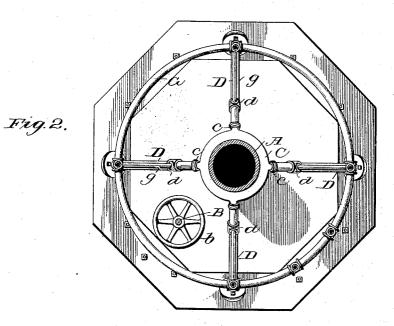

N. BARRY, Jr. FIRE HYDRANT.

No. 606,500.

Patented June 28, 1898.



HE NORRIS PETERS CO., PHOTO-LITHO., WASHINGTON, D. C.

N. BARRY, Jr. FIRE HYDRANT.

No. 606,500.

Patented June 28, 1898.

WITNESSES Jos le Stack Janus Rhansfiel d.

INVENTOR Nicholas Barry, J. Myandw Howll

UNITED STATES PATENT OFFICE.

NICHOLAS BARRY, JR., OF MUSCATINE, IOWA.

FIRE-HYDRANT.

SPECIFICATION forming part of Letters Patent No. 606,500, dated June 28, 1898.

Application filed September 5, 1896. Renewed May 11, 1898. Serial No. 680,365. (No model.)

To all whom it may concern:
Be it known that I, NICHOLAS BARRY, Jr., of Muscatine, in the county of Muscatine and State of Iowa, have invented certain new and useful Improvements in Fire-Hydrants; and I hereby declare that the following is a full, clear, and exact description thereof, reference being had to the accompanying drawings, which form part of this specification.

This invention is an improvement in firehydrants of the kind shown in Letters Patent granted to James Roby, No. 316,830, of April 28, 1885, and No. 329,339, of October 27, 1885, which throw large quantities of water direct 15 from the hydrant-nozzle without interposition of hose. Such hydrants are designed to be located in lumber-yards, near mills and other large buildings, or where large quantities of inflammable materials are stored, so 20 that in case of fire a great volume of water can be thrown thereupon. The objections to these patented hydrants when set upon the ground are that the stream of water is liable to be deflected by surrounding obstructions 25 and the operator's view is hindered so he cannot properly direct the flow

My invention is designed to overcome objections heretofore existing in these various forms of hydrants; and it consists in the novel 30 construction and combination of parts hereinafter claimed, and illustrated in the drawings, in which-

Figure 1 is a perspective view of the tower-

hydrant. Fig. 2 is a top plan view thereof. A designates an upright water-pipe connected at base to an underground water-pipe (not shown) controlled by an underground valve (not shown) like ordinary fire-hydrants, the valve being operated by the rod B, which 40 has hand-wheels $b\ b'$ on it, so that it can be operated from the ground or from the towerplatform. Near the upper end of the pipe is a collar C, having socket-pieces c cast or otherwise attached to it, and into each socket-45 piece is fitted the upper end of a stay pipe or rod D, which inclines outward and downward and is anchored at bottom in the foundation-wall Z of the platform, as shown. Below collar C another collar E is fixed on pipe A 50 and provided with sockets e, in which fit the lower ends of braces F; which incline upwardly and outwardly, their upper ends be-

ing fixed in sockets or union-castings d on stays D, as shown, thus forming a stiff and rigid non-vibratable structure or tower for 55 supporting the hydrant. A large circular rod or pipe G is supported on braces g, rising from the unions d on stays D, as shown, and a platform is supported on rod G and collar C in any suitable manner, and a railing I, made of pipe, 60 may surround the platform, as shown. Access can be had to the platform by a ladder formed of uprights J and rungs j, as shown. The whole tower structure or pipe-support is preferably made of tubing, as shown in the draw- 65 ings, for lightness and strength.

To the upper end of pipe A a head K is attached, and into this head is screwed or otherwise secured a short pipe-joint L. On this joint is mounted the first curved pipe- 70 joint M of the nozzle, which is curved on an arc of about forty-five degrees, or one-eighth of a circle, and its upper end is slightly smaller than its lower end, and on it is swiveled the second curved joint Q of the nozzle. 75

To the contracted outer end of joint Q the straight nozzle R of any suitable construction is secured. The base of pipe M is provided with an exterior worm-gear flange, which is engaged by a worm S on a shaft S', journaled 80 in a bracket-casting S2, attached to pipe L, and provided with hand-wheels s, as shown, by which pipe M and the parts supported thereon can be rotated on pipe L. Pipe Q is is similarly provided at its base with a worm- 85 gear flange Q⁵, which is engaged by a worm
T on a shaft T', journaled in a bracket-casting T², fixed to pipe M, and provided with
hand-wheels t, as shown, by which joint Q
can be rotated on pipe-joint M, so as to turn 90 the nozzle any angle from the horizontal to the vertical. By this means the operator can direct the stream of water to any point desired with ease.

To pipe A, below collar E, is attached a jacket 95 U, having a number of short radial pipes or nipples u, provided with cut-off valves U'. By this means if the ordinary water-supply to the hydrant is insufficient, either in volume or pressure, additional water can be sup- 100 plied by connecting hose to nozzles u and pumping water thereto, and by this means the supply of water from several engines can be united in one large stream, so as to operate effectively upon an otherwise-uncontrollable conflagration.

Having thus described my invention, what I therefore claim as new, and desire to secure

by Letters Patent thereon, is-

1. In a stationary tower-hydrant, the combination of the fixed stand-pipe, the upper and lower collars thereon, and the base, with the stays connected to the upper collar and 10 anchored in the base, and the braces connected to the lower collar and to the stays at points above the collar and above the lower ends of the stays, substantially as and for the purpose set forth.

2. In a stationary tower-hydrant, the combination of the fixed stand-pipe, the upper and lower collars thereon, and the base; with the stays connected to the upper collar and anchored in the base, and the braces con-20 nected to the lower collar and to the stays above the base; with the platform-support G above the stays, and the braces connecting said platform-support to the stays, substantially as described.

3. In a tower-hydrant, the combination of the base, the fixed stand-pipe A rising therefrom, the collar C having sockets c, the in-

clined stays D, having nipples d connected to sockets c at top and to the base at bottom; with the collar E having socketse; the braces F 30 interposed between and connected to sockets e and nipples d; and the adjustable nozzle on the upper end of pipe A, all substantially as and for the purpose described.

4. In a tower-hydrant, the combination of 35 the base, the fixed upright water-pipe A, the collar C having sockets c at the upper end of said pipe; the inclined stays D having nipples d secured at top to sockets c and at bottom to the base; the collar E on the pipe be- 40 low collar C having sockets e, and the braces F interposed between and secured to sockets e and nipples d; with the platform-supporting ring G, the braces g connected to nipples d and supporting-ring G and the adjustable 45 nozzle on the upper end of the pipe, all sub-

stantially as and for the purpose described. In testimony that I claim the foregoing as my own I affix my signature in presence of

two witnesses.

NICHOLAS BARRY, JR.

In presence of— Ер. Н. SCHOTT, J. A. Morion.