(54) Title: ELECTRICAL CONDUCTOR AND A PRODUCTION METHOD THEREOF

(57) Abstract: Provided are an electrical conductor and a production method thereof; the electrical conductor comprising a transparent substrate and an electroconductive pattern provided on at least one surface of the transparent substrate, and the electroconductive pattern being of a type such that, for at least 30% of the entire surface area of the transparent substrate, when a straight line is drawn intersecting the electroconductive pattern, the ratio of the standard deviation to the mean value of the distances between adjacent points of intersection between the straight line and the electroconductive pattern (the distance distribution ratio) is at least 2%. Also, provided are an electrical conductor and a production method thereof; the electrical conductor comprising a transparent substrate and an electroconductive pattern provided on at least one surface of the transparent substrate, and the electroconductive pattern being of a type such that at least 30% of the entire surface area of the transparent substrate is accounted for by continuously distributed closed motifs, and the ratio of the standard deviation to the mean value of the surface areas of the closed motifs (the surface area distribution ratio) is at least 2%.

(57) 요약: 상기 발명은 전자도체 및 그 제조 방법에 관한 것이다. 전자도체는 반투명 하면을 수용한 후 전도성 패턴으로 구성되어 있으며, 이 패턴이 있는 곳 중의 30% 이상의 면적은 직선을 통해 비례되지 않아, 이 경우의 표준편차와 평균격자의 차이의 비율이 2% 이상이어야 한다. 또한, 반투명 하면에 있는 전도성 패턴은 연속적인 닫힌 모티프로 구성되어 있으며, 이 경우의 표준편차와 평균의 차이의 비율이 2% 이상이어야 한다.
본 발명은 두명기계, 및 상기 두명기계의 적어도 일면에 구비된 전기 전도성 패턴을 전도체로서, 상기 두명기계의 전체 면적의 30% 이상이, 상기 전기 전도성 패턴과 교차하는 직선을 그었을 때, 상기 직선과 상기 전기 전도성 패턴의 접점 또는 교점들간의 거리의 평균값에 대한 표준 편차의 비율(거리 분포 비율)이 2% 이상인 전기 전도성 패턴을 갖는 것을 특징으로 하는 전도체 및 이의 제조방법을 제공한다. 또한, 본 발명은 두명기계, 및 상기 두명기계의 적어도 일면에 구비된 전기 전도성 패턴을 전도체로서, 상기 두명기계의 전체 면적의 30% 이상이, 분포가 연속적인 패턴 도형들로 이루 어지고, 상기 매체 도형들의 면적의 평균값에 대한 표준 편차의 비율(면적 분포 비율)이 2% 이상인 전기 전도성 패턴을 갖는 것으로서는 전도체 및 이의 제조방법을 제공한다.
명세서
발명의 명칭: 전도체 및 이의 제조방법

기술분야

배경기술

[3] 상기 디스플레이 소자로는 플라즈마 디스플레이 패널(Plasma Display Panel, PDP), 액정디스플레이(Liquid Crystal Display, LCD), 전기영동 디스플레이(Electrophoretic display) 및 음극선관(Cathode-Ray Tube, CRT)을 예로 들 수 있다. 디스플레이 소자에는 화상 구현을 위한 RGB 화소 패턴 및 추가적인 광학필터가 구비되어 있을 수 있다.

[7] 즉, 적류 전압을 인가한 상태에서 압력에 의해 늘어진 위치를 전류 또는 전압 값의 변화를 통해 감지하는 저항량 방식(resistive type)과, 교류 전압을 인가한 상태에서 캐패시턴스 커플링(capacitance coupling)을 이용하는 전자 용량 방식(capacitive type)과, 자게를 인가한 상태에서 선택된 위치를 전압의 변화로서 감지하는 전자 유도 방식(electromagnetic type) 등이 있다.

[8] 이 중, 가장 보편화된 저항량 및 전자 용량 방식의 터치 패널은 ITO 필름과
같은 투명 도전막을 이용하여 전기적인 접촉이나 전자용량의 변화에 의하여 터치 연부를 인식한다. 하지만, 상기 투명 도전막은 100 ohm/square 이상의 고저항이어서 대형화시에 감도가 떨어지고, 스크린의 크기가 커질수록 ITO 필름의 가격이 급증한다는 문제로 상용화가 쉽지 않다. 이를 극복하기 위하여 전도성이 높은 금속 패턴을 이용한 방식으로 대형화를 구현하려는 시도가 이루어지고 있다.

[9] 상기와 같이, 디스플레이 장치가 있어서 금속 패턴을 포함하는 전자와 차례 필름이나 터치 패널을 포함하는 경우, 이들은 디스플레이의 팁셀 패턴, 전극 패턴 또는 다른 광학 필름의 패턴 구조와 함께 같이 급조화을 일으키며, 모아레 현상을 일으키는 문제가 있다. 여기서, 모아레(moire)란 규칙적인 두 개 이상의 패턴이 겹쳐질 때 만들어지는 간섭무늬를 일컫는 말이다.

[10] 한 예로 플라즈마 디스플레이 패널(PDP)에서는, 플라즈마 디스플레이 패널(PDP)의 화소 패턴과 광학필름의 전자와 차례용 금속 배치 패턴이 공존하기 때문에 모아레 현상이 발생할 수 있다. 이에, 일반적으로 플라즈마 디스플레이 패널(PDP)의 사양이 결정되면, 광학필름의 금속 배치 패턴 설계를 통하여 모아레 현상을 해소하려는 시도를 하게 된다.

[12] 특히, 최근에 개발된 플라즈마 디스플레이 패널은 고해상도를 구현하기 위하여 화소 패턴을 더 세밀하게 하고 있으며, 이로 인해 모아레 발생 가능성이 더 커졌다. 이에 기존 패턴의 전목, 피치, 각도 조정만으로는 모아레 개선에 한계가 있다.

발명의 상세한 설명
기술적 과제

[13] 본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명은 시야를 가리지 않고 전도성이 우수할 뿐만 아니라, 모아레(mo ire) 현상을 방지할 수 있는 패턴을 포함하는 전도체 및 이의 제조방법을 제공하는 것을 목적으로 한다.

과제 해결 수단

[14] 본 발명의 하나의 실시상태는

[15] 투명기계, 및 상기 투명기계의 적어도 일부에 구비된 전기 전도성 패턴을 포함하는 전도체로서, 상기 투명기계의 전도 면적의 30% 이상이, 상기 전기 전도성 패턴과 교차하는 직선을 그었을 때, 상기 직선과 상기 전기 전도성 패턴의 인접하는 교점들간의 거리의 평균값에 대한 표준 편차의 비율(거리는 분포 비율)의 2% 이상인 전기 전도성 패턴을 갖는 것을 특징으로 하는 전도체를
제공한다. 상기 전기 전도성 페턴과 교차하는 직선은 전기 전도성 페턴과의 교차점들의 최인접 거리 편차가 작은 선인 것이 바람직하다. 혹은 전기 전도성 페턴의 인접한 한 점에 대해 수직한 방향의 선이 수도 있다.

본 발명의 또 하나의 실시상태는 투명기체 상에 전기 전도성 페턴을 형성하는 단계를 포함하는 전도체의 제조방법으로서, 상기 전기 전도성 페턴을, 상기 투명기체의 전체 면적의 30% 이상에, 상기 전기 전도성 페턴과 교차하는 직선을 그렸을 때, 상기 직선과 상기 전기 전도성 페턴의 인접하는 교점들간의 거리의 평균값에 대한 표준 편차의 비율(거리 분포 비율)이 2% 이상인 페턴으로 형성하는 것을 특징으로 하는 전도체의 제조 방법을 제공한다. 상기 전기 전도성 페턴은 인쇄법, 토토리소그래피법, 토토그래피법, 마스크를 이용한 방법, 스피터링법, 또는 잉 크넷 법을 이용하여 형성할 수 있다.

본 발명의 또 하나의 실시 형태는

투명기체, 및 상기 투명기체의 적어도 일면에 구비된 전기 전도성 페턴을 포함하는 전도체로서, 상기 투명기체의 전체 면적의 30% 이상이, 분포가 연속적인 페턴도형들로 이루어지고, 상기 페턴도형들의 면적의 평균값에 대한 표준 편차의 비율(면적 분포 비율)이 2% 이상인 전기 전도성 페턴을 갖는 것을 특징으로 하는 전도체를 제공한다.

본 발명의 또 하나의 실시상태는 투명기체 상에 전기 전도성 페턴을 형성하는 단계를 포함하는 전도체의 제조방법으로서, 상기 전기 전도성 페턴을, 상기 투명기체의 전체 면적의 30% 이상에, 분포가 연속적인 페턴도형들로 이루어지고, 상기 페턴도형들의 면적의 평균값에 대한 표준 편차의 비율(면적 분포 비율)이 2% 이상인 페턴으로 형성하는 것을 특징으로 하는 전도체의 제조 방법을 제공한다. 상기 전기 전도성 페턴은 인쇄법, 토토리소그래피법, 토토그래피법, 마스크를 이용한 방법, 스피터링법, 또는 잉크넷 법을 이용하여 형성할 수 있다.

본 발명의 또 하나의 실시상태는 상기 전도체를 포함하는 전자파 차폐 펀들, 터치 펀들, 디스플레이, 및 유기발광소자(OLED) 조명을 제공한다.

발명의 효과

본 발명에 따른 전도체는 시야를 가리지 않고 전도성이 우수할 뿐만 아니라, 모아레(moiré) 현상을 방지할 수 있다. 또한, 본 발명에 따른 전도체는 목적하는 페턴을 미리 정한 후, 인쇄법, 토토리소그래피법, 토토그래피법, 마스크를 이용한 방법, 스피터링법, 또는 잉크넷 법 등 다양한 방법으로 형성할 수 있으므로, 공정이 용이하고 비용도 저렴하다.

도면의 간단한 설명

도 1 및 도 2는 각각 본 발명의 실시상태에 따른 전도체의 전기 전도성 페턴에 임의의 직선을 그린 상태를 나타낸 것이다.

도 3은 각각 본 발명의 일 실시상태에 따른 전도체의 전기
전도성 패턴을 에시한 것이다.

[25] 도 5는 본 발명의 일 실시상태에 따라 보로노이 다이어그램 채너레이터를
이용한 패턴 형성을 에시한 것이다.
[26] 도 6은 본 발명에 따른 전도체의 전기 전도성 패턴을 에시한 것이다.
[27] 도 7 내지 도 9는 본 발명에 따른 전도체의 전기 전도성 패턴을 에시한 것이다.
[28] 도 10은 본 발명의 일 실시상태에 따라 멀로니 패턴 채너레이터를 이용한 패턴
형성을 에시한 것이다.
[29] 도 11 내지 도 13은 본 발명에 따른 전도체의 전기 전도성 패턴을 에시한
것이다.
[30] 도 14는 본 발명의 일 실시상태에 따라 멀로니 패턴 채너레이터의 배치를
에시한 것이다.
[31] 도 15 및 도 16은 종래기술에 따른 전도체의 전기 전도성 패턴을 나타낸
것이다.
[32] 도 17은 본 발명의 일 실시상태에 따른 전기 전도성 패턴을 이용한 전도체의
위치별 면저항 값을 측정한 결과를 에시한 것이다.
[33] 도 18은 본 발명의 일 실시상태에 따른 전기 전도성 패턴을 이용한 전도체의
위치별 면저항 값을 측정한 결과를 에시한 것이다.
[34] 도 19는 본 발명의 일 실시상태에 따른 전기 전도성 패턴을 포함하는 전도체와
종래 PDP 필름을 각각 42인치 PDP 상에 5cm 거리를 두고 접착 후 Moire 발생
여부를 각도별로 비교한 애이다.
[35] 도 20은 본 발명의 일 실시상태에 따른 전기 전도성 패턴을 포함하는 전도체와
종래 PDP 필름을 각각 42인치 PDP 상에 5cm 거리를 두고 접착 후 Moire 발생
여부를 각도별로 비교한 애이다.
[36] 도 21은 본 발명의 일 실시상태에 따른 전기 전도성 패턴을 포함하는 전도체를
PDP의 전자파 차폐(EMI) 필름로 사용하였을 시 전자파 차폐(EMI) 기능을
30~1000MHz의 주파수 영역에서 측정한 결과를 에시한 것이다.
[37] 도 22는 본 발명의 일 실시상태에 따른 전기 전도성 패턴을 포함하는 터치
스크린의 구조를 에시한 것이다.
[38] 도 23은 도 22의 구조를 장니는 40인치 터치 스크린을 제작하여 터치
스크린(Touch screen)의 정확성을 나타내는 선형성 평가를 진행한 결과를 종래의
두명 전도성 기판(ITO)을 갖는 터치 스크린의 결과와 비교하여 에시한 것이다.
[40] 도 25 및 도 26은 본 발명의 일 실시상태에 따른 유기발광소자 조명종
보조장치의 구조를 에시한 것이다.
[41] 도 27은 전폭 및 와치에 따른 모아래 현상을 에시한 것이다.

발명의 실시를 위한 최선의 형태
이하, 본 발명은 더욱 구체적으로 설명한다.

본 발명에 따른 전도체는 투명기재, 및 상기 투명기재의 적이도 일면에 구비된 전기 전도성 패턴을 포함하는 전도체로서, 상기 투명기재의 전체 면적의 30% 이상이, 상기 전기 전도성 패턴과 교차하는 직선을 그쳤을 때, 상기 직선과 상기 전기 전도성 패턴의 인접하는 교점을간의 거리의 평균값에 대한 표준 편차의 비율(거리 분포 비율)이 2% 이상인 전기 전도성 패턴을 갖는 것을 특징으로 한다.

또는, 본 발명에 따른 전도체는 투명기재, 및 상기 투명기재의 적이도 일면에 구비된 전기 전도성 패턴을 포함하는 전도체로서, 상기 투명기재의 전체 면적의 30% 이상이, 분포가 연속적인 패턴으로 이루어지고, 상기 패턴의 면적의 평균값에 대한 표준 편차의 비율(면적 분포 비율)이 2% 이상인 전기 전도성 패턴을 갖는 것을 특징으로 한다.

종래기술에서와 같이 투명 전면 전도상을 형성하는 경우 지형이 너무 높아지는 문제가 있다. 또한, 그리드(grid) 방식 또는 선형(linear) 방식과 같이 1종류 형상의 규칙적인 패턴으로 형성된 전기 전도성 패턴을 규칙적인 내부 구조, 예컨대 픽셀 구조를 갖는 디스플레이나, 규칙적인 패턴 구조를 갖는 광학 필름 또는 전극 구조를 포함하는 디스플레이에 포함시키는 경우, 이들 패턴 구조에 인접한 광원으로 인하여 패턴 간의 상대적인 간섭이 일어나 모아래 현상이 발생하는 문제가 있다. 이런 모아래 현상이 발생하면 시각적인 인지성(시인성)이 떨어진다. 따라서, 이를 해결하기 위해 본 발명에서는 패턴의 규칙성이 이러한 모아래를 유발한다는 데에 착안하여 패턴을 불규칙하게 만들어 모아래가 발생하는 것을 방지하게 된다.

본 발명에서는 상기와 같이 투명기재의 전체 면적의 30% 이상, 바람직하게는 70% 이상, 더욱 바람직하게는 90% 이상이, 상기 전기 전도성 패턴과 교차하는 직선을 그렸을 때, 상기 직선과 상기 전기 전도성 패턴의 인접하는 교점간의 거리의 평균값에 대한 표준 편차의 비율(거리 분포 비율)이 2% 이상인 전기 전도성 패턴을 가짐으로써, 모아래 현상을 방지하는 동시에 우수한 전기 전도도와 광학적 특성을 만족할 수 있는 전도체를 제공할 수 있다.

본 발명에 있어서, 상기 전기 전도성 패턴과 교차하는 직선은 상기 전기 전도성 패턴과의 인접하는 교점간의 거리의 표준 편차가 가장 작은 선인 것이 바람직하다. 또는, 상기 전기 전도성 패턴과 교차하는 직선은 상기 전기 전도성 패턴의 어느 한 점의 접선에 대하여 수직한 방향으로 연장된 직선인 것이 바람직하다.

본 발명에 따른 전도체에 있어서, 상기 전기 전도성 패턴과 교차하는 직선은 상기 전기 전도성 패턴과의 교점이 80개 이상인 것이 바람직하다.

상기 전기 전도성 패턴과 교차하는 직선과 상기 전기 전도성 패턴의
인접하는 교점들간의 거리의 평균값에 대한 표준 편차의 비율(거리 분포 비율)이 2% 이상인 것이 바람직하고, 10% 이상인 것이 더욱 바람직하고, 20% 이상인 것이 더욱 바람직하다.

상기 전기 전도성 패턴과 교차하는 직선과 상기 전기 전도성 패턴의 인접하는 교점들간의 거리의 평균값에 대한 표준 편차의 비율(거리 분포 비율)이 2% 이상인 패턴은 투명기가의 전체 면적에 대하여 30% 이상인 것이 바람직하다. 상기와 같은 전기 전도성 패턴이 구비된 투명기가의 표면의 적어도 일부에는 다른 형태의 전기 전도성 패턴에 구비될 수도 있다.

본 발명에 따른 전도체에 있어서, 상기 폐쇄도형은 적어도 10개 존재하는 것이 바람직하다.

상기 폐쇄 도형들의 면적의 평균값에 대한 표준 편차의 비율(면적 분포 비율)이 2% 이상인 것이 바람직하고, 10% 이상인 것이 더욱 바람직하고, 20% 이상인 것이 더욱 바람직하다.

면적의 평균값에 대한 표준 편차의 비율(면적 분포 비율)이 2% 이상인 폐쇄도형들로 이루어진 패턴은 투명기가의 전체 면적에 대하여 30% 이상인 것이 바람직하다. 상기와 같은 전기 전도성 패턴이 구비된 투명기가의 표면의 적어도 일부에는 다른 형태의 전기 전도성 패턴에 구비될 수도 있다.

본 발명에 따른 전도체를 화소 패턴 또는 엘리 필터 패턴과 같이 규칙적인 패턴을 갖는 장치, 예컨대 디스플레이 및 5cm 이하의 거리를 두고 배치한 후, 투명기가에 대하여 수직인 선과 0도에서 80도 사이의 각도에서 상기 장치를 관측하였을 때 모아레(moire) 현상에 의한 간섭 패턴이 관측되지 않는다.

또한, 본 발명에 따른 전도체를 전자파 차폐(EMI) 필름으로 이용하여 42인치 PDP를 제조한 후, 전자파 차폐(EMI) 능력을 수준을 측정하기 위하여, 3m 이격 거리에서 30MHz-1000MHz 사이의 주파수 영역대를 측정한 결과 Class B 수준 이상의 전자파 차폐(EMI) 능력을 보임을 확인하였다. 이 때 투명기가에 대하여 수직인 선과 0도에서 80도 사이의 각도에서 PDP를 관측하였을 때 모아레(moire) 현상에 의한 간섭 패턴이 관측되지 않는다.

또한, 본 발명에 따른 전도체를 이용하여 40인치 프로젝션된 커페시턴스 유형(projected capacitance type)의 터치 스 kulln(touch screen)을 제조한 후, 터치 스 kulln의 정확성을 평가하기 위한 선형성 평가를 진행한 결과, 기존의 ITO 기반 터치 스 kulln 대비 더욱 높은 정밀성을 지니는 터치 스 kulln을 구현할 수 있었다. 이에 터치 스 kulln에 대하여 수직인 선과 0도에서 80도 사이의 각도에서 터치 스 kulln을 관측하였을 때 모아레(moire) 현상에 의한 간섭 패턴이 관측되지 않는다.

한편, 패턴들이 완전하게 불규칙한 경우 선의 분포에 있어서 소한 곳과 밀한 곳의 차이가 생길 수 있다. 이러한 선의 분포에서는 전폭이 아 무리 없더라도 눈에 띄는 시각적인 인지성 문제가 생길 수도 있고, 전도체 자체가 목적하는 용도에서 필요한 요건을 만족시키지
못할 수 있다. 애를 들어 전자파 차폐 용도로 사용하는 경우, 패턴이 완전히 불규칙하게 일부 패턴의 간격이 너무 넓어지게 되면, 간격이 넓어진 패턴을 통하여 전자파의 통과가 가능하기 때문에 물방울 발생할 수 있다. 또한, 터치 패널 용도로 사용하는 경우, 패턴의 소멸이 발생하는 경우, 지향 또는 정전 용량이 불규칙하게 형성되어 터치되는 위치가 잘못 인식될 수 있는 여지가 있다. 이와 같은 문제를 해결하기 위하여, 본 발명에서는 전기 전도성 패턴을 형성할 때 규칙성과 불규칙성을 적절히 조화시킬 수 있다. 예컨대, 전기 전도성 패턴이 눈에 띄거나 극부 전도성이 발생하지 않도록 기본 단위를 정하고, 그 기본 단위 내에서 전기 전도성 패턴을 불규칙하게 형성할 수 있다. 이와 같은 방법을 이용하면 전기 전도성 패턴의 분포가 어느 한 지점에 몰리지 않게함으로써 시각성을 보완함과 동시에 제품의 용도에 맞는 스펙을 만족할 수 있다.

전술한 바와 같이, 전도체의 균일한 전기 전도성 및 시각성을 위하여 패턴의 개구율이 단위면적에서 일정한 것이 바람직하다. 상기 전도체는 직경 20 cm의 임의의 원에 대한 투과율 면차가 5% 이하한 것이 바람직하다. 이 경우, 상기 전도체는 국부적인 전도성을 방지할 수 있다.

본 발명에 있어서, 상기 전기 전도성 패턴은 직선들로 이루어질 수도 있으나, 곡선, 물결선, 지그재그선 등 다양한 변형이 가능하다. 또한, 상기 형태들의 선들 중 적어도 2가지가 혼재된 형태일 수도 있다.

도 1 및 도 2는 본 발명의 일 실시상태에 따른 전기 전도성 패턴에 임의의 선을 그렸을 때를 나타낸 것이다. 그러나, 본 발명의 범위가 이에 한정되는 것은 아니다. 도 1은 전기 전도성 패턴이 서로 교차하지 않은 1차원의 형태이고, 도 2는 전기 전도성 패턴이 서로 교차하여 적어도 일부 영역에 폐쇄도형의 형태가 형성된 2차원의 형태이다. 또 하나의 상기 전기 전도성 패턴의 예를 도 6에 도시하였으나, 본 발명의 범위가 이에만 한정되는 것은 아니다.

도 3은 본 발명의 일 실시상태에 따른 전기 전도성 패턴을 예시한 것이다. 이와 같은 패턴의 면적 분포 비율은 20% 이상, 예컨대 20%~35%이다.

본 발명의 일 실시상태에 따르면, 상기 전기 전도성 패턴은 보로노이 다이어그램(Voronoi diagram)을 이루는 도형들의 경계선 형태일 수 있다.

본 발명에 있어서, 상기 전기 전도성 패턴을 보로노이 다이어그램을 이루는 도형들의 경계선 형태로 형성함으로써 모아래 현상을 방지할 수 있다. 보로노이 다이어그램(Voronoi diagram)이란, 채우고자 하는 영역에 보로노이 다이어그램 제니레이터(Voronoi diagram generator)라는 점들을 배치하면, 각 점들이 다른 점들로부터의 거리에 비하여 해당 점과의 거리가 가장 가까운 영역을 채우는 방식으로 이루어진 패턴이다. 예를 들어, 전극의 대형 할인점을 점으로 표시하고 소비자들은 가장 가까운 대형 할인점을 찾아간다고 할 때, 각 할인점의 상권을 표시하는 패턴을 예로 들 수 있다. 즉, 정육각형으로 공간을 채우고 정육각형들의 각 점들을 보로노이 제니레이터로 선정하면 벌집(honeycomb)
구조가 상기 전기 전도성 패턴이 될 수 있다. 본 발명에서 보로노이 다이어그램 제너레이터를 이용하여 전기 전도성 패턴을 형성하는 경우, 다른 규칙적인 패턴과의 간섭에 의하여 발생할 수 있는 모아레 현상을 방지할 수 있는 복잡한 패턴 형태를 용이하게 결정할 수 있는 장점이 있다. 도 3에 보로노이 다이어그램 제너레이터를 이용한 패턴 형성이 나타나 있다. 상기 전도성 패턴의 일 예를 도 7 내지 도 9에 도시하였으나, 본 발명의 범위가 이에만 한정되는 것은 아니다.

[64] 본 발명에서는 보로노이 다이어그램 제너레이터의 위치를 규칙 또는 불규칙하게 위치시킴으로써 상기 제너레이터로부터 파생된 패턴을 이용할 수 있다.

[65] 전기 전도성 패턴을 보로노이 다이어그램을 이루는 도형들의 경계선 형태로 형성하는 경우에도, 전술한 바와 같이 시각적인 인지성의 문제를 해결하기 위하여, 보로노이 다이어그램 제너레이터를 생성할 때 규칙성과 불규칙성을 적절히 조화시킬 수 있다. 예를 들어, 패턴이 들어갈 면적에 일정크기의 면적을 기본 단위(unit)로 지정한 후, 기 본 단위 안에서의 점의 분포가 불규칙성을 갖도록 점을 생성한 후 보로노이 패턴을 제작할 수도 있다. 이와 같은 방법을 이용하면 선의 분포가 어느 한 지점에 물리지 않게 함으로써 시각성을 보완할 수 있다.

[66] 전술한 바와 같이, 전도성의 균일한 전도성 및 시각성을 위하여 패턴의 개구율을 단위면적에서 일정하게 하는 경우 보로노이 다이어그램 제너레이터의 단위면적당 개수를 조절할 수 있다. 이 때, 보로노이 다이어그램 제너레이터의 단위면적당 개수를 균일하게 조절시 상기 단위면적은 5 cm²이하인 것이 바람직하고, 1 cm²이하인 것이 더욱 바람직하다. 상기 보로노이 다이어그램 제너레이터의 단위면적당 개수는 25-2,500 개/cm²이 것이 바람직하고, 100-2,000 개/cm²이 것이 더욱 바람직하다.

[67] 상기 단위면적 내의 패턴을 구성하는 도형들은 적어도 하나는 나머지 도형들과 상이한 형태를 갖는 것이 바람직하다.

[68] 본 발명의 또 하나의 실시상태에 따르면, 상기 전기 전도성 패턴은 델로니 패턴을 이루는 적어도 하나의 삼각형으로 이루어진 도형들의 경계선 형태일 수 있다. 구체적으로, 상기 전기 전도성 패턴의 형태는 델로니 패턴을 구성하는 삼각형들의 경계선 형태이거나, 델로니 패턴을 구성하는 적어도 2개의 삼각형들로 이루어진 도형들의 경계선 형태이거나, 이들의 조합 형태이다.

[69] 상기 전기 전도성 패턴을 델로니 패턴을 이루는 적어도 하나의 삼각형으로 이루어진 도형들의 경계선 형태로 형성함으로써 빛의 회절 및 간섭에 의한 부작용을 최소화할 수 있다. 델로니 패턴(Delaunay pattern)이란, 패턴을 체우고자 하는 영역에 델로니 패턴 제너레이터(generator)라는 점들을 배치하고, 주변에 위치한 3개의 점들을 서로 연결하여 삼각형을 그리되, 삼각형의 모든 꼭지점을 포함하는 원(circumcircle)을 그렸을 때, 상기 원 내에는 다른 점이 존재하지
않도록 삼각형을 그림으로써 형성된 패턴이다. 이와 같은 패턴을 형성하기 위하여, 델로니 패턴 제너레이터를 바탕으로 델로니 삼각형 분할(Delaunay triangulation)과 원그리기(circulation)를 반복할 수 있다. 상기 델로니 삼각형 분할은 삼각형의 모든 각의 최소 각도 최대화하여 다른 패턴의 삼각형을 피하는 방식으로 수행될 수 있다. 상기 델로니 패턴의 개념은 Boris Delaunay에 의하여 1934년에 제안되었다. 상기 델로니 패턴의 형성 예를 도 7에 도시하였다. 또한, 델로니 패턴의 예를 도 11 내지 도 13에 도시하였다. 그러나, 본 발명의 범위가 이에만 한정되는 것은 아니다.

상기 델로니 패턴을 이루는 적어도 하나의 삼각형으로 이루어진 도형들의 경계선 형태의 패턴은 델로니 패턴 제너레이터의 위치를 규칙 또는 불규칙하게 위치시킴으로써 상기 제너레이터로부터 과정된 패턴을 이용할 수 있다. 본 발명에서 델로니 패턴 제너레이터를 이용하여 전기 전도성 패턴을 형성하는 경우, 모아레 현상을 방지할 수 있는 복잡한 패턴 형태를 용이하게 결정할 수 있는 장점이 있다.

전기 전도성 패턴을 델로니 패턴을 이루는 적어도 하나의 삼각형으로 이루어진 도형들의 경계선 형태로 형성하는 경우에도, 전술한 바와 같은 시각적인 인지성의 문제 및 국부 전도성 문제를 해결하기 위하여, 델로니 패턴 제너레이터를 이용할 때 규칙성과 불규칙성을 적절히 조화시킬 수 있다. 예를 들어, 먼저 패턴이 들어갈 면적이 불규칙하면서 규절한 기준점을 생성한다. 이 때 불규칙하다는 것은 각 점들간의 거리가 일정하지 않음을 의미하는 것이고, 규절하다는 것을 단위 면적당 포함되는 점의 개수가 동일함을 의미한다.

상기와 같이 불규칙하면서 규절한 기준점을 생성하는 방법을 예로 들면 다음과 같다. 도 14의 1에 도시된 바와 같이, 점의 면적에 임의의 점을 생성한다. 그런 다음, 생성된 점들간의 간격을 측정하여, 점들의 간격이 기 설정된 값보다 작을 경우에는 점들을 제거한다. 또한, 점들을 바탕으로 델로니 삼각형 패턴을 형성하고, 그 삼각형의 면적이 기 설정된 값보다 클 경우에는 삼각형 내부에 점을 추가한다. 상기 과정을 반복적으로 거치면 도 14의 2에 도시된 바와 같이 불규칙하면서도 규절한 기준점을 생성하게 된다. 다음으로 생성된 기준점을 하나씩 포함하는 델로니 삼각형을 생성한다. 이 단계는 델로니 패턴을 이용하여 이루어질 수 있다. 이와 같은 방법을 이용하면 선의 분포가 어느 한 지점에 몰리지 않게 함으로써 사각점을 보완할 수 있다.

전술한 바와 같이, 전도체의 균일한 전도성 및 시각성을 위하여 패턴의 개구율이 단위면적에서 일정하게 하는 경우, 델로니 패턴 제너레이터의 단위면적당 개수를 조절하는 것이 바람직하다. 이 때, 델로니 패턴 제너레이터의 단위면적당 개수를 균일하게 조절시 상기 단위면적은 5 cm²이하인 것이 바람직하고, 1 cm²이하인 것이 더욱 바람직하다. 상기 델로니 패턴 제너레이터의 단위면적당 개수는 25-2,500 개/cm²인 것이 바람직하고, 100-2,000 개/cm²인 것이 더욱 바람직하다.
상기 단위면적 내의 패턴을 구성하는 도형들 중 적어도 하나는 나머지 도형들과 상이한 형태를 갖는 것이 바람직하다.

본 발명에 있어서, 전술한 전기 전도성 패턴은 웅출하는 방법에 의하여 투명기재상에 형성하는 경우 선폭 및 선고르를 균일하게 할 수 있다. 본 발명의 일 실시예에 따르면, 인위적으로 상기 전기 전도성 패턴의 적어도 일부를 나머지 패턴과 다르게 형성할 수 있다. 이와 같은 구성에 의하여 원하는 전기 전도성 패턴을 얻을 수 있다. 예컨대, 목적에 따라 일부 영역이 나머지 면적에 비하여 전기 전도성이 더 높은 것이 요구되거나, 터치 패널 전극의 경우 일부 영역에서 터치의 인지가 더 민감하게 요구되는 경우 해당 영역과 나머지 영역의 전기 전도성 패턴을 달리할 수 있다. 전기 전도성 패턴의 적어도 일부를 나머지 인쇄 패턴과 다르게 하기 위하여 인쇄 패턴의 선폭이나 선간격을 다르게 할 수 있다. 일례로 정전 용량식 터치 스크린의 경우 측면의 패드(pad)와 연결되는 부분은 고 전도성 여부가 큰 이슈가 되고 있다.

본 발명의 하나의 실시예에 따르면, 상기 전도체는 전기 전도성 패턴이 형성되지 않은 영역을 포함할 수 있다.

상기 도아래 현상 방지 효과를 극대화하기 위하여, 상기 전기 전도성 패턴을 비대칭 구조의 도형으로 이루어진 패턴 면적이 전체 패턴 면적에 대하여 10% 이상이 되도록 형성할 수 있다. 또한, 보로노이 다이어그램을 이루는 어느 한 도형의 중심점을 상기 도형과 경계를 이루는 인접 도형의 중심점과 연결한 선들 중 적어도 하나가 나머지 선들과 겹치가 상이한 도형들의 면적이 전체 전기 전도성 패턴 면적에 대하여 10% 이상이 되도록 형성할 수 있다.

상기 전기 전도성 패턴의 제작시, 제한된 면적에 패턴을 다자인한 후 상기 제한된 면적을 반복적으로 연결하는 방식을 이용하는 방식을 이용함으로써 대면적 패턴을 제작할 수도 있다. 상기 패턴을 반복적으로 연결하기 위해서는 각 사변의 점들의 위치를 고정함으로써 반복적인 패턴이 서로 연결되게 만들 수 있다. 이 때 제한된 면적은 규칙성에 의한 모아래 현상을 방지하기 위하여 1 cm² 이상의 면적을 가지는 것이 바람직하며, 10 cm² 이상의 면적을 가지는 것이 더욱 바람직하다.

상기와 같은 패턴에 의하여 모아래 현상을 회피할 수 있으나, 상기 도전성 패턴의 선폭 및 피치를 조절함으로써 모아래 현상의 회피를 극대화할 수 있다. 구체적으로, 상기 도전성 패턴은 0.1 내지 30 마이크로미터, 더욱 바람직하게는 0.5 내지 10 마이크로미터, 더욱 바람직하게는 1 내지 5 마이크로미터의 미세 선폭을 가짐으로써 모아래 현상까지 방지할 수 있다. 또한, 상기 도전성 패턴의 피치는 디스플레이의 픽셀의 크기단위와 일치시키지 않음으로써, 예컨대 장축방향으로 250 마이크로미터의 Sub Pixel을 자리는 디스플레이의 경우 도전성 패턴의 피치간격을 250 피치를 피함으로써 Pixel간섭으로 인한 디스플레이의 색의 왜곡
현상까지 방지할 수 있다. 선폭 및 피치에 따른 모아레 현상을 도 27에 나타내었다. 10 마이크로미터 이하의 선폭 및 피치 변화에 따른 모아레를 평가한 결과, 1.3 마이크로미터의 경우 창모아레의 발생이 없어짐을 확인할 수 있다. 또한, 250 피치의 경우 무지개 빛이 관찰되었다. 이로부터 LCD와 같은 디스플레이의 픽셀(pixel) 장축 길이와의 연관성을 확인할 수 있다.

본 발명에서는 우선 목적하는 패턴 형태를 결정한 후, 인쇄법, 포토리스트레피법, 포토그레피법, 마스크를 이용한 방법, 스피터링법, 또는 잉크젯 법 등을 이용함으로써 투명기가 상에 선폭이 약하며 정밀한 전기 전도성 패턴을 형성할 수 있다. 상기 패턴 형태의 결정시 보로노이 다이어그램 제너레이터를 이용할 수 있으며, 이에 의하여 복잡한 패턴 형태를 용이하게 결정할 수 있다. 여기서, 상기 보로노이 다이어그램 제너레이터란 각각 건축한 바와 같이 보로노이 다이어그램을 형성할 수 있도록 배치된 점들을 의미한다. 그러나, 본 발명의 범위가 그것에 한정되는 것은 아니며, 목적하는 패턴 형태의 결정시 그以外의 방법을 이용할 수도 있다.

상기 인쇄법은 전기 전도성 패턴 재료를 포함하는 페이스트를 목적하는 패턴 형태로 투명기가상에 전사한 후 소성하는 방식으로 수행될 수 있다. 상기 전사 방법으로는 특별히 한정되지 않으나, 요판 또는 스크린 등 패턴 전사 매체에 상기 패턴 형태를 형성하고, 이를 이용하여 원하는 패턴을 투명기가에 전사할 수 있다. 상기 패턴 전사 매체에 패턴 형태를 형성하는 방법은 당 기술분야에 알려져 있는 방법을 이용할 수 있다.

상기 인쇄법으로는 특별히 한정되지 않으며, 오프셋 인쇄, 스크린 인쇄, 그라비아 인쇄, 플렉소 인쇄, 잉크젯 인쇄 등의 인쇄법이 사용될 수 있으며, 이들 중 1 종 이상의 복합방법이 사용될 수도 있다. 상기 인쇄법은 롤 대 롤(roll to roll) 방법, 롤 대 평판(roll to plate), 평판 대 롤(plate to roll) 또는 평판 대 평판(plate to plate) 방법을 사용할 수 있다.

오프셋 인쇄는 페쇄가 세겨진 요판에 페이스트를 채운 후
бл랑킷(blanket)이라고 부르는 설리콘 고무로 1차 전사를 시킨 후, 블랑킷과 두명기계를 밀착시켜 2차 전사를 시키는 방식으로 수행될 수 있다. 스크린 인쇄는 페쇄의 전에 스크린 위에 페이스트를 위치시킨 후, 스위지를 밀면서 공간이 비워져 있는 스크린을 통하여 직접적으로 기계에 페이스트를 위치시키는 방식으로 수행될 수 있다. 그라비아 인쇄는 롤 위에 페쇄가 세겨진 블랑킷을 갖고 페이스트를 평판에 채운 후, 두명기계에 전사시키는 방식으로 수행될 수 있다. 본 발명에서는 상기 방법뿐만 아니라 상기 방법들이 복합적으로 사용될 수도 있다. 또한 그외의 당업자들에게 알려진 인쇄 방식을 사용할 수도 있다.

오프셋 인쇄법의 경우, 블랑킷이 갖는 이형 특성으로 인하여 페이스트가 유리와 같은 두명기계에 거의 대부분 전사되기 때문에 별도의 블랑킷 세정공정이 필요하지 않다. 상기 요판은 목적하는 전기 전도성 패턴이 세겨진
유리를 정밀 예정하여 제조할 수 있으며, 내구성을 위하여 유리 표면에 금속 또는 DLC(Diamond-like Carbon) 코팅을 할 수도 있다. 상기 요건은 금속판을 예정하여 제조할 수도 있다.

본 발명에서는 보다 정밀한 전기 전도성 패턴을 구현하기 위하여 오프셋 인쇄법이 바람직하다. 도 4는 오프셋 인쇄방법을 예시한 것이다. 도 2에 따르면, 제1 단계로서 닥터 블레이드(Doctor Blade)를 이용하여 요판의 패턴에 페이지트를 채운 후, 클라켓을 회전시키 1차 전사하고, 제2 단계로서 클라켓을 회전시켜 투명기계의 표면에 2차 전사한다.

본 발명에서는 전술한 인쇄법에 한정되지 않고, 포토리소그래피 공정을 사용할 수도 있다. 예컨대, 포토리소그래피 공정은 투명기재의 전면에 전기 전도성 패턴 제료층을 형성하고, 그 위에 포토레지스트층을 형성하고, 선택적 노광 및 현상 공정에 의하여 포토레지스트층을 페턴화한 후, 페턴화된 포토레지스트층을 마스크로 이용하여 전기 전도성 패턴을 페턴화하고, 포토레지스트층을 제거하는 방식으로 수행될 수 있다.

본 발명은 또한 포토그래피 방법을 이용할 수도 있다. 예를 들어 투명기재 상에 할로겐화된을 포함한 사진 감광제료를 도포한 후, 상기 감광제료를 선택적 노광 및 현상 공정에 의하여 패턴을 형성할 수도 있다. 좀 더 상세한 예를 들면 하기와 같다. 우선, 패턴을 형성하고자 하는 기재 위에 베테리브용 감광제료를 도포한다. 이 때, 기재로는 PET, 아세틸 셜로그로이드 등의 고분자 필름이 사용될 수 있다. 감광제료가 도포된 고분자 필름제를 여기서 필름이라 칭하기로 한다. 상기 베테리브용 감광제료는 일반적으로 빛에 대해 매우 민감하고 규칙적인 반응을 하는 AgBr에 약간의 AgI를 섞은 할로겐화된(Silver Halide)으로 구성할 수 있다. 일반적인 베테리브용 감광제료를 할로겐화하여 현상 처리된 화상은 피사체와 빛이 반대인 음화이므로, 형성하고자 하는 패턴 형상, 바람직하게는 불규칙한 패턴 형상을 갖는 마스크(mask)를 이용하여 촬영을 진행할 수 있다.

포토리소그래피와 포토그래피 공정을 이용하여 형성된 상기 전기 전도성 패턴의 전도도를 높이기 위하여 도금처리를 추가로 수행할 수도 있다. 상기 도금은 전전에 도금 방법을 이용할 수 있으며, 도금 재료로는 구리 또는 니켈을 사용할 수 있으며, 구리도금은 수행한 후 그 위에 니켈 도금을 수행할 수 있으나, 본 발명의 범위가 이들 예로만 한정되는 것은 아니다.

본 발명은 또한 마스크를 이용한 방법을 이용할 수도 있다. 예를 들어 목록하는 전도성 패턴의 형상을 갖는 마스크를 기재 각자에 위치한 후, 전기 전도성 패턴 제료를 기재의 중부가 제작하는 방식을 사용하여 페턴화할 수도 있다. 이 때 중부가 하는 방식은 열 또는 전자파에 의한 열 중복방 및 스피터(sputter)와 같은 PVD(physical vapor deposition) 방식을 이용할 수도 있고, 유기금속(organometal) 재료를 이용한 CVD(chemical vapor deposition) 방식을 이용할 수도 있다.

본 발명에 있어서, 상기 투명기재로는 특별히 한정되지 않으나, 빛투과율이 50
% 이상, 바람직하게는 75 % 이상인 것이 바람직하다. 구체적으로, 상기 투명기체로는 유리를 사용할 수도 있고, 폴라스틱 기판 또는 폴라스틱 필름을 사용할 수 있다. 상기 폴라스틱 기판 또는 필름으로는 당 기술문헌에 알려져 있는 재료를 사용할 수 있으며, 에olulu 물리아크릴게, 폴리우레탄게, 폴리에스테르게, 폴리에폭시게, 폴리올레핀게, 폴리카보네이트게 및 셀룰로오스게 중에서 선택된 1종 이상의 수지로 형성된 것을 사용할 수 있다. 더욱 구체적으로, PET(Polyethylene terephthalate), PVB(polyvinylbutyral), PEN(polyethylene naphthalate), PES(polyethersulfon), PC(polycarbonate), 아세틸 셜로이드와 같은 가시광 투과율 80 % 이상의 필름이 바람직하다. 상기 폴라스틱 필름의 두께는 12.5 내지 500 마이크로미터인 것이 바람직하고, 50 내지 450 마이크로미터인 것이 더욱 바람직하며, 50 내지 250 마이크로미터인 것이 더욱 바람직하다.

상기 폴라스틱 기판은 폴라스틱 필름의 앞면 또는 양면에 수분, 가스차단을 위한 가스배리어층, 강도보강을 위한 하드코트층과 같은 다양한 기능성층이 적용된 구조의 기판이 된다. 상기 폴라스틱 기판에 포함될 수 있는 기능성층은 전술한 것들로 한정되는 것은 아니며, 다양한 기능성층이 구비될 수 있다.

[91] 상기 전기 전도성 패턴은 디스플레이와 같이 본 발명의 전도체가 적용될 소자 또는 장치에 포함되는 부품, 예컨대 기판 상에 직접 형성될 수도 있다.

[92] 본 발명에 있어서, 상기 전기 전도성 패턴의 재료로는 전기 전도도가 우수한 금속을 사용하는 것이 바람직하다. 또한, 상기 전기 전도성 패턴 재료의 비치향 값은 1 microOhm cm 이상 200 microOhm cm 이하의 값을 가지는 것이 좋다. 전기 전도성 패턴 재료의 구체적인 예로서, 구리, 은(silver), 금, 철, 니켈, 알루미늄, 탄소나노튜브(CNT) 등이 사용될 수 있고, 은이 가장 바람직하다. 상기 전기 전도성 패턴 재료는 입자 형태로 사용할 수 있다. 본 발명에 있어서, 전기 전도성 패턴 재료로서 은으로 코팅된 구리 입자도 사용될 수 있다.

[93] 본 발명에 있어서, 상기 전기 전도성 패턴 재료를 포함하는 페이스트를 이용하는 경우, 상기 페이스트는 인체 공정이 용이하도록 전술한 전기 전도성 패턴 재료 이외에 유기 바인더를 더 포함할 수도 있다. 상기 유기 바인더는 소성 공정에서 퇴사되는 성질을 갖는 것이 바람직하다. 상기 유기 바인더로는 폴리아크릴게 수지, 폴리우레탄게 수지, 폴리에스테르게 수지, 폴리올레핀게 수지, 폴리카보네이트게 수지, 셀룰로우즈 수지, 폴리아미드게 수지, 폴리에틸렌 나프탈레이트게 수지 및 변성 에폭시 등이 있으나, 이들에만 한정되는 것은 아니다.

[94] 유리와 같은 투명기체에 대한 페이스트의 부착력을 향상시키기 위하여, 상기 페이스트는 글래스 프릿(Glass Frit)을 더 포함할 수 있다. 상기 글래스 프릿은
시험품으로부터 선택할 수 있으나, 전환경적인 남성분이 없는 글래스 프릿을 사용하는 것이 좋다. 이때 사용하는 글래스 프릿의 크기는 평균 구경이 2마이크로미터 이상하고 최대 구경이 50마이크로미터 이하의 것이 좋다.

[95] 필요에 따라, 상기 페이지에는 용매가 더 추가될 수 있다. 상기 용매로는 부틸카르비톨 아세테이트 (Butyl Carbitol Acetate), 카르비톨 아세테이트 (Carbitol acetate), 사이클로헥사나노(Cyclohexanone), 셀로솔베 아세테이트 (Cellosolve Acetate) 및 테르페놀(Terpineol) 등이 있으나, 이들 에에 의하여 본 발명의 범위가 한정되는 것은 아니다.

[96] 본 발명에 있어서, 전기 전도성 페턴 제료, 유기 바인더, 글래스 프릿 및 용매를 포함하는 페이지를 사용하는 경우, 각 성분의 중량비는 전기 전도성 페턴 제료 50-90 %, 유기 바인더 1-20 %, 글래스 프릿 0.1-10 % 및 용매 1-20 %로 하는 것이 좋다.

[97] 본 발명의 일 실시상태에 따르면, 상기 전기 전도성 페턴은 환화될 수 있다. 고온에서 금속 재료를 포함하는 페이지를 소성하게 되면 금속 광택이 발현되어 빛의 반사 등에 의하여 시인성이 나빠질 수 있다. 이와 같은 문제는 상기 전기 전도성 페턴을 환화시킴으로써 방지할 수 있다. 상기 전기 전도성 페턴을 환화시키기 위하여, 전기 전도성 페턴 형성을 위한 페이지에 환화물질을 절가하거나, 상기 페이지를 인쇄 및 소성 후 환화 처리를 수행함으로써 전기 전도성 페턴을 환화시킬 수 있다.

[98] 상기 페이지에 절가될 수 있는 환화물질로는 금속 산화물, 카본 블랙, 카본나노튜브, 흑색 안료, 색색된 글래스 프릿 등이 있다. 이 때 상기 페이지의 조성은 전기 전도성 페턴 제료는 50-90중량%, 유기 바인더는 1-20중량%, 환화물질 1-10중량%, 글래스 프릿은 0.1-10중량%, 용매는 1-20중량%로 하는 것이 좋다.

[99] 상기 소성 후 환화처리를 할 때 페이지의 조성은 전기 전도성 페턴 제료는 50-90중량%, 유기 바인더는 1-20중량%, 글래스 프릿은 0.1-10중량%, 용매는 1-20중량%로 하는 것이 좋다. 소성 후 환화 처리는 산화용액, 에켄데 Fe 또는 Cu 이온 함유 용액에 절가, 염소 이온 등 할로겐 이온 함유 용액에 절가, 과산화수소, 젤산 등의 절가, 할로겐 가스로의 처리 등이 있다.

[100] 본 발명의 일 실시상태에 따르면, 전기 전도성 페턴 제료, 유기 바인더 및 글래스 프릿을 용매에 분산시켜 제조할 수 있다. 구체적으로는 유기 바인더를 용매에 용해시켜 유기 바인더 수지액을 제조하고, 여기에 글래스 프릿을 절가하고, 마지막으로 전도성 재료로서 전진한 금속의 분말을 절가한 후 반죽하고 나서, 3단 롤밀을 이용하여 부쳐있던 금속 분말과 글래스 프릿이 균일하게 분산되도록 제조할 수 있다. 그러나, 본 발명법 상기 방법에 의하여 한정되는 것은 아니다.

[101] 전진한 전기 전도성 페턴의 선폭이 100마이크로미터 이하, 바람직하게는 30마이크로미터 이하, 더욱 바람직하게는 25마이크로미터 이하가 되도록 형성될
수 있다.

[102] 본 발명에 있어서, 전술한 페이스트를 이용하는 경우, 페이스트를 전술한 패턴대로 인쇄한 후 소성 과정을 거치면 전기 전도성을 갖는 패턴이 형성된다. 이 때 소성온도는 특별히 한정되지 않으나, 400 내지 800°C, 바람직하게는 600 내지 700°C로 할 수 있다. 상기 전기 전도성 패턴을 형성하는 투명기체가 유리인 경우, 필요한 경우 상기 소성 단계에서 상기 유리를 목적 용도에 맞도록 성형할 수 있다. 또한, 상기 전기 전도성 패턴을 형성하는 투명기체로서 플라스틱 기판 또는 패널을 사용하는 경우에는 비교적 저온에서 소성을 수행하는 것이 바람직하다. 예컨대 50 내지 350°C에서 수행할 수 있다.

[103] 상기 전도체의 전기 전도성 패턴의 선폭은 100 마이크로미터 이하, 바람직하게는 30 미크로미터 이하, 더욱 바람직하게는 25 마이크로미터 이하이고, 5 마이크로미터 이상인 것이 바람직하다. 상기 전기 전도성 패턴의 선간 간격은 30 mm 이하인 것이 바람직하고, 10 마이크로미터 내지 10 mm인 것이 더 바람직하니, 5 0 마이크로미터 내지 1000 마이크로미터인 것이 더 바람직하고, 200 마이크로미터 내지 650 마이크로미터인 것이 더 바람직하다. 상기 전기 전도성 패턴의 높이는 1 내지 100 마이크로미터, 더욱 바람직하게는 3 마이크로미터이다. 본 전술한 방법들에 의하여 전기 전도성 패턴의 선폭 및 선고를 균일하게 할 수 있다. 본 발명에서는 전기 전도성 패턴의 균일도는 선폭의 경우 ±3 마이크로미터 범위 이내로 할 수 있고, 선고의 경우 ±1 마이크로미터 범위 이내로 할 수 있다.

[104] 본 발명에 따른 전도체는 전원에 연결될 수 있으며, 이 때 개구율을 고려한 단위 면적당 저항값은 상온에서 0.01ohm/square 내지 1000ohm/square, 바람직하게는 0.05ohm/square 내지 50 0ohm/square이다.

[105] 본 발명에 따른 전도체는 전도체 자체의 구성 이의의 외부 요인에 의하여 전류를 전도시키는 용도로 한정될 수 있다. 이에 따르는 전류의 양은 1분을 기준으로 평균전류는 1 A 이하이다. 하나의 예로서, 본 발명에 따른 전도체가 전자파 차폐(EMI) 필름으로 사용되는 경우, PDP와 같은 디스플레이에서의 전자파 발생에 의하여 상기 전도체에 전류의 흐름이 생기며, 생성된 전류는 접지부를 통하여 소화된다. 또 하나의 예로서, 본 발명에 따른 전도체가 터치 패널(Touch panel)의 하나의 전극층으로 사용되는 경우, 본 발명에 따른 전도체에 대항하는 전도성 기체와의 전위 차 및 접촉에 의해서 전류가 발생한다. 또 하나의 예로서, 본 발명에 따른 전도체가 유기발광소자(OLED) 조명용 보조 전극으로 사용되는 경우, 상기 전도체 위에 형성된 대응 전극의 전위에 따라 전류가 호르게 된다.

[106] 본 발명에 따른 전도체에 있어서, 전기 전도성 패턴의 개구율, 즉 패턴에 의하여 덮여지지 않는 투명기체의 면적 비율은 70 % 이상인 것이 바람직하다.

[107] 본 발명에 따른 전도체는
전기 전도성이 요구되는 용도에 사용될 수 있다.
예컨대, 전자과 차폐 필름 또는 터치 패널, 발광소자보조전극 등에 사용될 수 있다. 상기 발광소자용 보조전극은 구체적으로 유기발광소자(OLED) 조명용 보조전극일 수 있다.

본 발명의 하나의 실시상태에 따르면, 전실한 본 발명의 전도체를 포함하는 전자과 차폐 필름 및 이를 포함하는 디스플레이 장치를 제공한다.
상기 전자과 차폐 필름은 전실한 전기 전도성 패턴과 연결된 접지부를 더 포함할 수 있다. 예컨대, 상기 접지부는 상기 투명기재의 전기 전도성 패턴이 형성된 면의 가장자리부에 형성될 수 있다.
또한, 상기 전자과 차폐 필름의 적어도 일면에는 반사방지필름, 근직외선차폐필름, 색보정필름 중 적어도 하나가 구비될 수 있다.
설계사양에 따라 전실한 기능성 필름 이외에 다른 종류의 기능성 필름을 더 포함할 수도 있다. 상기와 같은 전자과 차폐 필름은 플라즈마 디스플레이 패널(Plasma Display Panel, PDP), 액정디스플레이(Liquid Crystal Display, LCD), 및 응극선판(Cathode-Ray Tube, CRT)과 같은 디스플레이 장치에 적용될 수 있다.

예컨대, 상기 플라즈마 디스플레이 패널은, 두 장의 패널, 및 상기 두 장의 패널 사이에 구비된 화소패턴을 포함할 수 있다. 상기 전자과 차폐필름에는 상기 플라즈마 디스플레이 패널의 한 면에 부착될 수 있다. 또는 상기 전자과 차폐 필름의 전기 전도성 패턴이 상기 플라즈마 디스플레이 패널의 한 면에 직접 인쇄된 형태로 구비되어 있을 수 있다. 이런 경우, 상기 전자과 차폐필름의 기재가 플라즈마 디스플레이 패널에 해당하게 되는 것이다.

본 발명에 따른 전자과 차폐필름의 기재를 지지 기판 또는 장치에 부착하는 경우, 접합 필름을 이용하여 부착할 수 있다. 여기서, 상기 접합 필름의 재료로는 접착력이 있고 접합 후 두명한 어떤 물질이라도 사용할 수 있다. 예컨대 PVB 필름, EVA 필름, PU 필름 등이 사용될 수 있으나, 이들 에로부터 한정되는 것은 아니다. 상기 접합 필름은 특별히 한정되지 않으나, 그 두께가 100마이크로미터 내지 800마이크로미터인 것이 바람직하다.

본 발명의 또 하나의 실시상태에 따르면, 전실한 본 발명의 전도체를 포함하는 터치 패널을 제공한다. 본 발명에 따른 터치 패널은 하부 기재; 상부 기재; 및 상기 하부 기재의 상부 기재에 접하는 면 및 상기 상부 기재의 하부 기재에 접하는 면 중 어느 한 면 또는 양면에 구비된 전극층을 포함할 수 있다. 상기 전극층은 각각 X축 위치 검출 및 Y축 위치 검출 기능을 할 수 있다.

이 때 상기 하부 기재 및 상기 하부 기재의 상부 기재에 접하는 면에 구비된 전극층; 및 상기 상부 기재 및 상기 상부 기재의 하부 기재에 접하는 면에 구비된 전극층 중 하나 또는 두 개 모두가 전실한 본 발명에 따른 전도체일 수 있다. 상기 전극층 중 어느 하나만이 본 발명에
따른 전도체인 경우, 나머지 다른 하나는 당기슬분야에 알려져 있는 패턴을 가질 수 있다.

113) 상기 상부 기체와 상기 하부 기체 모두의 일면에 전극층이 구비되며 2층의 전극층이 형성되는 경우, 상기 전극층의 간격을 일정하기 유지하고 접촉이 일어나지 않도록 상기 하부 기체와 상부 기체 사이에 접연층 또는 스페이서가 구비될 수 있다. 상기 접연층은 접착제 또는 핫멜트 수지인 것이 바람직하다.
상기 전극은 외부 회로에 연결될 수 있다.

114) 본 발명의 또 하나의 실시상태에 따르면, 전선한 본 발명의 전도체를 포함하는 유기발광소자(OLED) 조명용 보조전극 및 이를 포함하는 유기발광소자 조명을 제공한다. 하나의 예로서, 본 발명에 따른 유기발광소자 조명은 제1 전극, 제1 전극 상에 배치된 보조전극, 상기 보조전극 상에 배치된 접연층, 적어도 한 층의 유기물질 및 제2 전극을 포함하고, 상기 보조전극은 본 발명에 따른 전도체인 것을 특정으로 할 수 있다. 상기 보조전극은 제1 전극 상에 직접 형성될 수도 있고, 제1 전극 상에 투명 기체 및 전기 전도성 패턴을 포함하는 전도체가 위치할 수도 있다. 본 발명에 따른 유기발광소자 조명의 보조전극을 도 25 및 도 26에 예시하였다.

발명의 실시를 위한 형태

115) 이하, 실시예를 통하여 본 발명을 예시한다. 그러나, 이하의 실시예는 본 발명을 예시하기 위한 것이며, 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.

116) 실시예

117) 실시예 1

118) 실비 페이스트는 임청이 2 마이크로미터인 실비 입자 80 중량%, 폴리에스터 수지 5 중량%, 글레스 프릿(Grass frit) 5 중량%를 10 중량%의 BCA(Butyl carbitol acetate) 용매에 녹여서 만들어졌다. 요원은 20 마이크로미터 폭, 7.5 마이크로미터 깊이, 신간 간격은 평균적으로 600 마이크로미터를 가지면서 도 1와 같은 패턴이 있는 유리를 사용하였다. 이 때, 형성된 패턴과 교차하는 직선을 그렸을 때, 상기 직선과 상기 패턴의 인접하는 교점들간의 거리의 평균값에 대한 표준 편차의 비율(거리 분포 비율)은 약 30% 이었다.

119) 유리 기판 위에 도 4에 표시한 방식을 이용하여 오프셋 프린터를 이용하여 실비 패턴을 형성한 후, 600 ℃에서 3 분 동안 소성하여 도 1과 같은 모습의 패턴을 형성하였다.

120) 상기 유리 기판의 면지향은 0.6 ohm/square 였다. 상기 유리 기판 상의 9개의 위치에서 면지향을 각 10회씩 측정한 결과 도 17과 같은 분포 곡선을 나타낸을 확인하였으며, 이때의 면지향 값 및 분포곡선은 도 17에 표시된 바와 같다. 이때의 표준편차는 0.018이었다.

121) 상기 유리 기판을 이용하여 40 인치 PDP를 제작하여 모아레(Moire) 현상을
관측한 결과, PDP의 면에 대하여 수직인 선을 기준으로 0도에서 80도 사이에서 어떤 모아레 패턴(Moire pattern)도 관측되지 않았다. 또한 상기 유리기판을 PDP pixel 대비 0도에서 45도 회전시켰을 때도 모아레 패턴이 관측되지 않았다.

도 19는 도 15와 같은 종래의 패턴(신품 30 마이크로미터, 신간 간격 300 마이크로미터)과 실험 1에서 제조한 불규칙 패턴을 지니는 점도체를 각각 이용한 경우 각도별 모아레(Moire) 현상 관찰 여부(\(O\): 관찰됨, \(X\): 관찰되지 않음)에 대한 결과를 나타낸다.

실시예 2

실버 페이스트는 임계가 2 마이크로미터인 실버 잉자 80 중량%, 폴리에스터 수지 5 중량%, 글래스 프릿(Grass frit) 5 중량%를 10 중량%의 BCA(Butyl carbitol acetate) 용매에 녹여서 만들었다. 요판은 20 마이크로미터 폭, 7.5 마이크로미터 깊이를 가지면서 도 6과 같은 패턴이 있는 유리를 사용하였다.

유리 기판(100 mm x 100 mm) 위에 도 3에 표시한 방식을 이용하여 오프셋 프린터를 이용하여 실버 패턴을 형성한 후, 600 ℃에서 약 3 분 동안 소화하여 도 6과 같은 모습의 패턴을 형성하였다. 이 때, 형성된 패턴과 교차하는 직선을 그렸을 때, 상기 직선과 상기 패턴의 인접하는 교점들간의 거리의 평균값에 대한 표준 편차의 비율(거리 분포 비율)은 약 50% 이었다.

상기 유리 기판을 이용하여 40 인치 PDP를 제작하여 모아레(Moire) 현상을 관측한 결과, PDP의 면에 대하여 수직인 선을 기준으로 0도에서 80도 사이에서 어떤 모아레 패턴(Moire pattern)도 관측되지 않았다. 또한 상기 유리기판을 PDP pixel 대비 0도에서 45도 회전시켰을 때도 모아레 패턴이 관측되지 않았다. 면지향 및 모아레 관찰 여부는 도 17 및 도 19에 나타낸 바와 같다.

비교 1

0.09 mm²의 정사각형을 기준으로 하는 그리드 방식의 패턴을 제작하였으며 패턴의 길이는 도 15와 같다. 이 때, 형성된 패턴과 교차하는 직선을 그렸을 때, 상기 직선과 상기 패턴의 인접하는 교점들간의 거리의 평균값에 대한 표준 편차의 비율(거리 분포 비율)은 약 0%이었다.

상기 유리 기판을 이용하여 40 인치 PDP를 제작하여 모아레(Moire) 현상을 관측한 결과를 도 19에 나타내었다(가운데 열, \(O\): 관찰됨, \(X\): 관찰되지 않음).

비교 2

도 16과 같은 패턴(폭 0.3 mm)을 제작하였다. 이 때, 형성된 패턴과 교차하는 직선을 그렸을 때, 상기 직선과 상기 패턴의 인접하는 교점들간의 거리의 평균값에 대한 표준 편차의 비율(거리 분포 비율)은 약 0%이었다.

상기 유리 기판을 이용하여 40 인치 PDP를 제작하여 모아레(Moire) 현상을 관측한 결과, PDP의 면에 대하여 수직인 선을 기준으로 45도, 90도 및 225도를 제외하고는 모아레 패턴(Moire pattern)이 관측되었다.

실시예 3

패턴을 형성하고자 하는 PET 필름 기재 위에 네거리부용 감광제료를
도포하였다. 네거티브용 감광재료는 일반적으로 빛에 대해 매우 민감하고 규칙적인 반응을 하는 AgBr에 약간의 AgI를 섞은 황로겐화은(Silver Halide)으로 구성하였다. 상기 PET 필름 기체 위에 형성된 불규칙한 패턴은 실시에 1과 같은 패턴을 사용하였다. 설계된 패턴 영역을 빛이 투과하고 패턴 이외의 영역을 빛이 투과되지 않는 구성을 네거티브 마스크(negative mask)를 이용하여, 설정된 노광시간과 빛의 세기에 따라 필름에 빛을 조사하였다. 이러한 과정에 의하여 감광유제층에 있는 감광이온이 감광되어 잠상(Latent image)을 형성하였다. 형성된 잠상은 현상과정을 거치면서 감광이온 흡착으로 변환되면서서, 마스크(mask) 패턴의 역상 패턴이 가시적으로 형성되었다. 상기한 포토그래프 공정을 통해 PET 필름 기체 위에 형성된 흡착은 재질의 패턴의 특성을 하기 표 1에 나타내었다.

<table>
<thead>
<tr>
<th>선폭(마이크로미터)</th>
<th>선고(마이크로미터)</th>
<th>투과도(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>6.5</td>
<td>75.6</td>
</tr>
</tbody>
</table>

상기 필름을 점착필름을 이용하여 유리에 라미네이션하였다.
상기 유리기판을 이용하여 40 인치 PDP를 제작하여 모아레(Moire) 현상을 관측한 결과, PDP의 면에 대하여 수직적인 선을 기준으로 0도에서 80도 사이에서 어떤 모아레 패턴(Moire pattern)도 관측되지 않았다. 또한 상기 유리기판을 PDP pixel 대비 0도에서 45도 회전시켰을 때도 모아레 패턴이 관측되지 않았다.

실시예 4
실비 페이지트는 입경이 2 마이크로미터인 실비 입자 80 중량%, 플라스틱수지 5 중량%, 글레스 프릿(Grass frit) 5 중량%를 10 중량%의 BCA(Butyl carbitol acetate) 용매에 녹여서 만들었다. 요판은 20 마이크로미터 폭, 7.5 마이크로미터 깊이를 가지면서 보로노이 패턴이 있는 유리를 사용하였다. 상기 보로노이 패턴은 0.09 mm²의 정사각형을 기본 단위(unit)로 지정한 후, 기본 단위 안에서의 점의 분포를 불규칙성을 주어 생성한 후 도 3과 같은 보로노이 패턴을 제작하였다. 이 패턴 중의 폐쇄도의 평균 분포 비율은 23% 이었다.

유리 기판 위에 도 4에 표시한 방식을 이용하여 오프셋 프린터를 이용하여 실비 패턴을 형성한 후, 600 °C에서 3 분 동안 소성하여 도 3과 같은 모습의 실비선을 형성하였다.
상기 유리 기판의 면지향은 0.6 ohm/square 였다. 상기 유리 기판 상의 9개의 위치에서 면지향을 각 10회씩 측정한 결과 도 18과 같은 분포 곡선을 나타낼을 확인하였으며, 이때의 면지향 값 및 분포곡선은 도 18에 표시된 바와 같다. 이때의 표준편차는 0.018이었다.
상기 유리 기판을 이용하여 40 인치 PDP를 제작하여 모아레(Moire) 현상을 관측한 결과, PDP의 면에 대하여 수직적인 선을 기준으로 0도에서 80도 사이에서 어떤 모아레 패턴(Moire pattern)도 관측되지 않았다. 또한 상기 유리기판을 PDP
pixel 대비 0도에서 45도 회전시켰을 때도 모아레 패턴이 관측되지 않았다.
[143] 도 20은 도 15와 같은 종래의 패턴(신폭 30 마이크로미터, 신간 간격 300 마이크로 미터)과 실시에 4에서 제조한 불규칙 패턴을 지니는 전도체를 각각 이용한 경우 각도별 모아레(Moire) 현상 관찰 여부(O: 관찰됨, X: 관찰되지 않음)에 대한 결과를 나타낸다.

[144] 실시에 5
[145] 실시에 4와 같은 방식으로 제조된 전도성 패턴에 접지를 한 후 이를 40인치 PDP의 전자파 차폐 필터로 사용하였을 때, 3m 떨어진 거리에서 나오는 EMI 수준을 측정한 결과를 도 21에 나타내었다.

[146] 실시에 6
[147] 실시에 4의 방법으로 제조된 패턴을 이용하여 도 22와 같은 모양의 터치 스크린(Touch screen)을 제작한 후 이를 이용하여 신형성 평가를 진행하였다. 그 결과는 도 23과 같았다. 이때 기존 ITO 기반 터치 스크린의 신형성 오차가 2 백셀(pixel)인 반면, 실시에 4의 방법으로 제조된 인쇄기반의 전도체를 이용한 터치 스크린의 경우 1 백셀 이하의 신형성 오차를 지니는 것을 확인하였다.

[148] 실시에 7
[149] 실시에 4의 방법으로 제조된 패턴을 이용하여 흑화처리하였다. 구체적으로, 흑화처리는 제조된 전도성 패턴 기판을 FeCl3(Kanto Chemical사, 16019-02) 1% 수용액에 상온에서 1분간 침지함으로써 수행하였다.
[150] 흑화처리에 의하여 Ag의 반사도를 시인성이 문제가 없는 수준으로 크게 향상시킬 수 있음을 확인하였다. 흑화 전후의 반사도를 나타내는 사진은 도 24에 나타내었다.
청구범위
[청구항 1] 투명기체, 및 상기 투명기체의 적어도 일면에 구비된
전기 전도성 패턴을 포함하는 전도체로서, 상기 투명기체의 전체
면적의 30% 이상이, 상기 전기 전도성 패턴과 교차하는 적선을
그렸을 때, 상기 적선과 상기 전기 전도성 패턴의 인접하는
교점들간의 거리의 평균값에 대한 표준 편차의 비율(거리 분포
비율)이 2% 이상인 전기 전도성 패턴을 갖는 것을 특징으로 하는
전도체.

[청구항 2] 청구항 1에 있어서, 상기 전기 전도성 패턴과 교차하는 적선은
상기 전기 전도성 패턴과의 인접하는 교점들간의 거리의 표준
편차가 가장 작은 선인 것을 특징으로 하는 전도체.

[청구항 3] 청구항 1에 있어서, 상기 전기 전도성 패턴과 교차하는 적선은
상기 전기 전도성 패턴의 어느 한 점의 접선에 대하여 수직한
방향으로 연장된 적선인 것을 특징으로 하는 전도체.

[청구항 4] 청구항 1에 있어서, 상기 전기 전도성 패턴과 교차하는 적선은
상기 전기 전도성 패턴과의 교점이 80개 이상인 것인 전도체.

[청구항 5] 청구항 1에 있어서, 상기 전기 전도성 패턴과 교차하는 적선과
상기 전기 전도성 패턴의 인접하는 교점들간의 거리의 평균값에
대한 표준 편차의 비율(거리 분포 비율)이 20% 이상인 것인
전도체.

[청구항 6] 청구항 1에 있어서, 상기 전기 전도성 패턴은 보로노이
다이어그램을 이루는 도형들의 경계선 형태의 패턴을 갖는 것인
전도체.

[청구항 7] 청구항 1에 있어서, 상기 전기 전도성 패턴은 선폭이 100
마이크로미터 이하이고, 선간 간격이 30 mm이하이며, 투명기체
표면으로부터의 선의 높이가 1 내지 100 마이크로미터인 것인
전도체.

[청구항 8] 청구항 1에 있어서, 직경 20 cm의 일의 원에 대한 투과율 편차가
5% 이하인 것을 특징으로 하는 전도체.

[청구항 9] 청구항 1에 있어서, 상기 투명기체는 유리, 플라스틱 기판 또는
플라스틱 필름인 것인 전도체.

[청구항 10] 청구항 1에 있어서, 상기 전도체는 개구율이 70% 이상인 것인
전도체.

[청구항 11] 청구항 1에 있어서, 상기 전도체는 단위면적당 저항값이
상온에서 0.01ohm/square 내지 1000ohm/square인 것인 전도체.

[청구항 12] 청구항 1에 있어서, 상기 전도체는 외부 요인에 의하여 전류를
전도시키도록 구성되는 것인 전도체.
[청구항 13] 청구항 1에 있어서, 1분을 기준으로 평균전류가 1A 이하인 것인 전도체.

[청구항 14] 청구항 1에 있어서, 상기 전기 전도성 패턴은 포화된 것인 전도체.

[청구항 15] 투명기계 상에 전기 전도성 패턴을 형성하는 단계를 포함하는 전도체의 제조방법으로서, 상기 전기 전도성 패턴은, 상기 투명기계의 전체 면적의 30% 이상에, 상기 전기 전도성 패턴과 교차하는 직선을 그렸을 때, 상기 직선과 상기 전기 전도성 패턴의 인접하는 교점들간의 거리와 평균값에 대한 표준 편차의 비율(거리 분포 비율)이 2% 이상인 패턴으로 형성하는 것을 특징으로 하는 전도체의 제조방법.

[청구항 16] 청구항 15에 있어서, 상기 전기 전도성 패턴을 인쇄법, 포토리소그래피법, 포토그레피법, 마스크를 이용한 방법, 스피터링법, 또는 잉크젯법을 이용하여 형성하는 것인 전도체의 제조방법.

[청구항 18] 청구항 15에 있어서, 상기 전기 전도성 패턴을 선폭 100 마이크로미터 이하, 선간 간격 30 mm 이하, 투명기계 표면으로부터의 선의 높이 1 내지 100 마이크로미터가 되도록 형성하는 것인 전도체의 제조방법.

[청구항 19] 투명기계, 및 상기 투명기계의 적어도 일면에 구비된 전기 전도성 패턴을 포함하는 전도체로서, 상기 투명기계의 전체 면적의 30% 이상이, 분포가 연속적인 패색 도형들로 이루어지고, 상기 패색 도형들의 면적의 평균값에 대한 표준 편차의 비율(면적 분포 비율)이 2% 이상인 전기 전도성 패턴을 갖는 것을 특징으로 하는 전도체.

[청구항 20] 청구항 19에 있어서, 상기 투명기계의 전체 면적의 30% 이상이, 분포가 연속적인 패색 도형들로 이루어지고, 상기 패색 도형들의 면적의 평균값에 대한 표준 편차의 비율(면적 분포 비율)이 20% 이상인 전기 전도성 패턴을 갖는 것을 특징으로 하는 전도체.

[청구항 21] 청구항 19에 있어서, 상기 패색 도형은 적어도 100개인 것인 전도체.

[청구항 22] 청구항 19에 있어서, 상기 전기 전도성 패턴은 보로노이 다이어그램을 이루는 도형들의 경계선 형태의 패턴을 갖는 것인 전도체.
[청구항 23] 청구항 19에 있어서, 상기 전기 전도성 패턴은 텔로니 패턴을 이루는 적어도 하나의 삼각형으로 이루어진 도형들의 경계선 형태의 패턴을 갖는 것인 전도체.

[청구항 24] 청구항 19에 있어서, 상기 전기 전도성 패턴은 선폭이 100 마이크로미터 이하이고, 선간 간격이 30 mm이하이며, 투명기체 표면으로부터의 선의 높이가 1 내지 100 마이크로미터인 것인 전도체.

[청구항 25] 청구항 19에 있어서, 직경 20 cm의 원의 원에 대한 투과율 편차가 5% 이하인 것을 특징으로 하는 전도체.

[청구항 26] 청구항 19에 있어서, 상기 투명기체는 유리, 플라스틱 기판 또는 플라스틱 필름인 것인 전도체.

[청구항 27] 청구항 19에 있어서, 상기 전도체는 개구율이 70% 이상인 것인 전도체.

[청구항 28] 청구항 19에 있어서, 상기 전도체는 단위면적당 저항값이 상온에서 0.01 ohm/square 내지 1000 ohm/square인 것인 전도체.

[청구항 29] 청구항 19에 있어서, 상기 전도체는 외부 요인에 의하여 전류를 전도시키도록 구성되는 것인 전도체.

[청구항 30] 청구항 19에 있어서, 편을 기준으로 평균전류가 1A 이하인 것인 전도체.

[청구항 31] 청구항 19에 있어서, 상기 전기 전도성 패턴은 흑화된 것인 전도체.

[청구항 32] 투명기체 상에 전기 전도성 패턴을 형성하는 단계를 포함하는 전도체의 제조방법으로서, 상기 전기 전도성 패턴은, 상기 투명기체의 전체 면적의 30% 이상에, 상기 전기 전도성 패턴과 교차하는 적선을 그렸을 때, 상기 적선과 상기 전기 전도성 패턴의 인접하는 교점들간의 거리의 평균값에 대한 표준편차의 비율(거리 분포 비율)이 2% 이상인 패턴으로 형성하는 것을 특징으로 하는 전도체의 제조방법.

[청구항 33] 청구항 32에 있어서, 상기 전기 전도성 패턴을 인쇄법, 포토리소그래피법, 포토그래피법, 마스크를 이용한 방법, 스펙터링법, 또는 잉크젯 업을 이용하여 형성을 갖는 것인 전도체의 제조방법.

[청구항 34] 청구항 32에 있어서, 상기 투명기체 상에 전기 전도성 패턴의 형성 전에 보로노이 다이어그램 제니레이터 또는 텔로니 패턴 제니레이터를 이용하여 상기 전기 전도성 패턴을 결정하는 단계를 추가로 포함하는 것인 전도체의 제조방법.

[청구항 35] 청구항 32에 있어서, 상기 전기 전도성 패턴을 선폭 100 마이크로미터 이하, 선간 간격 30 mm이하, 투명기체
표면으로부터의 선의 높이 1 내지 100 마이크로미터가 되도록 형성하는 것이 전도체의 제조방법.

[청구항 36]
청구항 1 내지 14 및 19 내지 31
중 어느 하나의 항에 따른 전도체를 포함하는 전자파 차폐 필름.

[청구항 37]
청구항 36에 있어서, 상기 두면기계의 전기 전도성 패턴이 구비된 면의 가장자리부에 구비된 접지부를 추가로 포함하는 것인 전자파 차폐 필름.

[청구항 38]
청구항 1 내지 14 및 19 내지 31
중 어느 하나의 항에 따른 전도체를 포함하는 터치 패널.

[청구항 39]
청구항 38에 있어서, 하부 기체: 상부 기체: 상기 하부 기체의 상부 기체에 접하는 면 및 상기 상부 기체의 하부 기체에 접하는 면 중 적어도 일면에 구비된 전극층을 포함하고, 상기 하부 기체 및 상기 하부 기체의 상부 기체에 접하는 면에 구비된 전극층: 및 상기 상부 기체 및 상기 상부 기체의 하부 기체에 접하는 면에 구비된 전극층 중 하나 또는 두 개 모두가 상기 전도체인 것인 터치 패널.

[청구항 40]
청구항 1 내지 14 및 19 내지 31
중 어느 하나의 항에 따른 전도체를 보조 전극으로 포함하는 유기발광소자 조명.
1. **Doctor Blade**을 이용하여 요판의 패턴에 페이스트를 제운 후, **Blanket**을 회전시켜 1차 전사.

2. **Blanket**을 회전시켜 유판면에 2차 전사.

[Fig. 5]

[Fig. 6]
[Fig. 14]
1. 원의 점 분포상성

2. 길집/바깝집 점분포로 변경

[Fig. 15]

[Fig. 16]