May 21, 1957 W. M. SCHLEGET ET AL. 2,792,778
TYPE SLUG CHANGING MEANS IN LABEL PRINTING MACHINES
Filed June 26, 1953 3 Sheets–Sheet 1

INVENTORS
WILLIAM M. SCHLEGEL
BY ANTHONY WARKAKA
Morgan, Lemnig, Durham & Rice
ATTORNEYS.
This invention relates to printing apparatus and more specifically to means for automatically printing indicia on strips of labels and the like.

The marking of products and particularly perishable goods usually necessitates the provision of means for printing different nomenclature or indicia on successive labels or groups of labels. In the case of large markets handling packaged foods for instance, weight and price information must be provided in addition to information indicating the nature of the cut. This invention, among other things, provides new and improved apparatus having quickly interchangeable type which may be readily coordinated with other printing apparatus to greatly facilitate the entire type printing operation.

Objects and advantages of the invention will be set forth in part hereinafter and in part will be obvious herefrom, or may be learned by practice with the invention, the same being realized and attained by means of the instrumentalities and combinations pointed out in the appended claims.

The invention consists in the novel parts, constructions, arrangements, combinations and improvements herein shown and described.

The apparatus in accordance with the invention may be operated manually or automatically in response to associated printing apparatus and embodies an improved structure that permits almost instantaneous change of type and includes improved type holding and aligning means which obviates the need for special adjustment or alignment of the type each time it is changed. Means are also provided which avoid the necessity for frequent replenishment of printing ink on the inking means so that the machine can function for long periods of time with little or no maintenance.

Another important object of the invention is its simplicity and complete dependability. It includes a minimum number of operating parts requiring infrequent lubrication and readily accessible adjusting means for controlling the printing pressure. The apparatus may be easily and quickly arranged to handle labels of different size and thickness and the color of the print can be readily changed if desired to meet the requirements of different types of labels.

The above and other objects and advantages of the invention will become more apparent from the accompanying drawings referred to herein and constituting a part hereof and which illustrate one embodiment of the invention. These drawings taken together with the following description will serve to explain the principles of the invention.

In the drawings:

Fig. 1 is a perspective view of one embodiment of the invention;

Fig. 2 is a plan view of the type and mounting therefor for use with the embodiment of Fig. 1;

Fig. 3 is a side elevation of the type and mount shown in Fig. 2;
adjustable or provided with inserts to accommodate labels of different widths.

The label printing apparatus disposed within the case 10 comprises a printing head 39 having a pair of trunnions 31 and 32 threadedly inserted in each end as shown in Fig. 10. This printing head is mounted for movement in a vertical plane beneath an opening 33 in the guide 11 which in turn is directly beneath the transverse member 30. The mounting comprises a pair of vertically disposed guides 34 and 35 having a central opening by means of 36 35’ to receive the trunnions 31 and 32 respectively. These guides may be fastened to the side walls 27 and 28 of the case 10 in any suitable manner such as welding or by screws as illustrated in Fig. 10. Beneath the guides 34 and 35 is a transverse bracket 36 having a central opening 37 carrying a bushing 38 which extends from the opening and above the upper surface of the bracket 36. The bracket may be fastened to the lower end of the guides 34 and 35 by screws 39 or other suitable fastening means or the guides and bracket may be formed as one piece.

The printing head 39 is held in an upright position as shown in the figures by a rod 40 threadably attached to the underside of the head and extending downwardly through the bushing 38. In this way vertical motion of the rod relative to bushing 38 will displace the head vertically and the trunnions 31 and 32 together with their cooperating guides will control the plane of this motion. The type for printing the labels 12 is carried on the top side of this head and cooperates with a platen 41 such as rubber or the like cemented or otherwise secured to the underside of the transverse member 13 of guide 11. The labels 12 in passing between the head 39 and the platen 41 are successively printed every time the head 30 is moved upwardly against the platen 41, it being important that the label feed be coordinated with the printing head so that each successive label is properly aligned with the head 30 for the purpose that the labels remain stationary during the short period embraced by that operation.

Vertical motion of the printing head 30 is effected by a plunger type magnet 42 having a closed core 43, a coil 44 and a central plunger 45. The coil 44 may be energized by either alternating or direct current fed thereto by means of an electric cable 46 connected with the coil and extending through the wall 27 of casing 10 as shown in Fig. 1. In the case of alternating current, however, suitable means should be provided to eliminate hum as it is preferable to provide both a laminated core and laminated plunger. The illustrated embodiment of the invention employs an alternating current magnet with the core 43 being fixedly secured to the wall 17 of case 10 by screws 46. The plunger 45 of the magnet 43 is coupled to the rod 40, carrying the head 30, by a vertical link 47 pivoted at 48 to the plunger 45 and a horizontal floating link 49 pivoted to link 47 at 50 and to the lower forked end of rod 40 as shown at 51.

The lever or link 49 is provided with a centrally disposed fulcrum in the form of a transverse rod 52 having a central notch 53 for cooperation with a shallow notch 54 in the link 49 (see Figs. 6 and 8). The fulcrum rod 52 is adjustably supported within the case 10 by a pair of links 55 and 56 fixedly secured to the ends of the rod 52 and pivotted at the walls 27 and 28 of the case 10 by screws 55’ and 56’. With this arrangement the travel of the head 30 upwardly upon energizing the coil 44 and movement of the plunger 45 downwardly is governed by the vertical position of the fulcrum rod 52. Movement of the fulcrum upwardly will displace the reciprocatory motion of the head upwardly and vice versa. Thus the pressure of the type carried by the head 30 against the labels 12 can be adjusted in this manner. One method of attaining this end consists of a rod 57 extending transversely of the case 10 immediately below the fulcrum rod 52 and carrying a pair of eccentric cams 58 for cooperation with the underside of levers 55 and 56. The rod 57 extends through the case 10 and is provided near 59 having a slot or other means for rotating the shaft 57 and consequently the cams 58. In this way the fulcrum rod can be raised or lowered to govern the printing pressure. While the magnet 43 functions to raise the head 30 to print a label, the head 30 is returned to its downward position by means of the transverse bracket 36 and horizontal link 49 at its pivotal connection with rod 40.

The type holding means carried by the printing head 30 comprises a elongated channel 61 having its longitudinal edges 62 and 63 bent outwardly and inwardly to hold a flat strip of metal 64 carrying the type 65 (see Figs. 2, 3 and 8) and is secured to the head by screws 61’ or other suitable fastening means. The type 65 may have letters or figures formed on rubber or metal and cemented or otherwise fastened to the thin metal strip 64. In the case of metals, the type may carry such nomenclature as "Roast Beef" or "Fork Chops" or the like, and as the strips 64 are slidably carried by the holding means or channel 61 they may be easily and quickly interchanged. In order to effect substantially automatic alignment of the type 65 in the apparatus, each strip 64 is provided with a V shaped notch 66 for cooperation with a wedge shaped pin 67 carried by a rod 68 which in turn is secured to the printing head 30. The edge 62 of the type holder 61 is grooved as illustrated in Fig. 8 to receive the wedge 67 and permit firm engagement thereof with the groove 66 of strip 64. In this way the strip 64 is inserted until the wedge 67 engages the notch 66 which insures accurate and precise alignment of the type 65. The strip 64 may be provided with a second notch 64’ that may be used to cooperate with a rack for holding groups of strips to be used from time to time for printing labels.

The strips 64 carrying the type 65 are inserted in the printing head 30 by a loading device 14 and the ejected type is caught and held by a receiver 15. The loader 14 is secured to and extends from the wall 27 of case 10 and is provided with a central longitudinal recess 69 of a width adapted to receive and slidably hold the type holding strips 64. The wall 27 is provided with a cut out 70 extending to or below the top edge of the vertical guide 35 of the head 30. The base of recess 69 is adjusted to lie in a plane of the top side of guide 28 and is accurately aligned with the type feeding means of U-shaped bracket 71 having inwardly formed flanges 72 for slidably cooperating with longitudinal grooves 73 in the body 14. This bracket 71 carries a metal strip 74 disposed within the groove or recess 69 and a short overhanging bracket part 75. The feeder is maintained in engagement with the body of the loader 14 by a pin or stop 76 mounted in the outer end of recess 69. To load a strip of type into the printing head, a strip 64 is deposited in recess 69 with the bracket part 75 overlying the trailing edge, and the V groove 66 forwardly or in the direction of motion of the labels as shown in Fig. 1. The channel 61 on the printing head is then brought into vertical alignment with the recess 69 of the loader 14 and the U-shaped bracket 71 is moved inwardly until the wedge 67 engages the groove 66 in the strip 64 which indicates that the operative position has been reached. This action sets the strips 64 ready in the apparatus through a slot 77 in the wall 27. The type receiver 15 which holds the ejected type is similar to the loader 14 in that it is provided with a groove 78 corresponding to the groove 69 of the loader. The receiver is also provided with a stop pin 79 and a pair of vertical recesses 80 to facilitate removal of the ejected type from the receiver.

In order to quickly and accurately position the printing
head 30 for the interchange of type means in the form of a positioning lever 16 and transverse shaft 81 is provided by the wall 27 and 28 of the case 10 and in turn carries the lever 16 on one end thereof as shown in Figs. 1, 8, 9 and 10. The lever 16 is spaced from the wall 27 by a spacer 82 and the shaft 81 is held in place by a pair of washers 83, an interposed spring 84 and a pair of nuts 85 on the outside of wall 27. This arrangement from the spacers 86 which in one position cooperates with the underside of the printing head 30 to engage and raise it to the loading position and in another position is completely out of engagement for the printing operation. When the shaft 81 is moved clockwise as seen in Fig. 6 the arms 86 engage the head 30 and raise it from the lower normal position to the loading position. This loading position is governed by an adjusting screw 87 threadably carried by the lower end of the lever 16 (Fig. 9) and cooperating with a beveled surface 89 on the loading 14. Adjustment of this screw relative to the lever 16 will determine its limit position and thus the degree of elevation of the head 30. Thus with proper adjustment of screw 87, which may then be locked in place by its cooperating nut 88, movement of the lever 16 outwardly will automatically align the head 30 with the lever 16 so that a new strip of type can be inserted. The disengaged or printing position of lever 16 is governed by a transverse lever 16 carried by lever 16 and adapted to overlie the loader 14 and close the opening 70 in the wall 27 of case 10. Thus it is not possible to change type in the printer until the lever 16 is moved to clear the opening 70 and this action automatically places the head 30 in position to receive a new set of type.

Inking of the type carried by the strip 65 is accomplished by an inking pad 90 arranged to contact the type each time the head 30 is retracted under the action of the spring 60. The pad is preferably formed of felt or other similar absorbent material and is retained within a shallow brass case 91 removably attached to a carriage 92 by a pair of studs 93 secured to the case 91 and having peripheral grooves for engagement with slots 94 in the carriage 92 (Figs. 6 and 10). The studs 93 are retained in position in the slots 94 by a centrally disposed pin 95 carried by the spring 96 which in turn is secured to the carriage by a screw 97. The pin 95 slidably engages corresponding openings in the carriage 92 and casing 91 to hold the latter in place. The pin of course is held in removable engagement with the casing 91 by the spring 96.

The linkage system for supporting the carriage 92 in operating position comprises a pair of U-shaped bell cranks or rocker arms 98 disposed on each end of the carriage and connected by a transverse plate 99 to insure their operation in unison. These cranks 98 are pivoted to the head guides 34 and 35 by a transverse shaft 100. The legs 101 of the cranks 98 are pivotally fastened at 163 to downwardly depending ears 102 that may be formed integrally with the carriage 92. Motion is imparted to the carriage by a pair of links 104 pivoted at 105 centrally of each end of the carriage and to the head 30 by engagement with the trunnions 31 and 32. A second pair of links 106 each rotatably engage the trunnions 31 and 32 by one end and are pivoted to the arms 107 of the bell cranks 98 at their other ends as shown at 108. With this structure as the head 30 moves downwardly the carriage 92 will move over the top of the type 65 and deposit ink therein. When the head is then moved upwardly under the action magnet 42 to print a label, the carriage 92 moves generally through an arc determined by the links 104 out of the path of the head so that the type 65 is immediately above the opening 33 in the guide plate 11 to effect the printing operation. If desired the type 65 may be of an ink impregnated construction and thereby avoid the need for the inking pad 90 and associated carriage.

If desired the bottom of housing or case 10 may be provided with a bottom 109 hinged at 110 to the wall 17 and having a snap catch 111, 112 for holding it in the closed position.

This new and improved apparatus embodies a positive and dependable structure that is characterized in one aspect by its simplicity and versatility. It may be coupled with other apparatus and automatically operated thereby or it can be operated at the instance of an attending operator by means of a local switch for energizing the magnet 42. The type is easily and quickly changed to accommodate the different requirements for successive labels and any type of label feeding and indexing means may be used to carry the connected labels over the guide 11.

While only one embodiment of the invention has been shown and described it is apparent that many changes, modifications and alterations may be made without departing from the scope and spirit thereof.

What is claimed is:

1. Apparatus for successively printing each label of a strip of connected labels comprising a label guide having an opening extending transversely thereof, spring means biased against said guide for holding the labels in sliding engagement therewith, a platen disposed above said opening and in spaced relation to the guide, a reciprocable printing head beneath said opening, an elongated double open-ended channel on said head having inwardly formed wall parts for slidably retaining type therein, means cooperating with said wall parts for aligning type in said channel, and means relative to which said printing head is movable, for simultaneously ejecting and replacing type in said channel, said type ejecting and replacing means being separate and independent of said printing head.

2. Apparatus for printing labels comprising a label guide having an opening extending transversely thereof, spring means biased against said guide for holding the labels in sliding engagement therewith, a platen disposed above said opening and in spaced relation to the guide, a reciprocable printing head beneath said opening, an elongated channel having inwardly formed edges to slidably engage thin type-holding strips, a groove in one edge of said channel, spring loaded means for engaging said groove and a corresponding groove in said type holding strips to align each strip in said channel, and loading means relative to which said printing head is movable, for substantially simultaneously ejecting and replacing type in said channel, said loading means being separate and independent of said printing head.

3. Apparatus for printing labels comprising a label guide having an opening extending transversely thereof, spring means biased against said guide for holding the labels in slidable engagement therewith, a platen disposed above said opening and in spaced relation to the guide, a reciprocable printing head beneath said opening, an elongated channel having inwardly formed edges to slidably engage thin type-holding strips, a groove in one edge of said channel, spring loaded means for engaging said groove and a corresponding groove in said type holding strips to align each strip in said channel, loading means for substantially simultaneously ejecting and replacing strips in said channel, said loading means being separate and independent of said printing head, and means for moving said head for aligning said channel with said loading means in strip ejecting and replacing position.

4. In printing apparatus a printing head, an elongated channel on said head having inwardly formed wall parts and a notch in one of said wall parts, a spring loaded member engaging said notch and extending into said channel, a strip having at least one edge thereof, a loading guide for slidably holding a strip of type to be inserted in said channel and means for mov-
In printing said printing head, for aligning said channel and said loading guide in strip ejecting and replacing position whereby a strip to be inserted in said channel may be slidably transferred from the holding guide to said channel with said spring loaded member in engagement with the notch in said strip to align the strip in said channel, said insertion of one strip of type automatically effecting ejection of another strip of type in said channel.

5. In printing apparatus a platen, a printing head mounted for reciprocating movement toward and away from said platen, an elongated channel on said head having inwardly formed wall parts and a notch in one of said parts, a spring loaded member engaging said notch and extending into said channel, a strip having type thereon for slidable engagement with said channel, said strip having at least one notch in a longitudinal edge thereof, a loading guide having a longitudinal recess for slidably holding a strip of type to be inserted in said channel, an aligning lever for engaging said head and moving it into a position where the elongated channel in said head is in alignment with the longitudinal recess in said loading guide whereby a strip to be inserted in said channel may be slidably transferred from the loading guide to said channel with said spring loaded member in engagement with the notch in said strip, said insertion of one strip effecting ejection on any other strip in said channel.

6. In printing apparatus, a plating head mounted for reciprocating movement toward and away from said platen, an elongated double open-ended channel on said head having inwardly formed wall parts, a strip having type thereon for slidable engagement with said channel, said strip having at least one notch in a longitudinal edge thereof, means associated with said channel for engaging the notch on said strip to align the latter in said channel, a loading guide having a longitudinal recess for slidably receiving a strip to be inserted in said channel, and means for moving said head into a position where said channel is in alignment with the recess in said loading guide for slidably transferring a strip from said loading guide into engagement with said channel and said associated means.

7. Apparatus for successively printing each label of a strip of connected labels comprising a label guide having an opening extending transversely thereof, a platen disposed above said opening and in spaced relation to said guide, a printing head mounted for reciprocating movement toward and away from said platen, an elongated double open-ended channel on said head having inwardly formed wall parts, a strip having type thereon for slidably engaging said channel, said strip having at least one notch in a longitudinal edge thereof, means associated with said channel for engaging the notch on said strip to align the latter in said channel, a loading guide having a longitudinal recess for slidably receiving a strip to be inserted in said channel, and means for moving said head into a position where said channel is in alignment with the recess in said loading guide for slidably transferring a strip from said loading guide into engagement with said channel and said associated means.

8. Apparatus for successively printing each label of a strip of connected labels comprising a label guide having an opening extending transversely thereof, a platen disposed above said opening and in spaced relation to said guide, a printing head mounted for reciprocating movement toward and away from said platen, an elongated double open-ended channel on said head having inwardly formed wall parts, a strip having type thereon for slidably engaging said channel, said strip having at least one notch in a longitudinal edge thereof, means associated with said channel for engaging the notch on said strip to align the latter in said channel, a loading guide having a longitudinal recess for slidably receiving a strip to be inserted in said channel, and means for moving said head into a position where said channel is in alignment with the recess in said loading guide for slidably transferring a strip from said loading guide into engagement with said channel and said associated means.

9. Apparatus for printing labels comprising a label guide having an opening extending transversely therefrom, a platen disposed above said opening and in spaced relation to said guide, a reciprocating printing head mounted for reciprocating movement toward and away from said platen, an elongated double open-ended channel on said head having inwardly formed wall parts, a strip having type thereon for slidably engaging said channel, said strip including at least one notch in a longitudinal edge thereof, means associated with said channel for engaging said notch to hold the strip in place in said channel, means for inking said type including an absorbent ink pad and means coupling said pad and said printing head together, means for moving said head into a position where said channel is in alignment with the recess in said loading guide for slidably transferring a strip from said loading guide into engagement with said channel and said associated means.

10. Apparatus for printing labels comprising a label guide having an opening extending transversely therefrom, a platen disposed above said opening and in spaced relation to said guide, a reciprocating printing head mounted for reciprocating movement toward and away from said platen, an elongated double open-ended channel on said head having inwardly formed wall parts, a strip having type thereon for slidably engaging said channel, said strip including at least one notch in a longitudinal edge thereof, means associated with said channel for engaging said notch to hold the strip in place in said channel, means for inking said type including an absorbent ink pad and means coupling said pad and said printing head together, means for moving said head into a position where said channel is in alignment with the recess in said loading guide for slidably transferring a strip from said loading guide into engagement with said channel and said associated means.

11. Apparatus for printing labels comprising a label guide having an opening extending transversely therefrom, a platen disposed above said opening and in spaced relation to said guide, a reciprocating printing head mounted for reciprocating movement toward and away from said platen, means including an electromagnet and a spring for moving said head, an elongated double open-ended channel on said head having inwardly formed wall parts, a strip having type thereon for slidably engaging said channel, said strip including at least one notch in a longitudinal edge thereof, means associated with said channel for engaging said notch to hold the strip in place in said channel, means for inking said type including an absorbent ink pad and means coupling said pad and said printing head together, means for moving said head into a position where said channel is in alignment with the recess in said loading guide for slidably transferring a strip from said loading guide into engagement with said channel and said associated means.
Apparatus for printing labels comprising a housing, a label guide removably closing one end of said housing and having an opening extending transversely thereof; a platen overlying said opening and in spaced relation to said label guide, a printing head mounted for reciprocating motion within said housing, the path of said motion being aligned with and substantially perpendicular to said platen, an elongated double open-ended channel on said head and having inwardly formed wall parts, a strip having type thereon slidably engaging said channel, a loading guide on one side of said housing and having a recess therein for slidably receiving a strip of type, strip receiving means extending from the other side of said housing and in approximate axial alignment with said loading guide, means for moving said head to bring the channel into the plane of said loading guide, and means for slidably transferring one strip from said loading means to said channel with said receiving means receiving another strip simultaneously ejected from said channel during the loading operation, and means within said housing for moving said head and channel toward and away from said platen.

Apparatus according to claim 12 wherein the last said moving means comprises a plunger type electromagnet, at least one lever interconnecting said magnet and said head and a fulcrum for said lever disposed between its ends, said fulcrum being adjustable to control the pressure of engagement of said type with said platen.

Apparatus according to claim 12 wherein the last said moving means includes an electromagnet, a source of energy therefor and means for periodically applying energy to said magnet.

In printing apparatus, a platen, a printing head mounted for reciprocating movement toward and away from said platen, an elongated, an elongated double open-ended channel on said head having inwardly formed wall parts, a strip having type thereon for slidably engaging said channel, said strip having at least one notch in a longitudinal edge thereof, means associated with said channel for engaging the notch on said strip to align the latter in said channel, a loading guide having a longitudinal recess for slidably receiving a strip to be inserted in said channel, and means for moving said head into a position where said channel is in alignment with the recess in said loading guide for slidably transferring a strip from said loading guide into engagement with said channel and said associated means, said head moving means comprising a lever, at least one cam coupled to said lever for movement into and out of engagement with said printing head, and a gate carried by said lever, said lever being movable to one position to engage said cam and said head to move the latter toward said platen and to a position with the channel in alignment with the recess in said loading guide and movable to another position with the cam out of engagement with said head and said gate blocking the recess in the loading guide.

References Cited in the file of this patent

UNITED STATES PATENTS

622,541 Runyan Apr. 4, 1899
899,671 Lebeis Sept. 29, 1903
1,014,647 Matthews Oct. 15, 1912
1,045,722 McCauley Nov. 26, 1912
1,053,365 Dick Feb. 18, 1913
1,544,489 Dodge June 22, 1920
1,769,028 Johnson July 1, 1930
1,831,459 Lyons Nov. 10, 1931
1,850,922 Chisholm Mar. 22, 1932
2,132,412 Gollwitzer Oct. 11, 1938
2,212,443 Krell Aug. 20, 1940
2,304,386 Vahle Dec. 8, 1942
2,419,345 Elliott April 22, 1947
2,496,598 Raat Feb. 7, 1950
2,622,514 Ackell et al. Dec. 23, 1952
2,654,311 Costanzo Oct. 6, 1953