points of a VP can be configured to
have a master/slave relationship. The terms source and destination are also used herein in referring to the two end-
nodes. In such a relationship, the node with a numerically lower node ID assumes the role of the master (or
source) node, while the other assumes the role of the slave (or destination) node. The protocol defines a
convention in which the source node assumes all recovery responsibilities and that the destination node simply
waits for a message from the source node informing it of the VP’s new path, although the opposite convention

could easily be employed.

VPs are also assigned a priority level, which determines their relative priority within the network. This
quality of service (QoS) parameter is used during failure recovery procedures to determine which VPs are first to
be restored. Four QoS levels (0-3) are nominally defined in the protocol, with 0 being the lowest, although a
larger or smaller number of QoS levels can be used. Provisioning is discussed in greater detail subsequently

herein.

Initialization of network nodes

In one embodiment, network nodes use a protocol such as that referred to herein as the Hello Protocol in

order to establish and maintain neighbor relationships, and to learn and distribute link-state information

10

15

20

25

WO 00/42746 PCT/US00/00971
-11-

throughout the network. The protocol relies on the periodic exchange of bi-directional packets (Hello packets)
between neighbors. During the adjacency establishment phase of the protocol, which involves the exchange of

INIT packets, nodes learn information about their neighbors, such as that listed in Table 1.

Parameter Usage
Node ID Node ID of the sending node, which is preferably, from 8 bits to 32 bits.
Hellolnterval How often Hello packets should be sent by the receiving node

HelloDeadlnterval The time interval, in seconds, after which the sending node will consider its neighbor dead if
a valid Hello packets is not received.

LinkCost Cost of the link between the two neighbors. This may represent distance, delay or any other
metric.)

LinkCapacity Total link capacity

QoS3Capacity Link capacity reserved for QoS 3 connections

QoSnCapacity Link capacity reserved for QoS 0-2 connections

Table 1. Information regarding neighbors stored by a node.

During normal protocol operation, each node constructs a structure known as a Link State Advertisement
(LSA), which contains a list of the node’s neighbors, links, the capacity of those links, the quality of service
available on over links, one or more costs associated with each of the links, and other pertinent information. The
node that constructs the LSA is called the originating node. Normally, the originating node is the only node
allowed to modify its contents (except for the HOP_COUNT field, which is not included in the checksum and so
may be modified by other nodes). The originating node retransmits the LSA when the LSA’s contents change.
The LSA is sent in a special Hello packet that contains not only the node’s own LSA in its advertisement, but also
ones received from other nodes. The structure, field definitions, and related information are illustrated
subsequently in Fig. 18 and described in the corresponding discussion. Each node stores the most recently
generated instance of an LSA in its database. The list of stored LSAs gives the node a complete topological map
of the network. The topology database maintained by a given node is, therefore, nothing more than a list of the

most recent LSAs generated by its peers and received in Hello packets.

In the case of a stable network, the majority of transmitted Hello packets are empty (i.e., contain no
topology information) because only altered LSAs are included in the Hello messages. Packets containing no
changes (no LSAs) are referred to herein as null Hello packets. The Hello protocol requires neighbors to
exchange null Hello packets periodically. The Hellolnterval parameter defines the duration of this period. Such

packets ensure that the two neighbors are alive, and that the link that connects them is operational.

Initialization message

An INIT message is the first protocol transaction conducted between adjacent nodes, and is performed
upon network startup or when a node is added to a pre-existing network. An INIT message is used by adjacent

nodes to initialize and exchange adjacency parameters. The packet contains parameters that identify the neighbor

20

30

WO 00/42746 PCT/US00/00971

-12-

(the node ID of the sending node), its link bandwidth (both total and available, on a QoS3/QoSn basis), and its
configured Hello protocol parameters. The structure, field definitions, and related information are illustrated

subsequently in Fig. 17 and described in the text corresponding thereto.

In systems that provide two or more QoS levels, varying amounts of link bandwidth may be set aside for
the exclusive use of services requiring a given QoS. For example, a certain amount of link bandwidth may be
reserved for QoS3 connections. This guarantees that a given amount of link bandwidth will be available for use
by these high-priority services. The remaining link bandwidth would then be available for use by all QoS levels
(0-3). The Hello parameters include the Hellolnterval and HelloDeadlInterval parameters. The Hellolnterval is
the number of seconds between tfansmissions of Hello packets. A zero in this field indicates that this parameter
hasn’t been configured on the sending node and that the neighbor should use its own configured interval. If both
nodes send a zero in this field then a default value (e.g., 5 seconds) should be used. The HelloDeadlnterval is the
number of seconds the sending node will wait before declaring a silent neighbor down. A zero in this field
indicates that this parameter hasn’t been configured on the sending node and that the neighbor should use its own
configured value. If both nodes send a zero in this field then a default value (e.g., 30 seconds) should be used.
The successful receipt and processing of an INIT packet causes a START event to be sent to the Hello State

machine. as is described subsequently.

Hello Message

Once adjacency between two neighbors has been established, the nodes periodically exchange Hello
packets. The interval between these transmissions is a configurable parameter that can be different for each link,
and for each direction. Nodes are expected to use the Hellolnterval parameters specified in their neighbor’s Helio
message. A neighbor is considered dead if no Hello message is received from the neighbor within the

HelloDeadlnterval period (also a configurable parameter that can be link- and direction-specific).

In one embodiment, nodes in a network continuously receive Hello messages on each of their links and
save the most recent LSAs from cach message. Each LSA contains, among other things, an LSID (indicating
which instance of the given LSA has been received) and a HOP_COUNT. The HOP_COUNT specifies the
distance, as a number of hops, between the originating node and the receiving node. The originating node always
sets this field of 0 when the LSA is created. The HOP_COUNT field is incremented by one for each hop (from
node 10 node) traversed by the LSA instance. The HOP_COUNT field is set to zero by the originating node and
is incremented by one on every hop of the flooding procedure. The ID field is initialized to FIRST_LSID during
node start-up and is incremented every time a new instance of the LSA is created by the originating node. The
initial ID is only used once by each originating node. Preferably, an LSA carrying such an ID is always accepted
as most recent. This approach allows old instances of an LSA to be quickly flushed from the network when the

originating node is restarted.

15

25

30

35

WO 00/42746 PCT/US00/00971
~13-

During normal network operation, the originating node of an LSA transmits LS update messages when
the node detects activity that results in a change in its LSA. The node sets the HOP_COUNT field of the LSA to
0 and the LSID field to the LSID of the previous instance plus 1. Wraparound may be avoided by using a
sufficiently-large LSID (e.g., 32 bits). When another node receives the update message, the node records the LSA
in its database and schedules it for transmission to its own neighbors. The HOP_COUNT field is incremented by
one and transmitted to the neighboring nodes. Likewise, when the nodes downstream of the current node receive
an update message with a HOP_COUNT of H, they transmit their own update message to all of their neighbors
with a HOP_COUNT of H+1, which represents the distance (in hops) to the originating node. This continues
until the update message either reaches a node that has a newer instance of the LSA in its database or the hop-

count field reaches MAX_HOPS.

Fig. 3 is a flow diagram illustrating the actions performed in the event of a failure. When the connection
is created. the inactivity counter associated with the neighboring node is cleared (step 300). When a node
receives a Hello message (null or otherwise) from a neighboring node (step 310), the receiving node clears the
inactivity counter (step 300). If the neighboring node fails, or any component along the path between the node
and the neighboring node fails, the receiving node stops receiving update messages from the neighboring node.
This causes the inactivity counter to increase gradually (step 320) until it reaches HelloDeadlInterval (step 330).
Once HelloDeadlnterval is reached, several actions are taken. First, the node changss the state of the neighboring
node from ACTIVE to DOWN (step 340). Next, the HOP_COUNT field of the LSA is set to LSInfinity (step
350). A timer is then started to remove the LSA from the node’s link state database withinLSZombieTime (step
360). A copy of the LSA is then sent to all active neighbors (step 370). Next, a LINK_DOWN event is generated
to cause all VP’s that use the link between the node and its neighbor to be restored (step 380). Finally, a
GET _LSA request is sent to all neighbors, requesting their copy of all LSA’s previously received from the now-

dead neighbor (step 390).

It should be noted that those skilled in the art will recognize the boundaries between and order of '
operations in this and the other flow diagrams described herein are merely illustrative and alternative
embodiments may merge operations, impose an alternative decomposition of functionality of operations, or re-
crder the cperations presented therein. For example, the operations discussed herein may be decomposed into
sub-operations to be executed as multiple computer processes. Moreover, alternative emtbodiments may combine
multiple instances of particular operation or sub-operations. Furthermore, those skilled in the art will recognize
that the operations described in this exemplary embodiment are for illustration only. Operations may be
combined or the functionality of the operations may be distributed in additional operations in accordance with the

invention.

Fig. 4 is a flow diagram illustrating the actions performed when a downstream node receives a
GET_LSA message. When the downstream node receives the request, it first acknowledges the request by
sending back a positive response to the sending node (step 400). The downstream node then looks up the

requested LSA’s in its link state database (step 410) and builds two lists, list A and list B (step 420). The first list,

10

15

20

25

30

WO 00/42746 PCT/US00/00971

-14-

list A, contains entries that were received from the sender of the GET_LSA request. The second list, list B,
contains entries that were received from a node other than the sender of the request, and so need to be forwarded
to the sender of the GET_LSA message. All entries on list A are flagged to be deleted within LSTimeToLive,
unless an update is received from neighboring nodes prior to that time (step 430). The downstream node also
sends a GET_LSA request to all neighbors, except the one from which the GET_LSA message was received,
requesting each neighbor’s version of the LSAs on list A (step 430). If list B is non-empty (step 450), entries on
list B are placed in one or more Hello packets and sent to the sender of the GET_LSA message (step 460). No

such request is generated if the list is empty (step 450).

The LSA of the inactive node propagates throughout the network until the hop-count reaches
MAX_HOPS. Various versions of the GET_LSA request are generated by nodes along the path, each with a
varying number of requested LSA entries. An entry is removed from the request when it reaches a node that has

an instance of the requested LLSA that meets the criteria of list B.

Al} database exchanges are expected to be reliable using the above method because received LSA’s must
be individually acknowledged. The acknowledgment packet contains a mask that has a “1”" in all bit positions that
correspond to LSA’s that were received without any errors. The low-order bit corresponds to the first LSA
received in the request, while the high-order bit corresponds to the last LSA. Upon receiving the response, the
sender verifies the checksum of all LSA’s in its database that have a corresponding “0” bit in the response. It then
retransmits all LSA’s with a valid checksum and ages out all others. An incorrect checksum indicates that the
contents of the given LSA has changed while being held in the node’s database. This is usually the result of a

memory problem. Each node is thus required to verify the checksum of all LSA’s in its database periodically.

The LS checksum is provided to ensure the integrity of LSA contents. As noted, it is used to detect data
corruption of an LSA. This corruption can occur while the advertisement is being transmitted, while it is being
held in a node’s database, or at other points in the networking equipment. The checksum can be formed by any
one of a number of methods known to those of skill in the art, such as by treating the LSA as a sequence of 16-bit
integers, adding them together using one's complement arithmetic, and then taking the one's complement of the
result. Preferably, the checksum doesn’t include the LSA's HOP_COUNT tield, in order to allow other nodes to
modify the HOP_COUNT without having to update the checksum field. In such a scenario, only the originating
node is allowed to modify the contents of an LSA except for those twe ficlds, including its checksum. This

simplifies the detection and tracking of data corruption.

Specific instances of an LSA are identified by the LSA's ID field, the LSID. The 1.SID makes it possible
to detect old and duplicate LSAs. Similar to sequence numbers, the space created by the ID is circular: it starts at
some value (FIRST_LSID), increases to some maximum value (FIRST_LSID-1), and then goes back to
FIRST_LSID+1. Preferably, the initial value is only used once during the lifetime of the LSA, which helps flush

old instances of the LSA quickly from the network when the originating node is restarted. Given a large enough

10

20

25

30

WO 00/42746 PCT/US00/00971

-15-

LSID, wrap-around will never occur, in a practical sense. For example, using a 32 bit LSID and a MinLSInterval

of 5 seconds, wrap-around takes on the order of 680 years.

LSIDs must be such that two LSIDs can be compared and the greater (or lesser) of the two identified, or

a failure of the comparison indicated. Given two LSIDs x and y, x is considered to be less than y if either
lx—yl < 2(LSIDngth -1 and x < y

or

2(LSIDLeng!h -1)

be-yt > and x>y

is true. The comparison fails if the two LSIDs differ by more than 2-5/Ptensrh -1

Sending, Receiving, and Verifving LSAs

Fig. 5 shows a flow diagram illustrating the actions performed in sending link state information using
LSAs. As noted, each node is required to send a periodic Hello message on each of its active links. Such packets
are usually empty (a null Hello packet), except when changes are made to the database, either through local
actions or received advertisements. Fig. 5 illustrates how a given node decides which LSAs to send, when, and to
what neighbors. It should be noted that each Hello message may contain several LSAs that are acknowledged as

a group by sending back an appropriate response to the node sending the Hello message.

For each new LSA in the link state database (step 500), then, the following steps are taken. If the LSA is
new, several actions are performed. For each node in the neighbor list (step 510), the state of the neighboring
node is determined. If the state of the neighboring node is set to a value of less than ACTIVE, that node is
skipped (steps 520 and 530). If the state of the neighboring node is set to a value of at least ACTIVE and if the
LSA was received from this neighbor (step 540), thé given neighbor is again skipped (step 530). If the LSA was
not received from this neighbor (step 540), the LSA is added to the list of LSAs that are waiting to be sent by
adding the LSA to this neighbor’s LSAsToBeSent list (step 550). Once all LSAs have been processed (step 560),
requests are sent out. This is accomplished by stepping through the list of LSAs to be sent (steps 570 and 580).

Once all the L.SAs have been sent, the process is complete.

Fig. 6 illustrates the steps performed by a node that is receiving LSAs. As noted, LSAs are received in
Hello messages. Each Hello message may contain several distinct LSAs that must be acknowledged as a group by
sending back an appropriate response to the node from which the Hello packet was received. The process begins
at step 600, where it is determined whether the Hello message received contains any LSAs requiring
acknowledgment. An LSA requiring processing is first analyzed to determine if the HOP_COUNT is equal to
MAX_HOPS (step 610). This indicates that HOP_COUNT was incremented past MAX_HOPS by a previous

node, and implies that the originating node is too far from the receiving node to be useful. If this is the case, the

10

20

25

30

WO 00/42746 A PCT/US00/00971
-16-

current LSA is skipped (step 620). Next, the LSA’s checksum is analyzed to ensure that the data in the LSA is
valid (step 630). If the checksum is not valid (i.e., indicates an error), the LSA is discarded (step 435).

Otherwise, the node's link state database is searched to find the current LSA (step 640), and if not found,
the current LSA is written into the database (step 645). If the current LSA is found in the link state database, the
current LSA and the LSA in the database are compared to determine if they were sent from the same node (step
650). If the LSAs were from the same node, the LSA is installed in the database (step 655). If the LSAs were not
from the same node, the current LSA is compared to the existing LSA to determine which of the two is more
recent (step 660). The process for determining which of the two LSAs is more recent is discussed in detail below
in reference to Fig. 7. If the LSA stored in the database is the more recent of the two, the LSA received is simply
discarded (step 665). If the LSA in the database is less recent than the received LSA, the new LSA is installed in
the database, overwriting the existing LSA (step 670). Regardiess of the outcome of this analysis, the LSA is then
acknowledged by sending back an appropriate response to the node having transmitted the Hello message (step

675).

Fig. 7 illustrates one method of determining which of two LSAs is the more recent. An LSA is identified
by the Node ID of its originating node. For two instances of the same LSA, the process of determining the more
recent of the two begins at step 700 by comparing the LSAs LSIDs. In one embodiment of the protocol, the
special ID FIRST_LSID is considered to be higher than any other ID. If the LSAs L.SIDs are different, the LSA
with the higher LSID is the more recent of the two (step 710). If the LSAs have the same LSIDs, then
HOP_COUNTs are compared (step 720). If the HOP_COUNTS: of the two LSAs are equal then the LSAs are
identical and neither is more recent than the other (step 730). If the HOP_COUNTS are not equal, the LSA with
the lower HOP_COUNT is used (step 740). Normally, however, the LSAs will have different LSIDs.

The basic flooding mechanism in which each packet is sent to all active neighbors except the one from
which the packet was received can result in an exponential number of copies of each packet. This is referred to
herein as a broadcast storm. The severity of broadcast storms can be limited by one or more of the following

optimizations:

1. In order to prevent a single LSA from generating an infinite number of offspring, each LSA can be
configured with a HOP_COUNT field. The field, which is initialized to zero by the originating node, is

incremented at each hop and, when it reaches MAX_HOP, propagation of the LSA ceases.

2. Nodes can be configured to record the node ID of the neighbor from which they received a particular

LSA and then never send the LSA to that neighbor.

3. Nodes can be prohibited from generating more than one new instance of an LSA every MinLSAlnterval
interval (a minimum period defined in the LSA that can be used to limit broadcast storms by limiting

how often an LSA may be generated or accepted (See Fig. 15 and the accompanying discussion)).

20

25

WO 00/42746 PCT/US00/00971

4.

-17-

Nodes can be prohibited from accepting more than one new instance of an LSA less than

MinLSAlInterval “younger” than the copy they currently have in the database.

Large networks can be divided into broadcast zones as previously described, where a given instance of a
flooded packed isn’t allowed to leave the boundary of its originating node’s zone. This optimization also
has the side benefit of reducing the round trip time of packets that require an acknowledgment from the

target node.

Every node establishes adjacency with all of its neighbors. The adjacencies are used to exchange Hello

packets with, and to determine the status of the neighbors. Each adjacency is represented by a neighbor data

structure that contains information pertinent to the relationship with that neighbor. The following fields support

such a relationship:

State The state of the adjacency

NodelD Node ID of the neighbor

Inactivity Timer A one-shot timer, the expiration of which indicates that no Hello packet has been seen
from this neighbor since the last HelloDeadInterval seconds.

Hellointerval This is how often the neighbor wants us to send Hello packets.

HelloDeadlnterval This is how long the neighbor wants us to wait before declaring it dead when it stops
sending Hello packets

LinkControlBlocks A list of all tinks that exist between the two neighbors.

Table 2. Fields in the neighbor data structure.

Preferably, a node maintains a list of neighbors and their respective states locally. A node can detect the

states of is neighbors using a set of “neighbor states,” such as the following:

1.

N

Down. This is the initial state of the adjacency. It indicates that no valid protocol packets have been

received from the neighbor.

INIT-Sent. This state indicates that the local node has sent an INIT request to the neighbor, and that an

INIT response is expected.

INIT-Received. This state indicates that an INIT request was received, and acknowledged by the local

node. The node is still awaiting an acknowledgment for its own INIT request from the neighbor.
EXCHANGE. In this state the nodes are exchanging database.

ACTIVE. This state is entered from the Exchange State once the two databases have been synchronized.
At this stage of the adjacency, both neighbors are in full sync and ready to process other protocol

packets.

ONE-WAY. This state is entered once an initialization message has been sent and an acknowledgement

of that packet received, but before an initialization message is received from the neighboring node.

10

WO 00/42746 PCT/US00/00971
-18-

Fig. 8 illustrates a Hello state machine (HSM) 800 according to the present invention. HSM 800 keeps
track of adjacencies and their states using a set of states such as those above and transitions therebetween.
Preferably, each node maintains a separate instance of HSM 800 for each of its neighbors. HSM 800 is driven by
a number of events that can be grouped into two main categories: internal and external. Internal events include
those generated by timers and other state machines. External events are the direct result of received packets and
user actions. Each event may produce different effects, depending on the current state of the adjacency and the

event itself. For example, an event may:

1. Cause a transition into a new state.
2. Invoke zero or more actions.
3. Have no effect on the adjacency or its state.

HSM 800 includes a Down state 805, an INIT-Sent state 810, a ONE-WAY state 815, an EXCHANGE
state 820, an ACTIVE state 825, and an INIT-Received state 830. HSM 800 transitions between these states in
response to a START transition 835, IACK_RECEIVED transitions 840 and 845, INIT_RECEIVED transitions
850, 855, and 860, and an EXCHANGE DONE transition 870 in the manner described in Table 2. It should be
noted that the Disabled state mentioned in Table 3 is merely a fictional state representing a non-existent neighbor
and, so. is not shown in Fig. 8 for the sake of clarity. Table 3 shows state changes, their causing events, and

resulting actions.

Current State Event New State Action
Disabled all Disabled None
(no change)
Down START - Initiate the adjacency Init-Sent Format and send an INIT
establishment process request, and start the
retransmission timer.
Down INIT_RECEIVED - The local node Init-Received Format and send an INIT
has received an INIT request from reply and an INIT request;
its neighbor start the retransmission
timer
Init-Sent INIT_RECEIVED - the local node Init-Received Format and send an INIT
has received an INIT request from reply
the neighbor
Init-Sent IACK_RECEIVED - The local node | One-Way None

has received a valid positive
response to the INIT request

Init-Received TIACK_RECEIVED - The local node | Exchange Format and send a Hello
has received a valid positive request.
response to the INIT request. o
One-Way INIT_RECEIVED - The local node | Exchange Format and send an INIT
has received an INIT request from reply
the neighbor
Exchange EXCHANGE_DONE - The local Active Start the keep-alive and
node has successfully completed the inactivity timers.

database synchronization phase of

WO 00/42746 PCT/US00/00971

-19-

the adjacency establishment process.

All states, except | HELLO_RECEIVED - The local No change Restart Inactivity timer
Down node has received a valid Hello

packet from its neighbor.
Init-Sent, TIMER_EXPIRED - The Depends on the Change state to Down if
Init-Received, retransmission timer has expired action taken MaxRetries has been
Exchange reached. Otherwise,

increment the retry counter
and re-send the request
(INIT if current state is
Init-Sent or Init-Received.
Hello otherwise).

Active TIMER_EXPIRED - The keep-alive | Depends on the Increment inactivity
timer has expired. action taken. counter by Hellolnterval
and if the new value
exceeds

HelloDeadlnterval, then
generate a LINK_DOWN
event. This indicates that
the local node hasn’t
received a valid Hello
packet from the neighbor
in at least
HelloDeadlInterval
seconds. Otherwise, the
neighbor is still alive and
kicking, so simply restart
the keep-alive timer.

All states, except | LINK_DOWN - All links between Down Timeout all database

Down the two nodes have failed and the entries previously received
neighbor is now unreachable. from this neighbor.

All states, except | PROTOCOL_ERROR - An Down Timeout all database

Down unrecoverable protocol error has entries previously received
been detected on this adjacency. from this neighbor.

Table 3. HSM transitions.

After the successful exchange of INIT packets, the two neighbors enter the Exchange State. Exchange is
a transitional state that allows both nodes to synchronize their databases before entering the Active State.
Database synchronization involves exchange of one or more Hello packets that transfer the contents of one node’s
database to the other. A node should not send a Hello request while its awaiting the acknowledgment of another.
The exchange may be made more reliable by causing each request to be transmitted repeatedly until a valid

acknowledgment is received from the adjacent node.

When a Hello packet arrives at a node, it is processed as previously described. Specifically, the node
compares each LSA contained in the packet to the copy it currently has in its own database. If the received copy
is more recent then the node’s own or advertises a better hop-count, it is written into the database, possibly
replacing the current copy. The exchange process is normally considered completed when each node has
received, and acknowledged, a null Hello request from its neighbor. The nodes then enter the Active State with

fully synchronized databases which contain the most recent copies of all LSAs known to both neighbors.

WO 00/42746 PCT/US00/00971

-20-

A sample exchange using the Hello protocol is described in Table 4. In the following exchange, node 1

has four LSAs in its database, while node 2 has none.

Node 1 Node 2
Send Hello Request Send Hello Request
Sequence: 1 Sequence: 1

Contents: LSA1, LSA2, LSA2, LSA4 Contents: null

Send Hello Response Send Hello Response

Sequence: 1 Sequence: 1

Contents: null ‘| Contents: 0x000f (acknowledges all four LSAs)
Send Hello Request Send Hello Response

Sequence: 2 Sequence: 2

Contents: null (no more entries) Contents: null

Table 4. Sample exchange.

Another example is the exchange described in table 5. In the following exchange, node 1 has four LSAs

(1 through 4) in its database, and node 2 has 7 (3 and 5 through 10). Additionally, node 2 has a more recent copy

10

of LSA3 in its database than node 1.

Node 1

Node 2

Send Hello Request

Sequence: 1
Contents: LSA1, LSA2, LSA2, LSA4

Send Hello Request

Sequence: |
Contents: LSA3, LSAS, LSA6, LSA7

Send Hello Response

Sequence: 1
Contents: null

Send Hello Response

Sequence: 1
Contents: 0x000f (acknowledges all four LSAs)

Send Heilo Request

Send Hello Response

Sequence: 2 Sequence: 2

Contents: null (no more entries) Contents: LSA8, LSA9, LSA10
Send Hello Response Send Hello Response

Sequence: 2 Sequence: 2

Contents: 0x0007 (acknowledges all three LSAs) Contents: null

Send Hello Response Send Hello Request

Sequence: 3 Sequence: 3

Contents: null

Contents: null (no more entries)

Table 5. Sample exchange.

At the end of the exchange, both nodes will have the most recent copy of all 10 LSAs (1 through 10) in

their databases.

15

20

25

30

WO 00/42746 PCT/US00/00971
21-

Provisionin

For each VP that is to be configured (or, as also referred to herein, provisioned), a physical path must be
selected and configured. VPs may be provisioned statically or dynamically. For example, a user can identify the
nodes through which the VP will pass and manually configure each node to support the given VP. The selection
of nodes may be based on any number of criteria, such as QoS, latency, cost, and the like. Alternatively, the VP
may be provisioned dynamically using any one of a number of methods, such as a shortest path first technique or a
distributed technique. A shortest path first technique might, for example, employ the shortest path first technique
of the present invention. An example of a distributed technique is the restoration method described subsequently

herein.

Failure detection, propagation, and restoration

Failure Detection and Propagation

In one embodiment of networks herein, failures are detected using the mechanisms provided by the
underlying physical network. For example, when using a SONET network, a fiber cut on a given link results in a
loss of signal (LOS) condition at the nodes connected by that link. The LOS condition propagated an Alarm
Indication Signai (AIS) downstream, and Remote Defect Indication (RDI) upstream (if the path still exists), and
an LOS defect locally. Later, the defect is upgraded to a failure 2.5 seconds later, which causes an alarm to be
sent to the Operations System (OS) (per Bellcore’s recommendations in GR-253 {GR-253: Synchronous Optical
Network (SOCNET) Transport Systems, Common Generic Criteria, Issue 2 [Bellcore, Dec. 1995], included herein
by reference, in its entirety and for all purposes)). Preferably when using SONET, the handling of the LOS
condition follows Bellcore’s recommendations in GR-253, which allows nodes to inter-operate, and co-exist, with
other network equipment (NE) in the same network and which is included by reference herein in its entirety and
for all purposes. The mesh restoration protocol is invoked as soon as the LOS defect is detected by the line card,

which occurs 3ms following the failure (a requirement under GR-253).

The arrival of the AIS at the downstream node causes it to send a similar alarm to its downstream
neighbor and for that node to send an AIS to its own downstream neighbor. Thiz continues from node to node
until the AIS finally reaches the source node of the affected VP, or a proxy border node if the source node is
located in a different zone. In the latter case, the border node restores the VP on behalf of the source node.
Under GR-253, each node is allowed a maximum of 125 microseconds to forward the AIS downstream, which

quickly propagates failures toward the source node.

Once a node has detected a failure on one of its links, either through a local LOS defect or a received
AIS indication, the node scans its VP table looking for entries that have the failed link in their path. When the
node finds one, it releases all link bandwidth used by the VP. Then, if the node is a VP's source node or a proxy
border node, the VP’s state is changed to RESTORING and the VP placed on a list of VPs to be restored.

Otherwise (if the node isn’t the source node or a proxy border node), the state of the VP is changed to DOWN,

10

20

25

WO 00/42746 PCT/US00/00971
-

and a timer is started to delete it from the database if a corresponding restore-path request isn’t received from the
origin node within a certain timeout period. The VP list that was created in the previous step is ordered by quality
of service (QoS), which ensures that VPs with a higher QoS setting are restored first. Each entry in the list
contains, among other things, the ID of the VP, its source and destination nodes, configured QoS level, and

required bandwidth.

Fig. 9 illustrates the steps performed in response to the failure of a link. As noted, the failure of a link
results in a LOS condition at the nodes connected to the link and generates an AIS downstream and an RDI
upstream. If an AIS or RDI were received from a node, a failure has been detected (step 900). In that case, each
affected node performs several actions in order to maintain accurate status information with regard to the VPs that
it currently supports. The first action taken in such a case, is that the node scans its VP table looking for entries
that have the failed link in their path (steps 910 and 920). If the VP does not use the failed link, the node goes to
the next VP in the table and begins analyzing that entry (step 930). If the selected VP uses the failed link. the
node releases all link bandwidth allocated to that VP (step 940). The node then determines whether it is a source
node or a proxy border node for the VP (step 950). If this is the case, the node changes the VP's state to
RESTORING (step 960) and stores the VP on the list of VPs to be restored (step 970). If the node is not a source
node or proxy border node for the VP, the node changes the VP state to DOWN (step 980) and starts a deletion
timer for that VP (step 990).

Failure Restoration

For each VP on the list, the node then sends an RPR to all eligible neighbors in order to restore the given
VP. The network will, of course, attempt to restore all failed VPs. Neighbor eligibility is determined by the state
of the neighbor, available link bandwidth, current zone topology, location of the Target node, and cther

parameters. One method for determining the eligibility of a particular neighbor follows:

1. The origin node builds a shortest path first (SPF) tree with “self” as root. Prior to building the SPF tree,
the link-state database is pruned of all links that either don’t have enough (available) bandwidth to satisfy

the request, or have been assigned a QoS level that exceeds that of the VP being restored.

2. The node then selects the output link(s) that can lead to the target node in less than MAX_HOPS hops.

The structure and contents of the SPF tree generated simplifies this step.

10

20

)
[

WO 00/42746 PCT/US00/00971

-23-

The RPR carries information about the VP, such as:

1. The Node IDs of the origin and target nodes.

)

The ID of the VP being restored.

3. A locally unique sequence number that gets incremented by the origin node on every retransmission of
the request. The 8-bit sequence number, along with the Node and VP IDs, allow specific instances of an

RPR to be identified by the nodes.

4. An 8-bit field that carries the distance, in hops, between the origin node the receiving node. This field is

initially set to zero by the originating node, and is incremented by 1 by each node along the path.

5. Anarray of link IDs that records the path of the message on its trip from the origin node to the target

node.

Due to the way RPR messages are forwarded by tandem nodes and the unconditional and periodic
retransmmission of such messages by origin nodes, multiple instances of the same request are not uncommon,
even multiple copies of each instance, circulating the network at any given time. To minimize the amount of
broadcast traffic generated by the protocol and aid tandem nodes in allocating bandwidth fairly for competing

RPRs, tandem nodes preferably execute a sequence such as that described subsequently.

The term “same instance,” as used below, refers to messages that carry the same VP ID, origin node ID,
and hop-count, and are received from the same tandem node (usually, the same input link, assuming only one link
hetween nodes). Any two messages that meet the above criteria are guaranteed to have been sent by the same
erigin node, over the same link, to restore the same VP, and to have traversed the same path. The terms “copy of
an instance,” or more simply “copy” are used herein to refer to a retransmission of a given instance. Normally,
taadem nodes select the first instance they receive since in most, but nct all cases, as the first RPR received
normally represenis the quickest path to the origin node. A method for making such a determination was
described in reference to Fig. 5. Because such information must be stored for numerous RPRs, a standard data

structure is defined under a protocol of the present invention.

The Restore-Path Request Entry (RPRE) is a data structure that maintains information about a specific
instancz of a RPRE packet. Tandem nodes use the structure to store information about the request, which helps
them identify and reject other instances of the request. and allcws them to correlate received responses with

forwarded requests. Table 6 lists an example of the fields that are preferablty present in an RPRE.

Field Usage

Origin Node The Node ID of the node that criginated this request. This is either the
source node of the VP or a proxy border node.

Target Node Node ID of the target node of the restore path request. This is either the
destination node of the VP or a proxy border node.

WO 00/42746 PCT/US00/00971

24~

Received From The neighbor from which we received this message.

First Sequence Number Sequence number of the first received copy of the corresponding restore-
path request.

Last Sequence Number Sequence number of the last received copy of the corresponding restore-
_path request.

Bandwidth Requested bandwidth

QoS Requested QoS

Timer Used by the node to timeout the RPR

T-Bit Set to 1 when a Terminate indicator is received from any of the
neighbors.

Pending Replies Number of the neighbors that haven’t acknowledged this message yet.

Sent To A list of all neighbors that received a copy of this message. Each entry
contains the foilowing information about the neighbor:
AckReceived: Indicates if a response has been received from this
neighbor.
F-Bit: Set to 1 when Flush indicator from this neighbor.

Table 6. RPR Fields

When an RPR packet arrives at a tandem node, a decision is made as to which neighbor should receive a
copy of the request. The choice of neighbors is related to variables such as link capacity and distance.

5 Specifically, a particular neighbor is selected to receive a copy of the packet if:

1. The output link has enough resources to satisfy the requested bandwidth. Nodes maintain a separate
“available bandwidth” counter for each of the defined QoS levels (e.g. QoS0-2 and QoS3). VPs

assigned to certain QoS level, say “n,” are allowed to use all link resources reserved for that level and all

levels below it, i.e., all resources reserved for levels O through n, inclusive.

10 2. The path through the neighbor is less than MAX_HOPS in length. In other words, the distance from this

node to the target node is less than MAX_HOPS minus the distance from this node to the origin node.

3. The node hasn’t returned a Flush response for this specific instance of the RPR, or a Terminate response

for this or any other instance.

The Processing of Received RPRs

15 Fig. 10 illustrates the actions performed by tandem nodes in processing received RPR tests. Assuming
that this is the first instance of the request, the node allocates the requested bandwidth on eligible links and
transmits a modified copy of the received message onto them. The bandwidth remains allocated until a response
(either positive or negative) is received from the neighboring node, or a positive response is received from any of
the other neighbors (see Table 7 below). While awaiting a response from its neighbors, the node cannot use the

20 allocated bandwidth to restore other VPs, regardless of their priority (i.e. QoS).

Processing of RPRs begins at step 1000, in which the target node’s ID is compared to the local node’s

ID. If the local node’s ID is equal to the target node’s ID, the local node is the target of the RPR and must

10

15

20

25

30

35

WO 00/42746 PCT/US00/00971

-25-

process the RPR as such. This is illustrated in Fig. 10 as step 1005 and is the subject of the flow diagram
illustrated in Fig. 11. If the local node is not the target node, the RPR’s HOP_COUNT is compared to
MAX_HOP in order to determine if the HOP_COUNT has exceed or will exceed the maximum number of hops
allowable (step 1010). If this is the case, a negative acknowledgment (NAK) with a Flush indicator is then sent
back to the originating node (step 1015). If the HOP_COUNT is still within acceptable limits, the node then
determines whether this is the first instance of the RPR having been received (step 1020). If this is the case, a
Restore-Path Request Entry (RPRE) is created for the request (step 1025). This is done by creating the RPRE and

setting the RPRE's fields, including starting a time-to-live (TTL) or deletion timer, in the following manner:

RPRE.SourceNode = Header.Origin

RPRE.Destination Node = Header.Target

RPRE . FirstSequence Number = Hearder.SequenceNumber

RPRE.Last Sequence Number = Header.Sequence Number

RPRE.QoS = Header.Parms.RestorePath.QoS

RPRE.Bandwidth = Header. Parms.RestorePath.Bandwidth
RPRE.ReceivedFrom = Node ID of the neighbor that sent us this message
StartTimer (RPRE.Timer, RPR_TTL)

The ID of the input link is then added to the path in the RPRE (e.g., Path{Pathindex++] = LinkID) (step
1030). Next, the local node determines whether the target node is a direct neighbor (step 1035). If the target
node is not a direct neighbor of the local node, a copy of the (modified) RPR is sent to all eligible neighbors (step
1040). The PendingReplies and SentTo Fields of the corresponding RPRE are also updated accordingly at this
time. [f the target node is a direct neighbor of the local node, the RPR is sent only to the target node (step 1045).

In either case, the RPRE corresponding to the given RPR is then updated (step 1050).

If this is not the first instance of the RPR received by the local node, the local node then attempts to
determine whether this might be a different instance of the RPR (step 1055). A request is considered to be a

different instance if the RPR:
1. Carries the same origin node IDs in its header;
2. Specifies the same VP ID; and

3. Was either received from a different neighbor or has a different HOP_COUNT in its header.

If this is simply a different instance of the RPR, and another instance of the same RPR has been
processed, and accepted, by this node, a NAK Wrong Instance is sent to the originating neighbor (step 1060). The
response follows the reverse of the path carried in the request. No broadcasting is therefore necessary in such a
case. If a similar instance of the RPR has been processed and accepted by this node (step 1065), the local node
determines whether a Terminate NAK has been received for this RPR (step 1070). If a Terminate NAK has been

received for this RPR, the RPR is rejected by sending a Terminate response to the originating neighbor (step

10

15

20

25

WO 00/42746 PCT/US00/00971

-26-

1075). If a Terminate NAK was not received for this RPR, the new sequence number is recorded (step 1080) and
a copy of the RPR is forwarded to all eligible neighbors that have not sent a Flush response to the local node for
the same instance of this RPR (step 1085). This may include nodes that weren’t previously considered by this
node due to conflicts with other VPs, but does not include nodes from which a Flush response has already been
received for the same instance of this RPR. The local node should then save the number of sent requests in the
PendingReplies field of the corresponding RPRE. The term “eligible neighbors” refers to all adjacent nodes that
are connected through links that meet the link-eligibility requirements previously described. Preferably,
bandwidth is allocated only once for each request so that subsequent transmissions of the request do not consume

any bandwidth.

Note that the bandwidth allocated for a given RPR is released differently depending on the type of
response received by the node and the setting of the Flush and Terminate indicators in its header. Table 7 shows

the action taken by a tandem node when it receives a restore path response from one of its neighbors.

Response Flush Terminate Received Sequence

Type Indicator? Indicator? Number Action

X X X Not Valid Ignore response

Negative No No is not equal to Last Ignore response

Negative X No is equal to Last Release bandwidth allocated for

the VP on the link the response
was received on

Negative Yes No Valid Release bandwidth allocated for
the VP on the link that the
response was received on

Negative X Yes Valid Release all bandwidth allocated
for the VP
Positive X X Valid Commit bandwidth allocated for

the VP on the link the response
was received on: release all other
bandwidth.

Table 7. Actions taken by a tandem node upon receiving an RPR.

Fig. 11 illustrates the process performed at the target node once the RPR finally reaches that node.
When the RPR reaches its designated target node, the target node begins processing of the RPR by first
determining whether this is the first instance of this RPR that has been received (step 1100). If that is not the
case, a NAK is sent with a Terminate indicator sent to the originating node (step 1105). If this is the first instance
of the RPR received, the target node determines whether or not the VP specified in the RPR actually terminates at
this node (step 1110). If the VP does not terminate at this node, the target node again sends a NAK with a
Terminate to the originating node (step 1105). By sending a NAK with a Terminate indicator, resources allocated

along the path are freed by the corresponding tandem nodes.

If the VP specified in the RPR terminates at this node (i.e. this node is indeed the target node), the target

node determines whether an RPRE exists for the RPR received (step 1115). If an RPRE already exists for this

25

30

35

WO 00/42746 PCT/US00/00971

-27-

RPR, the existing RPRE is updated (e.g., the RPRE’s LastSequenceNumber field is updated) (step 1120) and the
RPRE deletion timer is restarted (step 1125). If no RPRE exists for this RPR in the target node (i.e., if this is the
first copy of the instance received), an RPRE is created (step 1130), pertinent information from the RPR is copied
into the RPRE (step 1135), the bandwidth requested in the RPR is allocated on the input link by the target node
(step 1140) and an RPRE deletion timer is started (step 1145). In either case, once the RPRE is either updated or
created, a checksum is computed for the RPR (step 1150) and written into the checksum field of the RPR (step
1155). The RPR is then returned as a positive response to the origin node (step 1160). The local (target) node
then starts its own matrix configuration. It will be noted that the RPRE created is not strictly necessary, but makes

the processing of RPRs consistent across nodes. -

The Processing of Received RPR Responses

Figs. 12 and 13 are flow diagrams illustrating the processes performed by originating nodes that receive
negative and positive RPR responses, respectively. Negative RPR responses are processed as depicted n Fig. 12.
An originating node begins processing a negative RPR response by determining whether it has an RPRE
associated with the RPR (step 1200). If the receiving node does not have an RPRE for the received RPR
response, the RPR response is ignored (step 1205). If an associated RPRE is found, the receiving node
determines whether the node sending the RPR response is listed in the RPRE (e.g., is actually in the SenrTo list of
the RPRE) (step 1210). If the sending node is not listed in the RPRE, again the RPR response is ignered (step
1205).

If the sending node is listed in the RPRE, the RPR sequence number is analyzed to determinc whether or
nct it is valid (step 1215). As with the previous steps, if the RPR contains an invalid sequence number (e.g.,
doesn’t fall between FirstSequenceNumber and LastSequence Number, inclusive), the RPR response is ignored
(step 1205). If the RPR sequence number is valid, the receiving node determines whether Flush or Terminate in
the RPR response (step 1220). If neither of these is specified, the RPR response sequence number is compared to
that stored in the last sequence field of the RPR (step 1225). If the RPR response sequence number does not
match that found in the last sequence field of the RPRE, the RPR response is again ignored (step 1205). If the
RPR response sequence number matches that found in the RPRE, or a Flush or Terminate was specified in the
RPR, the input link on which the RPR response was received is compared to that listed in the RPR response path
field (e.g., Response.Path{Response.Pathindex] == InputLinkID) (step 1230). If the input link is consistent with
information in the RPR, the next hop information in the RPR is checked for consistency (e.g., Response.Path
[Response.Pathlndex + 1] == RPRE.ReceivedFrom) (step 1235). If either of the proceeding two tests are failed
the RPR response is again ignored (step 1205).

If a Terminate was specified in the RPR response (step 1240), the bandwidth on all links over which the
RPR was forwarded is freed (step 1245) and the Terminate and Flush bits from the RPR response are saved in the
RPRE (step 1250). If a Terminate was not specified in the RPR response, bandwidth is freed only on the input

link (i.e., the link from which the response was received) (step 1255), the Terminate and Flush bits are saved in

15

WO 00/42746 PCT/US00/00971
-28-

the RPRE (step 1260), and the Flush bit of the RPR is cleared (step 1265). If a Terminate was not specified in the
RPR, the Pending Replies field in the RPRE is decremented (step 1270). If this ficld remains non-zero after being
decremented, the process completes. If Pending Replies is equal to zero at this point, or a Terminate was not
specified in the RPR, the RPR is sent to the node specified in the RPR’s Received From field (i.e. the node that
sent the corresponding request) (step 1280). Next, the bandwidth allocated on the link to the node specified in the

RPR’s Received From field is released (step 1285) and an RPR deletion timer is started (step 1290).

Fig. 13 illustrates the steps taken in processing positive RPR responses. The processing of positive RPR
responses begins at step 1300 with a search of the local database to determine whether an RPRE corresponding to
the RPR response is stored therein. If a corresponding RPRE cannot be found, the RPR response is ignored (step
1310). If the RPR response RPRE is found in the local database, the input link is verified as being consistent with
the path stored in the RPR (step 1320). If the input link is not consistent with the RPR path, the RPR response is
ignored once again (step 1310). If the input link is consistent with path information in the RPR, the next hop
information specified in the RPR response path is compared with the Received From field of the RPRE (e.g.,
Response.Path{Response.Pathlndex + 1] ‘= RPRE.ReceivedFrom) (step 1330). If the next hop information is not
éonsistem, the RPR response is again ignored (step 1310). However, if the RPR response’s next hop information
is consistent, bandwidth allocated on input and output links related to the RPR is committed (step 1340).
Conversely, bandwidth allocated on all other input and cutput links for that VP is freed at this time (step 1350).
Addinonally, a positive response is sent to the node from which the RPR was received (step 1360), and an RPR

deietion timer is started (step 1370) and the local matrix is configured (step 1380).

With regard to matrix configuration, the protocol pipelines such activity with the forwarding of RPRs in
order to minimize the impact of matrix configuration overhead on the time required for restoration. While the
response is making its way from node N1 to node N2, node N1 is busy configuring its matrix. In most cases. by

the time the response reaches the origin node, all nodes along the path have already configured their matrices

The Terminate indicator prevents “bad” instances of an RPR from circulating around the network for
extended periods of time. The indicator is propagated all the way back to the originating node and prevents it,

and ali other nodes along the path, from sending or forwarding other copies of the corresponding RPR instance.

Terminating RPR Packets are processed as follows. The RPR continues along the path until it

encounters any one of the following four conditions:

1. Its HOP_COUNT reaches the maximum ailowed (i.e. MAX_HOPS).

=

The request reaches a node that doesn’t have enough bandwidth on any of its output links to satisfy the

request.

3. The request reaches a node that had previously accepted a different instance of the same request from

another neighbor.

10

25

30

WO 00/42746 PCT/US00/00971

-29-

4. The request reaches its ultimate destination: the target node, which is either the Destination node of the

VP, or a proxy border node if the Source and Destination nodes are located in difference zones.

Conditions 1, 2 and 3 cause a negative response to be sent back to the originating node, flowing along the path

carried in the request, but in the reverse direction.

Further optimizations of the protocol can easily be envisioned by one of skill in the art, and are intended
to be within the scope of this specification. For example in one embodiment, a mechanism is defined to further
reduce the amount of broadcast traffic generated for any given VP. In order to prevent an upstream neighbor
from sending the same instance of an RPR every T milliseconds, a tandem node can immediately return a no-
cominit positive response to that neighbor, which prevents it from sending further copies of the instance. The
response simply acknowledges the receipt of the request, and doesn’t commit the sender to any of the requested
resources. Preferably, however, the sender (of the posiiive response) periodically transmits the acknowledged
reqﬁesl until a valid response is received from its downstrea;n neighbor(s). This mechanism implements a piece-
wise, or hop-by-hop, acknowledgment strategy that limits the scope of retransmitted packets to a region that gets

progressively smaller as the request gets closer to its target node.

Optimizations

However, it is prudent to provide some optimizations for efficiently handling errors. Communication
protocols often handle link errors by starting a timer after every transmission and, if a valid response isn’t
received within the timeout period, the message is retransmitted. If a response isn’t received after a certain
number of retransmission, the sender generates a local error and disables the connection. The timeout period is
usually a configurable parameter, but in some cases it is computed dynamically, and continuously, by the two end
points. The simplest form of this uses some multiple of the average round trip time as a timeout period, while
others use complex mathematical formulas to determine this value. Depending on the distance between the two
nodes, the speed of link that connects them, and the latency of the equipment along the path, the timeout period

can range anywhere from millisecond to seconds.

The above strategy is not the preferred method of handling link errors in the present invention. This is
because the fast restoration times required dictates that 2-way, end-tc-end communication be carried out in less
than 50ms. A drawback of the above-described solution is the time wasted while waiting for an acknowledgment
to come back from the receiving node. A safe timeout period for a 2000 mile span, for instance, is over 35ms,

which doesn’t leave enough time for a retransmission in case of an error.

This problem is addressed in one embodiment by taking advantage of the multiple communication

channels, i.e. OC-48’s that exist between nodes to:

1. Send N copies (N >= 1) of the same request over as many channels, and

WO 00/42746 PCT/US00/00971

-30-

2. Re-send the request every T milliseconds (1ms < 10ms) until a valid response is received from the

destination node.

The protocol can further imprbve link efficiency by using small packets during the restoration procedure.

5 Empirical testing in a simulated 40-node SONET network spanning the entire continental United States, showed
that an N of 2 and a T of 15ms provide a good balance between bandwidth utilization and path restorability.
Other values can be used, of course, to improve bandwidth utilization or path restorability to the desired level.
Additionally, the redeemed number of resends eliminates broadcast storms and the waste of bandwidth in the
network.
10 Fig. 14 illustrates an exemplary network 1400. Network 1400 includes a pair of computers (computers
1405 and 1410) and a number of nodes (nodes 1415-1455). In the protocol, the nodes also have a node ID which
is indicated inside circles depicting the node which range from zero to eight successively. The node IDs are
assigned by the network provider. Node 1415 (node ID 0) is referred to herein as a source node, and node 1445
(node ID 6) is referred to herein as a destination node for a VP O (not shown). As previously noted, this adheres
15 to the protocol’s convention of having the node with the lower ID be the source node for the virtual path and the
node with the higher node ID be the destination node for the VP.
Network 1400 is flat, meaning that all nodes belong to the same zone, zone O or the backbone zone. This
also implies that Node IDs and Node Addresses are one and the same, and that the upper three bits of the Node ID
(address) are always zeroes using the aforementioned node ID configuration. Table 8 shows link information for
20 network 1400. Source nodes are listed in the first column, and the destination nodes are listed in the first row of
Table 8. The second row of Table 8 lists the link ID (L), the available bandwidth (B), and distance (D) associated
with each of the links. In this example, no other metrics (e.g., QoS) are used in provisioning the VPs listed
subsequently.
0 1 2 3 4 5 6 7 8
L|{B|{D/L|B|D|(L|B|{D|{L{B|{D|L|{B{D|JL|[B|D|L|B|D|[L}|B|D]|LB|D
of*|*(=*{fofj1v (0| -{-t-1-01-0{-1-1-1-01-Vv-1-01-Vv-01-t-1-/1-1218
810 9
tjo| 1y p*xyp] *x(2¢yv 163y (1 -4-7-1t-t-1-4-t-1-t-4t-1-1-1-1-
810 2 714
201 -1-t-121t1y6 | *|**-|-1-{4]11 v }P-1-1-1t-t1-40-1-t-1-1-1-1-
2 311
3 - -1 -{3f10 1 -t -1-0**[*S5|V 7 --}1-16]218]-1--171{1
714 6 2 0]5
4 (-t --]-f1-t-14j1 (05|78 - -0--4-1-1-1-1-
311 6 413
St-f-ft-1-71-4t-1-1-1-1-1-1-(8(Vv v *[*|*]1916]9|-]-1]-1-1-1-
413
6| -|-t--t-1-1-t-1-16]2[8}-1-1-[9]16]9}*|*|*|1 |3 {2]-|-{-
2 0[910
71 -01-1-1-1-4t-1-1-1-1-1-01-4t-1-1-1-{-t-tv(|3(2(*]*]*11[1]1
01910 115]9

WO 00/42746 PCT/US00/00971

-31-

—_—
o0

'

'

'

'

'

'
~}
—
—

1

)

t

'

'

'

[

'

1
—
—
—

*

Table 8. Link information for network 1400.

Table 9A shows a list of exemplary configured VPs, and Table 9B shows the path selected for each VP
by a shortest-path algorithm according to the present invention. The algorithm allows a number of metrics, e.g.
distance, cost, delay, and the like to be considered during the path selection process, which makes it possible to

route VPs based on user preference. Here, the QoS metric is used to determine which VP has priority.

VP ID Source Node Destination Node Bandwidth QoS
0 0 6 1 3
1 0 5 2 0
2 1 7 1 1
3 4 6 2 2
4 3 5 1 3

Table 9A. Configured VPs.

VPID Path (Numbers represent node IDs)
0 0—>1-3-56

1 0—-1-23-2455

2 153567

3 4—3—6

4 3—4-—5

Table 9B. Initial routes.

Reachability algorithm

Routes are computed using a QoS-based shortest-path algorithm. The route selection process relies on
configured metrics and an up-to-date view of network topology to find the shortest paths for configured VPs. The
topology database contains information about all network nodes, their links, and available capacity. All node IDs
are assigned by the user and must be globally unique. This gives the user control over the master/slave
relationship between nodes. Duplicate IDs are detected by the network during adjacency establishment. All
nodes found with a duplicate ID are disabled by the protocol, and an appropriate alarm is generated to notify the

network operations center of the problem so that proper action can be taken.

The algorithm uses the following variables.

1. Ready - A queue that holds a list of nodes, or vertices, that need to be processed.
2. Database - The pruned copy of the topology database, which is acquired automatically by the node using the
Hello protocol. The computing node removes all vertices and or links that do not meet the specified QoS and

bandwidth requirements of the route.

10

8]
h

35

40

45

WO 00/42746

PCT/US00/00971

-32-

3. Neighbors [A] - An array of “A” neighbors. Each entry contains a pointer to a neighbor data structure as

previously described.

4. Path [N][H] - A two dimensional array (N rows by H columns, where N is the number of nodes in the
network and H is the maximum hop count). Position (n, h) of the array contains a pointer to the following
structure (R is the root node, i.e., the computing node):

Cost Cost of the path from R to n

NextHop Next node along the path from R ton

PrevHop Previous node along the path from n to R

The algorithm proceeds as follows (again, R is the root node, i.e. the one computing the routes):

8]

Fill column 1 of the array as fellows: for each node a2 know to R, initialize entry Pcth {n][1] as follows: .

If n is a neighbor of R then,

Cost = Neighbors [n)].LinkCost
NextHop =n

PrevHop =R

Place n in Ready

Else (n is not a neighbor of R)

Cost = MAX_COST
NextHop = INVALID _NODE_ID
PrevHop = INVALID_NODE_ID

For all other columns (h = 2 through H) proceed as follows:

a.

b.

If Ready is empty, go to 3 (done).

Else, copy column h-1 to column h

For each node n in Ready (do not include nodes added during this iteration of the loop):
1. For each neighbor m of n (as listed in n’s LSA):

Add the cost of the path from R to n to the cost of the link between n and m.
If computed cost is lower than the cost of the path from R to m, then change entry

Path[m][h] as follows:

Cost = Computed cost
NextHop = Path [n][h-1].NextHop
PrevHop= n
Add m to Ready.
(It will be processed on the next iteration of h.)

Done. Save h in a global variable called LastHop.

15

25

30

WO 00/42746 PCT/US00/00971
-33-

Fig. 15 illustrates a flow diagram of the above QoS-based shortest path route selection process (referred
to herein as a QSPF process) that can be used in one embodiment of the protocol. The process begins at step
1500 by starting with the first column of the array that the QSPF process generates. The process initializes the
first column in the array for each node n known to node R. Thus, node R first determines if the current node is a
neighbor (step 1505). If the node is the neighbor, several variables are set and the representation of node n is
placed in the Ready queue (step 1510). If node n is not a neighbor of node R, those variables are set to indicate
that such is the case (step 1515). In either case, node R continues through the list of possible node n’s (step
1520). Node R then goes on to fill other columns of the array (step 1525) until the Ready queue which holds a list
of nodes waiting to be processed is empty (step 1530). Assuming that nodes remain to be processed, the column
preceding the current column is copied into the current column (step 1535) and a new cost is generated (step
1540). If this new cost is greater than the cost from node R to node m (step 1545) then the entry is updated with
new information then m is placed on the Ready queue (step 1550). Once this has been accomplished or if the new
cost isless'than the current cost from node R to node m, the process loops if all neighbors m of node n have not
been processed (steps 1555 and 1560). If more nodes await processing in the Ready queue (siep 1565), they are
processed in order (step 1570), but if all nodes have been precessed, the Last Hop variable is set to the number of

columns in the array (step 1575) and the process is at an end.

For any given hop-count (1 through LastHop), Path [] ultimately contains the besi route from R to all
other nodes in the network. To find the shortest path (in terms of hops, not distance) from R to n, row n of the
array is searched until an entry with a cost not equal to MAX_COST is found. To find the least-cost path between
R and n, regardless of the hop;count, entries 1 through LastHop of row n are scanned, and the entry with the

lowest cost selected.

Format and usage of protocol messages

Protocol messages (or packets) preferably begin with a standard header to facilitate their processing.
Such a header preferably contains the information necessary to determine the type, origin, destination, and identity
of the packet. Normally, the header is then followed by some sort of command-specific data (e.g., zero or more

bytes of information).

Fig. 16 illustrates the layout of a header 1600. Shown therein is a request response indicator (RR1) 1610,
a negative response indicator (NRI), a terminate/commit path indicator (TPI) 1630, a flush path indicator (FPI)
1640, a command field 1650, a sequence number (1660). an origin node ID (1670) and a target node ID (1680).
A description of these fields is provided below in Table 10. It will be notes that although the terms “origin” and
“target” are used in describing header 1600, their counterparts (source and destination, respectively) can be used
in their stead. Preferably, packets sent using a protocol according to the present invention employ a header layout
such as that shown as header 1600. Header 1600 is then followed by zero or more bytes of command specific

data, the format of which, for certain commands, is shown in Figs. 17-21 below.

WO 00/42746 PCT/US00/00971

-34-
R-bit This bit indicates whether the packet is a request (0) or a response (1). The bit also
known as the request/response indicator or RRI for short.
N-bit This bit, which is only valid in response packets (RRI = 1), indicates whether

response is positive (0) or negative (1). The bit is also known as the Negative
Response Indicator or NRI.

T/C Bit In a negative response (NRI = 1), this bit is called a Terminate Path Indicator or
TPI. When set, TPI indicates that the path along the receiving link should be
terminated and never used again for this or any other instance of the corresponding
request. The response also releases all bandwidth allocated for the request along all
paths, and makes that bandwidth available for use by other requests. A negative
response that has a “1” in its T-Bit is called a Terminate response. Conversely, a
negative response with a “0” in its T-Bit is called a no-Terminate response.

In a positive response (NRI = 0), this bit indicates whether the specified path has
been committed to by all nodes (1) or not (0). The purpose of a positive response
that has a “0” in its C-Bit is to simply acknowledge the receipt of a particular
request and to prevent the upstream neighbor from sending further copies of the
request. Such a response is called a no-Commiit response.

F-bit Flush Indicator. When set, this bit causes the resources allocated on the input link
for the corresponding request to be freed, even if the received sequence number
doesn’t match the last one sent. However, the sequence number has to be valid, i.e.,
it has to fall between FirstReceived and LastSent, inclusive. This bit also prevents
the node from sending other copies of the failed request over the input link.

This bit is reserved and must be set to “0” in all positive responses (NRI=0).

Command This 4-bit field indicates the type of packet being carried with the header.

SequenceNumber A node and VP unique number that, along with the node and VP IDs, helps identify
specific instances of a particular command.

Origin The node ID of the node that originated this packet.

Target The node ID of the node that this packet is destined for.

Table 10. The layout of exemplary header 1600.

The protocol can be configured to use a number of different commands. For example, seven commands
may be used with room in the header for 9 more. Table 11 lists those commands and provides a brief description

of each, with detailed description of the individual commands following.

Command Name Command Code Description

INIT 0 Initialize Adjacency

HELLO 1 Used to implement the Hello protocol (see Section 3 for
more details).

RESTORE_PATH 2 Restore Virtual Path or VP

DELETE_PATH 3 Delete and existing Virtual Path

TEST_PATH 4 Test the specified Virtual Path

LINK_DOWN 5 Used by slave nodes to inform their master(s) of local
link failures

CONFIGURE 6 Used by master notes to configure slave nodes.

GET_LSA 7 Get LSA information from other nodes

CREATE_PATH 8 Create Virtual Path

Table 11. Exemplary protocol commands.

10

15

WO 00/42746 PCT/US00/00971

-35-

The Initialization packet

Fig. 17 illustrates the layout of command specific data for an initialization packet 1700 which in turn
causes a START event to be sent to the Hello State Machine of the receiving node. Initialization packet 1700
includes a node ID field 1710, a link cost field 1720, one or more QoS capacity fields (as exemplified by QoS3
capacity (Q3C) field 1730 and a QoSn capacity (QnC) field 1740), a Hello interval field 1750 and a time-out
interval field 1760. It should be noted that although certain fields are described as being included in the
command-specific data of initialization packet 1700, more or less information could easily be provided, and the

information illustrated in Fig. 17 could be sent using two or more types of packets.

The initialization (or INIT) packet shown in Fig. 17 is used by adjacent nodes to initialize and exchange
adjacency parameters. The packet contains parameters that identify the neighbor, its link bandwidth (both total
and available), and its configured Hello protocol parameters. The INIT packet is normally the first protocol
packet exchanged by adjacent nodes. As noted previously, the successful receipt and processing of the INIT

packet causes a START event to be sent to the Hello State machine. The field definitions appear in Table 12.

| NodeID Node ID of the sending node.
LinkCost Cost of the link between the two neighbors. This may represent distance, delay
or any other additive metric.
QoS3Capacity Link bandwidth that has been reserved for QoS3 connection.
QoSnCapacity Link bandwidth that is available for use by all QoS levels (0-3).
Hellolnterval The number of seconds between Hello packets. A zero in this field indicates that

this parameter hasn’t been configured on the sending node and that the neighbor
should use its own configured interval. If both nodes send a zero in this field
then the default value should be used.

HelloDeadlnterval The number of seconds the sending node will wait before declaring a silent
neighbor down. A zero in this field indicates that this parameter hasn’t been
configured on the sending node and that the neighbor should use its own
configured value. If both nodes send a zero in this field then the default value
should be used.

Table 12. Field definitions for an initialization packet.

The Hello packet

Fig. 18 illustrates the command-specific data for a Hello packet 1800. The command-specific data of
Hello packet 1800 includes a node ID field 1805, an LS count field 1810, an advertising node field 1820, a
checksum field 1825, an LSID field 1830, a HOP_COUNT field 1835, a neighbor count field 1840, a neighbor
node ID field 1845, a link ID field 1850, a link cost field 1855, a Q3C field 1860, and a QnC field 1865.

Hello packets are sent periodically by nodes in order to maintain neighbor relationships, and to acquire
and propagate topology information throughout the network. The interval between Hello packets is agreed upon
during adjacency initialization. Link state information is included in the packet in several situations, such as when

the database at the sending nodes changes, either due to provisioning activity, port failure, or recent updates

10

15

20

WO 00/42746 PCT/US00/00971

-36-

received from one or more originating nodes. Preferably, only modified LS entries are included in the
advertisement. A null Hello packet, also sent periodically, is one that has a zero in its LSCount field and contains
no LSAs. Furthermore, it should be noted that a QoSn VP is allowed to use any bandwidth reserved for QoS

levels O through n. Table 13 describes the fields that appear first in the Hello packet. These fields appear only

once.
NodelD Node ID of the node that sent this packet, i.e. our neighbor
LSCount Number of link state advertisements contained in this packet

Table 13. Field definitions.for the first two fields of a Hello packet.

Table 14 describes information carried for each LSA and so is repeated LSCount times:

AdvertisingNode The node that originated this link state entry.
Checksum A checksum of the LSAs content, excluding fields that node’s other than the
N originating node can alter.
LSID Instance ID. This field is set to FIRST_LSID on the first instance of the LSA, and
is incremented for every subsequent instance.
Hop_Count This field is set to O by the originating node and is incremented at every hop of the

flooding procedure. An LSA with a Hop_Count of MAX_HOPS is not propagated.
LSAs with Hop_Counts equal to or greater than MAX_HOPS are silently
discarded.

NeighborCount Number of neighbors known to the originating node. This is also the number of

neighbor entries contained in this advertisement.

Table 14. Field definitions for information carried for each LSA.

Table 15 describes information carried for each neighbor and so is repeated NeighborCount times:

Neighbor Node ID of the neighbor being described.

LinkCost Cost metric for this link. This could represent distance, delay or any other metric.
QoS3Capacity Link bandwidth reserved for the exclusive use of QoS3 connections.
QcSnCapacity Link bandwidth available for use by all QoS levels (0-3).

Table 15. Field definitions for information carried for each neighbor.

The GET _LSA packet

Fig. 19 illustrates the layout of command-specific data for a GET_LSA packet 1900 of a protocol
according to the present invention. GET_LSA packet 1900 has its first byte set to zero (exemplified by a zero
byte 1905). GET_LSA packet 1900 includes an LSA count 1910 that indicates the number of LSAs being sought
and a node ID list 1920 that reflects one or more of the node IDs for which an LSA is being sought. Node ID list
1920 includes node IDs 1930(1)-(N). The GET_LSA response contains a mask that contains a "1" in each

position for which the target node possesses an LSA. The low-order bit corresponds to the first node ID specified

20

WO 00/42746 PCT/US00/00971
-37-

in the request, while the highest-order bit corresponds to the last possible node ID. The response is then followed

by one or more Hello messages that contain the actual LSAs requested.

Table 16 provides the definitions for the fields shown in Fig. 19.

Count The number of node ID’s contained in the packet.
NodelDO- The node IDs for which the sender is seeking an LSA. Unused fields need not be
NodelDn included in the packet and should be ignored by the receiver.

Table 16. Field definitions for a GET_LSA packet.

The Restore Path packet

Fig. 20 illustrates the layout of command-specific data for an RPR packet 2000 of a protocol according
tc the present invention. RPR packet 2000 includes a virtual path identifier (VPID) field 2010, a checksum field
2020, a patn iengtiu field 2030, a HOP_COUNT field 2040, and an array of path lengths {exemplified by a path -
field 2050). Path field 2050 may be further subdivided into hop fields (exemplified by hop fields 2060 (1)-(N),

where N may assume a value no larger than MAX _HOPS).

The Restore Path packet is sent by source nodes (or proxy border nodes), to obtain an end-to-end path
for a VP. The packet is usually sent during failure recovery procedures but can also be used for provisioning new
VPs. The node sending the RPR is called the origin or source node. The node that terminates the request is
called the target or destination node. A restore Path instance is uniquely identified by its origin and target nodes,
and VP [I3. Multiple copies of the same restore-path instance are identified by the unique sequence number
assigned to each of them. Only the sequence number need be unique across multiple copies of the same instance

of a restore-path packet. Table 17 provides the definitions for the fields shown in Fig. 20.

VPID The ID of the VP being restored.

Checksum The checksum of the complete contents of the RPR, not including the header. The
checksum is normally computed by a target node and verified by the origin node.
Tandem nodes are not required to verify or update this field.

PathLength Set to MAX_HOPS on all requests: contains the length of the path (in hops, between the
origin and target nodes).
Pathlrdex Requests: Points to the next available entry in Path []. Origin node sets it to 0, and nodes

along the path store the link ID of the input link in Path[] at PathIndex. PathIndex is then
incremented to point to the next available entry in Path [}/

Responses: Points to the entry in Path[] that corresponds to the link the packet was
received on..

Path[] An array of PathLength link IDs that represent the pﬁth between the origin and target
y &
nodes.

Table 17. Field definitions for a Restore Path packet.

th

20

WO 00/42746 PCT/US00/00971

-38-

The Create Path packet

Fig. 21 illustrates the layout of command-specific data for a CREATE_PATH (CP) packet 2100. CP
packet 2100 includes a virtual path identifier (VPID) field 2110, a checksum field 2120, a path length field 2130,
a HOP_COUNT field 2140, and an array of path lengths (exemplified by a path field 2150). Path field 2150 may
be further subdivided into hop fields (exemplified by hop fields 2160 (1)-(N), where N may assume a value no
larger than MAX_HOPS).

The CP packet is sent by source nodes (or proxy border nodes), to obtain an end-to-end path for a VP.
The node sending the CP is called the origin or source node. The node that terminates the request is called the
target or destination node. A CP instance is uniquely identified by its origin and target nodes, and VP ID.
Multiple copies of the same CP instance are identified by the unique sequence number assigned to each of them.
Only the sequence number need be unique across multiple copies of the same instance of a Create-Path packet.

Table 18 provides the definitions for the fields shown in Fig. 21.

VPID The ID of the VP being provisioned.

Checksum The checksum of the complete contents of the CP, not including the header. The
checksum is normally computed by a target node and verified by the origin node.
Tandem nodes are not required to verify or update this field.

PathLength Set to MAX_HOPS on all requests: contains the length of the path (in hops, between the
origin and target nodes).
Pathlndex Requests: Points to the next available entry in Path []. Origin node sets it to 0, and nodes

along the path store the link ID of the input link in Path[] at PathIndex. PathIndex is then
incremented to point to the next available entry in Path []/

Responses: Points to the entry in Path[] that corresponds to the link the packet was
received on..

Path[] An array of PathLength link IDs that represent the path between the origin and target
nodes.

Table 18. Field definitions for a Restore Path packet.

The Delete Path Packet

The Delete Path packed is used to delete an existing path and releases all of its allocated link resources.
It can use the same packet format as the Restore Path packet. The origin node is responsible for initializing the
Path [], PathLength, and Checksum fields to the packet, which should include the full path of the VP being
deleted. It also sets Pathindex to zero. Tandem nodes should release link resources allocated for the VP after
they have received a valid response from the target node. The target node should set the Pathindex field to zero

prior to computing the checksum of packet.

10

WO 00/42746 PCT/US00/00971

-30-

The TestPath Packet

The TestPath packet is used to test the integrity of an existing virtual path. It uses the same packet
format as the RestorePath packet. The originating node is responsible for initializing the Path [], PathLength,
and Checksum fields of the packet, which should include the full path of the span being tested. It also sets
Pathlndex to zero. The target node should set the Pathlndex field to zero prior to computing the checksum of
packet. The TestPath packet may be configured to test functionality, or may test a path based on criteria chosen

by the user, such as latency, error rate, and the like.

The Link-Down Packet

The Link-Down packet is used when master nodes are present in the network. It is used by slave nodes
to inform the master node of link failures. This message is provided for instances in which the alarms associated

with such failures (AIS and RDI) do not reach the master node.

While particular embodiments of the present invention have been shown and described, it will be
obvious to those skilled in the art that, based upon the teachings herein, changes and modifications may be made
without departing from this invention and its broadervaspects and, therefore, the appended claims are to
encompass within their scope all such changes and modifications as are within the true spirit and scope of this

invention. Furthermore, it 1s to be understood that the invention is solely defined by the appended claims.

O 0 NN N B WD =

—
S

N

A L A WL

WO 00/42746 PCT/US00/00971

-40-

WE CLAIM:

1. A method of operating a network, the network comprising:

a plurality of nodes coupled by a plurality of optical links, comprising provisioning a virtual
path between a first node and a second node of said plurality of nodes, wherein
provisioning comprises:
identifying said first node and said second node of said plurality of nodes,
discovering a physical path from said first node to said second node by automatically

identifying any intermediary nodes comprising said physical path, and
establishing said virtual path by configuring a set of connections between said first
node, said second node, and said intermediary nodes, if any, using

intermediary links of said plurality of links.

2. The method of claim 1, further comprising:
testing said virtual path by testing each one of said intermediary nodes and said intermediary

links as a single circuit.

3. The method of claim 1, further comprising:

allocating said intermediary links between said first, said second and said intermediary nodes.

4. The method of claim 3, further comprising:

terminating said virtual path by automatically deallocating said intermediary links.

5. The method of claim 4, wherein said intermediary links are available for re-use upon

deallocation.

6. The method of claim 3, further comprising:

terminating said virtual path by sending a termination message from one of said first and said
second nodes to the other of said first and said second nodes, wherein said
termination message is sent along said physical path and each one of said
intermediary links is deallocated by a respective one of said nodes as said termination

message is sent to each of said nodes.

7. The method of claim 6, wherein said intermediary links are available for re-use upon

deallocation.

8. The method of claim 6, wherein said intermediary links are deallocated substantially

simultaneously upon reception of a broadcasted termination message.

N N AW

[}

w

[e =TS AT Y, S~ US I)

3]

WO 00/42746 PCT/US00/00971 -

-41-

9. The method of claim 1, further comprising:
restoring said virtual path in response to a failure along said physical path by:
discovering an alternate physical path from said first node to said second node by
automatically identifying intermediary nodes of said alternate physical path,
and
re-establishing said virtual path by configuring a set of connections between said

nodes of said alternate physical path.

10. The method of claim 9, wherein at least one of said intermediary nodes of said

physical path is also one of said intermediary nodes forming said alternate physical path.

1L The method of claim 1, further comprising:
sending messages io maintain knowledge of a topology of the network and to deterinine if*

neighboring nodes have failed.

12. The method of claim 11, wherein each one of said plurality of nodes obtains
information on neighboring ones of said plurality of nodes such that each one of said plurality of nodes

is able to maintain a database representing a topology of the network.

13. The method of claim 12, wherein use of said database in said discovering said

physical path allows said discovering said physical path ic proceed more quickly.

14. A method of restoring a virtual path in an optical network comprising:

discovering an alternate physical path from said first node to said second node by
automatically identifying nodes of said alternate physical path, wherein said optical
network comprises a plurality of nodes coupled by a plurality of optical links, said
virtual path is provisioned on a physical path between said first and said second node
of said optical network; and

re-establishing said virtual éath by configuring a set of connections between said nodes of said

alternate physical path.

15. The method of claim 14, wherein said discovering and said re-establishing are

performed in less than one second.

16. The method of claim 14, wherein said discovering and said re-establishing are

performed in less than 200ms.

8]

HOWN S~ W

[8]

S W

[xe}

™I

W

wn W N

WO 00/42746 PCT/US00/00971 -

-42-
17. The method of claim 14, wherein said discovering and said re-establishing are
performed in less than 50 ms.
18. The method of claim 14, wherein said virtual path is restored in response to a failure

along said physical path, the method further comprising:
detecting said failure, wherein said detecting, said discovering, and said re-establishing are

performed in less than one second.

19. The method of claim 14, wherein said virtual path is restored in response to a failure
along said physical path, the method further comprising:
detecting said failure, wherein said detecting, said discovering, and said re-establishing are

performed in less than 200 ms.

20. The method of claim 14, wherein said virtual path is restored in response io a failure
along said physical path, the method further comprising:
detecting said failure, wherein said detecting, said discovering, and said re-establishing are

performed in less than S0-ms.

21. The method of claim 14, wherein each one of said plurality of nodes obtains
information on neighboring ones of said plurality of nodes such that each one of said plurality of nodes
1s able 10 maintain a database representing a topology of the optical network and use of said database in

said discovering said alternate physicai path allows said discovering to otherwise proceed more quickly.

22. The method of claim 14, wherein at least one of said nodes of said physical path is

also one of said nodes of said alternate physical path.

23. A method of operating an optical network, the optical network comprising a plurality
of nodes coupled by a plurality of links, wherein each one of said plurality of nodes obtains information
on neighboring ones of said plurality of nodes such that each one of said plurality of nodes is able to

maintain a database representing a topology of the optical network.

24. A method of operating an optical network, the optical network comprising a plurality
of nodes coupled by a plurality of links, comprising:
for each one of said plurality of nodes:
obtaining information from neighboring nodes, said information regarding a state of

at least one of said plurality of links, and

h W N = hn W W

-3

U R W N = HOWwW N

~N o

WO 00/42746 PCT/US00/00971

—43-

using said information to maintain a database representing a topology of the optical

network.

25. A method of testing a virtual path in an optical network, said virtual path provisioned
on a physical path between a first and a second node of said optical network, said network comprising a
plurality of nodes coupled by a plurality of links, comprising:

testing said virtual path by testing each one of a plurality of nodes and a plurality of links in

said physical path as a single circuit.

26. A computer program product encoded in computer readable media, the computer
program product comprising:

first instructions, executable by a first processor, for identifying a first node and a second node
of a plurality of nodes, said plurality of nodes being coupled by a plurality of links to
form an optical network;

second instructions, executable by said first processor, for discovering a physical path from
said first node to said second node by automatically identifying intermediary nodes of
said physical path; and

third instructions, executable by said first processor, for establishing said virtual path by
causing a second processor to configure a set of connections between said nodes of

said physical path.

27. The computer program product of claim 26, further comprising a graphical user

interface for displaying a topology of said optical network.

28. The computer program product of claim 26, further comprising:
fourth instructions, executable by said first processor, for testing said virtual path by testing
each one of said plurality of nodes and said plurality of links of said physical path as

a single circuit.

29. The computer program product of claim 26, further comprising:

fourth instructions, executable by said first processor, for terminating said virtual path by
sending a termination message from one of said first and second nodes to the other of
said first and second nodes, wherein said termination message is sent along said
physical path and each one of said intermediary nodes is deallocated by a respective
one of said nodes forming said physical path as said termination message is sent to a

next one of said nodes.

N W A WN

[\

wn W

WO 00/42746 4 PCT/US00/00971

30. The computer program product of claim 26, further comprising:

fourth instructions, executable by said first processor, for restoring said virtual path in
response to a failure along said physical path by discovering an alternate physical
path from said first node to said second node by automatically identifying nodes
forming said alternate physical path, and re-establishing said virtual path by

configuring a set of connections between said nodes of said alternate physical path.

31. The computer program product of claim 26, wherein the computer readable media
includes any of magnetic storage media, including disk and tape storage media; optical storage media,
including compact disk memory and digital video disk storage media; nonvolatile memory storage
memory; volatile storage media; and data transmission media including computer network, point-to-

point telecommunication, and carrier wave transmission media.

32. A computer system comprising:

S O 00 N N R W N =

T S
W N =

(93]

S O 0 N N B

a display device;
a processor coupled to the display device;
computer readable medium coupled to the processor; and
computer code. encoded in the computer readable medium, for generating a graphical user
interface, wherein the graphical user interface includes a first plurality of screen
objects representing nodes of an optical network, a second plurality of screen objects
representing optical links between said nodes, wherein:
a first one and a second one of said first plurality of screenr objects are highlighted to
indicate a source node and a destination node, respectively, and
certain ones of said first plurality of screen objects and certain ones of said second
plurality of screen objects are highlighted by said computer code to indicate

a virtual path selected by said computer code.

33. An optical network comprising:

a plurality of optical links;

a plurality of nodes, each one of said plurality of nodes coupled to at least one other of said
plurality of nodes by at least one of said plurality of optical links, wherein said nodes
are configured to provision a virtual path between a first node and a second node of
said plurality of nodes by virtue of being configured to:
identify said first node and said second node of said plurality of nodes,
discover a physical path from said node to said second node by virtue of being

configured to automatically identify any intermediary nodes of said physical

path, and

11
12

O 3 N AW =

—_ e = e
W N = O

RS VS S

O o NN N W

10
11

~N OO RAWwN

WO 00/42746 PCT/US00/00971

-45-

establish said virtual path by virtue of being configured to configure a set of

connections between said nodes of said physical path.

34. An optical network comprising:
a plurality of optical links;

a plurality of nodes, each one of said plurality of nodes coupled to at least one other
of said plurality of nodes by at least one of said plurality of optical links,
wherein said nodes are configured to restore a virtual path in said optical
network, said virtual path being provisioned on a physical path between a
first and a second node of said plurality of nodes by virtue of being
configured to:
discover an alternate physical path from said first node to said second node

by virtue of being configured to automatically identify nodes of
said alternate physical path, and
re-establish said virtual path by virtue of being configured to configure a set

of connections between said nodes of said alternate physical path.

35. A network comprising:
a plurality of nodes coupled by a plurality of optical links, wherein said plurality of nodes are
configured to provision a virtual path between a first node and a second node of said
plurality of nodes, wherein each of said plurality of nodes comprises:
identifying means for identifying said first node and said second node of said plurality
of nodes,

discovering means for discovering a physical path from said node to said second node
by automatically identifying any intermediary nodes of said physical path,
and

establishing means for establishing said virtual path by configuring a set of connections

between said nodes of said physical path.

36. The network of claim 35, wherein seaid each one of said plurality of nodes further
comprises:
restoring means for restoring said virtual path in response to a failure along said physical path
comprising:
alternate discovering means for discovering an alternate physical path from said first
node to said second node by automatically identifying intermediary nodes of

said alternate physical path, and

10

—

—

O T 0 N N B WN

WO 00/42746 16 PCT/US00/00971
re-establishing means for re-establishing said virtual path by configuring a
set of connections between said nodes of said alternate physical

path.

37. An optical network comprising:

a plurality of nodes coupled by a plurality of optical links, wherein said plurality of nodes are
configured to restore a virtual path in an optical network, said virtual path being
provisioned on a physical path between a first and a second node of said plurality of
nodes, wherein each one of said plurality of nodes comprises:
discovering means for discovering an alternate physicat path from said first node to

said second node by automatically identifying nodes of said alternate
physical path, and
re-establishing means for re-establishing said virtual path by configuring a set of

connections between said nodes of said alternate physical path.

PCT/US00/00971

WO 00/42746

1/21

I By

A\

SSaIppY 9PON al suoz l 4
o€l |\ octL ll\

AN

SSa1ppY SpON ai suoz 0 b
ocl l\ oci |\

oLl ||/
SSaippy 9pON aisuoz| 0

[4 € 14 S 9 [L 8 6 0l L 2
(143

1
0ct

151 S 4 S %

ZadAL
/(oo_,
L adAt
/Iloo_‘
0 adAy

/llooF

PCT/US00/00971

WO 00/42746

2/21

N\

- - -

-
”~

+~" oz euoz

JAZ4

///fmow m:ow\\\

-

~

z b4

00¢ suoz

- =

-~ 2oz auoz R

-

— -

d

WO 00/42746 PCT/US00/00971

3/21

300

Clear inactivity
counter

No—

X 310 320
Hello Increment
Yes message No»{ inactivity
ceiv counter

330

Inactivity
counter reached
HelloDeadInterval?

Yes

Y

Change the neighboring
node's state from ACTIVE
to DOWN

!

Change the HOP_COUNT
field of the LSA to LSInfinity

/_
/__

l 360

Start timer to remove the /__ A
/___
/__
/_

LSA from the node's
database

!

Send copy of the LSA to all
ACTIVE neighboring nodes

b

Generate a LINK_DOWN
event

l

Send GET_LSA request to
all neighbors for dead node

Fig. 3

WO 00/42746

4721

PCT/US00/00971

Send back a positive
response to sender of
GET_LSA

!

Find requested LSAs in link
state database

l

Build fists A and B

|

Flag LSAs on Alist for
deletion in LSTimetoLive
unless update received

}

Send GET_LSAto all
neighbors except sender
for list A LSAs

4

Send list B LSAs to the
sender of the GET_LSA
request

’/—460

|

Fig,4

WO 00/42746

5721

PCT/US00/00971

N
NO

All LSAs
processed?

560

nprocessed
nodes remaining in
neighbor list?

530
/_

Skip neighbor
node

State of
neighbor node at
east ACTIVE

l¢-No

No

‘Yes

540

LSA not
received from this
neighbor?

Yes
h 4

Add LSA to list
of LSAs to be
sent

|

550
/_

Sent all
LSAs in list of
LSAs?

570

No—p

Send next LSA

580
/_

Fig. 5

WO 00/42746

6/21

Any LSAs in
message still
unprocessed?

Yes

Yes

630

Yes

640

LSAin the
database?

Yes

650
/__

A & LSA
the database not

received from same
node?

No

Yes

660

No—

A 4

PCT/US00/00971

620
/_

Skip this LSA

635
/_

Discard this
LSA

NO—-———P

645
/_

Install this LSA
in the database

655
/_

Install this LSA|
in the database

665
/_

LSA more
recent than LSA in
he database?

No-»

Discard LSA

Yes

4

670
Install this LSA
in the database

l

Acknowledge |,

675
N

LSA

]

Fig. 6

WO 00/42746

PCT/US00/00971

71721

Do the

LSAs have the

same LSID's?

710 —— |

700

No

Yes
¥
LSA with
higher LSID is
the more
recent
Hop_Count1
Hop_(;ountz
Yes
‘ No
730 —\
LSAs are identical
/— 740
LSA with lower
Hop_Count is the more
recent LSA
|
Y
End

Fig.,7

PCT/US00/00971

WO 00/42746

8 /21

dINQOQ 39ONVYHOX3

0s8 _
QIAIFOTLINI

o¥8
A3AI30FY MOV

0i8
JuSS-1INI

8 ‘b4

Gz8
anY

0.8

0c8
abueyoxgy

g8
CENNERERMTY

508
umoqg

Sp8
A3AIZOY MOV

0¢c8
PSAIS39Y-LINI

o9¢ _
d3AIZOIH LINI

WO 00/42746

9/21

PCT/US00/00971

910 \ | Scan VP table
for VPs that

920

Failure detected?

Yes
) 4

900

3

use failed link

1

Yes

VP uses

failed link?

Yes

\ 4

940
T\

Release all link
bandwidth allocated to
that VP

950

Source
node or proxy border
node for VP?

Yes

4

No

960
T\

Change VP state to
RESTORING

Change VP state to
DOWN

!

l

970
T\

Store VP on list of VPs
to be restored

Start deletion timer for
that VP

980

990

930

Fig. 9

Last VP?

WO 00/42746

Start

Target_node_ID
<>

Local_node_ID

Yes

HOP_COUNT
<

MAX_HOP

Yes

First
instance of
RPR?

Yes
A4

1025
/_

10/21

1005
/_

PCT/US00/00971

Perform target
No-» node
processing
10
1015
Send NAK with Flush |/

to originating neighbor

{

10565

End

C)

Different
instance of
RPR?

No—»

Similar instanc® of
RPR

Yes
4

Create RPRE l

!

Add input link ID to the

Send NAK with Wrong
Instance to originating
neighbor

path in the packet

\— 1030

/—— 1065

1080
/__

No-»|

Record RPR

!

No-»

Send copy of RPR to

Reject RPR by sending
a Terminate response
to originating neighbor

all eligible neighbors

Yes

Send copy of RPR to
target node

!

Update the RPRE
corresponding to the

r Y

1035

\— 1045

\—— 1040

RPR

|

End

i

050

\—— 1075

Send copy of RPR
to all eligible
neighbors that
have not senta

"| Flush response to

the current node
for the same
instance of this
RPR

1085 J

C

Ve
S

Fig. 10

WO 00/42746

First
eceived?

Yes

Does

Specified VP terminate

at this node?

instance of RPR

11721

1100

1110

No

Create RPRE

PCT/US00/00971

y
Send NAK with
Terminate to
originating node

1105
/_

1130

Update
existing RPRE

— 1120

I

Copy
information

from RPR into

RPRE

1135
/__

Restart RPRE
deletion timer

— 1125

I

I

Allocate
bandwidth
requested in
RPR

— 1140

!

Start RPRE

deletion timer

1145
/_

I

Compute
checksum

1160
/__

Write

checksum into

RPR

1155
/___

Return RPR to

originating
node

1160
/__

[

Fig

.M

WO 00/42746

12 /21

1200

RPRE
associated with

No

No

F—No

1225 ——‘

RPR's
seq_num match
RPRE's?

RPR found

Yes

1210

Sending
node listed in
RPRE?

Yes

1215

sequence number

Yes

1220

Flush or
Terminate spec'd
in RPR?

1245

erminate
specified in
RPR?

Yes

PCT/US00/00971

1240 ~— 1255
/__

Free
bandwidth on
input link

1260
/[

No—»;

A 4
Free bandwidth on all
links over which RPR
was forwarded

Save Terminate and
Flush bits in RPRE

!

y

Save Terminate and
Flush bits in RPRE

Clear Flush bitin RPR

1250

_/

1275

1270 ——/

1265 ——/
Y

Decrement
PendingRepilies field in
RPRE

PendingReplies
=07

1280 —/

Send RPR to node that
sent the RPR

l

Release allocated

1230 bandwidth on the link
/| to node that sent RPR
Input link 1285
No consistent with l
Start RPR deletion
timer
Yes 1235 1290 —/
No next hop info in
RPR?
y
/— 1205
lgnore RPR
L
y
End

Fig. 12

WO 00/42746

1300

1320

1330

1340

1350

1360

1370

1380

J b J

PCT/US00/00971

13/21

RPRE
found in local
database?

Yes

Input link
consistent with
RPR path?

Yes

onsisten
next hop info in
RPR?

Yes
4 v

Commit bandwidth
allocated on input and
output links related to Ignore RPR
the RPR

1310
/_

!

Free bandwidth
allocated on all other
input and output links

b

Send positive response
to the node from which
the RPR was received

!

Start RPRE deletion
timer

}

Configure the local
matrix

End

Fig. 13

PCT/US00/00971

WO 00/42746

14 /21

orvr|lL\

osvi

ovvi

Svyi

y1 -Bi4

gevl

ocvl

7445

Sivi

GSvi

movrllk\

WO 00/42746

Yes

1510
v [

PCT/US00/00971

15 /21

No

v

Copy (Column -1) to
Column

<&

/— 1635

/— 1515 J
New_Cost =

1540
/_

1545

No

Cost = n-R Link_Cost Cost = MAX_Cost Cost R to n+
Next Hop = Node n Next Hop = Invalid_Node Cost m to n
Previous Hop = Node R Previous Hop = - -
Place n in Ready Invalid_Node
I]
All nodes n 1520 No
known to node
R done? *
Yes 1550
4
Y:s 1625 Cost = New_Cost
- Next Hop = Next Hop (Column-1)
Column = Column + 1 l Previous Hop = Node n
Place m in Ready
1530 «
Ready empty?
/ 1555 Al

neighbors m
of node n

Yes

1565

All nodes n

No-»

Process next
node m

/L]

Process next

ac
es

. No» nodenin
in Ready done? Ready
1575 Ve 1570 /
\fastHop = Columnl
A 4
Y
End

Fig. 15

PCT/US00/00971

WO 00/42746

16 /21

9} ‘B4

0891
1obie |
0491
ubuo
0991 0s9l PUBLLLLION 0v9l | 09l [029l [0L9L
JaquinNsouanbag 4 n__ N S|
1
009L —

PCT/US00/00971

WO 00/42746

17 /21

LL B4

09.1
m>.®uc_u30mE_._,
0S.1L
|[eAtsiulofjloH
ovLL Aoedenugop
0Ll Aoedenggopn
0zLL
ISOO3UIT
oLl
dlspoN

004} ’q\

PCT/US00/00971

WO 00/42746

18 /21

81 ‘B4

So8l b_omamO:moO
0981 Aoedeneson
s98l Isoour]
r Gb8L loqyBisN
sswip 10v8l JunodIoqubioN sesl junogdoy
wnoooqybieN)
pejeaday e8!
daisi
gzgl wnsyoayn
028l apoNbBuisiuanpy
o8l JNooST
sawi | 1021 spo
Jnooe diePON
pajeaday

oost l\

PCT/US00/00971

WO 00/42746

19 /21

0ce6l I\

61 ‘Big

(N)og6 1 Q1 spoN

(1-N)oes) a1 apoN

(2)oest at apoN

(1)oc61 Qi spoN

0161 3unod ys o Sm%.wwoN

0061 l\

PCT/US00/00971

WO 00/42746

20/21

0z ‘614

(N)ogoz doH

(2)0902 doH

0502 I\

fied

(1)o90z doH

0v0z 0goc
wunondoH yibusyied

0202
wns)oayn

oloc
aldA

000¢ I\

PCT/US00/00971

WO 00/42746

21721

12 "Bid4

(N)ogt g doy

(2)ogie doH

osiz__/

yied

(1)ogLz doy

ovie
junopdoH

0cle
yibusyied

iZie
wns}oay)

OtLc
aidA

00Le II\

INTERNATIONAL SEARCH REPORT

Internat 1 Application No

PCT/US 00/00971

CLASSIFICATION OF SUBJECT MATTER

A
IPC 7

H04L12/56

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7

HO4L HO4Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to ciaim No.
X US 5 805 578 A (GUPTA MANISH ET AL) 1,14,
8 September 1998 (1998-09-08) 23-26,
32-37
A column 3, Tine 25 —column 8, line 18 2-13,
15-22,
27-31
X US 5 093 824 A (COAN BRIAN A ET AL) 1,14,
3 March 1992 (1992-03-03) 23-26,
32-37
A column 1, Tline 13 -column 2, line 3 2-13,15,
22,27-31
column 3, Tine 9 - line 15
column 5, 1ine 1 - 1ine 65
column 7, 1ine 55 —column 8, line 27
column 12, line 57 —column 13, 1ine 41
-/

m Further documents are listed in the continuation of box C.

E Patent family members are listed in annex.

° Special categories of cited documents :

*A® document defining the general state of the art which is not
considered to be of particular relevance

*E" eatier document but published on or after the intemational
filing date

‘L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0" document refering to an oral disclosure, use, exhibition or
other means

*P" document published prior to the intemational filing date but
later than the priority date ciaimed

T later document published after the intemational filing date
or priority date and not in conflict with the application but
;;ited to understand the principle or theory undetiying the
nvention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the documentis taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
Irriemr1ts. guch combination being obvious to a person skilled
n the art.

"&" document member of the same patent family

Date of the actual completion of the intemational search

8 June 2000

Date of mailing of the intemational search report

16/06/2000

Name and mailing address of the I1SA

European Patent Office, P.B. 5818 Patentiaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340--2040, Tx. 31 651 eponl,
Fax: (+31-70) 340-3016

Authorized officer

Meurisse, W

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Interna il Application No

PCT/US 00/00971

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

X

US 5 646 936 A (SHAH JASVANTRAI C ET AL)
8 July 1997 (1997-07-08)

column 3, line 1 —-column 4, Tine 31

column 6, line 1 - Tline 33

column 7, line 3 —column 10, Tine 49
HIDEKI SAKAUCHI ET AL: "A SELF-HEALING
NETWORK WITH AN ECONOMICAL SPARE-CHANNEL
ASSIGNMENT"

PROCEEDINGS OF THE GLOBAL
TELECOMMUNICATIONS CONFERENCE AND
EXHIBITION(GLOBECOM),US,NEW YORK, IEEE,
vol. -, 1991, pages 438-443, XP000218768
ISBN: 0-87942-632-2

the whole document

BARUCH AWERBUCH ET AL: "DISTRIBUTED
CONTROL FOR PARIS"

PROC. ANNUAL ACM SYMP. ON PRINCIPLES OF
DISTRIBUTED COMPUTING, XX, XX,

22 August 1990 (1990-08-22), pages
145-159, XP000561763

the whole document

EP 0 841 824 A (NIPPON ELECTRIC CO)

13 May 1998 (1998-05-13)

column 3, line 56 -column 7, line 11

EP 0 781 068 A (IBM)

25 June 1997 (1997-06-25)

column 5, 1ine 15 —-column 13, line 5
HAJELA S: "HP OEMF: ALARM MANAGEMENT IN
TELECOMMUNICATION NETWORKS"
HEWLETT-PACKARD JOURNAL,US,HEWLETT-PACKARD
C0. PALO ALTO,

vol. 47, no. 5,

1 October 1996 (1996-10-01), pages 22-30,
XP000631663

page 26, right-hand column, last paragraph
-page 28, left-hand column, last line

-t oo

1,14,
23-26,
32-37
2-13,
15-22,
27-31

1-37

1-37

1-37

1-37

27,32

Form PCT/ISA/210 (continuation of second sheet) (July 1982)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Irnwrmation on patent famlly members

Interna

1l Application No

PCT/US 00/00971

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5805578 A 08-09-1998 NONE

US 5093824 A 03-03-1992 CA 2034651 A 28-09-1991
EP 0525121 A 03-02-1993
WO 9115066 A 03-10-1991

US 5646936 A 08-07-1997 CA 2224574 A 09-01-1997
EP 0873619 A 28-10-1998
JP 11508421 T 21-07-1999
Wo 9701233 A 09-01-1997

EP 0841824 A 13-05-1998 JP 2985940 B 06-12-1999
JP 10145362 A 29-05-1998
CA 2220469 A 08-05-1998
us 6026077 A 15-02-2000

EP 0781068 A 25-06-1997 JP 9186701 A 15-07-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

