A laminated light-emitting diode display device and a manufacturing method thereof are described. The laminated light-emitting diode display device has an insulator, a circuitry device placed on the insulator and having of a plurality of circuits interconnected with each other, and a plurality of SMT-type light-emitting diodes electrically connected to the circuits of the circuitry unit.
prepare an insulator made of a glass, paper or transparent plastic thin film

place a circuitry unit having a plurality of circuits on the insulator by printing, electroplating or chemical deposition

electrically connect a plurality of SMT-type light-emitting diodes to the circuits of the circuitry unit wherein these SMT-type light-emitting diodes are adhered to circuits through the SMT

electrically connect a plurality of resistors and a controlling IC to circuits of the circuitry unit also wherein resistors and the controlling IC are placed on the insulator

encapsulating a protective thin film over the insulator, circuitry unit, light-emitting diodes, resistors, and the controlling IC

FIG. 7
LAMINATED LIGHT-EMITTING DIODE DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The present invention relates to a laminated light-emitting diode display device and a manufacturing method thereof, and more particularly, to a laminated light-emitting diode display device having the circuitry unit printed on the insulator for driving SMT-type light-emitting diodes to emit light in order to display characters or graphics.

[0003] 2. Description of Prior Arts

[0004] Reference is made to FIG. 1 of a schematic diagram illustrating a conventional light series 8. The light series 8 includes a power core 81, light bulbs 82 and bulb receptors 83. The light series 8 could be placed on somewhere in accordance with users' preferences and arranged in users' preferred manners in order to display desired characters or graphics.

[0005] Reference is made to FIG. 2 of a schematic diagram showing a conventional neon lamp 9. The neon lamp 9 consists of neon light lamps 91 and a decorative plate 92 having the neon light lamp placed thereon. Neon light lamps 91 can be arranged as preferred characters or graphics.

[0006] However, the aforementioned light series 8 or neon lamp 9 has its own thickness and occupies a specific volume, and thus is not capable of being adhered in some locations under certain conditions, therefore limiting its application.

[0007] Moreover, light bulbs 92 of the conventional light series 8 or neon light lamps 91 of the conventional neon lamp 9 are connected to each other through wires, making the assembly process for both more complicated and rendering the manufacturing more time-consuming.

SUMMARY OF THE INVENTION

[0008] It is therefore a primary objective of the present invention to provide a laminated light-emitting diode display device and a manufacturing method thereof. The present invention display device comprises a laminated design so as to reduce effectively the thickness as a whole and facilitate the placement thereof. Meanwhile, the assembly process for the present invention display device is not that time-consuming, compared to that of the prior art light series or neon lamp, and thus leads to less manufacturing effort.

[0009] In accordance with the claimed invention, the laminated light-emitting diode display device includes an insulator, a circuitry device placed on the insulator and consisting of a plurality of circuits interconnected with each other, and a plurality of SMT-type light-emitting diodes electrically connected to the circuits of the circuitry unit.

[0010] The present invention further provides a corresponding manufacturing method for the laminated light-emitting diode display device. The manufacturing method includes steps of preparing an insulator, placing a circuitry unit having a plurality of circuits on the insulator, and electrically connecting a plurality of SMT-type light-emitting diodes to the circuits of the circuitry unit.

[0011] These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment illustrated in the various figures and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The foregoing aspects and many of the attendant advantages of this invention will be more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:

[0013] FIG. 1 is a schematic diagram showing a conventional light series;

[0014] FIG. 2 is a schematic diagram showing a conventional neon lamp;

[0015] FIG. 3 is a schematic diagram showing a laminated light-emitting diode display device according to the present invention;

[0016] FIG. 3A is a schematic diagram partially detailing part A in FIG. 3;

[0017] FIG. 4 is a top view of the laminated light-emitting diode display device according to the present invention;

[0018] FIG. 5 shows the operation status of the laminated light-emitting diode display device according to the present invention;

[0019] FIG. 6 is a top view of another preferred embodiment according to the present invention; and

[0020] FIG. 7 shows a flow chart of the manufacturing method for the laminated light-emitting diode display device according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0021] Reference is made to FIGS. 3 and 4 of schematic diagrams of laminated light-emitting diode display devices according to the present invention. The present invention display device includes an insulator 1, a circuitry unit 2 and a plurality of light-emitting diodes 3. The insulator is made of a glass, a paper or a transparent plastic thin film. The shape of the insulator is not limited and thus can be in a variety of different forms in practical use. The preferred embodiment 1 is in the form of a rectangle.

[0022] The circuitry unit 2 is placed upon the insulator 1 by printing, electroplating or chemical deposition. The circuitry unit 2 consists of a plurality of circuits 21 made of highly conductive materials. The arrangement of circuits 21 is not specifically limited and changes based on practical use along with the placement of light-emitting diodes 3. The circuitry unit 2 further connects to appropriate power sources.

[0023] Light-emitting diodes 3 are SMT-type light-emitting diodes, meaning light-emitting diodes 3 are capable of being adhered to circuits 21 of the circuitry unit 2 (shown in FIG. 3A). Under this configuration, light-emitting diodes 3 are placed on the insulator 1 and electrically connect to the circuitry unit 2, which serves as a power source for light-emitting diodes 3. The number and arrangement of these
light-emitting diodes 3 are not limited either. Light-emitting diodes 3 can be arranged as characters or graphics and in the present embodiment they are arranged as English characters.

[0024] Additionally, the circuits 21 of the circuitry unit 2 further electrically connect to a plurality of resistors 4 providing the protection of the circuit. Circuits 21 further electrically connect to a controlling integrated circuit (IC) 5 controlling the on/off of these light-emitting diodes 3 and thus providing the on/off variance of these light-emitting diodes 3. Moreover, a protective thin film 6 further encapsulates the insulator, the circuitry unit 2, light-emitting diodes 3, resistors 4 and the controlling IC 5 for dust and waterproofing.

[0025] Reference is made to FIG. 6 of a schematic diagram showing a solar power-generating device 7 on the insulator 1. The solar-power-generating device 7 includes a solar power plate 71 electrically connected to circuits 21 of the circuitry unit 2, whereby solar energy powers the display device.

[0026] The present invention primarily provides a laminated light-emitting diode display device having the circuitry unit 2 printed on the insulator 1, SMT-type light-emitting diodes 3 and the power source in order to display desired characters or graphics (shown in FIG. 5).

[0027] The laminated light-emitting diode display device according to the present invention is comparatively thin and thus is easily packed and stored, as well as being applicable in many occasions.

[0028] The circuitry unit 2 is printed on the insulator 1 and light-emitting diodes 3 are surface molded by surface molding technology (SMT) on the insulator for electrically connecting to the circuitry unit 2, making the assembly process for the present invention display device easy and reduces effort in manufacturing.

[0029] Reference is made to FIG. 7 of a flow chart of the present invention manufacturing method for the laminated light-emitting diode display device. The manufacturing method includes steps of (a) preparing an insulator 1 (shown in FIGS. 3 and 4) made of a glass, paper or transparent plastic thin film, (b) placing a circuitry unit 2 having a plurality of circuits 21 on the insulator 1 by printing, electroplating or chemical deposition, (c) electrically connecting a plurality of SMT-type light-emitting diodes 3 to the circuits 21 of the circuitry unit 2, in which these SMT-type light-emitting diodes 3 are adhered to circuits 2 through the SMT; (d) electrically connecting a plurality of resistors 4 and a controlling IC 5 to circuits 2 of the circuitry unit 2, with resistors 4 and the controlling IC 5 are placed on the insulator 1, and (e) encapsulating the insulator 1, circuitry unit 2, light-emitting diodes 3, resistors 4, and the controlling IC 5 in a protective thin film 6.

[0030] Those skilled in the art will readily observe that numerous modifications and alterations of the device may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

What is claimed is:

1. A laminated light-emitting diode (LED) display device, comprising:
 an insulator;
 a circuitry unit placed on the insulator and consisting of a plurality of circuits interconnected with each other; and
 a plurality of SMT-type light-emitting diodes electrically connected to the circuits of the circuitry unit.

2. The display device in claim 1, wherein the insulator is made of a glass, a paper or a transparent plastic thin film.

3. The display device in claim 1, wherein the circuitry unit is disposed on the insulator by printing, electroplating or chemical deposition.

4. The display device in claim 1, wherein the light-emitting diodes are arranged as a character or a graphic.

5. The display device in claim 1, wherein the circuits of the circuitry unit are connected to a plurality of resistors.

6. The display device in claim 1, wherein the circuits of the circuitry unit are connected to a controlling integrated circuit (IC).

7. The display device in claim 1, wherein the insulator, the circuitry unit and the light-emitting diodes are encapsulated by a protective thin film.

8. The display device in claim 1, wherein the circuits of the circuitry unit are connected to a solar power device.

9. A manufacturing method for a laminated light-emitting diode display device, comprising:
 preparing an insulator;
 placing a circuitry unit having a plurality of circuits on the insulator; and
 electrically connecting a plurality of SMT-type light-emitting diodes to the circuits of the circuitry unit.

10. The method in claim 9, wherein the insulator is made of a glass, a paper or a transparent plastic thin film.

11. The method in claim 9, wherein the circuitry is formed on the insulator by printing, electroplating or chemical deposition.

12. The method in claim 9, further comprising a step of electrically connecting a plurality of resistors to the circuits of the circuitry unit.

13. The method in claim 9, further comprising a step of electrically connecting a controlling integrated circuit (IC) to the circuits of the circuitry unit.

14. The method in claim 9, further comprising a step of encapsulating the insulator, the circuitry unit and the light-emitting diodes with a protective thin film.

* * * * *