wo 2017/052896 A1 | I 0N OO OO0 AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

30 March 2017 (30.03.2017)

WIPOIPCT

(10) International Publication Number

WO 2017/052896 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:

GO6F 9/48 (2006.01) GO6F 12/08 (2006.01)
International Application Number:
PCT/US2016/048171

International Filing Date:

23 August 2016 (23.08.2016)
Filing Language: English
Publication Language: English
Priority Data:
14/864,085 24 September 2015 (24.09.2015) Us

Applicant: INTELL. CORPORATION [US/US]; 2200
Mission College Boulevard, Santa Clara, California 95054

(US).

Inventors: ZIMMER, Vincent J.; 1937 S. 369th Street,
Federal Way, Washington 98003 (US). POOR-
NACHANDRAN, Rajesh; 15317 N.W. Twoponds Drive,
Portland, Oregon 97229 (US). SUN, Mingqiu; 8704 S.'W.
Marseilles Drive, Beaverton, Oregon 97007 (US).

(74

(8D

(84)

SELVARAIJE, Gopinatth; 12658 N.W. Ally Elizabeth
Court, Portland, Oregon 97229 (US).

Agent: ZELEPUGAS, Eric A.; Hanley, Flight & Zimmer-
man, LLC, 150 S. Wacker Drive, Suite 2200, Chicago,
Ilinois 60606 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

[Continued on next page]

(54) Title: METHODS AND APPARATUS TO PROVIDE ISOLATED EXECUTION ENVIRONMENTS

(57) Abstract: Methods and apparatus to provide isolated execution environments

400
START .
410

IDENTIFY REQUEST FROM

HOST APPLICATION
N8<

430\

420

)

EXCESS MICRO
OPERATIONS
AVAILABLE?

T

YES
A

LOAD PICO
APPLICATION

l

EXECUTE PICO
APPLICATION

—

PICO APPLICATION
COMPLETE?

450

)

T
YES
v

UNLOAD PICO
APPLICATION

FIG. 4

are disclosed. In some examples, the methods and apparatus identify a request from
a host application. In some examples, the methods and apparatus, in response to
identifying the request from the host application, load a microcode application into
memory when excess micro operations exist in a host instruction set architecture,
the microcode application being a fragment of code. In some examples, the meth -
ods and apparatus execute the microcode application. In some examples, the meth-
ods and apparatus, in response to completed execution of the microcode applica-
tion, unload the microcode application from memory.

WO 2017/052896 A1 AT 00N 0T RO

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,

as to applicant'’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, Published:

GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i))

with international search report (Art. 21(3))

WO 2017/052896 PCT/US2016/048171

METHODS AND APPARATUS TO PROVIDE ISOLATED
EXECUTION ENVIRONMENTS

RELATED APPLICATION
[0001] This patent claims priority to U.S. Application Serial No. 14/864,085 (Now
US. Patent), which is entitled “METHODS AND APPARATUS TO PROVIDE
ISOLATED EXECUTION ENVIRONMENTS,” and which was filed on September 24,
2015. U.S. Patent Application Serial No. 14/864,085 is hereby incorporated herein by

reference in its entirety.

FIELD OF THE DISCLOSURE
[0002] This disclosure relates generally to computer architecture and, more

particularly, to methods and apparatus to provide isolated execution environments.

BACKGROUND

[0003] In recent years, mobile devices have become increasingly smaller. While
modem technology has allowed smaller devices to maintain performance comparable to
larger device counterparts, certain computational aspects may have to be given up in order to
decrease the size of a device. For example, a trusted platform module is generally a
dedicated second processor that, if used, prevents the size decreasing of the device. In some
examples, platform trust technology is integrated into a co-processor. However, second
processors and/or co-processors impose additional cost and size restrictions to devices

utilizing them and, therefore, are often eliminated from smaller devices.

BRIEF DESCRIPTION OF THE DRAWINGS
[0004] FIG. 1 is a block diagram of an example apparatus to provide isolated
execution environments.
[0005] FIGS. 2-3 illustrate example introductions of small fragments of code in the
form of micro operations during instruction cycles of the example apparatus of FIG. 1.
[0006] FIG. 4 illustrates example machine readable instructions for implementing the

example apparatus of FIG. 1.

WO 2017/052896 PCT/US2016/048171

[0007] FIG. 5 illustrates example machine readable instructions that may be executed
to introduce the small fragments of code illustrated in FIGS. 2 using the example apparatus of
FIG. 1.

[0008] FIGS. 6-7 illustrates example machine readable instructions for implementing
the example loader of FIG. 1.

[0009] FIG. 8 illustrates an example processor platform to execute the instructions of

FIGS. 4-7 to implement the apparatus of FIG 1.

DETAILED DESCRIPTION

[0010] The example methods and apparatus disclosed herein are used to provide
isolated execution environments previously impossible due to a lack of hardware or a
dedicated co-processor. In some examples, the example methods and apparatus provide
isolated execution environments for small Internet of Things devices where dedicated
hardware or co-processors are impractical to use due to size restraints or to increasing costs
associated with such devices.

[0011] The Internet of Things (“ToT”) is the network of physical objects embedded
with computing components that enable the exchange of data. Wearable technology, or
wearables, are clothing or accessories incorporating electronic technology and are one
example of IoT objects. As more and more objects are incorporated with technology and
networked together, the phrase the Internet of Everything (“IoE”) becomes a more accurate
term for such technology. In some examples, to avoid adding excess bulk to existing devices
and to make added technology less noticeable, the added embedded computing components
are often significantly small in size.

[0012] Networking technological devices together involves the computing and
transfer of data. However, data transfers and mobile computing amongst a plurality of known
and/or unknown devices and/or networks lends itself to security vulnerabilities. Numerous
secure crypto-processors have been developed to increase security. For example, a trusted
platform module (“TPM™) is a dedicated security processor or co-processor that is generally
isolated from the host central processing unit (“CPU”), firmware, and operating system. A
TPM may provide, for example, random number generation, encryption/decryption key
generation, hash generation, and/or signature generation. As used herein, the term “trusted
platform™ is defined as a platform that behaves in a manner that is expected for its designated

purposes. In some examples, a processor, co-processor, controller, or other control unit may

-2

WO 2017/052896 PCT/US2016/048171

embed a firmware-based TPM isolated from the host. However, these example crypto-
processors require dedicated separate distinct hardware subsystems that are often incapable of
being provided in smaller devices.

[0013] For example, integrating a TPM in a computing system may involve
integrating an additional processor onto a separate chip or into the chip containing the CPU.
However, such integration increases the size and cost of the system. In some examples, such
as in wearable technology, integration of a TPM or other security solution can double the size
and the cost of a device. Even further, TPMs are generally not optimized for energy
efficiency and can impact the power budget for low-power systems. For [oT/IoE devices,
such as, for example, wearables, a secondary dedicated TPM is impractical due to cost and
size factors.

[0014] In some examples, I0T/IoE devices have very a small chip, or die, with a
general CPU or a specialized processor disposed thereon. Accordingly, a distinct trusted
subsystem cannot be added to the die to implement a trusted isolated execution environment.
FIG. 1 is a block diagram of an example apparatus 100 to provide isolated execution
environments in such circumstances. The example apparatus 100 includes a host device 105
with a system on chip (“SoC”) 110. In some examples, the SoC 110 includes a CPU 115,
memory 120 (e.g., cache memory or SRAM), a pico-model-specific register (“pico-MSR™)
125, and a host MSR 130 as hardware components. Additionally, the host device 105 may be
programed with software to be performed by the CPU 115 and stored in the memory 120. In
the illustrated example, the software includes an operating system 135, one or more host
applications 140, aloader 145, a pico-virtual machine (“pVM™) 150, and one or more pico-
applications (“pApps™) 155, 160. In some examples, the pVM 150 includes a decoder 165, a
dispatcher 170, and a pico-model-specific register trigger (“pMSR trigger”) 175. In some
examples, the pVM 150 also includes a cryptography library 180. Accordingly, the example
apparatus 100 does not require the addition of significant hardware that would increase the
cost and size of the example SoC 110.

[0015] In some examples, the host device 105 is an [0T/IoE device such as, for
example, a wearable (e.g., an Apple® watch, Google™ Glass, Microsoft® HoloLens, etc.).
In such examples, the SoC 110 is limited in size to fit within such devices. In some
examples, it is impractical to attach a separate TPM or CSME to the host device 105 because
a dedicated TPM or CSME would drastically increase the size of the SoC 110, thereby

drastically increasing the size of the host device 105.

-3-

WO 2017/052896 PCT/US2016/048171

[0016] In some examples, the CPU 115 includes an x86 instruction set architecture
(“ISA”). An ISA defines how a processor acts based on its programming and includes a set
of operation codes, or opcodes, to specify what operations the device is to perform. An
instruction includes an opcode along with operands, or the data in which the operation is to
perform on. An instruction is generally received during an instruction cycle.

[0017] In some examples, the instruction cycle is separated down into fetch, decode,
and execute. First, an instruction is fetched from memory 120. Next, the CPU 115 decodes
the instruction so the CPU 115 may process the same. Lastly, the CPU 115 executes the
instruction based on the interpretation. In some examples, the CPU 115 decodes an
instruction into smaller segments called micro operations (i.e., “micro-ops” or “uOPs”).

[0018] In some examples, micro operations are detailed low-level instructions used to
implement complex machine instructions (i.e., macro-instructions). For example, micro
operations perform operations on data stored in one or more registers, transfer data between
registers or between registers and external buses of the CPU 115, and perform arithmetic or
logical operations on and/or between registers. In the typical fetch-decode-execute cycle, a
macro-instruction is decomposed into a series of corresponding micro operations during its
execution.

[0019] To address a lack of a hardware isolated execution environment that can be
used for manageability, security, and/or other valuable use cases, the example pVM 150
provides trusted computing for the example host application 140 via the example pApps 155,
160. For example, the pVM 150 is a virtual machine separate from the operating system 135
for emulating small fragments of code or pApps 155, 160. In some examples, the isolation of
the pVM 150 from the operating system 135 allows the pVM 150 to operate while the
operating system 135 is booting.

[0020] The example pVM 150 allows the pApps 155, 160 to be loaded into the
memory 120 of the host device 105. In some examples, both the pVM 150 and the pApps
155, 160 are decoded into micro operations by the decoder 165. In some examples, the host
application 140 (e.g., an MMS application on a wearable) performs a write to the pico-MSR
125 to indicate an isolated execution is requested. In some examples the host application 140
is the operating system 135. In response to being written, the example pMSR trigger 175
interacts with the example loader 145 to take control from the example host application 140.
In some examples, the pMSR trigger 175 indicates to the decoder 165 using pApp identifiers,
which pApps 155, 160 are to be loaded by. The example decoder 165 checks the example

-4-

WO 2017/052896 PCT/US2016/048171

cryptography library 180 for example pApps 155, 160 matching the example pApp identifiers
generated by the pMSR trigger 175 prior to decoding the pApps 155, 160. Thereafter, the
example pMSR trigger 175 indicates to the example dispatcher 170 to send the decoded
example pApps 155, 160 to the example loader 145. In some examples, the loader 145 loads
the pVM 150 and the pApps 155, 160 into memory 120 for execution of the same.

[0021] The aforementioned process is reversed when the example pApps 155, 160
write to the example host MSR 130. For example, when the pApps 155, 160 finish
execution, the pApps 155, 160 write to the host MSR 130. In response to being written, the
example pMSR trigger 175 interacts with the example loader 145 to unload the example
pVM 150 and the example pApps 155, 160 from example memory 120 and return control
back to the example host application 140.

[0022] As mentioned above, the example host application 140 writes to the example
pico-MSR 125 to indicate an isolated execution. In some examples, the isolated executions
may be security critical trusted computing operations. For example, digital rights
management (“DRM”) requires such security operations to restrict the unauthorized use of
proprietary media (e.g., copyright infringement). In such examples, a media may have
access restricted through the use of the isolated executed fragments of code, or pApps 155,
160.

[0023] In some examples, the pApps 155, 160, are triggered on-demand (i.e., on an
as-needed basis), by the host application 140. Additionally or alternatively, the isolated
execution may be triggered based on certain pre-determined events. Such events include
thermal events (e.g., overheating), resets, overclocking, tampering, system state transition,
etc. Accordingly, the example loader 145 can load pApps 155, 160 responsive to micro
architectural event triggers to record and/or correct the same.

[0024] The example loader 145 is a microcode program that handles message signal
interrupts generated by the example host application 140 write to the example pico-MSR 125
and the example pApps 155, 160 write to the example host MSR 130. In some examples, the
loader 145 verifies the authenticity of the pVM 150 and the pApps 155, 160 prior to loading.
In some examples, the authenticity of the pVM 150 and the pApps 155, 160 is verified by
checking whether the pVM 150 and the pApps 155, 160 match the platform of the CPU 115,
have valid headers, loader versions, and check sums, and/or pass an authenticity and/or

signature pass.

WO 2017/052896 PCT/US2016/048171

[0025] In some examples, the pVM 150 and the pApps 155, 160 are microcode
distributed in ASCII encoded, cryptographically signed binary files. In some examples, the
pApps 155, 160 are small fragments of code to perform isolated operations such as, for
example, scrub, seal, decode, wrap key, unwrap key, derive key, generate key, bind key, sign,
record state, or audit. In such examples, the pApps 155, 160 utilize surplus micro-operations
available in ISA.

[0026] As disclosed herein, the example apparatus 100 creates isolated execution
environments. In some examples, the example apparatus 100 introduces pApps 155, 160
coded in microcode to utilize surplus (e.g., excess) micro operations available in the ISA
(e.g.. x86 ISA). In some examples, excess micro operations occur when instructions are
variable in size. For example, an excess of 16 bits may form between a 16 bit instruction and
a 32 bit instruction, allowing a plurality of micro operations to occur therebetween. Excess
micro operations may also occur when micro operations are capable of being executed in
parallel with other micro operations. For example, two micro operations may be able to be
executed in the same cycle so long as the proper sequence of events occurs and/or conflicts
are avoided (e.g., MEMORY - MDR cannot occur at the same time as MDR - IR).
Additionally and/or alternatively, excess micro operations may occur when the CPU is idling
and/or when an instruction has high latency (e.g., latency due to off-chip retrieval). In some
examples, decoded micro operations are cached, so a processor can directly access the
decoded micro operations from the cache, instead of decoding them again. Accordingly,
excess micro operations may be cached when cache memory is available.

[0027] In some examples, the memory 120 may vary by device based on the SoC 110,
CPU 115, ISA, and/or time at which a pApp 155, 160 is to be loaded. In such examples, the
host device 105 further includes an indicia as to the capability and compatibility of pApps
155, 160 and ISA extensions with the memory 120. In the illustrated examples, the host
device 105 includes a pico-application capability MSR (“PAC-MSR”) 185 to determine
whether and/or when a pApp 155, 160 is loadable into memory 120. The example PAC-
MSR 185 determines the size of the pApps 155, 160 to be loaded into memory 120. In some
examples, the PAC-MSR 185 determines the available space in the memory 120, whether
excess micro operations exist for use by the pApps 155, 160, and whether the pApps 155, 160
are capable of being loaded into memory 120 at any given time. The example PAC-MSR
185 signals the example loader 145 when the example pApps 155, 160 are capable of being

loaded into example memory 120 based on memory space and available micro operations.

-6 -

WO 2017/052896 PCT/US2016/048171

[0028] FIGS. 2-3 illustrate example introductions of small fragments of code in the
form of micro operations during instruction cycles of a CPU by the example apparatus of
FIG. 1. An example illustration 200 shown in FIG. 2 depicts an instruction cycle 210
including a first macro instruction 220 and a second macro instruction 240. As previously
discussed, macro instructions may be separated into micro operations or uOps. For example,
the first macro instruction 220 is separated into pOP1 225 and pOP2 230. Similarly, the
second macro instruction 240 may be separated into pOP3 245 and pOP4 250. In some
examples, the apparatus 100 reuses the micro architecture state machine between macro
instructions to execute a pOP5 260. For example, pApp 155 may be executed with uOP5
260 between the first macro instruction 220 and the second macro instruction 240. Thus, an
isolated fragment of code (i.e., nOP5 260) may be executed using micro operations inter-
spliced between macro instructions.

[0029] An example illustration 300 depicts alternate example introductions of small
fragments of code in the form of micro operations during instruction cycles of a CPU by the
example apparatus 100 of FIG. 1. Similar to FIG. 2, FIG. 3 illustrates an example instruction
cycle 305 including an example first macro instruction 310, an example second macro
instruction 320, an example third macro instruction 330, and an example fourth macro
instruction 340. In some examples, the first macro instruction 310 is separated into uOP1
312 and pOP2 314. In some examples, the second macro instruction 320 is separated into
nOP3 322 and pOP2 324. In some examples, the third macro instruction 330 is separated
into pOPS 332 and pOP6 334. In some examples, the fourth macro instruction 340 is
separated into pnOP7 342 and uOP8 344,

[0030] In some examples, uOP9 352 is executed in parallel with yOP2 314. In some
examples, pnOP10 354 is executed between the second macro instruction 320 and the third
macro instruction 330. In some examples, pOP11 356 is executed during latency caused by
the fourth macro instruction 340. In the illustrated example, isolated fragments of code (i.e.,
nOP9 352, uOP10 354, and pnOP11 356) are inter-spliced during the instruction cycle 305.
Even further, while example pOP9 352, pOP10 354, and pOP11 356 are isolated fragments
of code, together example pnOP9 352, uOP10 354, and pOP11 356 may form an example fifth
macro instruction 360.

[0031] While an example manner of implementing the apparatus 100 is illustrated in
FIG. 1, one or more of the elements, processes and/or devices illustrated in FIG. 1 may be

combined, divided, re-arranged, omitted, eliminated and/or implemented in any other

-7-

WO 2017/052896 PCT/US2016/048171

way. Further, the example host device 105, the example SoC 110, the example CPU 115, the
example memory 120, the example pico-MSR 125, the example host MSR 130, the example
operating system 135, the example host applications 140, the example loader 145, the
example pVM 150, the example pApps 155, 160, the example decoder 165, the example
dispatcher 170, the example pMSR trigger 175, the example cryptography library 180, the
example PAC-MSR 185, and/or, more generally, the example apparatus 100 of FIG. 1 may
be implemented by hardware, software, firmware and/or any combination of hardware,
software and/or firmware. Thus, for example, any of the example host device 105, the
example SoC 110, the example CPU 115, the example memory 120, the example pico-MSR
125, the example host MSR 130, the example operating system 135, the example host
applications 140, the example loader 145, the example pVM 150, the example pApps 155,
160, the example decoder 165, the example dispatcher 170, the example pMSR trigger 175,
the example cryptography library 180, the example PAC-MSR 185, and/or, more generally,
the example apparatus 100 of FIG. 1 could be implemented by one or more analog or digital
circuit(s), logic circuits, programmable processor(s), application specific integrated circuit(s)
(ASIC(s)), programmable logic device(s) (PLD(s)) and/or field programmable logic device(s)
(FPLD(s)). When reading any of the apparatus or system claims of this patent to cover a
purely software and/or firmware implementation, at least one of the example host device 105,
the example SoC 110, the example CPU 115, the example memory 120, the example pico-
MSR 125, the example host MSR 130, the example operating system 135, the example host
applications 140, the example loader 145, the example pVM 150, the example pApps 155,
160, the example decoder 165, the example dispatcher 170, the example pMSR trigger 175,
the example cryptography library 180, the example PAC-MSR 185, and/or, more generally,
the example apparatus 100 of FIG. 1 is/are hereby expressly defined to include a tangible
computer readable storage device or storage disk such as a memory, a digital versatile disk
(DVD), a compact disk (CD), a Blu-ray disk, etc. storing the software and/or
firmware. Further still, the example apparatus 100 of FIG. 1 may include one or more
elements, processes and/or devices in addition to, or instead of, those illustrated in FIG. 1,
and/or may include more than one of any or all of the illustrated elements, processes and
devices.

[0032] Flowcharts representative of example machine readable instructions for
implementing the apparatus 100 of FIG. 1 is shown in FIGS. 4-7. In this example, the

machine readable instructions comprise a program for execution by a processor such as the

-8-

WO 2017/052896 PCT/US2016/048171

processor 812 shown in the example processor platform 800 discussed below in connection
with FIG. 8. The program may be embodied in software stored on a tangible computer
readable storage medium such as a CD-ROM, a floppy disk, a hard drive, a digital versatile
disk (DVD), a Blu-ray disk, or a memory associated with the processor 812, but the entire
program and/or parts thereof could alternatively be executed by a device other than the
processor 812 and/or embodied in firmware or dedicated hardware. Further, although the
example program is described with reference to the flowchart illustrated in FIGS. 4-7, many
other methods of implementing the example apparatus 100 may alternatively be used. For
example, the order of execution of the blocks may be changed, and/or some of the blocks
described may be changed, eliminated, or combined.

[0033] As mentioned above, the example processes of FIGS. 4-7 may be
implemented using coded instructions (e.g., computer and/or machine readable instructions)
stored on a tangible computer readable storage medium such as a hard disk drive, a flash
memory, a read-only memory (ROM), a compact disk (CD), a digital versatile disk (DVD), a
cache, a random-access memory (RAM) and/or any other storage device or storage disk in
which information is stored for any duration (e.g., for extended time periods, permanently,
for brief instances, for temporarily buffering, and/or for caching of the information). As used
herein, the term tangible computer readable storage medium is expressly defined to include
any type of computer readable storage device and/or storage disk and to exclude propagating
signals and transmission media. As used herein, "tangible computer readable storage
medium" and "tangible machine readable storage medium" are used interchangeably.
Additionally or alternatively, the example processes of FIGS. 4-7 may be implemented using
coded instructions (e.g., computer and/or machine readable instructions) stored on a non-
transitory computer and/or machine readable medium such as a hard disk drive, a flash
memory, a read-only memory, a compact disk, a digital versatile disk, a cache, a random-
access memory and/or any other storage device or storage disk in which information is stored
for any duration (e.g., for extended time periods, permanently, for brief instances, for
temporarily buffering, and/or for caching of the information). As used herein, the term non-
transitory computer readable medium is expressly defined to include any type of computer
readable storage device and/or storage disk and to exclude propagating signals and
transmission media. As used herein, when the phrase "at least" is used as the transition term
in a preamble of a claim, it is open-ended in the same manner as the term "comprising" is

open ended.

WO 2017/052896 PCT/US2016/048171

[0034] FIG. 4 illustrates example machine readable instructions for implementing the
example apparatus of FIG. 1. An example program 400 begins at block 410. At block 410,
the example host application 140 requests a trusted isolated execution. The example pMSR
trigger 175 identifies this request and generates a pico-message signaled interrupt (“pMSI”).
In some examples, the pMSI signals the loader 145 to verify whether excess micro operations
are available (block 420). In some examples, the PAC-MSR 185 determines whether a pApp
155, 160 is loadable based on, at least, size of the pApp 155, 160, available space in memory
120, and/or available micro operations. The example PAC-MSR 185 signals to the example
loader 145 the determination. In some examples, if excess micro operations are available
(block 420: YES), the loader 145 loads or otherwise installs a pApp 155, 160 (block 430)
into memory 120, the pApp 155, 160 being a fragment of microcode. In some examples, the
loader 145 waits until excess micro operations are available (block 420: NO), before loading
the pApp 155, 160. In such examples, the pApp 155, 160 may be executed without affecting
the operating system 135 (i.e., execution of the pApp 155, 160 is hidden and/or does not
block performance of the operating system 135).

[0035] Altematively, the example pMSR trigger 175 may interrupt the operating
system 135 when the loader 145 loads the pApp 155, 160. In such examples, the pMSR
trigger 175 may also signal completion of the pApp 155, 160 to the operating system 135 to
allow the same to continue. Thus, in some examples the pApps 155, 160 are blocking and in
alternate examples, the pApps 155, 160 are non-blocking. In some examples, non-blocking
pApps 155, 160 are used for longer processes (e.g., multiple cycles), while blocking pApps
155, 160 are used for short processes (e.g., a single cycle).

[0036] Once the example pApp 155, 160 is loaded into example memory 120 (block
430), the example CPU 115 executes the example pApp 155, 160 (block 440). In some
examples, the loader 145 checks to see if the pApp 155, 160 has completed execution (block
450). If the example pApp 155, 160 has not finished execution (block 450: NO), the
example loader 145 waits. If the example pApp 155, 160 has completed execution (block
450: YES), the example loader 145 unloads or otherwise removes the example pApp 155,
160 from example memory 120 (block 460). Thereafter, the example program 400 ceases.

[0037] FIG. 5 illustrates example machine readable instructions that may be executed
to introduce the small fragments of code illustrated in FIGS. 2 by the example apparatus 100
of FIG. 1. In the illustrated example, the pApps 155, 160 are loaded between macro

instructions to take advantage of excess micro operations in the ISA. As in the example

-10 -

WO 2017/052896 PCT/US2016/048171

process 400, the example host application 140 requests a trusted isolated execution in an
example process 500. The example pMSR trigger 175 identifies this request and generates a
pMSIL In some examples, the pMSI signals the loader 145 to verify whether excess micro
operations are available. In some examples, the PAC-MSR 185 determines a pApp 155, 160
is loadable based on, at least, size of the pApp 155, 160, available space in memory 120,
and/or excess micro operations available between the first macro instruction 220 and the
second macro instruction 240. The example PAC-MSR 185 signals to the example loader
145 the determination. In the illustrated example, the loader 145 acknowledges that the first
macro instruction 220 (FIG. 2) has completed (block 510). In some examples, the first macro
instruction 220 has a smaller size than the second macro instruction 240 (e.g., first macro
instruction 220 is 16 bits while the second macro instruction is 32 bits). Due to the size
variance, the example CPU 115 may refrain from executing the second macro instruction
immediately thereafter. The example PAC-MSR 185 identifies such a size variance and
determines that excess micro operations are available. Accordingly, the example loader 145
begins to load the example pApp 155, 160 (block 430). Once the example pApp 155, 160 is
loaded into example memory 120, the example CPU 115 executes the example pApp 155,
160 (block 520). In some examples, the loader 145 checks to see if the pApp 155, 160 has
completed execution (block 530). In some examples, the pApp 155, 160 writes to the host-
MSR 130 to indicate completed execution. If the example pApp 155, 160 has been executed
(block 530: YES), the example loader 145 unloads or otherwise removes the example pApp
155, 160 from example memory 120 (block 460). The example loader 145 checks if there are
additional macro instructions (block 540). If there are additional macro instructions (block
540: YES), then control returns to block 510. Otherwise, the example process 500 ceases.
Of course, this process may repeat.

[0038] FIGS. 6-7 illustrates example machine readable instructions for implementing
the example loader of FIG. 1. FIG. 6 illustrates example machine readable instructions to
implement block 430 of FIGS. 4-5 by the example loader of FIG. 1

[0039] In some examples, when the host application 140 requires trusted computing,
the host application 140 will request entry into the pVM 150. In such examples, the host
application 140 will perform a write to the pico-MSR 125 (block 610). When the example
host application 140 writes to the example pico-MSR 125, the example pMSR trigger 175
will generate a pMSI. The example loader 145 identifies the pMSI and removes control from

the example host application 140. The example loader 145 begins to load the example pVM

-11 -

WO 2017/052896 PCT/US2016/048171

150. In some examples, the loader 145 validates the pVM 150 prior to loading (block 620).
In some examples, the authenticity of the pVM 150 and the pApps 155, 160 is validated by
checking whether the pVM 150 and the pApps 155, 160 match the CPU 115, have valid
headers, loader versions, and check sums, and/or pass an authenticity and/or signature pass.

[0040] If the example loader 145 determines that the example pVM 150 is invalid
(i.e., fails one of the aforementioned checks) (block 630: NO), the example pVM 150 is not
loaded. Otherwise, the example loader 145 loads the example pVM 150 into example
memory 120 (block 640). Once the example loader 145 loads the example pVM 150, the
example pVM 150 identifies example pApps 155, 160 to be loaded (block 650). In some
examples, the pVM 150 determines which pApps 155, 160 to be loaded by identifying
message signaled interrupt (“MSI”) bits generated by the pMSR trigger 175 based on the
request by the host application 140.

[0041] In some examples, the decoder 165 compares the bits of the MSI to the
cryptography library 180. Upon determining which example pApp 155, 160 the MSI bits
refer to, the example decoder 165 decodes the example pApp 155, 160 into micro operations
to be executed by the example CPU 115. The example dispatcher 170 sends the decoded
pApps 155, 160 to the example loader 145 for loading of the same. The example loader 145
validates (i.e., per the aforementioned validation checks) the selected example pApps 155,
160 and prepares the example pApps 155, 160 for execution by the example CPU 115 (block
660). If the example loader 145 determines that the example pApps 155, 160 are invalid
(block 670: NO), the example pApps 155, 160 are not loaded. Otherwise, the example
loader 145 loads the example pApps 155, 160 into example memory 120 (block 680).

[0042] FIG. 7 illustrates example machine readable instructions to implement block
460 of FIGS. 4-5 by the example loader of FIG. 1. In some examples, the loader 145 waits
for the pApps 155, 160 to complete execution (block 710). Upon execution completion
(block 710: YES), the example pApps 155, 160 perform a write to the example host-MSR
130 (block 720). The example pMSR trigger 175 will generate a second pMSI to instruct the
example loader 145 to unload the example pApps 155, 160 and the example pVM 150 from
example memory 120 (block 730). The example loader 145 then returns control back to the
example host application 140 (block 740).

[0043] In this manner, isolated fragments of code are introduced to the example CPU
115 during an instruction cycle without interfering with the normal operations of the example

operating system 135 or the example host application 140. In some examples, the pVM 150

-12 -

WO 2017/052896 PCT/US2016/048171

and the loader 145 inter-splice pApps 155, 160 decoded into micro operations, effectively
reusing micro architecture state. In some examples, the methods and apparatus disclosed
herein utilize memory 120 that the operating system 135 and/or the CPU 115 use to cache
macro instructions. Therefore, it will be apparent that the methods and apparatus disclosed
herein, in some examples, inter-spliced small enough fragments of code to avoid disrupting
the normal operations of the host device 105, while providing trusted isolated execution
environments. In some examples, however, it may be necessary to interrupt the normal
operations of the host device 105 to perform larger fragments of code.

[0044] FIG. 8 is a block diagram of an example processor platform 800 capable of
executing the instructions of FIGS. 4-7 to implement the apparatus of FIG. 1. The processor
platform 800 can be, for example, a server, a personal computer, a mobile device (e.g., a cell
phone, a smart phone, a tablet such as an iPad™), a personal digital assistant (PDA), an
Internet appliance, a DVD player, a CD player, a digital video recorder, a Blu-ray player, a
gaming console, a personal video recorder, a set top box, wearable technology (e.g., a smart
watch) or other IoT/IoE device, and/ or any other type of computing device.

[0045] The processor platform 800 of the illustrated example includes a processor
812. The processor 812 of the illustrated example is hardware. For example, the processor
812 can be implemented by one or more integrated circuits, logic circuits, microprocessors or
controllers from any desired family or manufacturer.

[0046] The processor 812 of the illustrated example includes a local memory 813
(e.g., a cache). Additionally, the example loader 145, the example pVM 150, and the
example pApps 155, 160 may be included within the processor 812.

[0047] The processor 812 of the illustrated example is in communication with a main
memory including a volatile memory 814 and a non-volatile memory 816 via a bus 818. The
volatile memory 8§14 may be implemented by Synchronous Dynamic Random Access
Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS Dynamic
Random Access Memory (RDRAM) and/or any other type of random access memory device.
The non-volatile memory 816 may be implemented by flash memory and/or any other desired
type of memory device. Access to the main memory 814, 816 is controlled by a memory
controller.

[0048] The processor platform 800 of the illustrated example also includes an

interface circuit 820. The interface circuit 820 may be implemented by any type of interface

-13 -

WO 2017/052896 PCT/US2016/048171

standard, such as an Ethernet interface, a universal serial bus (USB), and/or a PCI express
interface.

[0049] In the illustrated example, one or more input devices 822 are connected to the
interface circuit 820. The input device(s) 822 permit(s) a user to enter data and commands
into the processor 812. The input device(s) can be implemented by, for example, an audio
sensor, a microphone, a camera (still or video), a button, a touchscreen, a track-pad, a
trackball, isopoint and/or a voice recognition system.

[0050] One or more output devices 824 are also connected to the interface circuit 820
of the illustrated example. The output devices 824 can be implemented, for example, by
display devices (e.g., a light emitting diode (LED), an organic light emitting diode (OLED), a
liquid crystal display, a cathode ray tube display (CRT), a touchscreen, a tactile output
device, a light emitting diode (LED), and/or speakers). The interface circuit 820 of the
illustrated example, thus, typically includes a graphics driver card, a graphics driver chip or a
graphics driver processor.

[0051] The interface circuit 820 of the illustrated example also includes a
communication device such as a transmitter, a receiver, a transceiver, a modem and/or
network interface card to facilitate exchange of data with external machines (e.g., computing
devices of any kind) via a network 826 (e.g., an Ethernet connection, a digital subscriber line
(DSL), a telephone line, coaxial cable, a cellular telephone system, etc.).

[0052] The processor platform 800 of the illustrated example also includes one or
more mass storage devices 828 for storing software and/or data. Examples of such mass
storage devices 828 include floppy disk drives, hard drive disks, compact disk drives, Blu-ray
disk drives, RAID systems, and digital versatile disk (DVD) drives.

[0053] The coded instructions 832 of FIGS. 4-7 may be stored in the mass storage
device 828, in the volatile memory 814, in the non-volatile memory 816, and/or on a
removable tangible computer readable storage medium such as a CD or DVD.

[0054] From the foregoing, it will be appreciated that the above disclosed methods,
apparatus, and articles of manufacture provide isolated execution environments where
utilizing corresponding hardware is impractical due to size, cost, and/or other constraints.
Furthermore, trusted computing may be implemented on IoT/IoE devices by leveraging
excess micro operations and executing fragments of code for security critical situations. The
example methods and apparatus manipulate the existing ISA within the CPU to achieve

trusted computing without secondary dedicated processors. The above disclosed methods,

-14 -

WO 2017/052896 PCT/US2016/048171

apparatus and articles of manufacture provide additional performance to the existing
computer architecture without diminishing current capacity.

[0055] Although certain example methods, apparatus and articles of manufacture
have been disclosed herein, the scope of coverage of this patent is not limited thereto. On the
contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling
within the scope of the claims of this patent.

[0056] The following further examples include subject matter such as, for example,
apparatus to provide isolated execution environments, tangible computer readable medium
comprising instructions, that when executed, cause a machine to provide isolated execution
environments, and methods to provide isolated execution environments.

[0057] Example 1 is an apparatus to provide isolated execution environments, which
includes a trigger to identify a request from a host application. Example 1 also includes a
loader to, in response to identifying the request from the host application, load a first
microcode application into memory when excess micro operations exist in a host instruction
set architecture, the first microcode application being a fragment of code. Example 1 further
includes a processor to execute the first microcode application, wherein in response to
completed execution of the first microcode application, the loader is to unload the first
microcode application from memory.

[0058] Example 2 includes the subject matter of example 1, wherein the first
microcode application is a security critical trusted execution operation.

[0059] Example 3 includes the subject matter of example 2, wherein the security
critical trusted execution operation is scrub, seal, decode, wrap key, unwrap key, derive key,
generate key, bind key, sign, record state, or audit.

[0060] Example 4 includes the subject matter of example 1, example 2, or example 3,
wherein, to execute the first microcode application, the processor is to execute the first
microcode application between variously sized macro-instructions, execute the first
microcode application in parallel with a non-conflicting micro operation, execute the first
microcode application during a macro-instruction having high latency, or execute the first
microcode application with cached micro operations.

[0061] Example 5 includes the subject matter of any of examples 1-4, wherein the
processor is to keep the first microcode application hidden from the operating system.

[0062] Example 6 includes the subject matter of any of examples 1-5, further

including cache memory to store the first microcode application and a second microcode

-15 -

WO 2017/052896 PCT/US2016/048171

application, the loader to, in response to completed execution of the first microcode
application, load the second microcode application into memory.

[0063] Example 7 includes the subject matter of any of examples 1-6, wherein the
loader is to prevent additional code from being run until after the unloading of the first
microcode application.

[0064] Example 8 includes the subject matter of any of examples 1-7, wherein in
response to the host application performing a first write operation to a first machine status
register, the loader is to determine that excess micro operations exist in the instruction set
architecture. In example 8, the loader is to also to load a virtual machine into memory,
wherein the virtual machine is to validate and load the first microcode application into
memory.

[0065] Example 9 includes the subject matter of example 8, wherein, in response to
the first write operation, the loader is to validate the virtual machine.

[0066] Example 10 includes the subject matter of claim 9, wherein, to validate the
virtual machine, the loader is to match the virtual machine to a platform of the processor. In
example 10, the loader is to also verify the virtual machine has a valid header, loader version,
and check sum. Additionally, in example 10, the loader is to check an authenticity and a
signature of the virtual machine.

[0067] Example 11 includes the subject matter of any of examples 1-8, wherein the
loader is to unload the virtual machine and the first microcode application from memory in
response to the first microcode application performing a second write operation to a second
machine status register.

[0068] Example 12 includes the subject matter of example 11, wherein the loader is
to, in response to the loading of the virtual machine and the first microcode application,
remove control from a host device. In example 12, the loader is to return control to the host
device in response to the unloading of the virtual machine and micro-application.

[0069] Example 13 is a tangible computer readable storage medium comprising
instructions to provide isolated execution environments that, when executed, cause a machine
to identify a request from a host application. Example 13 also includes instructions that,
when executed, cause the machine to, in response to identifying the request from the host
application, load a first microcode application into memory when excess micro operations
exist in the host instruction set architecture, the first microcode application being a fragment

of code. Example 13 also includes instructions that, when executed, cause the machine to

-16 -

WO 2017/052896 PCT/US2016/048171

execute the first microcode application. Example 13 also includes instructions that, when
executed, cause the machine to, in response to completion of the first microcode application,
unload the first microcode application from memory.

[0070] Example 14 includes the subject matter of example 13, wherein the first
microcode application is a security critical trusted execution operation.

[0071] Example 15 includes the subject matter of example 14, wherein the security
critical trusted execution operation is at least one of scrub, seal, decode, wrap key, unwrap
key, derive key, generate key, bind key, sign, record state, or audit.

[0072] Example 16 includes the subject matter of example 13, example 14, or
example 15, wherein to execute the first microcode application, the instructions are to at least
execute the first microcode application between variously sized macro-instructions, execute
the first microcode application in parallel with a non-conflicting micro operation, execute the
first microcode application during instruction latency, or execute the first microcode
application with cached micro operations.

[0073] Example 17 includes the subject matter of any of examples 13-16, further
including instructions that, when executed, cause the machine to hide execution of the first
microcode application from the operating system.

[0074] Example 18 includes the subject matter of any of examples 13-17, further
including instructions that, when executed, cause the machine to cache the first microcode
application and a second microcode application. Example 18 further including instructions
to, in response to completion of the first microcode application, load the second microcode
application into memory.

[0075] Example 19 includes the subject matter of any of examples 13-18, further
including instructions that, when executed, cause the machine to prevent additional code from
being run until after the first microcode application is unloaded.

[0076] Example 20 includes the subject matter of any of examples 13-19, further
including instructions that, when executed, cause the machine to perform a first write
operation to a first machine status register based on the request from the host application.
Example 20 also includes instructions to, in response to determining excess micro operations
exist in the instruction set architecture, load a virtual machine into memory. Example 20
further includes instructions to validate and load, via the virtual machine, the first microcode

application into memory.

-17 -

WO 2017/052896 PCT/US2016/048171

[0077] Example 21 includes the subject matter of example 20, further including
instructions that, when executed, cause the machine to, in response to the first write
operation, validate the virtual machine.

[0078] Example 22 includes the subject matter of example 21, further including
instructions that, when executed, cause the machine to match the virtual machine to a
platform of a central processing unit. Example 22 also includes instructions to verify the
virtual machine has a valid header, loader version, and check sum. Example 22 further
includes instructions to check an authenticity and a signature of the virtual machine.

[0079] Example 23 includes the subject matter of any of examples 13- 20, further
including instructions that, when executed, cause the machine to perform a second write
operation to a second machine status register. Example 23 also includes instructions to, in
response to the second write operation, unload the virtual machine and the first microcode
application from memory.

[0080] Example 24 includes the subject matter of example 23, further including
instructions that, when executed, cause the machine to, in response to the loading of the
virtual machine and the first microcode application, remove control from a host device.
Example 24 also includes instructions to, in response to the unloading of the virtual machine
and the first micro-application, return control to the host device.

[0081] Example 25 is a method to provide isolated execution environments, including
identifying a request from a host application. Example 25 also includes, in response to
identifying the request from the host application, loading a first microcode application into
memory when excess micro operations exist in the host instruction set architecture, the first
microcode application being a fragment of code. Example 25 further includes executing the
first microcode application. Example 25 additionally includes in response to completion of
the first microcode application, unloading the first microcode application from memory.

[0082] Example 26 includes the subject matter of example 25, wherein the first
microcode application is a security critical trusted execution operation.

[0083] Example 27 includes the subject matter of example 26, wherein the security
critical trusted execution operation is at least one of scrub, seal, decode, wrap key, unwrap
key, derive key, generate key, bind key, sign, record state, or audit.

[0084] Example 28 includes the subject matter of example 25, example 26, or
example 27, wherein the executing of the first microcode application includes at least one of

executing the first microcode application between variously sized macro-instructions,

-18 -

WO 2017/052896 PCT/US2016/048171

executing the first microcode application in parallel with a non-conflicting micro operation,
executing the first microcode application during instruction latency, or executing the first
microcode application with cached micro operations.

[0085] Example 29 includes the subject matter of any of examples 25-28, wherein at
least one of the loading, executing, or unloading of the first microcode application is hidden
from the operating system.

[0086] Example 30 includes the subject matter of any of examples 25-29, further
including caching the first microcode application and a second microcode application.
Example 30 also includes, in response to completion of the first microcode application,
loading the second microcode application into memory.

[0087] Example 31 includes the subject matter of any of examples 25-30, wherein
additional code is prevented from being run until after the unloading of the first microcode
application.

[0088] Example 32 includes the subject matter of any of examples 25-31, wherein the
loading of the first microcode application includes performing a first write operation to a first
machine status register based on the request from the host application. Example 32 also
includes, in response to determining excess micro operations exist in the instruction set
architecture, loading a virtual machine into memory, the virtual machine to validate and load
the first microcode application into memory.

[0089] Example 33 includes the subject matter of example 32, further including, in
response to the first write operation, validating the virtual machine.

[0090] Example 34 includes the subject matter of example 33, wherein the validating
of the virtual machine includes matching the virtual machine to a platform of a central
processing unit, verifying the virtual machine has a valid header, loader version, and check
sum, and checking an authenticity and a signature of the virtual machine.

[0091] Example 35 includes the subject matter of any of examples 25-32, wherein the
unloading of the first microcode application includes performing a second write operation to
a second machine status register, and in response to the second write operation, unloading the
virtual machine and the first microcode application from memory.

[0092] Example 36 includes the subject matter of example 35, further including in
response to the loading of the virtual machine and the first microcode application, removing
control from a host device. Example 36 further includes, in response to the unloading of the

virtual machine and micro-application, returning control to the host device.

-19 -

WO 2017/052896 PCT/US2016/048171

[0093] Example 37 is an apparatus to provide isolated execution environments,
including means for obtaining a request from a host application.

Example 37 also includes means for, in response to identifying the request from the host
application, installing a first microcode application into memory when excess micro
operations exist in the host instruction set architecture, the first microcode application being a
fragment of code. Example 37 also includes means for running the first microcode
application. Example 37 further includes means for, in response to completion of the first
microcode application, removing the first microcode application from memory.

[0094] Example 38 includes the subject matter of example 37, wherein the first
microcode application is a security critical trusted execution operation.

[0095] Example 39 includes the subject matter of example 38, wherein the security
critical trusted execution operation is at least one of scrub, seal, decode, wrap key, unwrap
key, derive key, generate key, bind key, sign, record state, or audit.

[0096] Example 40 includes the subject matter of example 37, example 38, or
example 39, wherein the means for running the first microcode application includes at least
one of means for executing the first microcode application between variously sized macro-
instructions, means for executing the first microcode application in parallel with a non-
conflicting micro operation, means for executing the first microcode application during
instruction latency, or means for executing the first microcode application with cached micro
operations.

[0097] Example 41 includes the subject matter of any of examples 37-40, wherein at
least one of the installing, running, or removing of the first microcode application is to be
hidden from the operating system.

[0098] Example 42 includes the subject matter of any of examples 37-41, further
including means for caching the first microcode application and a second microcode
application. Example 42 further includes means for, in response to completion of the first
microcode application, installing the second microcode application into memory.

[0099] Example 43 includes the subject matter of any of examples 37-42, further
including means for preventing additional code from being run until after the first microcode
application is unloaded.

[0100] Example 44 includes the subject matter of any of examples 37-43, further
including means for writing to a first machine status register based on the request from the

host application. Example 44 also includes means for identifying that excess micro

-20 -

WO 2017/052896 PCT/US2016/048171

operations exist in the instruction set architecture. Example 44 further includes means for
installing a virtual machine into memory, the virtual machine is to validate and install the first
microcode application into memory.

[0101] Example 45 includes the subject matter of example 44, further including
means for, in response to the writing to a first machine status register, validating the virtual
machine.

[0102] Example 46 includes the subject matter of example 45, further including
means for matching the virtual machine to a platform of a central processing unit. Example
46 also includes means for verifying the virtual machine has a valid header, loader version,
and check sum. Example 46 further includes means for checking an authenticity and a
signature of the virtual machine.

[0103] Example 47 includes the subject matter of any of examples 37-44, further
including means for writing to a second machine status register. Example 47 further includes
means for, in response to the writing to a second machine status register, removing the virtual
machine and the first microcode application from memory.

[0104] Example 48 includes the subject matter of example 47, further including
means for, in response to the installing of the virtual machine and the first microcode
application, removing control from a host device. Example 48 also includes means for, in
response to the unloading of the virtual machine and micro-application, returning control to
the host device.

[0105] Example 49 includes the subject matter of any of examples 1-8, wherein the
request from the host application is responsive to micro architectural event triggers including
thermal events (e.g., overheating), resets, overclocking, tampering, system state transition,
etc.

[0106] Example 50 includes the subject matter of any of examples 13-20, wherein the
request from the host application is responsive to micro architectural event triggers including
thermal events (e.g., overheating), resets, overclocking, tampering, system state transition,
etc.

[0107] Example 51 includes the subject matter of any of examples 25-32, wherein the
request from the host application is responsive to micro architectural event triggers including
thermal events (e.g., overheating), resets, overclocking, tampering, system state transition,

etc.

-21 -

WO 2017/052896 PCT/US2016/048171

[0108] Example 52 includes the subject matter of any of examples 37-44, wherein the
request from the host application is responsive to micro architectural event triggers including
thermal events (e.g., overheating), resets, overclocking, tampering, system state transition,

etc.

-22-

WO 2017/052896 PCT/US2016/048171

What Is Claimed Is:
1. An apparatus to provide isolated execution environments, comprising;

a trigger to identify a request from a host application;

a loader to, in response to identifying the request from the host application, load a first
microcode application into memory when excess micro operations exist in a host instruction
set architecture, the first microcode application being a fragment of code; and

a processor to execute the first microcode application;

in response to completed execution of the first microcode application, the loader is to

unload the first microcode application from memory.

2. An apparatus as defined in claim 1, wherein the first microcode application is a

security critical trusted execution operation.

3. An apparatus as defined in claim 2, wherein the security critical trusted execution
operation is at least one of scrub, seal, decode, wrap key, unwrap key, derive key, generate

key, bind key, sign, record state, or audit.

4. An apparatus as defined in claim 1, 2, or 3, wherein, to execute the first microcode
application, the processor is to execute the first microcode application between variously
sized macro-instructions, execute the first microcode application in parallel with a non-
conflicting micro operation, execute the first microcode application during a macro-
instruction having high latency, or execute the first microcode application with cached micro

operations.

5. An apparatus as defined in claim 1, wherein the processor is to keep the first

microcode application hidden from the operating system.

6. An apparatus as defined in any of claims 1, 2, 3, or 5, further including cache memory
to store the first microcode application and a second microcode application, the loader to, in
response to completed execution of the first microcode application, load the second

microcode application into memory.

-23 -

WO 2017/052896 PCT/US2016/048171

7. An apparatus as defined in any of claims 1, 2, 3, or 5, wherein the loader is to prevent

additional code from being run until after the unloading of the first microcode application.

8. An apparatus as defined in any of claims 1, 2, 3, or 5, wherein in response to the host
application performing a first write operation to a first machine status register, the loader is
to:

determine excess micro operations exist in the instruction set architecture; and

load a virtual machine into memory, the virtual machine to validate and load the first

microcode application into memory.

9. An apparatus as defined in claim 8, wherein, in response to the first write operation,

the loader 1s to validate the virtual machine.

10. An apparatus as defined in claim 9, wherein, to validate the virtual machine, the
loader is to:

match the virtual machine to a platform of the processor;

verify the virtual machine has a valid header, loader version, and check sum; and

check an authenticity and a signature of the virtual machine.

11. An apparatus as defined in any of claim 8, wherein the loader is to unload the virtual
machine and the first microcode application from memory in response to the first microcode

application performing a second write operation to a second machine status register.

12. An apparatus as defined in claim 11, wherein the loader is to:

in response to the loading of the virtual machine and the first microcode application,
remove control from a host device; and

in response to the unloading of the virtual machine and micro-application, return

control to the host device.

13. A tangible computer readable storage medium comprising instructions to provide

i1solated execution environments that, when executed, cause a machine to at least:

-24 -

WO 2017/052896 PCT/US2016/048171

identify a request from a host application;

in response to identifying the request from the host application, load a first microcode
application into memory when excess micro operations exist in the host instruction set
architecture, the first microcode application being a fragment of code;

execute the first microcode application; and

in response to completion of the first microcode application, unload the first

microcode application from memory.

14. A storage medium as defined in claim 13, wherein the first microcode application is a
security critical trusted execution operation including at least one of scrub, seal, decode, wrap

key, unwrap key, derive key, generate key, bind key, sign, record state, or audit.

15. A storage medium as defined in claim 13 or 14, or wherein to execute the first
microcode application, the instructions are to at least execute the first microcode application
between variously sized macro-instructions, execute the first microcode application in
parallel with a non-conflicting micro operation, execute the first microcode application
during instruction latency, or execute the first microcode application with cached micro

operations.

16. A storage medium as defined in claim 13 or 14, further including instructions that,
when executed, cause the machine to:

perform a first write operation to a first machine status register based on the request
from the host application;

in response to determining excess micro operations exist in the instruction set
architecture, load a virtual machine into memory; and

validate and load, via the virtual machine, the first microcode application into

memory.

17. A storage medium as defined in claim 16, further including instructions that, when
executed, cause the machine to:

perform a second write operation to a second machine status register; and

-25 .-

WO 2017/052896 PCT/US2016/048171

in response to the second write operation, unload the virtual machine and the first

microcode application from memory.

18. A method to provide isolated execution environments, comprising:

identifying a request from a host application;

in response to identifying the request from the host application, loading a first
microcode application into memory when excess micro operations exist in the host
instruction set architecture, the first microcode application being a fragment of code;

executing the first microcode application; and

in response to completion of the first microcode application, unloading the first

microcode application from memory.

19. A method as defined in claim 18, wherein the first microcode application is a security
critical trusted execution operation including at least one of scrub, seal, decode, wrap key,

unwrap key, derive key, generate key, bind key, sign, record state, or audit.

20. A method as defined in claim 18 or 19, wherein the executing of the first microcode
application includes at least one of executing the first microcode application between
variously sized macro-instructions, executing the first microcode application in parallel with
a non-conflicting micro operation, executing the first microcode application during
instruction latency, or executing the first microcode application with cached micro

operations.

21. A method as defined in claim 18 or 19, wherein the loading of the first microcode
application includes:

performing a first write operation to a first machine status register based on the
request from the host application;

in response to determining excess micro operations exist in the instruction set
architecture, loading a virtual machine into memory, the virtual machine to validate and load

the first microcode application into memory.

22. A method as defined in claim 21, wherein the unloading of the first microcode

application includes:

-26 -

WO 2017/052896 PCT/US2016/048171

performing a second write operation to a second machine status register; and
in response to the second write operation, unloading the virtual machine and the first

microcode application from memory.

23. An apparatus to provide isolated execution environments, comprising;

means for identifying a request from a host application;

means for, in response to identifying the request from the host application, loading a
first microcode application into memory when excess micro operations exist in the host
instruction set architecture, the first microcode application being a fragment of code;

means for executing the first microcode application; and

means for, in response to completion of the first microcode application, unloading the

first microcode application from memory.

24, An apparatus as defined in claim 23, further including:

means for performing a first write operation to a first machine status register based on
the request from the host application;

means for determining excess micro operations exist in the instruction set
architecture; and

means for loading a virtual machine into memory, the virtual machine to validate and

load the first microcode application into memory.

25. An apparatus as defined in claim 24, further including:

means for performing a second write operation to a second machine status register;

means for, in response to the second write operation, unloading the virtual machine
and the first microcode application from memory;

means for, in response to the loading of the virtual machine and the first microcode
application, removing control from a host device; and

means for, in response to the unloading of the virtual machine and micro-application,

returning control to the host device.

-27 -

WO 2017/052896

1/8

PCT/US2016/048171

— 100
HOST DEVICE
SYSTEM ON CHIP
115 120
10— CPU MEMORY }
L 130
| picOMSR | HOST MSR V]
125 —
a5 PAC-MSR
HW
SW
OPERATING HOST
135—1 SYSTEM APPLICATION N— 140
145
N LOADER
105 —1

I

165 —\PICO-VIRTUAL MACHINE/— 170

150
N DECODER | | DISPATCHER
TN
180 _\y PMSR
v
CRYPTOGRAPHY TRIGGER _ N\— 175
_LIBRARY)
v v
PICO PICO
APPLICATION APPLICATION
155 — 160 —

WO 2017/052896

2/8

INSTRUCTION CYCLE

A/A\

MACRO INSTRUCTION 1

MICRO
OPERATION 1
(uOP1)

MICRO
OPERATION 2
(LOP2)

225 J

230 J

PCT/US2016/048171

MACRO INSTRUCTION 2

MICRO
OPERATION 3
(LOP3)

MICRO
OPERATION 4
(LOP4)

245 /

250 /

/— 240

MICRO
OPERATION 5
(LOP5)

PCT/US2016/048171

WO 2017/052896

3/8

T1don

1443 ™\ [443 \

¢ DId

S NOLLOOEISNI OdDVIN

8don | | LdOM

¥ NOLLO(1d.LSNI
OdDVIN

(433

\lmﬁm

ordon
\l bTe \l (443
sdon ydom | | edor — oze
LLSNI ¢ NOLLONMY.LSNI
OMOVIN
Ly zdor | | 1dor
T NOILODNIYILSNI

OUDVIN

/Ioﬁm

HTOAD NOLLDTILSNI N coc

WO 2017/052896 PCT/US2016/048171

4/8

(START) y— 40

‘ — 410

IDENTIFY REQUEST FROM
HOST APPLICATION

— 420

A
NO EXCESS MICRO
OPERATIONS
AVAILABLE?
I

YES
v

430 —~ LOAD PICO
APPLICATION

A

440 — EXECUTE PICO
APPLICATION

, — 450

PICO APPLICATION
COMPLETE?

|
YES
v

NO

460 ~| | UNLOAD PICO
APPLICATION

A 4

o>

FIG. 4

WO 2017/052896 PCT/US2016/048171

5/8

(START) y— o0

‘ — 510

MACRO INSTRUCTION
COMPLETE?

NO

T
YES
4

430 — LOAD PICO
APPLICATION

N

520 —] EXECUTE PICO
APPLICATION

| ‘ — 530

NO PICO APPLICATION
COMPLETE?

|
YES
4

460 —| | UNLOAD PICO
APPLICATION

540 ADDITIONAL MACRO
INSTRUCTIONS?

I
NO

FIG. 5

WO 2017/052896 PCT/US2016/048171

6/8

(START) y— 430

610
WRITE TO PICO-MSR |

A 4

620 VERIFY AUTHENTICITY OF
"N PICO VIRTUAL MACHINE
(PVM)

630 pVM NO
VALIDATED?

|
YES
v

640
N LOAD pVM

A 4

650~ IDENTIFY PICO
APPLICATIONS

660 —~| VERIFY AUTHENTICITY OF
PICO APPLICATIONS

PICO
APPLICATIONS NOH

VALIDATED?
[
YES
v

670

680 — LOAD PICO
APPLICATIONS

Y

FIG. 6

WO 2017/052896 PCT/US2016/048171

7/8

— 460

A
710 HAVE APPLICATIONS NO
COMPLETED

FUNCTIONALITY?
[

YES
A 4

720
“NWRITE TO HOST-MSR

N

730
N UNLOAD pvM

A
740 RETURN CONTROL
N TO HOST
APPLICATION

A 4

FIG. 7

WO 2017/052896

PCT/US2016/048171

ST

~

o

826

8/8
/— 800
828
816 L
MASS
RANDOM “™ STORAGE
ACCESS >
MEMORY
—L¥ — 822
INPUT
DEVICE(S)
/— 814
READ ONLY — 820
MEMORY «r
— <«—» INTERFACE |¢——»
832 818 —
/— 812 — 824
OUTPUT
PROCESSOR DEVICE(S)
LOCAL >
MEMORY
813
N\ 832
LOADER |7 145
VM T 150
APPLICATION
pVM an 160
APPLICATION

FIG. 8

\ INSTRUCTIONS

832

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2016/048171

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 9/48(2006.01)i, GOGF 12/08(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOOF 9/48; GOOF 12/02; GO6F 9/30; GO6F 9/24; GO6F 12/00; GO6F 9/00; GO6F 9/312; GO6F 12/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: load, memory, microcode, application, fragment, size, available

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2010-0049962 A1 (LAN-CHENG CHEN) 25 February 2010 1-7,13-15,18-20, 23
See paragraphs [0004]-[0035]; claim 9; and figure 2.
A 8-12,16-17,21-22
,24-25
Y US 6081888 A (RUSSELL W. BELL et al.) 27 June 2000 1-7,13-15,18-20, 23

See column 2, line 23 - column 3, line 58; and figure 1.

Y US 2009-0210638 A1 (ALBRECHT MAYER) 20 August 2009 1-7,13-15,18-20,23
See claim 3.

A US 2008-0256336 A1l (G. GLENN HENRY et al.) 16 October 2008 1-25
See claim 5.

A US 2007-0088939 A1 (DAN BAUMBERGER et al.) 19 April 2007 1-25
See paragraphs [0020]-[0037]; and figure 3.

. . . . N .
|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referting to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
03 January 2017 (03.01.2017) 03 January 2017 (03.01.2017)
Name and mailing address of the [SA/KR Authorized officer

International Application Division
¢ Korean Intellectual Property Office CHIN, Sang Bum
Y 189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea

inb;imile No. +82-42-481-8578 Telephone No. +82-42-481-8398

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2016/048171

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2010-0049962 Al 25/02/2010 TW 201009707 A 01/03/2010

US 06081888 A 27/06/2000 None

US 2009-0210638 Al 20/08/2009 DE 102009009172 Al 03/09/2009
US 8352703 B2 08/01/2013

US 2008-0256336 Al 16/10/2008 CN 101261577 A 10/09/2008
CN 101261577 B 02/03/2011
TW 200841233 A 16/10/2008
TW 1407366 B 01/09/2013
US 7827390 B2 02/11/2010

US 2007-0088939 Al 19/04/2007 None

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report

