
(19) United States 
US 2005O149914A1 

(12) Patent Application Publication (10) Pub. No.: US 2005/0149914A1 
Krapf et al. (43) Pub. Date: Jul. 7, 2005 

(54) METHOD OF AND SYSTEM FOR SHARING 
COMPONENTS BETWEEN PROGRAMMING 
LANGUAGES 

(75) Inventors: Alexander R. Krapf, Carlisle, MA 
(US); Neil Galarneau, Wayland, MA 
(US) 

Correspondence Address: 
FISH & RICHARDSON PC 
225 FRANKLIN ST 
BOSTON, MA 02110 (US) 

(73) 

(21) 

(22) 

Assignee: Codemesh, Inc. 

Appl. No.: 10/976,742 

Filed: Oct. 29, 2004 

Related U.S. Application Data 

(63) Continuation of application No. 09/551,246, filed on 
Apr. 17, 2000. 

Publication Classification 

(51) Int. Cl." ....................................................... G06F 9/45 
(52) U.S. Cl. .............................................................. 717/136 

(57) ABSTRACT 

A method and System for representing and implementing a 
concept between two functional domains (e.g., program 
ming languages) by using a proxy component in a first 
domain to wrap a component of a Second domain, where the 
proxy component has a Semantic usability in the first domain 
closely corresponding to the Semantic usability of the under 
lying component from the Second domain. Further, provided 
is a method and System for automatically generating Such a 
proxy component. Such proxy components may be used to 
gradually transform a digital entity (e.g., a Software appli 
cation) from a first digital domain to a second digital 
domain. Further, Such proxy components may be generated 
using models that transform a component of a first domain 
to a component (e.g., a proxy component) of a second 
domain. 

Second Domain 

Component 

Inherits 

Component 

inherits 

Proxy 
Component 

Component 

Component 

Instantiates 
inherits 

Component 

  



Patent Application Publication Jul. 7, 2005 Sheet 1 of 29 US 2005/0149914 A1 

. 
(VS 
E 
O 
?h 
C 

O 
O 
CD 
C/D 

  



US 2005/0149914 A1 

?uêuoduuOO ÁXOld 

Patent Application Publication Jul. 7, 2005 Sheet 2 of 29 
  



US 2005/0149914 A1 Patent Application Publication Jul. 7, 2005 Sheet 3 of 29 

{ 

}TN-ZOZ 

  



Patent Application Publication Jul. 7, 2005 Sheet 4 of 29 US 2005/0149914 A1 

220 

class Foo : protected virtualjcpp ref 
{ 223 

FOO(jobject obj) : jopp ref( obj) 

//Some JN COde 

virtual void fooMethod(int) 
{ 

//call the JN method using virtual 
//invocation 

Class FOOUser 

Foo get a Foo() 
jobject aFoo = ...;//call Java method using virtual JN 

invocation 
return Foo(aFoo); 

FIG. 5 

  



Patent Application Publication Jul. 7, 2005 Sheet 5 of 29 US 2005/0149914 A1 

30 

proxy name (jobject obj, int type); 
36 38 40 

42 44 46 

proxy name (Const proxy class' clazz, Const char" ), 
48 50 52 

proxy name (Const proxy array" array, jsize ); 

FIG. 6 



Patent Application Publication Jul. 7, 2005 Sheet 6 of 29 US 2005/0149914 A1 

108 

class Foo : public java:lang:Object 
public: 

typedef jopp object array4Foo> array1 D; 
Foo(const Tnull B); 
Foo(object, int); 
Foo(constjcpp ref", const char"); 
Foo(constjcpp class", const char"); 
Foo(Constjcpp. array", jsize); 
Foo(constFoo & ); 116 

~Foo(); 118 120 

Foo& operator = (const Foo &); 

bOOl operator FF { Const FOO 3. COnst; 
bOOl operator = (const Foo &) const; Y 122 

124 

Static Constjcpp class get Static class(); 

COnStjcpp. Class get class() Const; 
12 

static FOO dyna Cast( Constjcpp ref & SrC), 
}; 

126 

FIG. 7 

  



Patent Application Publication Jul. 7, 2005 Sheet 7 of 29 

pass jcpp int: publicjcpp. base 54 
public. 

typedefjopp int array 57 

typedef (Tobject array-array1 D>) array2D; 

US 2005/0149914 A1 

52 

jcpp int(constjcpp ref ref, Const char * fieldName); 

jcpp int(Constjcpp class ref, Const char * fieldName); 

jcpp int( Constjcpp int array array, jSize index); 

jcpp int( Constjcpp int & rns), 

JCPP int(); N-8s 
operator new (size t size ), 
operator delete(void" ptr.); 62 
operator jint () const; 
jcpp int & operator = (jint); 
jcpp int & operator += (jint); 
jcpp int & operator -= (jint); 
jcpp int & operator *= (jint); 
jcpp. int & operator /= (jint); 
jcpp int & operator %= (jint); 
jcpp. int & operator ++ (); 
jcpp int & operator - (); 
jint operator ++ (int); 
jint operator -- (int), 

Constjcpp class * get class() cont; 

FIG. 8 

65 

  



US 2005/0149914 A1 Patent Application Publication Jul. 7, 2005 Sheet 8 of 29 

07Z 992 992 

++O 

    

  

  

  

  

  

  

  

  

  

  



Patent Application Publication Jul. 7, 2005 Sheet 9 of 29 US 2005/0149914 A1 

270 

C++ 

Declarations 

272 

Static Const jopp int X, 
273 

274 Nclass Bar 
275 

static jopp int X; 
{ 

277 
Cpp Cnar 

}, 
Usage 

256 
int i = Foo::X; 

5. int j = Bar: X; 
262 Bar. :X += 30; 
2-Njchar k = Bar().ch; 
26- Bar bar, 

Barch = 'd"; 

FIG 11 

  

  



Patent Application Publication Jul. 7, 2005 Sheet 10 of 29 US 2005/0149914 A1 

98 

ldentify the Type of the Java 
Object being Passed by Java 

Method Argument 
101 100 

Determine Mutability of 
each Field and Method 

Declared by the Identified 
Java Class or Interface and 
for each Method Assign a 
Corresponding Mutability 
Attribute to the Method 

Determine a Mutability 
Category of each 
Superinterface and 
a Superclass of the 

ldentified Java 
Class Or interface 

Assign a Mutability Category 
to the lodentified Java Class 
(or Interface) Based on the 
Mutability Attributes of the 

Fields and Methods 
Declared by the identified 
Class and on the Mutability 
Category of each Super 

Interface and a Superclass 
of the dentified Class 

104 

For the C++ Method Argument 
that Wraps the Java Method 

Argument, Declare a Constness 
of the C++ Method Argument 

Based on the Mutability 
Category of the lodentified Java 

Class or Interface 

End 

FIG. 12 

    

    

    

    

    

    

      

    

    

    

    

  

  

    

  

  



US 2005/0149914 A1 Patent Application Publication Jul. 7, 2005 Sheet 11 of 29 

96 76 

sse|OuednS e^ep 

  

  

  

  

  

  

  



Patent Application Publication Jul. 7, 2005 Sheet 12 of 29 US 2005/0149914 A1 

399 
408 Subject 
410 

Attach(Observer) 
Detach(Observer) 

400 

402 

412 

/N ConCreteObserver 404 

414 ConcreteSubject Update() 406 

GetState() 
SetState() 
subjectState 

F.G. 14 

428 doCS 420 

430 Add Document() 422 
OpenDocument() 

432 DoCreateDocument() 
CanOpenDocument() 
AboutToOpenDocument() 

434 424 MyDocument -------------- MyApplication 

DoRead() DoCreateDocument() 
CanOpenDocument() 
AboutToOpenDocument() 

F.G. 15 

  

  

  

  

  

    

    

  

    

  



US 2005/0149914 A1 2005 Sheet 13 Of 29 9 Patent Application Publication Jul. 7 

  

  

  

    

  

  

  

  

  

  

  

  



Patent Application Publication Jul. 7, 2005 Sheet 14 of 29 US 2005/0149914 A1 

495 Java 
496 

Q bj: Object, ptr : : void 497-NSSESSE, "9): 
498 S lookup(obj: Object): long 

490 Java 492 Java fiances ifc)n 
& acallback(arg: CallbackArgument): void ifc.aCallback arg): 
491 } Java 

499 

Q2S REGISTRY : Trampolinesupport - 500 
& Aninterfacelmpl(ptr.: long)-- 501 
SaCallback(arg: CallbackArgument): void 
SaCallbackNative(arg: CallbackArgument, ptr.: long): void 

505 

An interface (Proxy) 
Q2S REGISTRY: TrampolineSupport (Proxy)--511 
& Aninterface()-- 512 

510 

& Aninterface() --514 
S virtual aCallback(arg: const CallbackArgument&) : void = 0 
516 

5 1 7 C++ 
AConcretelmpl 

& AConcretelmpl() --518 
& virtual acallback(arg: const CallbackArgument&): void 
519 

FIG. 17 

-503 

An interfacelmpl{long ptr) 
{ N502 REGISTRY map(this, ptr ); 7-504 
void a Callback.( CallbackArgument arg) 
{ 
aCallbackNative(arg, REGISTRY.lookup(this)); 

} Java 

Void JNICALL aGalbackNative (JNEnv” env, 
V 506 jobject this, jobject arg, 

jlong ptr) 

AninterfaceProxy" p = (AnlnterfaceProxy")ptr; 
CallbackArgument cppArg(arg); 

pr>aCallback(CppArg), 
C++ 

C++ 
An interfaceUser (Proxy) 

& use(obj: An Interface&) : void 

521 
522 

An interface() { N-513 
Construct(...,(long)this)//take this as argument 

-Aninterface()-1 515 
REGISTRYunmap (long)this ); 

void acallback(const CallbackArgument & arg) 
Ido Concrete task 

} C++ 

  

  

  

  

  

  

  





US 2005/0149914 A1 

u?euuOC] puOOÐS ‘?uêuoduuOO puOO?S 

JÐUuJO?Sueu L ?uêuoduuOO SJ???Uueue) uO?euuJO?Suel L 

Patent Application Publication Jul. 7, 2005 Sheet 16 of 29 

  

  



Patent Application Publication Jul. 7, 2005 Sheet 17 of 29 US 2005/0149914 A1 

532 

Parse First Component to Produce 
Parsed First Component 

534 536 
Transform NO 
Component End 

Yes 
538 

ldentify Type of First Component 

540 

Analyze Parsed First Component and Determine 
Appropriate Transformation to be Performed 

542 

Apply Determined Transformation to Parsed 
First Component to Produce a Corresponding 

Component of Other Domain 

End 

FIG. 20 

  

  



Patent Application Publication Jul. 7, 2005 Sheet 18 of 29 US 2005/0149914 A1 

ldentify Next Subcomponent 
of the First Component 

Transform 
Subcomponen 

2 O 

554 ls 
Subcomponent's 
Use Dependent on 
a User-Defined 
Component 

Has 
User-Defined 
Component 
AlreadV been 
Transformed 

556 

Yes/Transform 
548 

ldentify Type of Subcomponent 

550 
Analyze Parsed Subcomponent 
and Determine Appropriate 

Transformation to be Performed 
Record that 
User-Defined 
Component 
Should be 

Transformed 
Later Apply Determined Transformation 

to Parsed Subcomponent to 
Produce a Corresponding 

Subcomponent of Other Domain 
Transform 

User-Defined 
Component 

FIG 21 

  

    

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

    

  

  

  

  

    

    

  

  



Patent Application Publication Jul. 7, 2005 Sheet 19 of 29 US 2005/0149914 A1 

480 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Receive Java Class or Interface 

Apply 
Heuristics - - - - - - - - - - - - - - - - - 

- - - - - - - - - - - - - - - - - - - - - - - - - - - 

:Apply Heuristics to 
: Identify and Mark 

483 : Callback Methods 
Allow 

as , ; Senus Edg->r 
Manually Mark 

Callback Methods 

486 

implements Interface or Extends Class 
Overriding all Marked Methods with 
Special, Delegating implementations 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Generate Corresponding C++ Proxy 
: Class Usable as Superclass for C++ 
Classes that Implement Callback Methods 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Generate Native Trampoline Methods 
for Marked Callback Methods 

FIG. 22 

  

  

  

    

  

    

  

  

  

  

  

    

  



US 2005/0149914 A1 

92 ‘SO|- 

?uêuOduuOO puOOÐS 

?uêuoduuOO 

queuoduuOO 

Patent Application Publication Jul. 7, 2005 Sheet 20 of 29 

  

  

  

  

  

  

    

  

  



Patent Application Publication Jul. 7, 2005 Sheet 21 of 29 US 2005/0149914 A1 

300a-N 
public class Counter implements java.io. Serializable 
{ 7-304a 

public static final int UP = 1, 
public static final int DOWN = 2; 

7-308a N306a 
private int max; 
private int direction; 

N310a 
//creates a new UP-counter with the given maximum 
public Counter( intmax. ) 

this( max, UP ); 
312a 

} 

//creates a new counter with given maximum and direction 
public Counter( intmax, int direction ). 

314ak max max, 
direction = direction, 

//counts in the direction specified and outputs the numbers 
public void count() 
{ 

if( direction == UP ) 
for( int=0; <max; ++ ) 

System.out.println(" "+ ); 
else if (direction == DOWN) 

for (int =max-1; Z=0; -- ) System.out.println("" + ); 

316a 

//returns true if this instance is an UP Counter 
public boolean is JpCounter() 
{ 

} 

//returns the maximum of the Counter 
public final int getMax() 
{ 

} 

//creates a Counter with the Same maximum as this Counter, but reverse direction 
public Counter getReversecounter() 
{ 

} 

3.18a 
return ( direction == UP ); 

320a 
return max, 

322a 
return new Counter(max, direction == UP 2 DOWN: UP); 

FIG. 24 



US 2005/0149914 A1 Jul. 7, 2005 Sheet 22 of 29 Patent Application Publication 

  

  



US 2005/0149914 A1 Jul. 7, 2005 Sheet 23 of 29 Patent Application Publication 
  



Patent Application Publication Jul. 7, 2005 Sheet 24 of 29 US 2005/0149914 A1 

600 
Bottom-Up Port By Proxy (initial) 

604 

DB Utils 608 612 

606 

610 

C++ Code 

FIG. 27A 

  
  



Patent Application Publication Jul. 7, 2005 Sheet 25 of 29 US 2005/0149914 A1 

600 
Bottom-Up Port By Proxy (1st Step) 

612 

608' 610 

SS Java COce 
Generated Proxy Layer 

D C++ COde 

FIG 27B 

  



Patent Application Publication Jul. 7, 2005 Sheet 26 of 29 US 2005/0149914 A1 

600 
Bottom-Up Port By Proxy (2nd Step) 

::::::::::::::: 612 

is Java COce 
Generated Proxy Layer 
C++ COde 

FIG 27C 

  

  

  

  



Patent Application Publication Jul. 7, 2005 Sheet 27 of 29 US 2005/0149914 A1 

600 
Bottom-Up Port By Proxy (3rd Step) 

612 

608a' 

SS Java Code 
Generated Proxy Layer 
C++ Code 

FIG. 27D 

  

  



Patent Application Publication Jul. 7, 2005 Sheet 28 of 29 US 2005/0149914 A1 

Bottom-Up Port By Proxy (4th Step) 

606a' 
606C' 

w : 
v. . . . 

security 
SS Java COce 

Generated Proxy Layer 
C++ COce 

612 

FIG. 27E 

  

  

  

  



Patent Application Publication Jul. 7, 2005 Sheet 29 of 29 US 2005/0149914 A1 

600 
Bottom-Up Port By Proxy (5th Step) 

614a 

612 

E. Java COde 
Generated Proxy Layer 
C++ COce 

FIG. 27F 

  

  



US 2005/0149914 A1 

METHOD OF AND SYSTEM FOR SHARING 
COMPONENTS BETWEEN PROGRAMMING 

LANGUAGES 

BACKGROUND 

0001. A common problem in Software engineering is 
Sharing or making available a Software component written in 
one language to Software written in another language. A 
common Solution to sharing a Software component with 
another language is to "Wrap' the component with an 
adapter layer or proxy layer of code. This proxy layer allows 
Software written in another language to interface with the 
wrapped component. Depending on the Software involved, 
different wrapping technologies may be used. For example, 
to make a JavaTM component available to non-Java software 
such as a C program, the Java Native Interface (JNI) may be 
used to develop a proxy layer for the component. 
0002 Sharing a component of a first language with other 
languages is more complex than merely sharing or providing 
access to data Such as, for example, by Sharing a database. 
Typically, programming languages have Semantics to be 
accounted for when developing a proxy layer for a compo 
nent. This difficulty of developing a proxy layer for a 
component increases with increased complexity of the 
Semantics of the component. 
0003) The Common Object Request Broker Architecture 
(CORBA) is a technology often used to wrap a component. 
CORBA, however, is a technology geared more for creation 
of distributed Software Systems than for wrapping Software 
components. 

0004. Accordingly, CORBA includes coding restraints 
necessary for its other uses that are unnecessary for devel 
oping a proxy layer for a component. Further CORBA 
imposes its own semantics. Therefore, CORBA adds even 
more complexity to developing a proxy layer for a compo 
nent. 

0005 Another common problem in software engineering 
is transferring (i.e., porting) a program, or part of a program, 
written in a first programming language (e.g., C++) to a 
Second programming language (e.g., Java). An ideal Solution 
to this problem would be an automatic translation tool that 
could automatically translate Source code from a first lan 
guage into Source code of a Second language that is main 
tainable by humans. The applicants, however, are not aware 
of Such a translation tool. A typical Solution to porting a 
program is to create manually (i.e., write the code for) the 
program in the Second programming language. Such manual 
porting, however, involves a risk that the program will not 
work properly, or at least not have the same behavior as the 
legacy program. This risk, as well as the difficulty in 
Scheduling and managing the porting process, increases with 
increased size and complexity of the application. For 
example, for a program with Over a million lines of code, the 
risk, management, and Scheduling of a manual conversion 
may make manual conversion an unrealistic option. 

SUMMARY 

0006 The Semantics of a programming language affect 
the usability of a component in the domain of the program 
ming language. If a component of a first language has a 
usability in accordance with the Semantics of the first 

Jul. 7, 2005 

language (i.e., Semantic usability), it is difficult to wrap this 
component Such that the wrapper or proxy component has a 
corresponding usability in a Second language. Specifically, it 
is difficult to develop Such a proxy component that has Such 
a corresponding usability in the Second language in accor 
dance with the different Semantics of the Second language. 
0007) If the semantic usability of a proxy component 
does not closely correspond to the Semantic usability of an 
underlying component of another domain, the proxy com 
ponent may have restricted usability as a Specific Solution to 
a Specific problem under limited circumstances. Such a 
restricted proxy component is not generally useful in the 
programming language for which it is written. 
0008 Accordingly, provided is a method and apparatus 
for representing and implementing a concept between two 
functional domains (e.g., programming languages) by using 
a proxy component in a first domain to wrap a component of 
a Second domain, where the proxy component has a Seman 
tic usability in the first domain closely corresponding to the 
Semantic usability of the underlying component from the 
Second domain. Further, provided is a method and apparatus 
for automatically generating Such a proxy component. Such 
proxy components may be used to gradually transform a 
digital entity (e.g., a Software application) from a first 
domain to a Second domain. Further, Such proxy components 
may be generated using robust models that transform a 
component of a first domain to a component (e.g., a proxy 
component) of a second domain. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0009) 
0010 FIG. 1 is a block diagram illustrating an example 
proxy component; 

0011 FIG. 2 is a block diagram illustrating an example 
proxy component and related components of a functional 
domain; 

In the drawings, 

0012 FIG. 3 is a Java code fragment illustrating an 
example of Java components, 

0013 FIG. 4 is a C++ code fragment illustrating an 
example of C++ proxy components wrapping the Java 
components of FIG. 3, but not having semantic usabilities 
closely corresponding to the Semantic usabilities of the Java 
component of FIG. 3; 
0014 FIG. 5 is a C++ code fragment illustrating an 
example of a C++ proxy components wrapping the Java 
components of FIG. 3, and having semantic usabilities 
closely corresponding to the Semantic usabilities of the Java 
component of FIG. 3; 

0015 FIG. 6 is a C++ code fragment illustrating an 
example of C++ context constructors, 
0016 FIG. 7 is a C++ code fragment illustrating an 
example of a C++ proxy class, 

0017 FIG. 8 is a C++ code fragment illustrating an 
example of a C++ primitive proxy class, 

0018 FIG. 9 a Java code fragment illustrating an 
example of a Java components and Java assignment State 
ments in Several contexts, where the context usability of the 



US 2005/0149914 A1 

Java components each have a context usability permitting 
usage in each of Several contexts, 
0.019 FIG. 10 is a C++ code fragment illustrating an 
example of a C++ proxy components wrapping the Java 
components of FIG. 8, and C++ assignment Statements in 
Several contexts and corresponding to the Java assignment 
statements of FIG. 8, where the C++ proxy components do 
not have a context usability permitting usage in each of the 
Several contexts, 
0020 FIG. 11 a C++ code fragment illustrating example 
C++ proxy components wrapping the Java components of 
FIG. 8, and C++ assignment Statements in Several contexts 
and corresponding to the Java assignment Statements of 
FIG. 8, where the C++ proxy components have a context 
usability permitting usage in each of the Several contexts, 
0021 FIG. 12 is a flowchart illustrating an example 
method of determining a mutability of a Java method 
argument, 

0022 FIG. 13 is a block diagram illustrating an example 
of a relationship between a C++ proxy method argument, 
Java method argument, and underlying Java object; 
0023 FIG. 14 is a block diagram illustrating an example 
of an Observer pattern; 
0024 FIG. 15 is a block diagram illustrating an example 
of a Template Method pattern; 
0.025 FIG. 16 is a block diagram illustrating an example 
of an incorrect C++ proxy implementation of a Java callback 
pattern; 

0.026 FIG. 17 is a block diagram illustrating an example 
of a correct C++ proxy implementation of a Java callback 
pattern; 

0.027 FIG. 18 is a data flow diagram illustrating an 
example of a System for compiling, linking, and running a 
C++ application having C++ proxy components, 

0028 FIG. 19 is a data flow diagram illustrating an 
example of a System for transforming a component from a 
first digital domain to a Second digital domain; 
0029 FIG. 20 is a flowchart illustrating an example of a 
method of transforming a component from a first domain to 
a Second domain; 
0030 FIG. 21 is a flowchart illustrating an example of a 
method of analyzing a component being transformed from a 
first domain to a Second domain; 

0.031 FIG. 22 is a flowchart illustrating an example of a 
method of generating a C++/Java croSS-domain callback 
pattern from a Java class or interface; 
0.032 FIG. 23 is a data flow diagram illustrating an 
exemplary aspect of the system of FIG. 19; 
0.033 FIG. 24 is a Java code fragment illustrating an 
example of Java class, 
0034 FIG. 25 is a screen shot illustrating an example of 
a digital representation of a robust Java model; 
0.035 FIG. 26 is a screen shot illustrating an example 
embodiment of a digital representation of a robust C++ 
model; and 

Jul. 7, 2005 

0036 FIGS. 27a-27fare block diagrams illustrating an 
example of a bottom-up port-by-proxy process. 

TERMINOLOGY 

0037 Software engineering employs a complex lexicon 
of terminology, wherein a Single term may have Several 
meanings, depending on the context and the individual using 
the term. Accordingly, to clarify uses of terminology in the 
present application, the following terms are defined as 
follows. 

0038 A “digital domain” as used herein is a digitally 
based technology capable of digitally representing a con 
cept. A concept may be anything from a simple concept Such 
as, for example, a number, ranging to a complex concept 
Such as, for example, a control System for a Spacecraft or 
even a person. A concept has state (e.g., on, off) and may 
have behavior (i.e., the ability to change State-e.g., turn on, 
turn off). A dynamic concept is a concept having State and 
behavior Such as, for example, a perSon, whereas a Static 
concept is a concept having only State Such as, for example, 
a number. 

0039. A “functional domain” as used herein is a digital 
domain that provides a framework for digitally representing 
a dynamic concept. Thus, functional domains have the 
ability to describe the state of a thing and the behavior of the 
thing, whereas other digital domains (i.e., non-functional 
domains) have the ability to describe only the state of a 
things. Functional domains include, but are not limited to, 
programming languages and object architectures Such as, for 
example, CORBA and the Component Object Model 
(COM). Non-functional domains include, but are not limited 
to: document formats Such as, for example, the Hyper-Text 
Markup Language (HTML) and the eXtensible Markup 
Language (XML); and data format Standards Such as, for 
example, MPEG for video images, and NTSC (National 
Television Standards Committee) for video signals. 
0040 Both functional and non-functional domains pro 
vide the ability to define data Structures to organize infor 
mation representing State. Functional domains, however, 
also provide operators and the ability to define higher-level 
functional abstractions (e.g., functions, procedures, meth 
ods) to represent behavior of the information. Functional 
abstractions may define and modify the State of the infor 
mation. 

0041 A“digital entity” as used herein is a digital repre 
Sentation of a dynamic concept defined by a combination of 
inter-related components (or components of components, 
etc.). Typically, the dynamic concept represented by the 
digital entity is more complex than the concepts represented 
by the individual components of the digital entity. These 
individual components may be Static or dynamic. If a 
functional domain is a programming language, a digital 
entity may be, for example, a program. 

0042 A functional domain may provide both a set of 
lexical productions and a method for representing concepts 
(both Static and dynamic). The lexical productions use a 
Specific alphabet of Symbols as building blocks (i.e., termi 
nal Symbols) to form lexical tokens. Lexical tokens may be 
combined to assemble Syntactical productions. A Syntactical 
production may be considered a higher level abstraction than 
a lexical token. A Syntactical production Such as, for 



US 2005/0149914 A1 

example, an expression (e.g. "A+B), may be combined 
with one or more other Syntactical productions to form 
another Syntactical production Such as, for example, a func 
tion. 

0.043 For example, if the functional domain is the Java 
programming language, then the alphabet is the Unicode 
character Set. Java's Set of lexical productions uses the 
Unicode character Set to create the lexical elements, includ 
ing white Spaces, comments, and lexical tokens. The lexical 
tokens of Java include identifiers (e.g., “A”), keywords (e.g., 
"public'), literals (e.g., “test”, 1.2, a, -5), Separators (e.g., 
“;”), and operators (e.g., "+"). These lexical tokens may be 
combined to form a Syntactical production Such as, for 
example, a type, a method, a field, a class, a compilation 
unit, etc. 
0044) A “component” as used herein is any element 
defined in a digital domain at a level of abstraction higher 
than lexical elements or any element derived from Such 
elements. Thus, a component may be, for example, an 
expression, a variable, a line of code, a component, a 
procedure, a method, a function, an object, a program, etc. 
0.045. A “source component” as used herein is a compo 
nent in Source-code form, i.e., written in Source code. The 
use of the term "source” in this context ("Source compo 
nent”) is unrelated to the use of the term “source” in the 
context of a transformation from a “Source' domain to a 
“target domain discussed in more detail below. 
0046. A “compiled component” as used herein is a com 
piled Source component, i.e., a component in machine-code 
form or in any form that is more Suitable for machine 
interpretation than a Source file. For example, a Java class 
file is more Suitable for machine interpretation than a Java 
Source file. 

0047 “Syntax” as used herein is the set of syntactical 
productions from which a Source component of a functional 
domain can be composed. Syntax Serves as a guide for a 
compiler, or equivalent program, that parses a Source com 
ponent and translates the Source component into a compiled 
component. 

0.048. A “high-level component” as used herein is a 
component that uses other components to represent a dis 
crete concept. In programming languages, high-level com 
ponents may include high-level data components, high-level 
functional components, and objects (objects are defined 
below). Examples of high-level data components may 
include, but are not limited to, records and arrayS, but would 
not include lower-level data components Such as, for 
example, characters and integers. High-level functional 
components may include, but are not limited to, functions, 
procedures, and methods, but would not include lower-level 
functional components Such as, for example, operators, 
which do not include other components, and fragments of 
code that do not represent a discrete concept Such as, for 
example, a line of code of a multi-line procedure. 
0049. A “sub-component” as used herein is a component 
contained within a high-level component. For example, in 
the Pascal programming language, an expression may be a 
Sub-component of a procedure. Further, in an object-ori 
ented programming language (OOPL), discussed below in 
more detail, a method (which is a high-level component 
itself) may be a Sub-component of a class. 

Jul. 7, 2005 

0050. A “high-level Sub-component” as used herein is a 
high-level component contained within a high-level com 
ponent. For example, in an OOPL, discussed below in more 
detail, a method may be considered a high-level Sub-com 
ponent of a class. 
0051. The term “proxy component” as used herein is a 
component defined in a first functional domain Such that 
execution of the proxy component at runtime in the first 
functional domain results in execution of one or more 
components in the Second functional domain. A proxy 
component may also be referred to herein as a wrapper. For 
example, if the first domain is the C++ programming lan 
guage, and the Second domain is the Java programming 
language, a C++ proxy class is a C++ class that delegates 
execution of methods and access of fields to a corresponding 
Java class. 

0052 The ability of a component to represent properly a 
concept in a functional domain depends on a number of 
factors. One factor is adherence to the Syntax of the func 
tional domain. Proper Syntax is a minimum criteria that must 
be Satisfied in order for Successful compilation of a compo 
nent. 

0053. The term “semantics” as used herein refers to other 
factors (besides Syntax) that affect the ability of a component 
to represent properly a concept in a functional domain. 
Semantics may be considered as the meaning of a compo 
nent in the context of a functional domain, as opposed to the 
Structure of the component, i.e., the Syntax. 
0054 Semantics as used herein may include run-time 
behavior Such as, for example allocation and deallocation of 
memory, garbage collection, thread management, loading 
components into memory, and linking components (which 
also may occur at compile-time). Semantics of a digital 
domain may also include the usability of a component. For 
example, typical Semantics of a programming language may 
require that the type of a variable be defined before the 
variable is assigned a value. Another related usage rule for 
programming languages is that a variable may only be 
assigned a value of its defined type. Consequently, an 
attempt to assign a value to a variable of undefined type or 
to assign a value of a type different from that defined for a 
variable may result in a compile-time or run-time error. 
Depending on the particular functional domain, the Seman 
tics may be more complex. For example, depending on the 
Semantics of a programming language, the usability of a 
component may be defined by at least the components: 
accessibility, mutability, inheritability, instantiability, ability 
to be polymorphic, context-usability, or any combination 
thereof. 

0055 As used herein, “semantic usability” refers to the 
usability of a component in accordance with the Semantics 
of the component's functional domain. 
0056. As used herein, “accessibility” refers to the ability 
of a component to be accessed by other components of a 
digital domain. For example, in the programming language 
C++, declaring a field as private limits the accessibility of 
the field to the declaring class. 
0057. As used herein, “mutability” refers to the ability of 
the components to be changed or to cause change. For 
example, in Some programming languages, a component 
may be declared as “constant, and therefore not changeable 
(i.e., not mutable). 



US 2005/0149914 A1 

0.058 As used herein, “inheritability” refers to the ability 
of a component to have any of its properties inherited by 
other components. For example, in the Java programming 
language, a class declared with the keyword final cannot 
have any Subclasses. In another example, in the C++ pro 
gramming language, the virtual keyword being or not being 
used in method declarations has a big impact on the Suit 
ability of a class as a Superclass. 

0059) As used herein in the context of an OOPL, “instan 
tiate’ means to create an instance (of an object). For 
example, if a method may be declared to return an object, 
then the implementation of the method may instantiate an 
object to return as the result. 
0060 AS used herein, “instantiability” refers to the ability 
to create an instance of a component. For example, in the 
Java programming language, a Java interface cannot be 
instantiated, i.e., it is not instantiable. 
0061 AS used herein, “polymorphicability” refers to the 
ability of a component to be polymorphic, i.e. the ability to 
exhibit the property of polymorphism. Polymorphism is 
typically, although not necessarily exclusively, a feature of 
an object-oriented programming language that permits an 
instance of a type (e.g., a class) to be referred to as an 
instance of a related type (e.g., Superclass). Typically, 
although not necessarily, the relationship is an inheritance 
relationship. For example, an instance of a Java class may be 
referred to as an instance of a Superclass extended by the 
Java class. 

0.062. As used herein, “context-usability” refers to the 
ability of a component to be used in one or more contexts. 
For example, depending on the programming language, a 
component may be used in the context of an instance field, 
a class field, an array element, a Stand-alone object, a 
method argument and a return value. The Semantics of a 
programming language control the use of a component in 
each of these contexts. 

0.063. Other terms that are used frequently herein include: 
implement, invoke, abstract, concrete, and object. To 
“implement” as used herein means to provide code that 
performs a task associated with (or that is to be associated 
with) a declaration. In other words, to implement means to 
provide code that honors the contract made through (or that 
is to be made through) a declaration. 
0064. As used herein, “invoke” means to call or execute. 
For example, a proxy component may invoke a JNI function 
to access a Java component. 

0065. As used herein, an “abstract” component is a 
component defined Such that it cannot be instantiated and a 
“concrete' component is a component defined to be instan 
tiated. 

0.066 Although the term “object' has several meanings in 
the field of Software engineering, as used herein, an “object' 
is a component defining State and behavior, and is not 
limited to the strict definition of an object of an OOPL. An 
object is capable of representing a dynamic concept by itself. 
For example, in a procedural programming language, an 
object may be a component of a program that includes 
variables to define State and a functional abstraction Such as, 
for example, a function, procedure or method, to define 
behavior and change the State of the variables. 

Jul. 7, 2005 

0067. In an OOPL, objects may have members such as, 
for example, methods that define a behavior of the object 
and fields that define the State of the containing object. A 
field may be of type object or type primitive. A primitive 
type is a fundamental data type provided by a language. 
Primitive types are specific for each programming language, 
but typically include characters, booleans and numberS Such 
as, for example, integer. 
0068 For example, an object representing a column of a 
Spreadsheet may contain: a method for calculating the Sum 
of the values of all the cells in the column, a field of 
primitive type for representing the column number, and field 
of object type representing a cell of the column. 

DETAILED DESCRIPTION 

0069. The following detailed description should be read 
in conjunction with the attached drawing in which similar 
reference numbers indicate Similar structures. All references 
cited herein are hereby expressly incorporated by reference. 
0070 A proxy component has a semantic usability in a 

first domain that closely corresponds to the Semantic usabil 
ity of a shared component in a Second domain when the 
proxy component is generally useful in the first domain, 
rather than restricted in use as a specific Solution to a specific 
problem. To create a proxy component that has a Semantic 
usability in a first domain that closely corresponds to the 
Semantic usability of a shared component of a Second 
domain, rules and heuristics based on knowledge of the 
Semantics of the first and Second domains may be applied to 
determine default component mappings between the two 
domains. 

0071 Close correspondence of semantic usability may be 
achieved from the application of these rules and heuristics. 
A default mapping is a mapping that may be applied 
generally for a particular type of component, but that may be 
overridden (i.e., customized) for a specific component if 
desired. 

0072 Different rules and heuristics may be applied 
depending on the domains involved and the components 
being mapped. The close correspondence of Semantic 
usability between two components of different domains 
often is limited by the dissimilarities between the semantics 
of the two domains, as opposed to being limited by lack of 
knowledge from which the rules and heuristics are devel 
oped. For example, Pascal provides neither classes nor 
modifiers that enforce inheritability Semantics. 
0073 Consequently, the inheritability of a Pascal proxy 
component may not correspond too closely to the inherit 
ability of a Java class. 
0074 FIG. 1 is a block diagram illustrating an example 
embodiment of Sharing a component with other functional 
domains. First component 2 of first functional domain 6 has 
a first semantic usability 4 in the functional domain 6. 
0075 Proxy component 8 of second functional domain 
16 has a semantic usability 10 in the second functional 
domain closely corresponding with Semantic usability 4. 
Proxy component 8 includes a proxy layer 14 that wraps first 
component 2 Such that first component 2 may be accessed by 
the second domain 16. Proxy component 8 may also include 
a utility layer 12 to facilitate access and use of the proxy 



US 2005/0149914 A1 

component 8 by other components of the Second functional 
domain 16. The semantic usability 10 may be implemented 
by utility layer 12, or proxy layer 14, or any combination of 
the two. 

0.076 AS described above, depending on the functional 
domain of the first component 2, the Semantic usability of a 
first component 2 may be defined by at least the first 
components: accessibility, mutability, inheritability, instan 
tiability, polymorphicability, context usability, or any com 
bination thereof. Accordingly, in various embodiments of a 
proxy component having a Semantic usability closely cor 
responding to the Semantic usability of the component that 
it wraps, the proxy component's accessibility, mutability, 
inheritability, instantiability, polymorphicability, context 
usability, or any combination thereof may be determined 
from the accessibility, mutability, inheritability, instantiabil 
ity, polymorphicability, context usability, or any combina 
tion thereof of the wrapped component. 
0.077 FIG. 2 is a block diagram illustrating example 
possible uses of proxy component 8 in functional domain 16 
that may be impacted by the Semantic usability of proxy 
component 8. For example, depending on the functional 
domain, proxy component 8 may inherit from components 
18 and 20. For example, if the proxy component 8 were a 
C++ proxy component, the C++ proxy component 8 may 
inherit from C++ Superclasses 18 and 20. 
0078. The proxy component 8 also may be inherited by 
another component 22 of functional domain 16. For 
example, if functional domain 16 is the C++ programming 
language, then C++ proxy component 8 may be a C++ proxy 
class Serving as a Super class for a C++ class 22. 
0079 Proxy component 8 may also be instantiated by a 
Subcomponent 25 of component 24. For example, a C++ 
proxy class 8 may be instantiated by a C++ method 25 of a 
C++ class 24. The C++ proxy class 8 may be defined such 
that it may not be instantiated Such as, for example, if C++ 
proxy class 8 includes pure virtual methods. Pure virtual 
methods are described below in more detail. 

0080 Proxy component 8 may be used as a field 28 of 
another component 26 of the second domain 16. For 
example, a C++ proxy class 8 may be used as an instance 
field 28 of a C++ class instance 26. Such use may depend on 
whether C++ proxy class 8 is accessible to C++ class 
instance 26 and whether C++ proxy class 8 may be used in 
this context (i.e., as an instance field). 
0081. Each of components 18-28 may be a proxy com 
ponent itself, which adds another level of complexity to 
providing proxy component 8 that has a Semantic usability 
in the Second functional domain 16 closely corresponding to 
the semantic usability of first component 2 in the first 
domain. 

0082 If a component is shared between two domains, a 
C++ proxy component representing a first concept has a 
Semantic usability closely corresponding to the Semantic 
usability of a Java component representing the first concept. 
In one implementation, the Java Native Interface (JNI), a 
Java Application Programming Interface (API), may be used 
to code the proxy layer of the C++ proxy component. In 
another implementation, other interfaces Such as, for 
example, Microsoft's Raw Native Interface (RNI) or 
Netscape's Java Runtime Interface (JRI), may be used to 

Jul. 7, 2005 

code the proxy layer of the C++ proxy component. In either 
implementation, the interface being used is Supported by the 
targeted Java Virtual Machine (JVM). 
0083. Several example embodiments of components, 
Semantics, usability, rules, heuristics and default mappings 
are described below in connection with Java, C++, and JNI. 
These embodiments are merely illustrative and not limiting, 
and may be applied to other functional domains. 
0084. Further, although each embodiment is discussed 
Separately below various aspects of each embodiment may 
overlap. Thus, the following Separate descriptions are not 
meant to be exclusive to a particular embodiment, but each 
description may have application to other embodiments 
described below. 

0085) JNI 
0086) JNI is a Java API that may be used to develop a 
proxy layer between Java and C. AC program may call and 
be called by many other languages. Accordingly, a JNI proxy 
layer may be used as part of a proxy layer between Java and 
components of one of these many other languages. Thus, a 
developer who knows Java, JNI and C can use JNI to call 
Java components from C and Vice versa. 
0087. If a developer also knows C++, the developer can 
use JNI to develop a proxy layer to call Java components 
from C++ or vice versa. For a more detailed description of 
Java, See The Java Language Specification, 1996, by James 
Gosling et al (Gosling). For a more detailed description of 
C++, see The C++Programming Language, Third Edition, 
1997, by Bjarne Stroustrup (Stroustrup). For a more detailed 
description of JNI, see The Java Native Interface Program 
mer's Guide and Specification, 1999, by Sheng Liang 
(Liang). 
0088 Applicants have discovered, however, that JNI is a 
complex interface for which it is difficult to write proxy 
layers that execute properly even for developerS that know 
both C and Java. This difficulty arises because JNI is a 
low-level API, almost at a level equivalent to assembly 
language. Consequently, a developer is forced to leave an 
object-oriented level of abstraction to utilize JNI. Further, 
JNI is not strongly type-checked, resulting in more bugs that 
typically are hard to find. For these and possibly other 
reasons, JNI currently is underutilized as an interface. 
0089 Although JNI addresses the requirements for low 
level conversions, JNI does not address C++ Specifically, 
beyond providing a C++ binding for JNI functions. Further, 
a developer must not only have knowledge of both C++ and 
Java, but know how to adapt C++ language components into 
C components that can invoke JNI functions that access Java 
components. Even if a developer has Such knowledge, 
developing (i.e., writing, testing, and modifying) JNI code 
for a C++-to-Java interface adds more time and cost to the 
development of a program. 

0090 Another drawback of using JNI is that JNI source 
code is often difficult for a C or C++ developer to understand 
(except perhaps for the developer who wrote it). Further, a 
program using JNI often has exceSS code caused by Several 
components of the application including JNI code (often 
redundant JNI code) to proxy to Java components. Such 
exceSS code is more likely if a developer is inexperienced in 
coding with JNI. 



US 2005/0149914 A1 

0.091 Three particular aspects of JNI that impact gener 
ating C++ proxy components are: JNI thread management; 
JNI object-reference types; and JNI context-dependency. 
JNI thread management imposes a requirement that a thread 
originally created in a C or C++ program must explicitly be 
attached to a JVM before other JNI calls can be made on this 
processing thread. Most JNI function invocations take a 
JNIEnv pointer as an argument. The JNIEnv pointer is 
Specific to a thread, i.e., attaching the thread to the JVM 
returns a JNIEnv pointer that must not be used from other 
threads. 

0092 JNI has three object reference types, called local, 
global and weak global. Local references are only valid 
within the thread that created them, whereas global and 
weak-global references are valid among all threads that are 
attached to the JVM. 

0093 JNI provides different JNI functions for different 
JNI-object reference types. To create a new object reference 
for an existing object, a developer must choose between JNI 
functions: NewLocalRef, New GlobalRef, or New WeakGlo 
balRef. Accordingly, in JNI, one of the following JNI 
functions must be used to notify the JVM of the release of 
an object: Delete localRef, DeleteClobalRef, or 
Delete WeakGlobalRef, depending on the object-reference 
type. See Liang for a more detailed description of the 
different types of JNI references. 
0094) JNI context-dependency means that JNI function 
invocation is context-dependent. In other words, JNI pro 
vides different functions depending on the context of the 
object invoking the function. JNI object contexts include: 
Stand-alone object; class (i.e., Static) variables; instance 
variables, and array elements. In contrast, in both C++ and 
Java, the use of an object is not context-dependent, i.e., to 
use an object, the developer does not have to pay attention 
to the context in which the object resides. AS used herein, the 
“JNI contexts” refer to these four contexts. 

0.095 For example, in C++ and Java, the developer does 
not have to differentiate between a String used as an array 
element, a String used as a Stand-alone object or a String used 
as an instance- or class-field. The usage of the String in all 
cases is identical. 

0.096 JNI provides context-dependent functions to 
retrieve (i.e., return) the value of an object reference. To 
retrieve the value of an instance object field, for example, 
JNI provides the GetObjectField function. To retrieve the 
value of a static object field, the GetStaticObjectField func 
tion is used. To retrieve an element of an array, the GetO 
bject Array Element function is used. JNI does not provide a 
Specific function to retrieve Stand-alone objects. 
0097. The impact of these aspects of JNI on creating C++ 
proxy components that have Semantic usability closely cor 
responding to the Java components that they wrap is 
explained in more detail below. 
0.098 Java Package->C++ Namespace 
0099 AJava package may be mapped by default to a C++ 
namespace. Accordingly, in an embodiment of sharing a 
Java component, a C++ nameSpace representing a first 
concept provides a proxy layer to a Java package represent 
ing the first concept, and has a Semantic usability closely 
corresponding to the Semantic usability of a Java package. 

Jul. 7, 2005 

0100. The Java component package naturally maps to the 
C++ component namespace. Both elements are abstraction 
mechanisms for organizing and modularizing components 
of a program. Although C++ uses nameSpaces only for 
managing the visibility of declarations, Java has accessibil 
ity rules associated with the membership of a class in a 
package. This accessibility aspect of a Java package is not 
readily adaptable to C++. Although the remaining aspects of 
a package map to a nameSpace relatively Straightforward, 
there is a complication in relation with the default package 
in Java. 

0101 The Java default package is the package in which 
classes reside that have not had a package specified. AS Such, 
the Java default package may be considered analogous to the 
C++ unnamed namespace or C++ nameSpace without a 
name. C++ has two namespaces that do not have a name, the 
global nameSpace and an explicitly declared namespace 
without a name. The latter may be referred to herein as the 
unnamed nameSpace. 

0102) Any declarations made in the global namespace are 
Visible from every other nameSpace. In contrast, the 
unnamed namespace typically is used to make declarations 
local to a compilation unit. Neither the global namespace nor 
the unnamed nameSpace represent all aspects of the Java 
default package. The compilation-unit-local property of the 
C++ unnamed nameSpace renders the C++ unnamed 
namespace unsuitable as the C++ component corresponding 
to the Java default package. A namespace named “default 
(or Some Such name) may be used to represent the default 
package, but Such a namespace may clash with a nameSpace 
named “default'. 

0103). Accordingly, in an aspect of mapping a Java pack 
age to a C++ namespace, Java packages are mapped to C++ 
namespaces of the same name with the C++ namespace 
hierarchy mirroring the Java package hierarchy. Optionally, 
the Java default package may map to the global nameSpace. 

0104. Even though namespaces are a part of the C++ 
Standard, C++ compilers that do not Support namespaces or 
have bugs associated with the use of nameSpaces may still 
be in use. To Support the use of C++ proxy component on 
Such compilers, in another aspect of mapping a Java package 
to a C++ proxy component, the package name may be made 
part of a C++ proxy class name, i.e. a fully qualified name 
may be generated. For example, the String class of the 
java.lang package may be wrapped by a C++ class named 
java lang String). 

0105 Java Interface->Instantiable C++ Proxy Class 
0106 A Java interface is a Java reference type whose 
members are abstract methods and public Static final fields 
representing constant values or constant references. The 
Java interface is used to establish a “calling contract that 
can be implemented by concrete classes. For example, a 
Java “factory' method declared to return an interface guar 
antees (i.e., contracts) to other Java components that it will 
return an instance of a concrete class that implements the 
Java interface. In other words, the factory method guaran 
tees that it will return an object that meets minimum criteria 
defined by the interface. 

0107 Java interface in this context is a Java data abstrac 
tion similar to a Java class. Thus, the use of the term “Java 



US 2005/0149914 A1 

interface” in this context should not be confused with any 
use of the term “interface” to describe a C++/Java proxy 
layer. 
0108) Another possible use for a Java interface is as an 
empty interface (i.e., So-called “marker interface') which 
does not declare any methods. Yet another use for a Java 
interface is as a container for constant values. 

0109 Java semantics do not allow Java interfaces to be 
instantiated, but allow concrete classes to implement these 
interfaces. Also, Java Semantics allow a concrete class to 
implement multiple interfaces, which can result in a concrete 
class implementing the same interface along different paths. 
For example, a Java class that implements an interface may 
also extend a class that implements the same interface. 
0110 FIG. 3 is a Java code fragment illustrating an 
example embodiment of Java components, including a Java 
interface Foo 202, a concrete Java class FooImpl 204, and a 
Java class FooUser 206. The interface 202 includes a 
method fooMethod that by virtue of being declared in a Java 
interface is an abstract method. The concrete class 204 is 
defined to implement the interface 202. The class 206 
includes a factory method get a Foo 208 that is declared to 
return an instance of a concrete class that implements Java 
interface 202. The body 209 of factory method 208 satisfies 
this calling contract by creating and returning an instance of 
concrete class 204. In another example, Java component 200 
may include Several concrete classes that implement Java 
interface 202. In this case, the factory method body 209 may 
include logic that defines which concrete class will be 
instantiated depending upon an object State at the time at 
which the factory method 208 is invoked. 
0111. In C++, a class having no instance data and only 
pure virtual methods correlates loosely to a Java interface. 
AS used herein, a "C++ interface' is a C++ class including 
no instance data and only pure virtual methods. 
0112 A concrete C++ class may define an interface to be 
one of the concrete class Superclasses. In Such a situation, 
each pure virtual method of the C++ interface has an entry 
in the concrete class's virtual function table and can be 
invoked polymorphically. Thus, the concrete C++ class 
provides an implementation for each pure Virtual method of 
a C++ interface. C++ Semantics, however, prohibit the 
instantiation of a C++ interface. If a concrete C++ class 
implements a C++ interface, to refer to the concrete C++ 
class as the C++ interface, the C++ class must be referred to 
through a pointer or a reference to the C++ interface. A 
pointer is an indirection mechanism used in C and C++ that 
does not require the pointed-to instance to be of the exact 
type of the declared pointer. Thus a pointer can be used to 
refer to a C++ instance as a C++ interface instance even 
though C++ interfaces cannot be instantiated. 
0113 Consequently, if a C++ interface needs to be used, 
for example as a field or as a method argument or as a 
method return value, C++ Semantics enforce the use of 
pointers or references. 
0114. It may be desired to wrap a Java interface with a 
C++ proxy interface So that 1) C++ components may access 
and use the Java interface itself (discussed immediately 
below), and 2) to implement the abstract methods of the Java 
interface with concrete C++ methods (discussed below in 
connection with cross-domain callback patterns and FIGS. 
14-17). 

Jul. 7, 2005 

0115 Although a Java interface appears to transform 
relatively simply to a C++ proxy interface, it does not. 
0116 FIG. 4 is a C++ code fragment illustrating an 
example embodiment of C++ proxy components 210 wrap 
ping Java components 200 of FIG. 3, but not having 
Semantic usabilities closely corresponding to the Semantic 
usabilities of the Java component of FIG. 3. C++ proxy 
components 210 result from applying an incorrect mapping 
to Java components 200. C++ components 210 includes a 
C++ interface Foo 212, a concrete class Foompl 214, and a 
class FooUser 218. The concrete C++ class 214 implements 
the C++ interface 212 by declaring the C++ interface 212 as 
its Superclass. Class 216 contains a method get a Foo 218 
that guarantees to return a pointer to an instance of a 
concrete class that implements interface 212. The body 219 
of factory method 218 Satisfies the guarantee by creating and 
returning an instance of concrete class 214. If the C++ 
components 210 of FIG. 4 were non-proxy components, 
they would have Semantic usability closely corresponding to 
the Java components 200 of FIG. 3. In contrast, if C++ 
components 210 are proxy components, they do not imple 
ment properly the dynamic concept represented by the Java 
components 200 for the following reasons. 
0.117) If the C++ components 210 are proxy components, 
the C++ proxy method 218 can only guarantee that it returns 
a C++ proxy object which implements C++ interface 212. 
Because C++ interface 212 cannot be instantiated, an 
instance of a concrete C++ class needs to be returned as the 
result. Java method 208 only contracts to return an instance 
implementing Java interface 202, So in general the concrete 
type of the instance that is being returned is unknown. 
Although source code inspection of Java method 208 would 
yield the concrete type, it is impossible to rely on the 
presence of Source code under all circumstances. This prob 
lem becomes more apparent if frequently-implemented Java 
interfaces like Serializable or Clonable are considered. 

0118 For example, a Java method declared to return a 
Serializable instance would be impossible to map to a C++ 
proxy method in this fashion. Such a C++ proxy method 
could not possibly be implemented to anticipate all classes 
that implement the Serializable proxy interface and return an 
instance of the appropriate concrete proxy class. Another 
consequence of this design is that the addition of a new Java 
class implementing Serializable would necessitate the modi 
fication of aforementioned C++ proxy method to account for 
a new concrete Java class. 

0119) A solution to this problem is to have the C++ proxy 
method 218 declared to return an instance of the actual C++ 
proxy interface 212 itself. This declaration allows all callers 
of the proxy method 218 to use the method result in 
accordance with the contract established by interface 212. 
To be able to return an instance of the C++ proxy interface 
212, it must be instantiable. 

0120) Therefore, a Java interface may be mapped by 
default to a to an instantiable C++ proxy class. Accordingly, 
an instantiable C++ proxy class representing a first concept 
may wrap a Java interface representing the first concept, and 
may have a Semantic usability closely corresponding to the 
Semantic usability of the Java interface. 
0121 For the C++ proxy interface 212 to be instantiable, 
the methods contained in the C++ proxy interface 212 must 



US 2005/0149914 A1 

not be declared pure virtual. Generating instantiable C++ 
proxy interfaces and the methods that they contain has an 
impact on the declaration of C++ proxy methods, as will be 
discussed in more detail below. 

0122) Thus, by making instantiable a C++ proxy interface 
that wraps a Java interface, C++ proxy components can 
properly access and execute the Java interface through the 
C++ proxy interface, and properly acceSS and execute Java 
components that use the Java interface, Such that the con 
cepts represented by the Java interface and Java components 
are implemented properly. 
0123 FIG. 5 is a C++ code fragment illustrating an 
example embodiment of C++ proxy components 220, 
including C++ proxy interface 222 and C++ proxy class 226 
that may wrap Java interface Foo 202, a concrete Java class 
FooImpl 204, and a Java class FooUser 206, respectively. In 
this example, proxy class jepp ref 230 represents a proxy 
Support base class. Proxy Support classes are described in 
more detail below. Proxy constructor 223 initializes 
instances of C++ proxy class 222. Proxy constructors also 
are discussed below in more detail. C++ proxy interface 
method 224 uses the virtual JNI invocation technique (also 
discussed below in more detail) to call a correct Java 
implementation of this C++ proxy method. 
0.124 C++ proxy method 228 may return a pointer to an 
instance of a concrete C++ proxy class that implements the 
C++ proxy interface 222, or may return a pointer for other 
reasons. Alternatively, the C++ proxy method may return an 
instance of the C++ proxy interface 222 itself, as indicated 
in the method declaration and the body 229 of the method 
228. 

0.125 By obviating the need for use of pointers, the C++ 
proxy classes also become more usable for the following 
reasons. Often, results returned by methods are not required 
for further processing and, consequently, developerSchoose 
to ignore the return value of a method. If a pointer to a newly 
allocated object is returned, however, that object is typically 
allocated on the program's heap. Consequently, to prevent 
resource leaks from occurring, the instance referred to by the 
result pointer is freed explicitly by the caller. Thus, the caller 
maintains the result pointer until explicitly freeing it. This 
maintenance clashes with the developer's desire to simply 
ignore the result, which is Something that is possible in Java 
with Java method 208. Therefore, by obviating the need for 
using a pointer, callers of the C++ proxy classes may ignore 
the result, and need not maintain and explicitly free a result 
pointer. 

0.126 C++ proxy interface 222 may have data that main 
tains the JNI object reference (not shown in FIG. 4). 
Because the C++ proxy interface 222 may possess instance 
data, concrete C++ classes or proxy classes inherit Virtually 
from this C++ proxy interface to prevent multiple inclusion 
of instance data in the C++ class derived from the interface. 
Virtual inheritance prevents any derived C++ classes 
(including derived proxy classes) from maintaining multiple 
memory locations for the Same C++ proxy interface 222 and 
all the problems associated with this situation. Virtual inher 
itance is discussed in more detail in Stroustrup. 
0127 Java Class->C++ Proxy Class 
0128. A Java class may be mapped by default to a to a 
C++ proxy class. Accordingly, in an embodiment of Sharing 

Jul. 7, 2005 

a Java component, a C++ proxy class representing a first 
concept provides a proxy layer to a Java class representing 
the first concept, and has a Semantic usability closely cor 
responding to the Semantic usability of the Java class. 
Optionally, the accessibility of each member of the C++ 
proxy class is determined from one or more properties Such 
as, for example, accesibility, of a corresponding member of 
the Java class. 

0129. Private members of the Java class are by definition 
only accessible to the declaring Java class itself So there is 
no need to make them accessible to callers in another 
domain. Accordingly, in an aspect of mapping a Java class 
to a C++ proxy class, private members of the Java class need 
not be mapped at all, but may be omitted from the C++ 
proxy class or struct. 
0.130 For illustration purposes, in the description below, 

it will be assumed that C++ proxy classes, as opposed to 
C++ Structs (or C++ unions), wrap Java classes, although the 
Same general considerations are applicable if a C++ proxy 
Struct wraps a Java class. Although a union may be able to 
represent a C++ proxy type, its usage may introduce com 
plications Such that's its use may be of no additional value. 
0131 Because the Java classes have declaration modifi 
ers, a default mapping that captures the transformation of a 
Java class to a C++ proxy class is complex. For example, a 
Java class can be declared abstract. A Java class must be 
declared abstract if at least one of its declared methods is 
abstract; if it does not implement a method that is declared 
in a Java interface that the Java class implements, or the Java 
class does not implement a method that was declared 
abstract in the class's Superclass. Further, even if the Java 
rules do not dictate that a Java class must be declared 
abstract, a Java class may be declared abstract to prevent it 
from being instantiated. 
0132) An abstract Java class may have constructors 
intended for use by Subclasses. In an aspect of creating a 
C++ proxy class with Semantic usability closely correspond 
ing to an abstract Java class, Such constructors may be 
transformed to be protected if they were public in the 
underlying Java class. The context-sensitive constructors 
described below allow instantiation of a C++ abstract proxy 
class for pre-existing Java instances of classes extending the 
abstract Java class. 

0.133 An abstract Java class is similar to a Java interface. 
Thus, for the same reasons as discussed above in connection 
to Java interfaces, a Java class with abstract methods may be 
mapped by default to a to an instantiable C++ proxy class. 
Accordingly, in an embodiment of Sharing a Java compo 
nent, an instantiable C++ proxy class representing a first 
concept provides a proxy layer to a Java class having 
abstract methods and representing the first component, and 
has a Semantic usability closely corresponding to the Seman 
tic usability of the Java class. 
0134) To properly transform method members of an 
abstract Java class to a C++ class, further considerations are 
discussed in more detail below in connection to methods. 

0135) Java permits Java classes to be defined final (as 
Java also permits for methods, which will be discussed in 
more detail below). The Java semantics dictate that a Java 
class defined to be final is not allowed to be a Superclass for 
other classes. In other words, the Java class is not inherit 



US 2005/0149914 A1 

able. C++ does not have a corresponding concept to this final 
definition that restricts inheritability of C++ classes. This 
absence of the final concept in C++ does not have adverse 
effects on the transformation per Se. For example, a C++ 
proxy class may include a comment reflecting the intended 
inheritability of the C++ proxy class. Although this comment 
can not be enforced by the C++ compiler, it may inform a 
C++ developer of the intended non-inheritability. 
0.136 The Java keyword final is also used to modify a 
method declaration, and should be taken into account by a 
C++ proxy class. The implications of the Java keyword final 
in creating C++ proxy classes are discussed in more detail 
below in connection to proxy methods. 
0.137 In one implementation of a C++ proxy class wrap 
ping a Java class, the C++ proxy class may be used in each 
context that the Java class may be used in the Java domain. 
Further, when JNI provides the proxy layer of the C++ proxy 
class, the C++ proxy class may be usable in each JNI 
context. Thus, in an aspect of a C++ proxy class having a 
Semantic usability closely corresponding to the Semantic 
usability of the Java class, the C++ proxy class may be used 
in one or more of the following contexts: 

0138 1) as an instance field in a C++ class; 
0139 2) as a class (static) field in a C++ class; 
0140. 3) as an array element; and 
0141 4) as a stand alone object (not a field of a class, 
not a field of a class instance and not an element of 
an array). 

0142. As discussed above, JNI functions are context 
dependent. To access Java fields from a C++ proxy field 
(discussed below), it may be desirable to have a C++ proxy 
class that is usable in all JNI contexts, to invoke the 
appropriate JNI function depending on the context of the 
Java instance. If a C/C++ program only needs to access one 
field from the Java functional domain, the context-depen 
dency of JNI is not too difficult to incorporate into the C/C++ 
code. If, on the other hand, a C/C++ program requires acceSS 
to multiple Java components, or requires use of multiple 
Java components, or requires use of a higher-level Java 
component, then incorporating into the C/C++ code the 
proper JNI code to accommodate the JNI context-dependen 
cies becomes a more difficult task. 

0143 A C++ proxy class may be used to represent all JNI 
contexts by providing different constructors, one for each 
context to be represented. Such constructors may be referred 
to herein as context constructors. Each context constructor 
differs in the arguments that it requires, in correspondence to 
the context that it represents. Each constructor is appropriate 
for only one context and should only be used in that one 
context. The use of context constructorS is only one example 
technique of providing information about the context to a 
proxy instance. For example, other techniques may rely on 
the explicit Specification of the context through a separate 
method declared by the proxy class. 
014.4 FIG. 6 illustrates an embodiment of four example 
context constructors: Stand-alone object constructor 30, 
instance field constructor 36, Static field constructor 42, and 
array element constructor 48. In FIG. 6, proxy name is the 
proxy class to which the constructors belong, jobject is the 
JNI object reference type, proxy ref is the base class for all 

Jul. 7, 2005 

proxy objects, proxy class is the base class for all proxy 
classes. Proxy-ref is derived from proxy-base, the base class 
for all proxies, including proxy objects and proxies for 
primitives. Proxy class is derived from proxy ref. The 
proxy array class is derived from the proxy ref class and 
represents generic array objects. 

0145 The stand-alone object constructor 30 may be used 
to construct a C++ proxy instance for an already existing 
Java object represented by its JNI jobject value. This C++ 
proxy instance may maintain its jobject value, for example, 
by Storing its value in an internal field. The Stand-alone 
object constructor 30 may be considered a direct proxy 
constructor because it leads to the creation of a C++ proxy 
instance that directly contains the jobject reference. 

0146 The instance field constructor 36 may be used to 
construct a proxy instance for an instance field of another 
proxy. In this example, the first argument, ref 38, is a 
pointer to the proxy instance representing the owner of the 
field, and the second argument, fieldName 40, is the field 
identifier. The field identifier 40 needs to be able to uniquely 
identify the represented field in the scope of the owner. Thus, 
the field identifier 40 may be the field name, the JNIjfieldID, 
both the field name and the JNI fieldID, or a pointer or a 
reference to an object maintaining this information. The 
instance field constructor 36 may be considered an indirect 
proxy constructor because it refers to another proxy com 
ponent that represents the instance to which the field repre 
sented by the field identifier belongs. 

0147 The static field constructor 42 may be used to 
construct a proxy instance for a Static field. The Static field 
constructor 42 takes a first argument, claZZ 44, that repre 
Sents the proxy class instance representing the owner of the 
field and takes a second argument, fieldName 46, that 
identifies the field. In this example, the first argument claZZ 
44 is a pointer to the proxy class instance representing the 
owner of the field. The field identifier fieldName 46 could 
be just the field name or the JNI field ID or both or a pointer 
or a reference to an object maintaining this information. The 
Static field constructor 42 may be considered an indirect 
proxy constructor because it refers to another proxy instance 
that represents the class to which the represented field 
belongs. 

0.148. In an aspect of C++ proxy class having a class field 
constructor, the C++ proxy class also has a virtual get class.( 
) method and a static get static class( ) method, either of 
which can be used to ask a proxy instance for its class at run 
time. 

014.9 The array element constructor 48 may be used to 
construct a proxy instance for an element of an array. The 
first argument, array 50, represents the array owning the 
element and the Second argument, indeX 52, represents the 
index of the element in the array. In this example, the first 
argument array 50 is a pointer to the proxy representing the 
array. The array element constructor 48 may be considered 
an indirect proxy constructor because it refers to another 
proxy that represents the array to which the represented 
element belongs. An array proxy class may possess an 
overloaded Subscript operator that may return a proxy 
instance that has been constructed using the array element 
constructor (described below in more detail in connection to 
Array Support). 



US 2005/0149914 A1 

0150 Proxy Support Elements 
0151 A C++ context constructor is a type of C++ proxy 
Support element. In an embodiment of wrapping a Java class 
or a Java interface with a C++ proxy class, or wrapping a 
Java primitive with a C++ proxy class (discussed in detail 
below in connection to FIG. 8), the C++ proxy class may 
include one or more C++ proxy Support elements. 
0152 FIG. 7 illustrates an example embodiment of dec 
larations of proxy Support elements for a C++ proxy class 
108, including: typedef 110; conversion constructor 112; 
context constructors 114; copy constructor 116; destructor 
118; assignment operator 120; comparison operators 122, 
Static framework Support method 126; instance framework 
support method 128; and dynamic casting method 130. A 
concrete C++ proxy Support element may be declared in the 
declaration in the declaration context of a C++ proxy com 
ponent, typically in a class header (h) file, and the imple 
mentation of the C++ proxy Support element may appear in 
an implementation file (.cpp) of a C++ proxy class. 
0153. Each of the proxy support elements of FIG. 7 will 
now be described. 

0154 Support for Null 
O155 In Java, null is a distinctly typed object reference 
representing that the object reference does not refer to an 
object instance. Java defines Several Semantic rules involv 
ing null, for example, null can be used in any context in 
which an object reference is allowed. Thus, null may, for 
example, be used as an operand in object identity compari 
Sons or as a method argument, if the method argument is of 
a non-primitive type. 
0156 A C++ proxy component may have to support a 
concept like null in order to provide a Semantic usability 
closely corresponding to the Semantic usability of an under 
lying Java component. In C++, there is no Such distinctly 
typed null object. In C++, the most closely corresponding 
concept is NULL. NULL is simply a #define for “0” or 
“(void*)0.” NULL often causes confusion if C++ interprets 
it as an integer rather than as a pointer. Further, a NULL 
value can only be used in relation with pointer types and not 
with objects or object references. Thus, the use of NULL 
forces the programmer to use pointer types. Although this 
forced usage may simply be undesirable in the case of 
method arguments, it is harmful in the case of object identity 
comparisons. In the case of C++ proxy instances, object 
identity comparisons need to inspect the object identity of 
the underlying Java instances. If pointers and NULL are 
used, overloaded comparison operators cannot be used eas 
ily. Consequently, in the following use-case: 

O157 FOO * fool =new Foo(); 
0158) if (fool ==NULL) 

0159) // take some action 
0160 the C++ pointers are compared for identity, rather 
than comparing the underlying Java object references. While 
this comparison may yield the correct result in Some cases, 
it generally does not yield the correct result. 
0.161 In an aspect of generating a C++ proxy component 
that has a Semantic usability closely corresponding to its 
underlying Java component, the C++ proxy component may 

Jul. 7, 2005 

contain proxy Support elements that allow usage of null in a 
manner that corresponds with usage of null in Java. 

0162 To wrap a Java null argument and provide such a 
Semantic usability in C++, a C++ proxy class may include a 
Tnull conversion constructor that utilizes a helper class, 
named, for example, Tnull, and a file-Scoped Tnull helper 
class instance named null. 

0163 Such a Tnull helper class may have an empty 
default constructor and a number of overloaded comparison 
operators. These comparison operators provide Semantic 
usability for cases where null is used as the first operand in 
the comparison. Inclusion of the header file in which Tnull 
is defined may cause Such a null instance to be available to 
all code in the compilation unit. 

0164. Accordingly, a Tnull conversion constructor, i.e., a 
constructor for a proxy instance that takes a Tnull instance 
as an argument, may be provided Such as, for example, Tnull 
conversion constructor 112 of FIG. 7. As long as Tnull 
conversion constructor 112 is not declared explicit, C++ 
automatically invokes the Tnull conversion constructor to 
convert a Tnull instance into a temporary proxy object if the 
Semantic context requires a C++ proxy instance and a Tnull 
instance is available. Specifically, if the file-Scoped null 
instance is used in Such a context, Such a conversion 
constructor is invoked. 

0.165 Tnull conversion constructor 112 creates a stand 
alone proxy instance (described above in connection to FIG. 
6) initialized to not refer to any Java instance. 
0166 Comparison Operators 

0167. In Java, the use of the operators == or = on two 
object references compares the two object references for 
object identity, not for object equality. In an effort to provide 
closely corresponding Semantics for C++ proxy classes, it 
may be desirable to provide a comparison operator that 
compares the underlying Java instances for object identity. 
Because more than one JNI object reference may actually 
refer to a single object, a simple value-based comparison is 
not sufficient, rather, a JNI function has to be executed. 
Further, if a comparison is to be made, it may be desired for 
completeneSS Sake to have both a comparison for equality 
and a comparison for inequality, Such as, for example: 

0168 bool Foo::operator ==( const Foo & rhs) 
COnSt. 

0169 bool Foo::Operator =? const Foo & rsh p 
COnSt. 

0170 Accordingly, in an embodiment of wrapping a Java 
class or interface with a C++ proxy class, the C++ proxy 
class may include inequality and equality operator declara 
tions 122 of FIG. 7 and the above inequality and equality 
operator implementations. These declarations and operators 
may be implemented in terms of a C++ Standard Support 
proxy method. A C++ proxy class that includes equality and 
inequality operators implemented in terms of a C++ Standard 
Support proxy method, and the Tnull conversion constructor 
described above, may handle all comparisons for object 
identity. 



US 2005/0149914 A1 

0171 Copy Semantics & Destructor Semantics (Life 
cycle Management) 
0172 In an embodiment of wrapping a Java class, a Java 
interface or a Java primitive component with a C++ proxy 
class, a C++ proxy class may include a copy constructor and 
an assignment operator to help map the copy Semantics of a 
Java component to a C++ proxy component. The copy 
constructor and assignment operator provide two actions for 
mapping copy Semantics of a Java component, depending on 
the reference context of the Java component. In a context of 
being a field reference or a context of being an array element 
reference, a C++ proxy component has a value Set into it if 
an assignment or a copy operation occurs. In a Stand-alone 
reference context, a C++ proxy component has a Source 
reference duplicated and maintained by the C++ proxy 
component. 

0173 In Java, an assignment involving an object causes 
another reference to this object to be held in the JVM. It does 
not cause a copy of the object's State to be made. In contrast, 
in C++, if a copy constructor or assignment operator is not 
provided explicitly, the copy constructor and assignment 
operator generated by the C++ compiler will copy the 
object's State. In the case of C++ proxy objects, this default 
behavior would create a duplicate of a Java object reference 
held in the JVM without informing the JVM of this fact. In 
general, creating Such a duplicate without informing the 
JVM would cause erratic execution due to resulting prob 
lems in the management of the underlying Java object 
lifecycle. Similarly, the destructor of a C++ proxy class 
needs to release the reference to the underlying Java object. 
Correct lifecycle management for underlying Java objects 
requires both correct copy Semantics and destructor Seman 
tics. 

0.174. In an aspect of context-awareness, different actions 
may need to be taken depending on the assignment-target's 
context and the technology providing domain connectivity 
(for example JNI). For example, if the target of an assign 
ment is an array element and the connecting technology is 
JNI, the assignment operator will have to call the JNI 
method SetObjectArray Element(). 
0.175. Accordingly, a C++ proxy component, to provide 
copy Semantics in the C++ domain closely corresponding to 
the copy Semantics of the wrapped Java component, may 
include proxy support element declarations 116 and 120. 
0176) To provide lifecycle management for wrapped Java 
components, a C++ proxy component may provide proxy 
Support element declaration 118 in conjunction with decla 
rations 116 and 120. 

0177 Casting 
0178. In Java, all objects are used through references. 
Java is strongly typed and has a cast expression that will 
throw an exception if an attempted cast is not legal (in 
accordance with Java Semantics). In C++, the most closely 
related feature is the dynamic cast operator that operates on 
pointers or references. In the case of pointers, it returns 
NULL if the attempted cast is not a compatible cast. In the 
case of references, it throws a bad cast exception if the 
attempted cast is not a compatible cast. Java casting cannot 
be directly mapped to the C++ dynamic cast operator 
because the C++ dynamic cast operator limits use to only 
pointers and references and because the type of the C++ 

Jul. 7, 2005 

proxy instance does not necessarily correspond directly to 
the type of the underlying Java instance. 
0179 Accordingly, in an embodiment of wrapping Java 
classes, interfaces or primitives with C++ classes, each C++ 
proxy class may include a static class method dyna cast 130 
of FIG. 7. Method 130 of FIG. 6 may provide a semantic 
usability to a C++ proxy component closely corresponding 
to the Semantic usability of a cast expression involving the 
wrapped Java component. 
0180 A dyna cast method may act as a “factory” for 
proxy instances of the cast target-type and may take a 
generic jepp ref reference as input (jcpp ref being a base 
class for all C++ proxy classes corresponding to Java classes 
or interfaces). A dyna cast method may have the following 
implementation signature: 

0181) 
Src ); 

Static Foo Foo::clyna cast(constjcpp ref & 

0182 The dyna cast method may internally use a C++ 
proxy Support method to determine whether the C++ proxy 
instance represented by Src is compatible with the target 
type. Further, the dyna cast method may give a copy of the 
reference maintained by Src to the newly created target type 
instance if the two types are compatible. A configuration 
parameter may govern the behavior of the dyna cast method 
if an incompatible cast is attempted. Such behavior may 
include throwing an exception, which is a behavior shared 
by Java and current-standard C++, or returning a reference 
that refers to null, which is a behavior common to old 
Standard C++. 

0183 Array Support 
0184. In Java, arrays are objects. Every array instance 
knows the maximum number of elements it can hold. This 
number is accessible to a Java programmer through a 
read-only field named length (the actual implementation of 
this feature in the JVM may be different). Multi-dimensional 
arrays are arrays of objects of an array-type. 
0185. In contrast, in C++, an array (single- or multi 
dimensional is a contiguous memory area that is of a size 
that is Sufficient to hold the declared number of instances. 
C++ arrays, like the C arrays that they are based on, do not 
maintain their declared dimension or order. Consequently, 
array-bound overwrites are a frequent Source of error in C++ 
programs. 

0186 A Java array type may be mapped by default to a 
C++ proxy class. Optionally, Such a C++ proxy class may 
have a Semantic usability closely corresponding to the Java 
array type that it wraps. Such a C++ proxy class may declare 
a read-only length field that can be used in any Semantic 
context in which an integer can be used and which corre 
sponds with the number of elements in the underlying array. 
0187. In another aspect of a C++ proxy class having 
closely corresponding Semantic usability to a Java array type 
that it wraps, the C++ proxy class may declare a const (not 
allowed to modify the State of the array) and a non-const 
(allowed to modify the State of the array) Subscript operator 
with appropriate return-types. For example, in a C++ proxy 
array for a primitive type, the return type for the const 
version of the Subscript operator may be the primitive type, 
whereas the return type for the non-const version of the 
Subscript operator may be another proxy type that can be 



US 2005/0149914 A1 
12 

used on the left hand Side of assignment Statements. The 
returned C++ proxy instance may have been constructed 
using the array context constructor mentioned above. 
0188 In an embodiment of mapping a Java array type to 
a C++ proxy class, a template class may be provided to 
declare the previously mentioned length field and Subscript 
operators. It may be desirable to provide a template class 
because, although the mechanism for accessing all object 
array types is identical, the return types for the Subscript 
operators depend on the array element type. Such a template 
class may expect its template argument to be a class that 
provides a Static method to allow the template class to 
discover the jepp class of its elements. To provide Such a 
Static method, in an embodiment of wrapping a Java class, 
interface, or primitive with a C++ proxy class, the C++ 
proxy class may include a Static framework Support method 
126. Other known techniques may be used to provide such 
a Static method. 

0189 Although a template class simplifies implementa 
tion, it also makes the use of the resulting C++ proxy array 
types a cumberSome, as illustrated by the following example 
of two array instance declarations: 

0190. 
jccp_object array.<jcpp. object array-Foo->a2(5); 

0191) jccp object array-Fooda1 1=a2O); 
0.192 Typedefs for concrete C++ array proxy types may 
make the use of these types less cumberSome while improv 
ing readability of the using code. 
0193 Therefore, in an aspect of wrapping Java arrays, a 
C++ proxy class may have a typedef that provides uniform 
access to the C++ array proxy class Such as, for example, 
typedef 110 of FIG. 7. 
0.194. A typedef Such as typdef 110 enables the use of 
typedef synonyms in calling code, for example: 

0.195 Foo::array2D a2(5); and 
0196) Foo::array1D a1 1=a2O). 

0197) This example is equivalent to the other example 
described above, but it is much more readable. 
0198 Optionally, if it is known that a wrapped Java class 
is never used as an element class of an array, then the Java 
proxy class that wraps the Java array need not include the 
array context constructor the get Static class() method and 
the typedefd described above. 
0199 Framework Support Methods 
0200 Although each of the previously described proxy 
Support elements may be necessary to enable a certain, 
Specific use-case in C++, there are certain Services that every 
C++ proxy class may provide. One Service that may need to 
be provided for most if not all use-cases is the ability to map 
an instance of a C++ proxy class to an object that represents 
the underlying Java class (e.g. ajcpp class instance). Frame 
work Support methods are just one possible embodiment of 
making generally useful information available to a poten 
tially large number of C++ proxy classes; other mechanisms 
are possible. 
0201 Accordingly, in an aspect of wrapping Java com 
ponents with C++ proxy classes, a C++ proxy class may 

Jul. 7, 2005 

include an instance framework Support method, which is a 
Virtual method that enables a C++ proxy instance to be 
queried for its underlying jepp class, where a jepp class 
represents the JNI type of the proxy instance and can be 
regarded as a proxy instance for a Java class. Such an 
instance framework Support method may have the following 
Signature: 

0202) constjepp class Foo::get class( ) const; 
0203 The benefits of including context constructors in 
C++ proxy classes is described below with respect to C++ 
proxy fields in connection to FIGS. 7-10. 
0204 Java Field->C++ Proxy field 
0205. A Java field may be mapped by default to a to a 
C++ proxy field. Accordingly, in an embodiment of Sharing 
a Java component, a C++ proxy field representing a first 
concept provides a proxy layer to a Java field representing 
the first concept, and has a Semantic usability closely cor 
responding to the Semantic usability of the Java field. 

0206 Both Java classes and Java interfaces may include 
fields. In Java, the Java syntax limits a field declared by a 
Java interface to being a public, Static and final (i.e., con 
Stant) field. In contrast, the Java Syntax permits a field 
declared by a Java class to be either a class field or an 
instance field and to have any accessibility and mutability 
defined by Java. 
0207 Although the declaration syntax for Java fields is 
Similar to the declaration Syntax for C++ fields, Java permits 
a field to be initialized in a declaration, whereas C++ does 
not allow a field to be initialized in a declaration. In contrast, 
C++ initializes an instance field in a constructor of a 
containing instance of the field, and initializes a class-field 
in the class-field's definition. 

0208 If a C++ proxy class has a C++ proxy field, to truly 
Serve as a proxy layer to the underlying Java field, the proxy 
field should not be initialized to the value of the underlying 
Java field. Preferably, a C++ proxy field should be initialized 
with information that uniquely identifies the proxy field's 
underlying Java field So that, when the C++ proxy field is 
used, the correct proxy-layer action can be taken to acceSS 
the underlying Java field. 

0209. In Java, each declaration (for a field or a method) 
has its own accessibility modifier (e.g. public, private). In 
contrast, in C++, accessibility is a separate declarative 
component that applies to all the declarations that fall within 
the Scope of the declarative component. Further, Java has 
accessibility modifiers that are different from C++ accessi 
bility modifiers. 
0210. In C++, the absence of an accessibility modifier 
indicates that the default accessibility of the containing 
element should be used (specifically, public for a struct and 
private for a class). In Java, on the other hand, the absence 
of an accessibility modifier indicates default accessibility, a 
type of accessibility that is not known in C++. The protected 
accessibility in Java has a different meaning from the 
protected accessibility in C++. As a consequence, accessi 
bility modifiers of C++ proxy components may be adjusted 
to be less restrictive to allow semantic usability in C++ that 
closely corresponds to the Semantic usability of the under 
lying Java component. 



US 2005/0149914 A1 
13 

0211. Accordingly, both default and protected Java acces 
sibility modifiers may be mapped by default to a less 
restrictive public accessibility in C++ Such that the C++ field 
(or method) may have a usability in the C++ domain that 
closely corresponds with the intended usability of the under 
lying Java field (or method). 
0212. A Java field may be made immutable by declaring 
the field final. A Java field not declared final is mutable. The 
Java final modifier has a slightly different impact on a Java 
field depending on whether the field is of primitive type or 
of reference type. If a field of primitive type is declared final, 
its State cannot change, but if a field of reference type (i.e., 
an object field) is declared final, only the reference main 
tained by the field cannot change. Consequently, in Java, a 

Field Type 
(Instance or 
Class) 

1 Don't care 

2 Static 
(Class) 

3 Static 
(Class) 

4 Static 
(Class) 

5 Non-static 
(Instance) 

6 Non-static 
(Instance) 

7 Non-static 
(Instance) 

final modifier that modifies an object field does not prevent 
changes to the referred to object, but merely prevents 
changes to the reference. 

0213 A C++ field may be considered immutable if it is 
declared const. AS used herein, "constness” refers to the 
property of a C++ component as being declared const or not 
being declared const. 
0214) To map a Java field to a C++ proxy field, the 
mutability (i.e., constness) of the C++ proxy field may be 
determined from properties of the Java field and its type, for 
example, from their mutability. Accordingly, a C++ proxy 
field may have a mutability determined from the mutability 
of the Java field that it wraps. For example, a primitive Java 
field declared final may be mapped to a C++ proxy field 
declared const, and a primitive Java field not declared final 
may be mapped to a C++ proxy field not declared const. 
Heuristics may be applied to a Java field and related Java 
components to determine the mutability (i.e., constness) of 
a C++ proxy field. A number of rules, together constituting 
an example of Such heuristics, is provided in Table 1. 
0215. In the description related to proxy methods below, 
the mutability of Java and C++ classes are described. One 
factor that may be used to determine a class mutability is 

Jul. 7, 2005 

the ability of a user of the class to change the values of fields 
declared by the class. Further, in analyzing fields to deter 
mine a mutability of the field's declaring class, factors other 
than the field's mutability may be considered. For example, 
although a field may be considered mutable if it is not 
declared final, the field may also be declared private, effec 
tively not allowing a field to modify a State of an instance to 
which the field belongs. Accordingly, Such a field may be 
regarded as “conceptually not-mutating” (see description of 
methods below). 
0216) Table 1 introduces rules that may be used to 
determine a mutability attribute for a Java field and, conse 
quently, the constness of a C++ proxy field that wraps the 
Java field. 

TABLE 1. 

Field Mutability Rules 

Constness 
Mutability Of Proxy 

Field Accessibility Final Field Type Attribute Field 

Private Don't care Don't care Conceptually N/A 
Not Mutating 

Non-private Yes Primitive Conceptually Const 
Not Mutating 

Non-private Yes Reference Conceptually const if 
Not Mutating reference 

type is 
immutable 

Non-private No Don't care Conceptually Not const 
Not Mutating 

Non-private Yes Primitive Assumed Non- const 
mutating 

Non-private Yes Reference Mutability const if 
Attribute of reference 
reference type type is 

immutable 
Non-private No Don't care Assumed Not const 

Mutating 

0217 Row 1 of Table 1 indicates that a private field 
cannot be used to modify its owner's State (as described 
above), and thus may be determined to have a mutability 
attribute of “conceptually not-mutating”. A private field 
need not be proxied and, consequently, determining the 
constness of a C++ proxy for Such a private field may not be 
neceSSary. 

0218. Rows 2, 3 and 4 express that a static, non-private 
Java field does not affect a Java instance's State, and thus 
may be determined to have a mutability attribute of “con 
ceptually not mutating”. The constness of Such a Java field's 
corresponding C++ proxy field, however, may not be 
directly related to the value of the Java field's mutability 
attribute. Specifically, Row 2 indicates that a C++ proxy 
field for a final, Static, non-private and primitive Java field 
may be declared const. Row 3 indicates that the constness of 
a static final C++ proxy field of a reference type (i.e., an 
object field) may be dependent on the mutability of the 
wrapped Java field's reference type, for Similar reasons as 
described below in connection to Row 6. Row 4 indicates 
that a non-final, Static, non-private Java Static field may map 
to a C++ proxy field that is not declared const. 
0219 Row 5 indicates that non-static, non-private Java 
instance field of primitive type and declared final cannot be 



US 2005/0149914 A1 

used to modify its owning instance's State, and, therefore, 
the Java instance field may be determined to have a muta 
bility attribute of “assumed not-mutating”. Such a field may 
map to a C++ proxy field that is declared const. 
0220 Row 6 indicates that a non-static, non-private Java 
instance field of reference type (i.e., an object field) that is 
declared final may be determined to have a mutability 
attribute corresponding to the mutability of its reference 
type. As described above, the Java final field declaration 
modifier applies to a reference to an object, not to the object 
itself. Thus, an object referred to through a Java final field 
may potentially be changed, thereby also potentially chang 
ing the State of the owning Java instance. If the Java field's 
type is “immutable, however, Such State changes are not 
possible (although it is theoretically possible that a Subclass 
of an immutable class is mutable (i.e., not immutable), it is 
highly unlikely). Thus, the mutability attribute of a final Java 
reference type instance field may be set to the mutability of 
its type. Further, the constness of the C++ proxy field of Such 
a Java field may be directly derived from the Java field's 
mutability attribute. 
0221) Row 7 indicates that all other fields not addressed 
by Rows 1-6 may be regarded as “assumed mutating”, i.e., 
as having the ability to be used to modify their owning 
instance's State. Such a field may map to a proxy field that 
is not declared as const. 

0222 AS described above, a C++ proxy field may hold a 
unique field identifier instead of a value of an underlying 
Java field. Consequently, if the underlying Java field is 
declared final, the constness of the field may be expressed 
through a C++ proxy class that does not permit value 
changes. Also, Such a class may query only a value of an 
underlying Java field a first time the field is accessed and 
cache the value for later use because the value is guaranteed 
not to change. Such a proxy class may be used in addition 
to or as an alternative to declaring a field const. 
0223) In an aspect of mapping Java fields to C++ proxy 
fields, a Java Static (i.e., class) field of type class a maps by 
default to a C++ proxy Static field of type C++ proxy class a, 
where the C++ proxy class a includes proxy Support ele 
ments that enable the use of class a as a static field. These 
proxy Support elements may be provided in the form of 
context constructors that are described above with respect to 
C++ proxy classes and FIG. 6. 
0224. In an another aspect of mapping Java fields to C++ 
proxy fields, a Java instance field of type class a maps by 
default to a C++ proxy instance field of type C++ proxy 
class a, where the C++ proxy class a includes proxy Sup 
port elements that enable the use of class a as an instance 
field. 

0225. In another aspect of mapping Java fields to C++ 
proxy fields, a Java Static field of primitive type (e.g., 
integer) maps by default to a C++ proxy static field of type 
C++ primitive proxy class a, where the C++ primitive proxy 
class a includes proxy Support elements that enable the use 
of class a as a Static field, as well as other proxy Support 
elements described above in connection to FIGS. 6 and 7. 
An example C++ primitive proxy class is described below in 
connection to FIG. 8. 

0226. In yet another aspect of mapping Java fields to C++ 
proxy fields, a Java instance field of primitive type (e.g., 

Jul. 7, 2005 

integer) maps by default to a C++ proxy instance field of 
type C++ primitive proxy class a, where the C++ primitive 
proxy class a includes proxy Support elements that enable 
the use of class a as an instance field. 
0227. In each of the aspects described immediately 
above, each C++ proxy instance may maintain its context 
(i.e., instance field, or class (static) field) after being con 
Structed by the proper C++ constructor of C++ proxy 
class a. Such an instance may maintain (i.e., know) its 
context internally by Storing it in a context field. A C++ 
proxy instance that knows its context is referred to herein as 
a “context-aware' instance. A context-aware C++ proxy 
instance that is maintained by a field is referred to herein as 
a “context-aware' field. 

0228 FIG. 8 illustrates an embodiment of a C++ primi 
tive proxy class jepp nt 52. FIG. 8 has many of the same 
proxy support elements as FIG. 7. Primitive proxy class 52 
may be the primitive proxy class for the primitive type 
integer. Primitive proxy class 52 may inherit from a primi 
tive proxy base class jepp base 54, which may be the base 
class for all C++ proxies. 
0229. Primitive proxy class 52 may include any combi 
nation of the following C++ proxy Support elements: type 
defs 56 (similar to typedef 110); context constructors 59 
(similar to context constructors 36, 42, 48 and 114); copy 
constructor 65 (similar to copy constructor 116); destructor 
66 (similar to destructor 118); special methods 62; conver 
Sion operator 64; mathematical operators 66; and framework 
support method 68 (similar to framework support method 
128). 
0230 Typedefs 56 allow the use of type-safe arrays in a 
Standardized way. For example, an array of integers may be 
referred to through an array helper classicpp. int array 57 or 
through the typedeficpp. int:array1D 58. 
0231 Context constructors 59 may include instance field 
constructor 60, Static field constructor 61, and array element 
constructor 62, which are examples of context constructors 
36, 42 and 48, respectively, of FIG. 6. In a primitive proxy 
class 52, a Stand-alone context constructor Similar to primi 
tive proxy constructor 30 is not necessary because a Stand 
alone primitive type may be represented by a JNI native 
type. For example, Java primitive type int may be repre 
sented by the JNI type jint. 
0232 Special methods 62 may permit the C++ proxy 
class 52 to reside in a DLL for all platforms, and conversion 
operator 64 may convert an instance to a jint. Conversion 
operator 64 allows an instance of ajcpp. int to be used on the 
right-hand Side of a Syntactical production Such as, for 
example, the expression: jint i=instance name.X., where 
instance name.X is ajcpp int instance field. In this example, 
conversion operator 64 enables instance name.X to be con 
verted to a jint. 
0233. Mathematical operators 66 permit instances of 
primitive proxy class 52 to be used on the left-hand side of 
certain Syntactical productions, thereby increasing the 
Semantic usability of Such instances. For example, math 
ematical operatorS 66 permit primitive proxy class 52 to be 
used in the following example: instance name.X=20, where 
instance name.X is a jepp int instance field. Another 
example expression is: instance name.X+=4. In either 
example, the assignment and additive operators (“=” and 



US 2005/0149914 A1 

66 s +=”, respectively) are overloaded so that a compiler would 
know how to assign a jint to ajcpp. int object. Without 
overloading the operators, the C++ compiler would not 
know how to evaluate C++ Statements involving the invo 
cation of Such an operator on a jepp int as the receiving 
object. 

0234) Framework support method 68 may be used by 
other classes to find out the JNI type of an instance. 
Framework Support method 68 may be declared virtual 
using C++ keyword Virtual in a baseclass (e.g. jepp ref) 
from which the primitive proxy class 52 inherits. 
0235 Primitive proxy classes, particularly those that 
include primitive proxy Support elements, for example, 
primitive proxy class 52, may simplify the code needed to 
use a Java field in a C++ application. For example, consider 
the following C++ operation performed on a C++ array 
proxy: 

0236 
0237. In the absence of a C++ primitive proxy class, the 
developer may have to explicitly perform the following 
Steps, an equivalent of which the proxy classes perform 
automatically: 

0238 1) invoke JNI function GetField Id to retrieve 
the identifier of the instance field instance name.X; 

0239). 2) invoke JNI function Get ObjectField to 
retrieve the jobject reference for the wrapped Java 
array, 

0240 3) invoke JNI function GetIntArray Region to 
retrieve the integer value of the Java array element; 

0241 4) invoke JNI function SetIntArray Region to 
Set the incremented value into the wrapped Java 
array; and 

0242 5) invoke JNI function DeletelLocalRef to 
clean up the retrieved reference to the wrapped Java 
array. 

0243 This list of JNI function calls does not include JNI 
calls that should be issued after many of the above calls in 
order to check for possible error conditions that might cause 
abnormal program termination if not handled correctly. 

instance name.X O++. 

0244. The previous example illustrates how a simple C++ 
task may translate into a complex Sequence of JNI API calls. 
Therefore, providing primitive proxy classes like primitive 
proxy class 52 that construct context-aware field instances, 
allows the developer to use the C++ proxy field without ever 
having to write JNI code. A C++ developer using the field 
may not even have to be aware of the fact that the underlying 
implementation is in Java. 
0245 FIGS. 9-11 illustrate the benefits of using C++ 
primitive proxy classes that include context constructors. 
FIG. 10 is a Java component 230. The Java component 230 
includes a Java interface Foo 232, a Java class Bar 234, and 
various assignment statements 236,238,240,242, 244, and 
246. Assignment statements 236-246 may be included in any 
of a variety of Java components and are presented in list 
form in FIG. 10 for illustrative purposes only. 
0246) Java interface 232 includes a primitive field X 233 
defined to be a public static final field and initialized to a 
value of twenty-five. Java class 234 includes a primitive 

Jul. 7, 2005 

static (class) field X 235 initialized to a value of twenty-five 
and a primitive instance field ch237 initialized to a value a. 
0247 FIG. 10 is a C++ code fragment illustrating an 
example embodiment of C++ proxy components that may 
result by applying an incorrect mapping to the primitive Java 
fields 232,235 and 237. The C++ components 250 include 
class Foo 252, class Bar 254 and several C++ assignment 
statements in the form of assignment statements 256, 258, 
260, 262, 264, and 266. Assignment statements 256-266 
may be included in any of a variety of C++ components and 
are presented in list form in FIG. 8 for illustrative purposes 
only. 
0248 C++ class 252 includes C++ primitive proxy field 
X 253, defined to be of JNI primitive type int. Class 254 
includes primitive proxy static field X 255 and primitive 
proxy instance field ch 257. Primitive proxy field 255 is 
declared to be of JNI primitive type jint, and primitive proxy 
field 257 is declared to be of JNI primitive character type 
jchar. 

0249 Each of C++ proxy fields 253,255, and 257 are of 
primitive JNI type, not a proxy class type that would enable 
the use of these proxy fields in each JNI context. Conse 
quently, to enable proper use of each of these proxy fields in 
any of the assignment Statements 256-266, a developer 
would need to write explicit JNI code for each assignment 
Statement Such that an appropriate instance is constructed in 
accordance with the context of the assignment Statement. 
0250 For example, assignment statement 256 sets C++ 
field i equal to the value of primitive proxy interface field 
253. The issue is how to initialize primitive proxy field 253 
Such that assignment Statement 256 executeS properly. 
Because JNI primitive types have well-defined semantics 
and primitive field 253 is defined to be of JNI primitive type 
jint, assignment Statement 256 would cause i to be set equal 
to the bytes stored at the location of the static jint field X. 
This result is not desired. What is desired is that field 253 
serve as a proxy to Java primitive field 233, and that 
assignment Statement 256 Set the value of i equal to the value 
of Java primitive field 233. For assignment statement 256 to 
set the value of i properly, a JNI call has to be made to 
retrieve the value of primitive Java field 233. 
0251 Assignment statement 256, however, does not 
invoke a JNI call. Therefore, the assignment made by 
assignment Statement 256 is incorrect. Consequently, the 
value of C++ field 253 does not correspond with the value 
of Java field 233 and would require an external mechanism 
to initialize or refresh it with the value of Java field 233. 
Assignment statements 258-266 are generally incorrect for 
Similar reasons. 

0252 FIG. 11 is a C++ code fragment illustrating am 
embodiment of C++ components 270, including a C++ class 
Foo 272, a C++ class Bar 274, and the same C++ assignment 
statements 256-266 as FIG. 6. C++ proxy interface class 2 
includes C++ proxy interface field X 273. Proxy field 273 
may be declared to be of type primitive proxy class, for 
example, primitive proxy class 52 of FIG. 7. 
0253 C++ proxy class 274 may include C++ proxy static 
field X 275 and C++ proxy instance field 277. Proxy field 
275 may be declared to be of type primitive proxy class, for 
example, primitive proxy class 52. C++ proxy field 277 also 
may be declared to be of type primitive proxy class. Such a 



US 2005/0149914 A1 

proxy class for proxy field 277 may be a primitive proxy 
class for the primitive character type, Similar to primitive 
proxy class 52. 
0254 For each of the above fields 273, 275 and 277, if 
each field is declared to be of a type primitive proxy class 
that includes context constructors, then assignment State 
ments 256-266, which each the use at least one of these 
fields, should be implemented properly. 
0255 For example, if C++ proxy static field 273 is 
declared to be of type primitive proxy class 52, then the 
assignment Statement 256 should Set i equal to the value 
maintained by Java interface field 233. ASSignment State 
ment 256 is correct because it will cause the following 
Sequence of actions. At runtime, proxy Static field 273 will 
cause Static field constructor 61 to construct an instance of 
proxy static field 273. The arguments of constructor 62 
provide this instance with information that identifies Java 
interface field 233. Upon execution of assignment Statement 
256, the value maintained by this field is retrieved. Depend 
ing on the assignment Statement, a new value may also be Set 
into (as opposed to retrieved from) the Java field. 
0256 Assignment statements 258-266 (of FIG. 11) 
achieve correct results through the same proxy mechanisms 
that cause assignment Statement 256 to operate as the 
developer intended. 
0257 Java Methods->C++ Proxy Methods 
0258. A Java method may be mapped by default to a to 
a C++ proxy method. Accordingly, in an embodiment of 
Sharing a Java component, a C++ proxy method representing 
a first concept provides a proxy layer to a Java method 
representing the first concept, and has a Semantic usability 
closely corresponding to the Semantic usability of the Java 
method. 

0259. If mapping a Java method to a C++ proxy method, 
the Semantics of both languages may be considered with 
respect to: method invocation, method arguments, method 
return types, and the treatment of exceptions, each of which 
are discussed in detail below. AS used herein, a “Java 
interface method” is a Java method declared in a Java 
interface. 

0260. In different aspects of a C++ proxy method wrap 
ping a Java method, the following default mappings may be 
applied: 

0261 (1) a Java interface method maps by default to 
a C++ proxy method declared to be virtual; 

0262 (2) a Java abstract method of a Java abstract 
class maps by default to a C++ method declared to be 
virtual; 

0263 (3) a Java final method or a Java method of a 
final Java class maps by default to a C++ proxy 
method not declared to be virtual; 

0264 (4) a non-final, non-abstract and non-static 
Java class method maps by default to a C++ proxy 
method declared to be virtual; and 

0265 (5) a Java static method maps by default to a 
C++ proxy method that is declared Static. 

0266 AJava interface method may map to a C++ method 
declared to be virtual because a Java interface method is 

Jul. 7, 2005 

intended to be implemented by one or more Java Sub 
classes. Thus, to provide a C++ proxy method that has a 
polymorphicability closely corresponding to the inheritabil 
ity of the wrapped Java interface method, the C++ proxy 
method may be declared virtual. 
0267 AJava abstract method of a Java abstract class may 
map to a C++ method declared to be virtual for the same 
reasons described above in connection to Java interface 
methods. 

0268 C++ semantics require that if a C++ method is 
declared virtual in a C++ Superclass, this virtualneSS is 
inherited from that Superclass by any of its Subclasses. Thus, 
it is not necessary to re-declare as Virtual a C++ Subclass 
method if the corresponding method of the Superclass is 
declared virtual. 

0269 AJava final method or a Java method of a Java final 
class may map to a C++ proxy method not declared to be 
virtual because the Java final declaration for a method 
indicates that no Subclass is allowed to override the declared 
method. Thus the final method modifier restricts the over 
ridability of the Java method. Although C++ does not 
provide a similar mechanism to restrict overridability of a 
C++ method, not declaring a C++ proxy method to be virtual 
and/or inserting a comment to this effect may make clear the 
intent to restrict overridability. In other words, a C++ 
developer will understand that if a C++ method is not 
declared virtual or includes a comment indicating that the 
method should not be overridden, then a C++ Subclass 
should not override the C++ method. 

0270. A non-final, non-abstract and non-static Java 
method may map into a C++ proxy method declared to be 
Virtual because Java Semantics by default allow a non-Static 
Java method to be overridden by sub-classes. Thus, for a 
C++ proxy method to have an overridability closely corre 
sponding to an overridability of, a non-final, non-abstract 
and non-Static Java method, the C++ proxy method may be 
declared virtual. 

0271 In contrast, because Java semantics enforce that a 
Java Static method may not be overridden by Subclass, a 
corresponding Static C++ proxy method may not be declared 
Virtual, thus indicating to a C++ developer that the C++ 
proxy method is not to be overridden by a C++ Subclass. 
0272) JNI Method Invocation 
0273 JNI offers a choice between invoking a method 
virtually or non-virtually. The virtual invocation only 
requires an object reference as an argument, and as a result 
of being invoked calls the most-derived version of the 
method. In contrast, the non-virtual invocation requires an 
object reference and a class reference, and as a result of 
being invoked calls the given class version of the method on 
the object. 
0274. Although it seems obvious to use JNI virtual invo 
cation for C++ virtual proxy methods and JNI non-virtual 
invocation for C++ non-virtual proxy methods, choosing the 
proper JNI method invocation is not so straightforward. 
0275. In an aspect of a C++ method wrapping a Java 
method, the C++ proxy method may be defined to use the 
correct JNI method invocation technique. The description 
below details how to properly choose the JNI method 
invocation technique based on the Semantic usability of the 
Java method. 



US 2005/0149914 A1 

0276 The proper choice of JNI invocation technique is 
complicated by the fact that C++ Semantics allow the 
invocation of any accessible method, even if the method is 
"hidden' or overridden, by including an explicit Superclass 
Specifier in the method invocation. 
0277 Amethod may be referred to as hidden if a subclass 
provides a method having the same name, but different 
arguments for which there exists an implicit conversion to 
the arguments of the Superclass method. 
0278 In different aspects of a C++ proxy method, the 
following default mappings may be applied: 

0279 (1) AJava interface method may map to a C++ 
proxy virtual method defined to call the Java inter 
face method using the JNI virtual invocation tech 
nique, 

0280 (2) A Java abstract method of a Java abstract 
class may map to a C++ proxy virtual method 
defined to call the Java abstract method using the 
YIM virtual invocation technique; 

0281 (3) A Java final method or Java method of a 
final Java class may map to a C++ proxy non-virtual 
method defined to call the Java method using either 
JNI invocation technique; 

0282 (4) A non-final, non-abstract and non-static 
Java method may map to a C++ virtual method 
defined to call the non-Static Java method using the 
non-virtual JNI invocation technique; and 

0283 (5) A Java static method may map to a C++ 
proxy Static method defined to call the Java Static 
method using the JNI non-virtual invocation tech 
nique. 

0284 Default mapping (1) may be applied for the fol 
lowing reasons. If a C++ proxy interface method calls a Java 
interface method, the concrete Java class implementing the 
interface is unknown. As a result, C++ virtual Semantics 
cannot be relied on to invoke the correct version of the Java 
interface method. Default mapping (1) allows the JNI virtual 
invocation technique to pick the most-derived version of the 
Java interface method So that the correct version is used. 

0285) Default mapping (2) may be applied for similar 
reasons. Specifically, if a C++ proxy virtual method calls a 
Java abstract method of an abstract class, the concrete Java 
class implementing the Java abstract method is unknown. 
Accordingly, the C++ virtual invocation Semantics cannot be 
relied on to invoke the correct version of the Java abstract 
method. Default mapping (2) allows the JNI virtual invo 
cation technique to pick the most-derived version of the Java 
abstract method. 

0286) Default mapping (3) may be applied because Java 
Semantics guarantee that a Java method declared to be final 
will not be overridden and, consequently, could not be 
different in a Subclass. Therefore, either JNI invocation 
technique may be used. 
0287) Default mapping (4) may be applied because C++ 
virtual methods can rely on the C++ virtual resolution rules 
to pick the correct JNI non-virtual method to invoke the 
proper Java non-Static method. Specifically, by application 
of C++ virtual resolution rules, a C++ Subclass calls its C++ 
Superclass virtual method. The Superclass virtual method 

Jul. 7, 2005 

invokes the proper JNI method, which calls the correspond 
ing Java method, as opposed to the most-derived Java 
method, which would be incorrect in this case. 
0288 Default mapping (5) may be applied to ensure that 
wrapped Java Static methods are not reimplemented by a 
C++ Subclass of the C++ proxy class that includes the C++ 
non-virtual proxy method. Default mapping (5) prevents this 
reimplementation by having the C++ non-virtual proxy 
method defined to invoke the JNI non-virtual invocation 
technique. 

0289. In addition to above-mentioned default mappings, 
the method of instantiation or an underlying Java instances 
type may be taken into account in determining the appro 
priate JNI invocation technique. If a Java instance was 
created as a direct consequence of a developer's request (i.e., 
through invoking a C++ proxy constructor that in turn may 
invoke a Java constructor), the exact type of the underlying 
Java instance may be known and the non-virtual invocation 
mechanism may be used. If, on the other hand, the C++ 
proxy instance is, for example, the result of a method call, 
the exact type of the underlying Java instance may not be 
known. For Such an instance, the virtual invocation mecha 
nism may be more appropriate and thus used. 
0290 Including JNI method invocation code in every 
C++ proxy method may result in overly large C++ proxy 
classes. To reduce the size of a C++ proxy class, Standard 
proxy Support classes (e.g., C++ primitive proxy classes) 
may be provided that include the JNI method invocation 
code, both virtual and non-virtual. Optionally, a C++ proxy 
method may be defined to invoke an instance of a C++ 
Standard Support proxy class to call a Java method. C++ 
proxy Support class instances may include most of the code 
used for a Successful JNI method invocation, except maybe 
for the actual method arguments and the JNIEnv pointer, 
which may be retrieved or generated at runtime (the han 
dling of JNIEnv pointers is discussed in more detail below). 
These C++ proxy Support class instances represent an imple 
mentation detail and need not be exposed to users of the C++ 
proxy class. 
0291 Mutability of Methods, Method Arguments, and 
Return Types 
0292 A Java method may be declared to have a return 
type and to take Zero or more arguments. Accordingly, a C++ 
proxy method may declare a return type and Zero or more 
arguments, each having a Semantic usability closely corre 
sponding to a Semantic usability of the return type and the 
Zero or more arguments, respectively, of the wrapped Java 
method. AS used herein, "method declaration elements' 
include a methods arguments and a methods return type. 
0293 C++ has richer and consequently more complex 
Semantics regarding types than does Java. Java Semantics 
define two kinds of types: primitive types and reference 
types (i.e., objects), and requires primitives and object 
references to always be passed by value. 
0294. In contrast, C++ semantics allow a primitive or 
class instance to be passed by value, by reference, or by 
pointer. To further complicate C++ Semantics, C++ argu 
ments and return types may be modified by the key words 
constand volatile. Although the volatile modifier may be of 
relatively Small consequence, the const modifier plays a role 
in a high-quality C++ design. For more details regarding 



US 2005/0149914 A1 

passing values, references, and pointers as method argu 
ments in C++, please refer to Stroustrup. 
0295) A Java method argument of primitive type may be 
mapped relatively simply to a C++ proxy method argument 
of a corresponding JNI primitive type. Although it is poS 
Sible to declare Such a proxy method argument as const or 
Volatile, or as a reference or pointer type, the use of these 
C++ mechanisms for method arguments of primitive type 
typically does not produce any benefits. 
0296. In contrast to C++ arguments of primitive type, it 
may prove beneficial with method arguments that reference 
objects to use the const modifier, the Volatile modifier, 
pointers and references. 
0297. The C++ const modifier may be used to define the 
mutability or constness of a C++ method, a C++ method 
argument and a C++ method return type. A C++ method or 
method declaration element declared “const” may be 
referred to herein as “immutable'. In contrast, a C++ method 
or method declaration element not declared “const” may be 
referred to herein as “mutable”. Declaring a C++ method as 
constguarantees that calling this method will not modify the 
State of the instance it is called on. C++ compilers enforce 
these method modifier Semantics by not permitting instance 
fields included in a method body to be modified, and by not 
permitting non-const methods, i.e., methods not declared 
const, to be called from within this method. It may be 
considered advantageous for a C++ design to use const 
modifiers. Also, the overloading of a method may be based 
on its constness. 

0298. In regard to C++ method arguments, a C++ com 
piler enforces the C++ Semantics that do not permit a method 
argument declared const to be modified in the body of the 
method being called. 
0299. In regard to C++ method return types, a C++ 
compiler enforces C++ Semantics that, for a C++ method 
having a return type declared const, allows assignment only 
to const variables. Only allowing assignment to const Vari 

Method Type 

1 Don't care 

2 Non-static 

(Instance) 

3 Non-static 

4 Non-static 

5 Non-static 

Jul. 7, 2005 

ables ensures that code executing Subsequently to Such 
assignments does not change the State of the object that the 
method returns. 

0300. In C++, the discussion of constness or mutability is 
based on language features (i.e., keywords Such as const or 
mutable). Although Java also has a notion of mutability, it is 
usually used at the class level. A Java class is termed 
“immutable' if it does not have accessible methods that 
change the State of an instance after its construction. 
Examples of Such classes include java.lang. String or the 
Subclasses of java.lang. Number. In the following discussion 
the term “method mutability” shall refer to a characteristic 
of a Java method, namely, whether the execution of this 
method may change the State of the instance on which the 
method is invoked. 

0301 A Java method having a mutability may map to a 
C++ method having a mutability determined from the muta 
bility of the Java method. Further, a Java declaration element 
having a mutability may map to a C++ method declaration 
element determined from the mutability of the Java method 
declaration element. The mutability of both a C++ method 
and a C++ method declaration element may be determined 
by application of rules and heuristics described below. 
Specifically, the heuristics and rules described below may be 
applied to a Java method or Java method declaration element 
to determine whether to declare a C++ proxy method as 
const or a C++ proxy method declaration element as const, 
respectively. 
0302) In determining whether to declare a C++ proxy 
method as const, mutability heuristics may be applied to the 
wrapped Java method and its class to determine a mutability 
(constness) attribute. Table 2 below illustrates several 
examples of rules that may be applied to determine the 
mutability attribute of a Java method. 
0303) In Table 2, the mutability attribute of the last 
column is determined by analysis of information provided 
by one or more of the preceding columns, including Java 
methods type, the accessibility of the Java method, the 
name of the Java method, the type of returned result of the 
Java method, and the arguments of the Java method. 

TABLE 2 

Method Mutability Rules 

Method Method Method Method Mutability 
Accessibility Name Return Type Arguments Attribute 

Private Don't care Don't care Don't care Conceptually 
Not Mutating 

Non-private Starts with: Don't care At least one Assumed 
set, change, argument Mutating 
'add, or (Not constant) 
remove 

Non-private Ends with the void At least one Assumed 
name of a field argument Mutating 

having same 
type as field 
in name 

Non-private Starts with: Non-void None Assumed Not 
get Mutating 

Non-private Starts with: boolean OR Don't care, Assumed Not 
is, can, java.lang. Bool Mutating 
has, must, ean 
does, or 
equals 



US 2005/0149914 A1 

TABLE 2-continued 

Method Mutability Rules 

Jul. 7, 2005 

Method Method Method Method Mutability 
Method Type Accessibility Name Return Type Arguments Attribute 

6 Non-static Non-private Starts with to Non-void None Assumed Not 
and ends with Mutating 
the name of 
the return type 

7 Non-static Non-private Is “clone Non-void None Assumed Not 
Mutating 

8 Static Non-private Don't care Don't care Don't care Conceptually 
Not Mutating 

9. Constructor Don't care Not applicable Not applicable Don't care Conceptually 

0304. The mutability attribute may have one of four 
possible values: assumed mutating, assumed non-mutating, 
conceptually non-mutating, or maybe mutating. In the fol 
lowing description, the terms mutability and constneSS may 
be used interchangeably and, consequently, the term non 
mutating may be used interchangeably with const and the 
term mutating may be used interchangeably with non-const. 
0305) A value of “assumed non-mutating” indicates that, 
according to the heuristics, this Java method is very unlikely 
to affect the State of an instance of this class. An “assumed 
non-mutating Java method may be mapped to a C++ proxy 
method that is declared to be const. 

0306 A value of “assumed mutating” indicates that, 
according to the heuristics, this method is very likely to 
affect the State of an instance of this class. An “assumed 
mutating Java method may be mapped to a C++ proxy 
method that is not declared to be const. 

0307) A value of “conceptually non-mutating” indicates 
that, according to the heuristics, this method is unlikely to 
affect the State of a pre-existing instance of this class. The 
const modifier may or may not be used for a C++ proxy 
method wrapping a “conceptually non-mutating Java 
method, depending on whether the type of the method 
allows a const modifier. C++ constructors and C++ Static 
methods, for example, do not Support the use of a const 
modifier. 

0308 If a Java method has any combination of method 
type, method accessibility, method name, method return 
type, and method arguments not specifically addressed by 
Table 2, the Java method may be assigned a mutability 
attribute of “maybe mutating”. A value of “maybe mutating” 
(i.e., no constness recommendation) indicates that, accord 
ing to the heuristics, this method is not covered by any of the 
heuristics applied. Consequently, no recommendation is 
possible with a high degree of confidence. 

0309 The first row of Table 2 indicates that if a Java 
method has an accessibility of private, then the Java method 
may be assigned a mutability attribute of “conceptually 
non-mutating. In Java, private methods cannot be called by 
methods other than the declaring class methods, So typi 
cally no caller may use this method to change the State of an 
instance of the declaring class. 

0310. The second row of Table 2 indicates that if the type 
of a Java method is non-static (i.e., if the Java method is an 

Not Mutating 

instance method), the Java method is not declared private, 
and the Java method has a name Starting with: “Set, 
“change,”“add,” or “remove,” then the Java method may be 
assigned a mutability attribute of “assumed mutating.” If a 
Java method is determined to have a mutability attribute of 
“assumed mutating then the C++ proxy method that wraps 
this Java method should not be declared const. 

0311. The heuristic of the second row reflects that the 
names of the Java method imply that they are Setting an 
attribute of an object. Further, the fact that the Java method 
is not declared private indicates that Java components out 
side of the scope of the Java class have access to the Java 
method and, therefore, may mutate an object that the Java 
method affects. Therefore, there may be a high probability 
that invocation of the Java method will mutate an object. 
0312 The third row indicates that a non-static, non 
private method that has a name that ends with the name of 
a field, returns a void result, and has at least one argument 
that has a same type as the field in the Java name, may be 
assigned a mutability attribute of “assumed mutating.” Such 
an assignment may be made because Such a method may be 
assumed to Set a value of an attribute of the instance that the 
method operates on. 
0313 The fourth row indicates that a non-static, non 
private Java method having a name that Starts with "get and 
returns a non-void result may be assigned a mutability 
attribute of “assumed not mutating.” Such an assignment 
may be made because Such a method may be assumed to get 
a value of an attribute of the instance that the method 
operates on without modifying the attribute. 
0314. The fifth row indicates that a non-static, non 
private Java method that starts with: “is,”“can,”“has,”“must, 
“does,” or “equals,” and returns a boolean result or a 
java.lang-Boolean, may be assigned a mutability attribute of 
“assumed not mutating.” Such an assignment may be made 
because Such a method may be assumed to get a boolean 
attribute or test for a boolean condition without modifying a 
State of an instance(s) that it operates on. 
0315. The sixth row indicates that a non-static, non 
private Java method that starts with “to' and ends with a 
name of the type of the returned result may be assigned a 
mutability attribute of “assumed not mutating.” Such an 
assignment may be made because Such a method may be 
assumed to be a type conversion that will not modify a State 
of an instance that it operates on. 



US 2005/0149914 A1 

0316 The seventh row indicates that a non-static, non 
private Java method whose name is “clone' (a special 
method) may be assigned a mutability attribute of “assumed 
not mutating.” Clone' typically behaves Similar to a con 
Structor with respect to mutability. A special method like 
"clone' is not easily expressed by an abstract or general rule. 
To address special methods such as “clone,” a “dictionary” 
of heuristics for Special methods may be provided. Such a 
dictionary may be ideally Suited for non-general (i.e., spe 
cial) methods that occur often enough to warrant special 
handling. 

0317. The eighth row indicates that a static, non-private 
Java method may be assigned a mutability attribute of 
“conceptually not mutating.” A Static Java method may be 
considered conceptually not-mutating because although 
Such a method certainly has the ability to modify any 
instances of its class that are accessible Statically, Static 
methods typically are not defined to modify Such instances. 

0318. The ninth row indicates that a Java constructor may 
be assigned a mutability attribute of “conceptually not 
mutatilig.” A Java constructor may be considered concep 
tually not mutating because constructors merely initialize 
the state of an object. Further, similar to as described above 
regarding Static methods, constructors typically do not 
modify instances that are accessible. 
0319 Optionally, a mutability attribute of a Java method 
may be determined by analyzing Java bytecode of the 
method. The bytecode may be analyzed to determine 
whether the method modifies instance fields or calls instance 
methods that modify instance fields. Such analysis (or any 
analysis), however, may not anticipate a developer's intent 
in all cases. For example, a member field may be modified 
by a method, but the field may only hold internally relevant 
State, and, consequently, Such modification may not be 
regarded as a true change in an instance's State. 
0320 Although not reflected in Table 2, when determin 
ing the mutability of a Java method and, consequently, the 
constness of the wrapping C++ proxy method, the relation 
ship between the Java class being wrapped and its Superclass 
or any of the wrapped class Subclasses may be analyzed. To 
not violate C++ virtual Semantics, a C++ class method that 
overrides its Superclass corresponding method should have 
a mutability (i.e., constness) signature exactly matching the 
mutability Signature of the overridden C++ Superclass 
method. AS used herein, a mutability Signature may include 
a constness of a method, a constness of a method return type, 
and a constness of all method argument types of a method. 
0321) Any of the above mutability mappings may be 
customized on a method-by-method basis. In other words, a 
developer may choose to define a mutability attribute for a 
C++ component different than those described above. If a 
default mapping of a mutability signature for a C++ proxy 
method is customized, a mutability Signature of all C++ 
proxy methods that override Such C++ proxy method should 
be customized accordingly to maintain correct overriding 
Semantics. Such customization may be applied to any over 
riding methods and any C++ Subclass method of Such C++ 
proxy method. 

0322 Further, the customization may be applied to any 
Superclass methods overridden by Such C++ proxy method, 
but only if the overridden method is a virtual method, which 

Jul. 7, 2005 

ensures that C++ virtual Semantics are not violated. If, in 
contrast, the overridden Superclass method is non-virtual, 
the customization may not be propagated, and the overrid 
den Superclass method may be effectively hidden by Such a 
C++ proxy method, which differs from the overridden 
Superclass method only in constness. 

0323 AS described above, a Java method argument also 
has a mutability. In an embodiment of wrapping a Java 
method argument with a C++ proxy method argument, the 
default constness of the C++ proxy method argument may be 
determined by applying heuristics to the Java method argu 
ment. 

0324 A C++ proxy method argument may be passed as 
a const reference or a pointer to a const object if the method 
does not change a passed object. Optionally, to determine the 
default constness of the method argument of a C++ proxy 
method, the Java byte code of the corresponding Java 
method may be analyzed to determine whether modifica 
tions to instance data or arguments of the Java method are 
made. 

0325 FIG. 12 is a flowchart illustrating an example 
embodiment of determining a mutability of a Java method 
argument to be mapped to the constness of a C++ method 
argument that wraps the Java method argument. 

0326 In step 98, a type (i.e., class or interface) of the 
underlying Java object being passed by the Java method 
argument may be identified. Next, in step 100, a mutability 
of each field and method (if any) declared by the identified 
Java class or interface may be determined, and a correspond 
ing mutability attribute may be assigned to each field and 
method based on its determined mutability. The mutability 
attribute of each field may be assigned in accordance with 
Table 1, and the mutability attribute of each method may be 
assigned in accordance with Table 2. 

0327 Next, in step 101, a mutability category of a 
Superclass and any Superinterfaces of the class or interface 
may be determined. 
0328. In step 102, a mutability category may be assigned 
to the identified Java class or interface based on the collec 
tive mutabilities determined in step 100 and 101. For 
example, if all of an identified class methods and fields have 
been assigned a mutability attribute of either "assumed 
non-mutating” or “conceptually non-mutating, “and the 
class' Superclass has been assigned a mutability category of 
“immutable, the identified Java class may be assigned a 
mutability category of “immutable.” Else, the Java class 
may be assigned a mutability category of "mutable.” 

0329. A mutability category assigned to a wrapped Java 
class or interface may be used to determine a mutability (i.e., 
constness) of a C++ proxy method argument of this type 
because if no instances of this type may be modified, then a 
passed instance also cannot be modified. 

0330. Also, a Java class determined not to have any 
non-final, non-Static instance data may be considered immu 
table by definition and may be assigned a mutability cat 
egory of “immutable.” Such a rule may make it possible to 
determine that the java.lang. Object class, which does not 
having any data whatsoever, has a mutability category of 
“immutable” without any further analysis. 



US 2005/0149914 A1 

0331 Returning to FIG. 12, next, in step 104, the C++ 
proxy method argument that wraps the Java method argu 
ment may then be assigned a constness corresponding to the 
mutability category assigned to the underlying Java class (or 
interface) of the Java method argument. For example, if the 
underlying class of a wrapped Java method argument is 
assigned a mutability category of “immutable', the wrap 
ping C++ method argument may be declared const. Con 
versely, if the underlying class of a wrapped Java method 
argument is assigned a mutability category of "mutable', the 
wrapping C++ method argument may not be declared const. 
0332 An example of determining the mutability of a Java 
method argument will now be described in connection to 
FIG. 13. FIG. 13 is a block diagram including a C++ proxy 
class 70 and Java classes 80, 90 and 91. C++ proxy class 70 
includes a C++ proxy method, which includes a C++ proxy 
method declaration 74. The C++ proxy method declaration 
74 may include one or more method arguments, including 
method argument 76. C++ proxy class 70 wraps Java class 
80. 

0333 Java class 80 includes Java method 82, which 
includes a Java method declaration 84. The Java method 
declaration 84 may include one or more arguments, includ 
ing method argument 86. Java class 90 includes three Java 
methods 92, 94 and 96. The type of Java method argument 
86 is Java class 90. Java class 90 extends Java Superclass 91. 
0334) To determine how to map the mutability of Java 
method argument 86 to C++ method argument 76, the 
following heuristics may be applied. 
0335 The mutability of Java method argument 86 may be 
determined from the mutability of the Java class 90 being 
passed by method argument 86. Further, the mutability of 
Java class 90 may be determined from the mutability of Java 
methods 92 and 94, Java field 96 and Java Superclass 91. 
Optionally, a mutability attribute may be determined for 
each method 92 and 94 in accordance with Table 2, a 
mutability attribute of field 96 may be determined in accor 
dance with Table 1, and a mutability category may be 
assigned to Java Superclass 91. 
0336 Java class 90 may be assigned a mutability cat 
egory based on: the mutability attributes of its constituent 
methods 92 and 94 and field 96, and on the mutability 
category of Superclass 91. For example, if all of the con 
stituent elements 92-96 have been assigned a mutability 
attribute of either "assumed not mutating or “conceptually 
not mutating” and Java Superclass 91 has been assigned a 
mutability category of “immutable', then Java class 90 may 
be assigned a mutability category of “immutable.” Further, 
the Java class 90 may be assigned a mutability category of 
“mutable' if one or more of the Java methods 92-96 is a 
non-private Java method assigned a mutability attribute of 
“mutable.” 

0337 Method Argument Types (Pass By Value, Pointer 
or Reference) 
0338 AS already discussed briefly in the preceding sec 
tion, in C++, method arguments may be passed by value, 
through a pointer or through a reference. If the method 
arguments are C++ proxy method arguments, there is typi 
cally no benefit to passing primitive type arguments in any 
way other than by value. Accordingly, in an aspect of 
mapping a Java method argument declaration to a C++ 

Jul. 7, 2005 

method argument declaration, a Java method argument of 
primitive type is mapped by default to a C++ method 
argument of a corresponding primitive type. Such a corre 
sponding primitive type may be a JNI primitive type or any 
type that is capable of representing the value range of the 
underlying Java primitive type. 

0339. It is more difficult, however, to determine whether 
to map a Java argument to a C++ proxy argument passed by 
value, reference or pointer if the Java method argument to be 
mapped is of a non-primitive (i.e. object) type. In Java, every 
non-primitive argument is a reference that is passed by 
value. Further, arguments can be passed polymorphically, 
i.e., it is not required that the instance being passed is of the 
exact same type as the declared type of the argument. It is 
Sufficient for the instance being passed as an argument to be 
of a type that extends the declared type of the argument. 
0340. In C++, polymorphic argument passing require 
ments are typically implemented with pass-by-pointer or 
pass-by-reference arguments. It may be possible to use 
pass-by-value arguments in Some limited circumstances, but 
Such argument use createS problems regarding creation of 
new Subclasses and, therefore, is not recommended. Pointer 
argument types Satisfy the polymorphic argument passing 
requirement, but they require that instances addresses be 
passed. Consequently, the developer either has to use point 
ers consistently throughout the C++ proxy Solution (with the 
negative consequences for return values that were already 
discussed) or frequently use the & (address-of) operator. 
0341 Accordingly, in an aspect of mapping Java method 
argument declarations to C++ method argument declara 
tions, Java method arguments of non-primitive types may be 
mapped by default to C++ arguments that are of type 
“reference to corresponding C++ proxy class.’ This type 
may be modified by a “const” modifier as described above. 
0342 Java Proxy Components and Cross Domain Call 
back Patterns 

0343 AS described above, Java classes and interfaces 
may map to C++ proxy classes, and methods of Java classes 
may map to C++ proxy methods. A C++ proxy class may be 
inheritable (i.e., be capable of Serving as a Superclass) by 
other C++ classes (i.e. Subclasses), and one or more of these 
Subclasses may be non-proxy Subclasses, i.e. C++ classes 
that do not have a corresponding Java class. One of these 
non-proxy Subclasses may have a method that overrides a 
method of the C++ proxy Superclass. 
0344) In some circumstances, it may be desirable to call 
a method of a C++ proxy class, or to call an overriding 
method of a non-proxy Subclass of a C++ proxy class, from 
Java code. Further, it may be desirable that the called C++ 
method have a Semantic usability in the Java domain closely 
corresponding to the Semantic usability of the C++ method 
in the C++ domain. 

0345 For example, in Java, the java.lang. Hashtable class 
may be used to create a Java hashtable that provides quick 
access to objects based on their hash-code, if the Java object 
has been added to a Java hashtable. Java hashtables inter 
nally call the hashCode() and equals() methods of objects 
that are added to them. Thus, these objects must provide 
appropriate implementations for these methods. These meth 
ods may be inherited from a Superclass or they may be a 
Special version provided in the object's class. 



US 2005/0149914 A1 

0346 A Java class having a hashCode() method and an 
equals() method may map to a C++ proxy class having C++ 
proxy hashcode( ) and equals( ) methods. Further, the 
java.lang. Hashtable class may map to a C++ proxy hashtable 
class that provides a C++ proxy hashtable to a Java hash 
table. 

0347 A developer may create a non-proxy C++ Subclass 
of a C++ proxy class having hashCode() and equals( ) 
methods, and this C++ Subclass may provide Specialized 
hashCode() and equals() methods that override these proxy 
methods. If the overriding methods are called on the C++ 
Side outside of a hashtable context, then the overriding 
methods are invoked in accordance with a developer's 
intent. If, however, a developer, through a C++ proxy 
hashtable that wraps the Java hashtable, adds an instance of 
Such a C++ non-proxy Subclass to a Java hashtable, the Java 
hashtable is not aware of the overriding methods of the C++ 
Subclass. Consequently, against the intent of the developer, 
the Java hashtable calls the underlying Java hashcode() and 
equals( ) methods of the Java class being wrapped by the 
C++ proxy class. 
0348 Thus, although in this example the C++ Subclass 
has a high degree of Semantic usability in the C++ domain, 
it does not have the same degree of Semantic usability in the 
underlying Java domain because the developer's intended 
use of the overriding C++ methods is not reflected on the 
Java Side. In other words, the overriding C++ methods are 
not callable by the Java hashtable, or, expressed more 
abstractly, a methods polymorphicability is not maintained 
acroSS domain boundaries. 

0349 The above example illustrates a situation where it 
is desirable to have Java code, (e.g., a Java hashtable) call a 
C++ component (e.g., the overriding methods of the C++ 
Subclass) that has a Semantic usability in the Java domain 
closely corresponding to the Semantic usability of the C++ 
component in the C++ domain. 
0350. Accordingly, in an embodiment of a C++ compo 
nent wrapping a Java component, where a non-proxy C++ 
component Subclasses the C++ proxy component, a Java 
proxy component that wraps the C++ non-proxy component 
may be provided. This Java proxy component may give the 
non-proxy C++ component a Semantic usability in the Java 
domain closely corresponding to the Semantic usability of 
the non-proxy C++ component in the C++ domain. A Java 
proxy component defines a concept in the Java domain, but 
implements the concept in the C++ domain. In this Sense, a 
Java proxy component may be considered an opposite of a 
C++ proxy component. 

0351 Besides Java hashtables, there are many other Java 
components and patterns for which it may be desirable to 
have Java proxy components calling C++ components. Such 
Java components may include Java interface methods, 
abstract Java methods, and Java method that have over 
loaded versions. Java patterns for which it may be desirable 
to have Java proxy components calling C++ components 
include, for example, the Hashtable usage (described 
above), the Observer pattern (including Listener), and the 
Template Method pattern. 

0352. A Java proxy component for a C++ method of a 
C++ proxy class may be provided if the polymorphicability 
of an underlying Java class is intended to be extended to the 

22 
Jul. 7, 2005 

C++ side. This extension may allow a C++ method to 
“override” a Java method in a way that is usable in both 
domains. Such methods may include, for example, interface 
methods, abstract methods, or methods that have overloaded 
versions. Such Java methods may be called by other Java 
objects in the Java domain as opposed to just being called by 
a C++ proxy component in the C++ domain. Following are 
Some example Situations in which Such "cross-domain over 
riding” may be beneficial: 
0353. In Java, a method name is said to be overloaded if 
there is more than one method of that name with differing 
numbers of arguments and/or argument types. For example, 
a method name is overloaded if there is a method of that 
name with two arguments (i.e., two-argument version) and 
another method of the same name with four arguments (a 
four-argument version) two of which correspond with the 
two-argument version arguments. Internally, the two-argu 
ment version may be implemented in terms of the four 
argument version by Supplying the two missing arguments 
with default values. This internal defaulting of values for an 
overloaded Java method occurs relatively frequently in Java 
because, in contrast to C++, Java does not have default 
arguments. Thus, a Java developer provides this function 
ality explicitly by declaring Separate versions of the Java 
method. 

0354) If the Java method taking four arguments is not 
declared final, a Subclass of this class may override this 
method. Consequently, a C++ developer may wish to over 
ride this method by overriding its C++ proxy method in C++. 
The C++ developer may further wish that the above men 
tioned Java two-argument version of the method may now 
delegate to the overriding four-argument C++ version. 
0355) A C++ proxy class may wrap a Java Listener 
interface for the Abstract Window Toolkit (AWT) or Swing 
Subsystems. In Java, an Adapter typically provides a do 
nothing default implementation of a Java Listener interface. 
Thus, Adapters are inherently useleSS unless used as a base 
class for a concrete Listener implementation. Using an 
Adapter as a base class allows the Java developer to Selec 
tively override a Single method of the Java Listener interface 
rather than implement all methods that the Java Listener 
interface declares. Consequently, a C++ developer may wish 
to override one or more Adapter methods in C++. 
0356. Observer is a software design pattern defining a 
one-to-many dependency between objects So that when one 
object changes State, all its dependents are notified and 
updated automatically. Observer pattern is often employed 
in event-driven programming. In event-driven programs, an 
object registers interest in receiving notification about cer 
tain kinds of events with another object that provides a 
Service. When a qualified event occurs, the Service object 
will Send a notification to all registered observers. Typically, 
the Service object calls a particular method on the registered 
object. This particular method of the registered object is 
often called the “call back' method. Typically, the call back 
method is declared in a Java interface and is implemented by 
concrete Java observers in different ways. 
0357 FIG. 14 illustrates an example of an Observer 
pattern 399. Observer pattern 399 includes: Observer inter 
face 400 that includes abstract Observer method Update() 
402; ConcreteObserver object 404 that includes concrete 
method Update() 406; Subject interface 408 that includes 



US 2005/0149914 A1 

abstract method Attach() 410 and abstract method Notify( 
) 412; and ConcreteSubject object 414 that implements 
interface Subject 408. In operation, ConcreteObserver 
object 404 registers itself with ConcreteSubject object 414 
by calling the Attach( ) method (not shown) of concrete 
subject object 414. When a registered event occurs, the 
Notify method() (not shown) of ConcreteSubject object 414 
is invoked which causes the Update() method 406 of 
ConcreteObserver object 404 to be called. 
0358. A template method pattern is a software design 
defining part of an algorithm in a class, wherein Some of the 
detailed Steps of the algorithm are deferred to Subclasses. A 
template method lets Subclasses redefine certain Steps of an 
algorithm without changing the algorithm Structure. 

0359 FIG. 15 illustrates an example of a template 
method pattern 419. An application represented by class 
Application 420 is designed to deal with different types of 
documents represented by the abstract Document class 428. 
One of these documents is represented by concrete class 
My Document 434. When the application is asked to open a 
document, method OpenDocument() 422 delegates the task 
to the Open() method 430 of class 428 that will perform a 
number of generic operations before delegating to the 
method DoRead() of concrete class 434 that reads a file's 
data and interprets it. Different types of documents may 
provide different overrides for DoRead() methods 432, but 
the processing Surrounding the invocation of DoRead() 
method 432 is probably generic and can be handled in the 
generic Superclass 428. Method Open() 430 is called a 
template method because it provides the generic template for 
the “Open Document” functionality while allowing Sub 
classes to customize Some aspects. 
0360 Each of the overriding Java components described 
above, and the Hashtable, Listener, Observer pattern and 
Template Method patterns share at least one characteristic: 
developer-provided methods are called from code that the 
developer does not control. This characteristic is by no 
means limited to the mentioned Java components and design 
patterns, but occurs rather frequently and adds significant 
complications to the effort of Sharing components between 
two digital domains. This characteristic is referred to herein 
as a “callback' pattern. A method being called in a Callback 
pattern is referred to herein as a “callback method.” 
0361 FIG. 16 illustrates an incorrect proxy solution for 
such a Callback pattern. On the Java side 442, interface 
AnInterface 446 establishes a calling contract through 
declaring method acallback() 448. Concrete class AnInter 
faceUser 450 declares method use() 452, which when 
executed, invokes method acallback() 448 on the concrete 
instance being passed to it as an argument as described in 
454. 

0362. On the C++ side, proxy class 460 corresponds with 
interface 446 and proxy class 468 corresponds with class 
450. These C++ proxy classes have been constructed in a 
way that ensures a high degree of Semantic usability on the 
C++ Side. 

0363. One aspect of semantic usability is inheritability, 
i.e., the ability to use a class as a Superclass. A C++ 
developer may declare a C++ Subclass AConcretempl 472 
to extend C++ proxy class 460 with the intent of providing 
an implementation 476 of proxy callback method 464. Thus, 

23 
Jul. 7, 2005 

C++ callback method 476 can be called from C++ code 
successfully. When an instance of C++ Subclass 472 is 
passed as an argument to C++ proxy method use( ) 470, 
however, the desired result is not achieved, thereby restrict 
ing Semantic usability. 
0364. The problem is due to several design weaknesses of 
this proposed proxy solution. First C++ proxy method 470 
delegates to its underlying Java method 452. Java method 
452 expects a Java instance as an argument. This Java 
instance is expected to correspond with the instance repre 
Sented by the argument being passed to C++ proxy method 
470. Thus, for an instance of C++ Subclass 472 to be 
Semantically-eligible as an argument for C++ proxy method 
470, it needs to correspond with a Java instance. C++ 
subclass 472, however, does not directly correspond with a 
Java class, rather it inherits a proxy relationship through its 
Superclass C++ proxy class 460, C++ proxy class 460 
corresponds with Java interface 446, which is not instan 
tiable. Consequently, instances of C++ Subclass 472 do not 
have the ability to be represented by a Java instance. 
0365 Second, even if there were a corresponding Java 
class for C++ Subclass 472 (this might be the case if we are 
transforming Java classes and not interfaces), the Solution 
would not work because C++ method 476 could not be 
invoked by the corresponding Java class, which has no 
knowledge of any C++ proxies. 
0366. In an embodiment of a C++ proxy interface wrap 
ping a Java interface where the C++ proxy interface includes 
one or more C++ methods, provided is a Java proxy class 
with a callback method that has the capability to delegate 
execution to an implementation of one of the C++ methods. 
Optionally, the Java proxy class may be wrapped by a C++ 
proxy class that upon being delegated execution, delegates 
execution back to the Java domain. This resulting croSS 
domain callback pattern may be referred to herein as the 
trampoline pattern because the callback bounces from a Java 
class to a corresponding C++ class, back to a Java class. 
0367 FIG. 17 illustrates a correctly-functioning example 
of a cross-domain callback pattern. Java interface 490 con 
taining Java callback method 491 is implemented by Java 
class 499 that contains a concrete Java callback method 503. 
Concrete Java callback method 503 includes a call 505 to 
JNI method 506 to implement the Java callback method. 
Concrete class 499 is shown in more detail by code frag 
ments 502 and 504. A mapping between Java and C++ 
instances is maintained by an instance 500 of Java class 
TrampolineSupport 495. Use of an object registry is only 
one possible embodiment for maintaining this mapping. In 
particular, Such a mapping may be performed on the C++ 
Side or in a proxy layer rather than on the Java Side. Thus the 
use of the TrampolineSupport REGISTRY instance 500 is 
merely illustrative. Java class 492 has a Java method 493 
that takes an instance of a class implementing Java interface 
490 as an argument. Code fragment 494 shows how Java 
callback method 491 may be invoked by Java method 493. 
0368 C++ proxy interface 510, shown in more detail by 
C++ code fragment 513 and 515, is implemented by C++ 
concrete class 517 that contains concrete C++ callback 
method 519. Method 519, shown in more detail by C++ 
code-fragment 520, is the developer-written implementation 
of C++ callback method 516. 

0369 During execution of the C++ application, an 
instance of C++ class 517 is constructed using constructor 



US 2005/0149914 A1 

518. Execution of constructor 518 causes the execution of 
C++ Superclass 510's constructor 512, which, in turn, causes 
the creation of an instance of Java class 499 as illustrated in 
C++ code fragment 513. When the Java instance is con 
structed an entry is made in the Java REGISTRY 500, 
mapping the newly constructed Java instance to a pointer to 
the C++ instance. Given that Java has no notion of pointer 
types, the C++ pointer may be maintained in an integral type 
of Sufficient size. 

0370. This C++ instance may then be passed to C++ 
method 522 of C++ class 521 which, being a C++ proxy, 
passes the reference on to method 493 of Java class 492. As 
illustrated in Java code fragment 494, the execution of 
method 493 causes the virtual invocation of Java callback 
method 491 of C++ interface 490 resulting in the invocation 
of Java method 503 of Java class 499. 

0371. As illustrated by Java code fragment 504, Java 
method 503 delegates to native method 506 which is written 
in C++. Native method 506 is called with the retrieved C++ 
pointer in addition to any other arguments Supplied to Java 
method 503. An alternative embodiment may provide a 
native implementation for method 503, which may be more 
convenient, for example, if the object registry is situated on 
the C++ side. 

0372 Native method 506 casts the C++ pointer to a 
pointer to C++ proxy interface 510 and calls the C++ 
callback method 516 which, being virtual, executes C++ 
method 519, thus completing the cross-domain callback. 
0373 Implementing a cross-domain callback pattern is 
more difficult if a Java class (as opposed to an interface) 
includes default implementations of its callback methods, 
and we want to extend this Java class in C++. The compli 
cation stems from the fact that the Java callback method 
should be executed unless the C++ extending class overrides 
it. 

0374. In an aspect of providing cross-domain callback, a 
Java class including default implementations is extended by 
a Java proxy class that provides a trampoline implementa 
tion, Such as described above, for every Java callback 
method. Accordingly, the callback method of each Java 
proxy class may delegate execution to a C++ instance as 
described above in the interface case. The major difference 
lies in the implementation of the C++ proxy class (which is 
the equivalent of the C++ interface proxy 510). 
0375 Because the Java class (as opposed to a Java 
interface) is instantiable, the C++ proxy class for this Java 
class may provide a default implementation for every call 
back method defined by the Java class (with Java interfaces, 
this "direct' implementing by the C++ proxy class was not 
possible because the Java interface had to be implemented 
by Java Subclasses, and, in turn, these Java Subclasses had to 
delegate execution to C++ Subclasses of the C++ proxy 
class). Each C++ callback implementation may be defined 
Such that, upon being called by a Java object, it calls right 
back into Java by invoking the original Java class imple 
mentation of the callback method. In this way, the correct 
Java method is invoked after a short detour into the C++ 
domain. 

0376) If, however, a concrete C++ class overrides the 
C++ class callback into Java, the concrete C++ class’s 

24 
Jul. 7, 2005 

version of the callback method gets called as described 
above in connection to FIG. 16, thereby overriding the Java 
class's implementation. 

0377 Exceptions and Error Handling 

0378. Both Java and C++ allow the use of exceptions to 
Signal unexpected conditions or error conditions. The excep 
tion models of the two languages, while Similar, differ in 
Some crucial aspects: 

0379 Java methods can only throw instances of java 
lang.Throwable or instances of classes derived from java 
lang.Throwable. C++ methods, on the other hand, can 
literally throw any type, including primitives, references and 
pointers. 

0380 Java has two basic types of exceptions, checked 
and unchecked. Checked exceptions need to be declared in 
the throws clause of a Java method if the execution of the 
method could cause the exception to be thrown and the 
exception is not caught within the method. This requirement 
is enforced by the Java compiler. Unchecked exceptions (i.e. 
exceptions derived from the class java.lang.RuntimeExcep 
tion or java.lang.Error) do not need to be declared in the 
throws clause of the Java method. The absence of a throws 
clause in a Java method declaration is interpreted by the 
compiler as a promise that this method will only throw 
unchecked exceptions or no exceptions at all. 

0381 C++, on the other hand, makes no distinction 
between checked and unchecked exceptions. Effectively, all 
exceptions in C++ are unchecked because the compiler 
cannot enforce checked exceptions. Thus, the throws clause 
is optional, but has an unexpected Side-effect if used. Spe 
cifically, if a method is declared with a throws clause and 
throws an exception of a type that is not included in the 
throws clause, C++ will convert the exception to an excep 
tion of type unexpected. Typically, a C++ handler for 
exceptions of type unexpected will terminate an application 
upon detecting an unexpected exception. 

0382. The absence of a throws clause in a C++ method 
declaration is interpreted by the compiler as an unavailabil 
ity of information regarding whether a method can or cannot 
throw exceptions, i.e. no promises or guarantees are made 
about this method and every exception is allowed. The 
presence of an empty throws clause in a C++ method is 
interpreted as a promise that a method will not throw any 
exceptions. Effectively, the presence of a throws clause in a 
C++ method declaration is interpreted as a Switch from the 
C++ unchecked exception model to a strictly checked-at 
runtime model. 

0383) If a C++ method is a proxy method for a Java 
method, Java's Semantics regarding declared, checked 
exceptions and undeclared, unchecked exceptions do not 
map directly to C++ Semantics regarding throwing excep 
tions. Declaring the checked exceptions in a throws clause 
of a C++ proxy method would cause the invocation of the 
unexpected handler for all unchecked exceptions. 

0384 Consequently, a Java method declaring a throws 
clause (i.e., throws an exception) may be mapped to a C++ 
method that does not declare a corresponding throws clause 
even though it may throw an exception. Alternatively, a C++ 
method that wraps a Java method that throws an exception 



US 2005/0149914 A1 

may also be declared with a corresponding throws clause, 
although for the reasons described above, this may not be 
desirable. 

0385) Any Java exceptions that are thrown during the 
execution of a C++ proxy component are exposed to C++ 
through the JNI layer (or its alternative). Because JNI is a 
low level of abstraction and is an API for C, JNI explicitly 
requires the developer to query for exceptional conditions 
rather than Signaling them like exceptions. 
0386 Accordingly, in an aspect of a C++ proxy method 
wrapping a Java method that throws exceptions, the C++ 
proxy method handles JNI-layer errors and exceptions. 
0387 As described above, the JNI implementation details 
of a C++ proxy component may be implemented Such that 
they are transparent to a C++ developer. A C++ developer 
may see highly-convenient C++ wrappers around a JNI 
programming interface. Hiding details, however, may cause 
the C++ developer to not be aware of the fact that a JNI 
function is called in the course of using a C++ proxy 
component. For example, a Single C++ proxy object may 
make multiple JNI function calls to the Java domain to 
implement a concept. 
0388 Most JNI functions can theoretically cause an 
exception or an error to be thrown in a JVM. When an 
exception or error is thrown in a JVM, Subsequent JNI 
function invocations from the C++ Side may cause unpre 
dictable behavior unless the exception or error thrown in the 
JVM is cleared, i.e., handled. 
0389. Accordingly, if exception and error handling 
implementation details are hidden from a C++ developer, an 
effective C++ error-handling mechanism may be provided to 
deal with exceptions and errors that occur in the JNI layer. 
0390 Accordingly, in an embodiment of wrapping a Java 
method that throw exceptions with a C++ proxy method one 
or more developer preferences may govern the exception 
behavior of the C++ proxy method. Some developers may 
wish to maximize Semantic usability by having a C++ proxy 
method throw typed exceptions, while other developerS may 
wish to integrate C++ proxy components with an application 
that does not perform exception handling. 
0391) In an aspect of mapping Java methods that throw 
exceptions to C++ proxy methods that handle JNI layer 
errors, one of the following error handling and exception 
handling Strategies may be implemented. 

0392. In a first strategy, JNI exceptions and errors may be 
cleared in a JNI layer, and execution of a shared C++ and 
Java application may effectively ignore the exception or 
error. Using this Strategy, if a high-level C++ concept 
translates into a sequence of JNI API invocations, the failure 
of any one JNI call in the Sequence may cause the remainder 
of the Sequence to not be executed. C++ proxy classes may 
not be provided for Java exceptions because exceptions are 
not used. Thus, this Strategy involves a high level of risk 
because failures occur Silently. Consequently, because most 
Java methods throw concrete exceptions to Signal certain 
conditions to the calling code, this error-handling Strategy 
may limit Semantic usability of C++ proxy components that 
merely clear JNI exceptions and errors in the JNI level. 
0393. In another exception and error handling strategy, 
any JNI-related exceptions or errors may be mapped to a 

25 
Jul. 7, 2005 

generic C++ proxy class for exceptions, and this C++ proxy 
exception class may be thrown as a C++ exception after the 
underlying JNI error or exception has been cleared. In this 
Strategy, the generic C++ proxy class for exceptions may not 
correspond with any Specific concrete Java exception class 
and, therefore, may not proxy the unique attributes of each 
type of Java exception. Use of this Strategy will provide a 
Semantic usability of Such a generic C++ proxy class closely 
corresponding to the Semantic usability of Java exception 
classes, while requiring Some differences in coding style (for 
example, multiple catch blockS may map to one catch block 
with embedded "if-else' blocks). Using this strategy, spe 
cific C++ proxy classes for Java exception classes may be 
provided only for Java exceptions that offer custom func 
tionality for error-handling. 
0394. In yet another error-handling strategy, an exception 
at the JNI level may be mapped to a corresponding C++ 
proxy component and thrown as a C++ proxy exception. 
This Strategy may be preferred for C++ components that 
want to provide a programming environment that mirrors as 
closely as possible the original Java programming environ 
ment. 

0395. In another error-handling strategy, any exception at 
the JNI level is treated as a fatal error at the JNI level, and 
the JNI function FatalError is called in response. This 
strategy closely mirrors JNI's default strategy for unhandled 
error conditions. 

0396. In one implementation of any of the above excep 
tion and error-handling Strategies, any exception or error that 
occurs at the JNI level may be logged through a customiz 
able logging method before an error-handling mechanism is 
invoked. 

0397) Java VM and JNI Environment Pointer Handling 
0398. A C++ application that uses C++ proxy compo 
nents may use a Java Virtual Machine to execute the 
underlying Java code. 

0399. In an embodiment of making a Java Virtual 
Machine available to C++ proxy components, the JVM may 
be loaded and initialized on demand when the use of a C++ 
proxy component requires the use of the underlying Java 
component. 

0400 Typical implementations of Java Virtual Machines 
reside in a shared library. In order to load a Java Virtual 
Machine, the shared library containing the JVM is identified. 
In an optional aspect of this embodiment, the shared library 
containing the JVM may be identified through a configura 
tion setting. After the shared library is loaded, the JVM has 
to be started and initialized. JVM initialization arguments 
may include Settings like the classpath, available RAM and 
other information that may vary between JVMs. In another 
optional aspect of this embodiment, initialization arguments 
may be specified through configuration Settings. 

04.01 AS discussed in the JNI section, most JNI functions 
take a JNIEnv pointer as an argument. Most of the remaining 
JNI functions require a Java VM pointer as an argument. 
C++ classes may declare special member functions (e.g., 
constructors, conversions or a destructor) that have a special 
meaning in the Sense that they affect the way a compiler 
treats objects of their class, i.e., they affect the Semantic 
usability even when they are not explicitly used. Many of 



US 2005/0149914 A1 

these proxy Support elements have distinct and un-modifi 
able argument lists. For example, a destructor can never take 
any arguments, which makes it impossible to pass the 
JNIEnv or JavaVM pointer to these methods. If a C++ class 
is a C++ proxy class, many of its special member functions 
(e.g., proxy Support elements) may have to invoke JNI 
functions for which a JNIEnv or JavaVM pointer may be 
required. Thus, it may be desirable to have an alternate way 
of making these pointers available. 
0402. In an embodiment of generating C++ proxy com 
ponents having high Semantic usability, a C++ method may 
be provided with a JNIEnv or Java VM pointer through 
means other than by a function argument. Such pointerS may 
be provided by: thread local Storage, a lookup-table that 
maps threads to JNIEnv pointers, and, in a Single-threaded 
application, by declaring the pointer with a global variable. 
0403. In an alternative embodiment of generating C++ 
proxy components of high Semantic usability, an alternative 
means for loading and initializing a Java VM and providing 
a JNIEnv or JavaVM pointer is provided that allows a 
developer to be completely unaware of pointers presence. 
For example, a runtime-use of a C++ proxy component may 
result in the following Sequence of actions that are all 
invisible to the developer: 

0404 1) load and initialize a Java VM, producing a 
JavaVM pointer; 

04.05) 2) attach the C++ application's thread to the 
started Java VM, producing a JNIEnv pointer; and 

0406 3) use the newly acquired JNIEnv pointer to 
call one or more JNI functions, for example to load 
a Java class, identify a method of the loaded class 
and execute it. 

04.07 Compiling, Linking, and Running 
0408 FIG. 18 is a dataflow diagram illustrating an 
example embodiment of compiling, linking, and running an 
application that uses C++ proxy components. A C++ appli 
cation 130a may include the Source code for regular (i.e., 
non-proxy) C++ components 134a and C++ proxy compo 
nents 132a. A compiler 136 may receive the source code of 
C++ application 130a and compile it to form an object code 
version of C++ application 130b, including an object code 
version of C++ regular components 134b and an object code 
version of C++ proxy components 132b. 
04.09 Alinker 144 may receive the object code version of 
the C++ application 130b, libraries 138b such as, for 
example, the C++ Standard library, and C++ Standard proxy 
Support components 140b. Standard proxy Support compo 
nents 140b may include, among other things, classes that act 
as base classes for C++ proxy classes, predefined C++ proxy 
classes for primitive types (described above in FIGS. 8-11), 
and utility classes that can assist user-generated C++ proxy 
classes in their taskS. 

0410 Optionally, each of the standard proxy support 
components 140b may be included as part of a Java Virtual 
Machine (JVM) 142 and made available to be linked by the 
linker 144 to a C++ application Such as, for example, C++ 
application 130b. 
0411 Each of the C++ standard proxy support compo 
nents 140b and the libraries 138b may be either a static link 

26 
Jul. 7, 2005 

library or a dynamic link library. A static link library may 
contain object code and may be linked and, effectively, 
directly integrated with other object code to form an execut 
able application. Linking Static link libraries to an applica 
tion may add Significantly to the size of an executable 
application. 
0412. A dynamic link library is dynamically linked to an 
executable application at runtime. Typically, on Windows 
Systems, a dynamic link library has a .dll extension and is 
referred to Simply as a DLL. On most Unix Systems, a 
Similar concept is called “shared object' and typically 
denoted with a ..So extension. In the following discussion, the 
term “DLL will be used to refer to the corresponding 
features of a platform. If a dynamic, rather than a Static, 
library is used, the linker may be provided with a lib file. In 
the dynamic case, the lib file does not directly contain the 
compiled Source code, but may contain So-called "stubs.' 
StubS may be an indeX into a file that contains the compiled 
code. StubS may be implemented in any number of ways 
without affecting the general principle of runtime-linking. 
The lib with the stubs is linked with the rest of the 
application, adding only the size of the Stubs to the total size. 
At runtime, the operating System may attempt to locate a 
DLL corresponding with the lib file and any indeX main 
tained by a stub may be interpreted as a data or function 
address in the DLL. 

0413. The linker 144 links the received components 
130b, 138b and 140b to produce an executable version of the 
C++ application 130c, which may include the linked object 
code of the C++ regular components 134c, the C++ proxy 
components 132C, C++ Standard proxy Support components 
142c, and library components 138c. In the case of any of 
these components residing in a DLL, the executable may 
only contain stubs for these components. 
0414. In an alternative aspect of compiling, linking and 
running an application that uses C++ proxy components, the 
result 130c of the linker step may be a static or dynamic 
library that may be used by other C++ programs or by 
applications written in other programming languages that 
can link with libraries. 

0415. At runtime, an operating system 154 may receive 
executable C++ application 130c, and any of a combination 
of C++ runtime DLL 146c, standard proxy support runtime 
DLLs 148c, JVM 142 and Java components (i.e., Java class 
libraries) 152c. Each DLL of the runtime DLLs 146c and 
148c may correspond to a lib of the libs 138b and 140b, 
respectively, that contains stubs as opposed to object code. 
0416. At runtime, when the C++ executable application 
130c is launched by the operating system 154, linked 
elements 134c, 132c, 142c and 138c and may each be 
executed in the course of executable 130's execution. For 
any of the libraries 138c and C++ standard proxy support 
components 142c that contain Stubs, the operating System 
154 may attempt to locate a corresponding DLL (i.e., one of 
the C++ runtime DLL 146c or one of the C++ standard proxy 
Support runtime DLLS 148c), load it into memory, and make 
the stubs in the executable application 130c refer to the 
memory locations of the data and functions of the DLLs. 
Compile-time and runtime options may govern when and 
how this last Step in the DLL loading process is performed. 
0417. In an aspect of a running executable C++ applica 
tion 130c, when either a proxy component 132c or a 



US 2005/0149914 A1 

Standard proxy Support component 142c are executed and a 
JNI method is invoked, the operating system 154 may then 
load and initalize JVM 142 (if not already done for a 
previous JNI call). With the JVM 142 loaded, a JNI method 
call through a proxy component 132c or a Standard proxy 
Support component 142c may request the loading of a Java 
class 152 into the JVM. After the Java class is loaded, a 
method call or field acceSS on a C++ proxy component 132c 
may be delegated to the corresponding, loaded Java class 
152. 

0418 FIG. 18 merely illustrates one embodiment for 
compiling, linking and running a C++ application 130a that 
includes C++ proxy components and uses any of a combi 
nation of C++ Standard proxy Support components, a JVM, 
and Java components. Several other implementations are 
possible. Accordingly, the embodiment of FIG. 18 is pro 
Vided merely for illustrative purposes and does not limit the 
Scope of any of the inventive concepts disclosed herein. 
0419 Component Transformation 
0420. In another embodiment of sharing a component of 
a first domain with other domains, a System for and method 
of automatically transforming a first component in a first 
domain to a proxy component of a Second domain is 
provided. Automatic proxy component transformation 
reduces cost and the inherent difficulties in developing an 
application that shares a dynamic concept between C++ and 
Java. For example, Such a System or method may automati 
cally transform a Java component describing a dynamic 
concept into a C++ proxy component that wraps the Java 
component. 

0421. The description provided below, which describes 
example component transformations from Java to C++, is 
not intended to limit the Scope of automatic component 
transformation to these functional domains, but is provided 
merely for illustrative purposes. Component transformation 
may apply to other digital domains, both functional and 
non-functional. 

0422 Further, automatic component transformation may 
be applied to transform a component of a first domain to a 
non-proxy component of a Second domain, i.e., a component 
confined in the Second domain that is not implemented in the 
first domain. 

0423 FIG. 19 is a data flow diagram illustrating an 
example embodiment of a transformation system 157 for 
transforming a first component 158 of a first domain to a 
Second component 163 of a Second domain. A component 
transformer 162 may receive the first component 158 of a 
first domain as input and transform the first component 158 
to produce the Second component 163 of a Second domain as 
output. In an aspect of transforming a first component 158 
of a first domain, the component transformer 162 may 
generate more than one component in the Second domain, 
which may depend on the component being transformed. 
0424 The component transformer 162 may be imple 
mented using Software, firmware, hardware, or an combi 
nation thereof. For example, component transformer 162 
may be implemented in the Java programming language, 
although other programming languages Such as, for 
example, C++ or Smalltalk, may be used. 
0425 FIG. 20 is a flow chart illustrating an example 
embodiment of a method of transforming a first component 

27 
Jul. 7, 2005 

of a first domain to a Second component of a Second domain. 
Such a method may be used by the component transformer 
162 of transformation system 157. First, in step 532, a first 
component may be parsed to produced a parsed first com 
ponent. Any of a number of known parsing techniques may 
be used to parse the first component. The parsing technique 
may depend on the functional domain (e.g., C, C++, Java, 
Pascal, etc...) of the first component, and possibly the form 
(e.g., Source code or compiled code) of the component. 
0426 For example, the first component may be a com 
piled Java component (i.e., Java byte code) or a Java Source 
component (i.e., Java Source code for a Java class). If the 
first component is a Java Source component, then the parsed 
first component may be represented as an element of a Java 
Syntax tree that may have child elements and a parent 
element. If the first component is a compiled Java compo 
nent, the parsed first component may be represented in the 
Java class file format, which is well-documented. 

0427 Next, in step 534, it may be determined whether to 
transform the first component. For example, the component 
transformer 162 may be configured Such that all components 
are transformed. Alternatively, a transformation parameter, 
discussed in more detail below, may indicate whether the 
first component is transformed. Further, the first component 
itself may contain information that determines whether the 
first component is transformed. 
0428 If it is determined in step 534 that the first com 
ponent is not to be transformed, then the transformation of 
the first component may end 536. 

0429. If it is determined in step 534 that the first com 
ponent is to be transformed, then next, in step 538, the type 
of the first component may be identified. For example, if the 
first domain is the Java programming language, then the first 
component may be identified as a Java class or a Java 
interface. 

0430. Next, in step 540, the parsed first component may 
be analyzed, and the appropriate transformation to be per 
formed on the first component may be determined. Such a 
determination often depends on the type of the component. 

0431 FIG. 21 is a flow chart showing an embodiment of 
step 540 in more detail. In step 542, a next Subcomponent of 
the first component may be identified. For example, if the 
first component is a Java class, then the first Subcomponent 
may be a Java method. In another example, the Java com 
ponent may be a Java interface, and the Subcomponent may 
be a Java abstract method. 

0432 Next, in step 544, it may be determined whether to 
transform the Subcomponent. This determination may be 
made in a similar fashion as described above in connection 
to step 534. If it is determined in step 544 that a transfor 
mation of the Subcomponent is not be made, then the next 
Subcomponent of the first component may be identified in 
step 542. 
0433) If it is determined in step 544 that the Subcompo 
nent is to be transformed, then next, in step 546, it may be 
determined whether the subcomponent is defined such that 
it implements a user-defined component. For example, if the 
first component is a Java class, and the Subcomponent is a 
field of the Java class, then step 546 may determine that the 
field is of type class (a user-defined component), as opposed 



US 2005/0149914 A1 

to a Java-defined component Such as a Java primitive type. 
“User-defined component” may be interpreted to include 
pre-defined Java classes that have not been written by the 
user of component transformer 162. 
0434 If it is determined in step 546 that the Subcompo 
nent does not depend on a user-defined component, then in 
step 548 the type of the Subcomponent may be identified. 
0435 Next, in step 550, the parsed subcomponent may be 
analyzed and the appropriate transformation to be performed 
on the Subcomponent may be determined. The transforma 
tion may depend on the type of the Subcomponent deter 
mined in step 548. 
0436 Next, in step 552, the determined transformation 
may be applied to the parsed Subcomponent to produce a 
corresponding Subcomponent of another domain. For 
example, if the first component is a Pascal function, the 
corresponding Subcomponent may be a Fortran function. 
0437. If it is determined in step 546 that the Subcompo 
nent's use does depend on a user-defined component, then in 
step 554, it may be determined whether the user-defined 
component has already been transformed. For example, a 
lookup table, register, or Some other data Structure may be 
used to determine whether a user-defined component has 
already been transformed. Such a data Structure may include 
one or more entries, where each entry represents a user 
defined component, and each entry indicates whether the 
user-defined component has already been transformed. 
Alternatively, Such a data Structure may hold entries only for 
those user-defined components that have already been trans 
formed, or only user-defined components that have not been 
transformed. 

0438 If it is determined in step 554 that the user-defined 
component has already been transformed, then steps 548 
552 may be performed on the Subcomponent. 

0439). If it is determined in step 554 that the user-defined 
component has not already been transformed, then in Step 
556 it may be determined whether the component is to be 
transformed now or later. Whether to transform the Subcom 
ponent now or later may be determined by a default Setting 
of the component transformer 162 or by a transformation 
parameter, Similar to as discussed above with respect to Step 
534. 

0440 If it is determined in step 556 that the user-defined 
component is to be transformed now, then in step 560, the 
user-defined component may be transformed, and then Steps 
548-552 may be performed on the Subcomponent. The 
user-defined component may be transformed in accordance 
with steps 532-560 of FIGS. 20 and 21. 
0441. If it is determined in step 556 that the user-defined 
component is not to be transformed now, then in step 558 the 
fact that the user-defined component Should be transformed 
later may be recorded. This record may be stored in any of 
a number of data Structures, Such as a lookup table or a 
register. Other types of data Structures may be used. The 
Stored record may be accessed later, Such as, for example, in 
step 554, to determine whether a component is to be 
transformed. After step 558, steps 548-552 may be per 
formed on the Subcomponent. 
0442. Returning to FIG. 20, after step 540, in step 542, 
the determined transformation for the parsed first component 

28 
Jul. 7, 2005 

may be applied to the parsed first component to produce a 
corresponding component of another domain. For example, 
if the first component is a C procedure, the corresponding 
component may be a COBOL procedure. 

0443 Transforming a first component of a first domain to 
a Second component of a Second domain may be performed 
in any of a number of ways, and Such transformation is not 
intended to be limited to embodiments described in connec 
tion to FIGS. 20 and 21. Other methods of transformation 
may be used. 
0444. In an aspect of transformation system 157, the 
component transformer 162 may also receive transformation 
parameters 160 to configure the component transformer 162. 
For example, a transformation parameter may configure the 
component transformer 162 to generate a proxy component 
or a non-proxy component. Another transformation param 
eter may control the digital domain to which the component 
transformer 162 transforms. For example, the component 
transformer may be capable of transforming a Java compo 
nent to one of Several digital domains Such as, for example, 
the C programming language, the C++ programming lan 
guage, the CORBA architecture, and the XML document 
Specification. Thus, the transformation parameters may con 
trol the digital domain to which the Java component is 
converted. 

0445. The component transformer 162 may be configured 
to apply knowledge of the Syntax and Semantics of the first 
and Second domains to make default transformations of 
components between the Source and target digital domains 
Such as, for example, transformations in accordance with the 
default mappings, rules, and heuristics discussed above in 
connection to FIGS. 1-18. 

0446. The component transformer 162 may be configured 
to transform a component of a first domain to a proxy 
component of a Second domain. To generate a proxy com 
ponent in a Second domain that accurately shares a concept, 
particularly a dynamic concept defined by a first component 
of a first domain, the component transformer 162 should be 
configured to generate proxy components that adhere to the 
Syntax of the Second domain and that have a Semantic 
usability in the Second domain closely corresponding to the 
Semantic usability of the first component in the first domain. 
0447 The semantic usability of the proxy component 
may be defined, depending on the functional domain of the 
proxy component, by one or more of the following proper 
ties of the proxy component: context-usability, inheritability, 
mutability, accessibility, instantiability, polymorphicability, 
or any combination thereof, as described above in connec 
tion to FIGS. 1-18. Further, each of these properties may be 
determined, depending on the functional domain of the first 
component, from one or more of the following properties of 
the first component: context-usability, inheritability, muta 
bility, accessibility, instantiability, polymorphicability, or 
any combination thereof, as described above in connection 
to FIGS. 1-18. 

0448. In an embodiment of sharing a component between 
two domains, the component transformer 162 receives a 
Java component as input and transforms the Java component 
to produce a C++ proxy component as output. In an optional 
aspect of this embodiment, JNI is used to code the proxy 
layer between C++ and Java. In alternative option aspect of 



US 2005/0149914 A1 

this embodiment, other interfaces Such as, for example, 
Microsoft's Raw Native Interface (RNI) and Netscape's 
Java Runtime Interface (JRI), may be used to implement a 
proxy layer between C++ and Java. 
0449 The component transformer 162 may be configured 
to transform Java components to C++ proxy components in 
accordance with the Java-to-C++ component mappings 
described above, and in accordance with the heuristics and 
rules described above in connection to Such mappings and in 
connection to FIGS. 1-18. 

0450. The component transformer 162 may include a 
plurality of modules, each module corresponding to a spe 
cific Java component to be transformed. For example, the 
component transformer 162 may include: a Java package 
transformer, a Java interface transformer, a Java class trans 
former, a Java array transformer, a Java field transformer, a 
Java method transformer. Further, these modules may 
include Submodules Such as, for example, a method argu 
ment transformer and a method return type transformer. 
0451 Depending on the Java component being trans 
formed, the component transformer 162, when transforming 
a Java component to a C++ proxy component, may be 
configured to generate other components in addition to the 
C++ proxy component. 
0452 For example, in accordance with the description 
above regarding croSS domain callback patterns in connec 
tion to FIG. 17, the component transformer 162 may include 
a Java class transformer and/or a Java interface transformer 
configured to transform Java classes and interfaces, respec 
tively, into a C++ proxy class, a Java proxy class and native 
methods that together implement a cross-domain callback 
pattern. 

0453 The component transformer 162 may be configured 
to determine that a received Java method is an interface 
method, an abstract method, or a method that has overloaded 
versions. If it is determined that the received Java method is 
one of these types of methods, then the received Java 
component may be transformed (e.g., by an interface trans 
former or class transformer) into a C++ proxy class, a Java 
proxy class and native methods that together implement a 
cross-domain callback pattern. 
0454 FIG. 22 is a flow chart illustrating an example 
embodiment of a method for transforming a Java interface or 
class containing callback methods to a Java class, a C++ 
proxy class and native methods that together implement a 
cross-domain callback pattern. 
0455. In step 480 a Java class or interface may be 
received. Potentially, all non-final and non-private instance 
methods may be regarded as callback method candidates. 
Optionally, in step 482, heuristics may be used to identify 
Strong candidates for callback methods. These heuristics 
may include, but are not limited to: heuristics based on the 
class or interface-name (for example, all methods declared 
by interfaces whose name ends with “Listener” may be 
callback methods), heuristics based on method declaration 
modifiers (for example, final methods never may be candi 
dates, abstract methods may be strong candidates), heuristics 
based on method name analysis (for example, overloaded 
method names may identify weak candidates). 
0456 Also, optionally, in step 484, the developer may 
manually identify callback methods. Next, in step 486, a 

29 
Jul. 7, 2005 

Java class may be generated that implements the Java 
interface or extends the Java class. This generated Java class 
may override all marked callback methods. An overriding 
method of the overriding class may delegate execution of the 
method to a corresponding C++ instance through a native 
method. The corresponding C++ instance may be identified 
in any of Several ways. The Java proxy instance may have 
been constructed with a pointer to the corresponding C++ 
instance as an argument, thus maintaining the relationship 
itself. Alternatively, the Java proxy instance may lookup the 
corresponding C++ instance in an object registry that main 
tains the relationship external to the instance. An object 
registry may be Supplied on the C++ Side, on the Java Side 
or in the connection layer (for example, JNI). Other mapping 
techniques may be used. 
0457 Next, in step 488, a C++ proxy class may be 
generated for the Java proxy class. This C++ proxy class is 
intended to be used as a Superclass by C++ classes that 
override callback methods. Finally, in step 489, one or more 
native methods that delegate the Java method to the C++ 
method may be generated. Steps 486-489 may be performed 
Serially or in parallel, and the order of these Steps is not 
Significant. In particular, the native methods generated in 
step 489 may be generated as static methods of the C++ 
proxy class, thus effectively combining steps 488 and 489. 
0458 In an optional embodiment, byte code of the com 
piled Java proxy class may be included in the C++ class and 
injected (i.e. loaded explicitly) into the JVM, thus obviating 
distribution of a separate class-file to Support the cross 
domain callback pattern. 
0459 Component Models 
0460. In an embodiment of automatically transforming a 

first component of a first domain to a Second component of 
a Second domain, component models may be applied. 
Optionally, a component model may be a robust component 
model, which is defined below. 
0461 FIG. 23 is a data flow diagram illustrating an 
example embodiment of transformation system 157 that uses 
models to transform a component from one domain to 
another. The component transformer 162 may include model 
generator 164, a model transformer 168 and component 
exporter 174. 
0462. The model generator 164 may receive the first 
component 158 and model generator parameters 176 as 
input and generate a first component model 165 as output. 
AS described above in connection with FIG. 20, first com 
ponent 158 may be a Source component or a compiled 
component. The model generator 164 may be configured to 
generate models from both compiled components and Source 
components. Further, model generator 164 may be config 
ured to generate a component 165 in more than one domain, 
depending on the domain of the first component 158. For 
example, model generator 164 may be configured to gener 
ate a C++, Java or C component model 165 depending on 
whether first component 158 is a C++ component, Java 
component or C component, respectively. Model generator 
164 may be configured to recognize the domain of the first 
component 158 or may receive an indication (e.g. one of the 
model generator parameters 176 of the domain of the first 
component 158 before receiving it. 
0463 Model generator 164 may be configured using 
model generator parameters 176, which may be included as 



US 2005/0149914 A1 

part of the transformation parameters 160. Model generator 
164 may be implemented using Software, firmware, hard 
ware, or any combination thereof. For example, model 
generator 164 may be implemented as a Software application 
written in any of a number of programming languages Such 
as, for example, Java, C++, C, or Smalltalk. 
0464 Optionally, a component model 165 may have any 
of the following properties or combinations thereof: discrete 
representability (of Subcomponents); component relation 
ship awareness, and Source reproducability. AS used herein, 
a robust component model is a component model that has all 
three of these properties. 
0465 Discrete representability refers to ability of the first 
component model 165 to Separately and distinctly represent 
each subcomponent (if any) of the first component 158 as a 
discrete element of the first model. The ability to represent 
each Subcomponent as a discrete element provides the 
ability to query or manipulate individually each Subcompo 
nent of the first component model 165. For example, if the 
first component 158 is a Java class including several fields 
and methods, the first model 165 may model the Java class 
and represent discretely each field and method. A developer 
may then be able to query a model for its Subcomponents 
and manipulate these Subcomponents individually. 
0466. A level of discrete representability may be chosen 
on a per-model basis. For example, if a Java model is 
generated from a Java class that includes a method and a 
field, the level of discrete representation may be chosen Such 
that discrete elements representing the field and method are 
generated, but discrete elements are not generated to repre 
sent any subcomponents of the body of the method. Alter 
natively, the body of the method may be represented with 
one or more discrete elements. Such a level of representation 
may be referred to herein as a “Source level” representation 
because the Source code of the method body is represented. 
The ability to provide such a source level of discrete 
representation may depend on whether first component is in 
Source form or compiled form. If the first Source component 
is in compiled form, the Source code may not be available to 
be represented and, consequently, a Source level of discrete 
representation may not be an option. 
0467 Relationship awareness refers to the ability of a 

first component model 165 to maintain knowledge of one or 
more relationships to other components, other component 
models, discrete elements, attributes, or any combination 
thereof, Such as, for example, relationships: to the first 
component 158 from which it was generated, to other 
components of the first domain related to the first component 
165, Such as, for example, another component that uses the 
first component 158 or uses Subcomponents (represented as 
discrete elements of first component model 165) of the first 
component 158, to models of Such other components, 
between one or more elements of the first component model 
165, between one or more elements of the first component 
model 165 and attributes of the first component model 165 
being modeled (e.g., name), to file names, and to file 
locations. Such knowledge may be maintained by a field of 
the model (not to be confused with a field of an object being 
represented by the model) and may be maintained by a field 
of a specific discrete element. 
0468 For example, a C++ struct model 165 generated 
from a C++ Struct of a C++ program may include model 

30 
Jul. 7, 2005 

fields that identify the C++ struct itself, any other C++ 
components that use the C++ Struct 158, any generated 
models of these other C++ components, any Superclasses or 
Subclasses of the of the C++ Struct, any generated models of 
these Superclasses or Subclasses, the nameSpace of the C++ 
Struct, fields and methods of the Struct, elements of the Struct 
model corresponding to these fields and methods, the name 
of the Struct, and the name and location of Source and 
compiled forms of the struct (if available). 
0469 Relationship awareness may permit changes made 
to an element or an attribute of a first component model 165 
to be propagated to other related elements or attributes of the 
model or other models. For example, consider a first com 
ponent model 165 of a C++ class. If a developer changes the 
name of the C++ model, elements included in this model that 
represent any constructors or destructors should have their 
names changed accordingly. Upon the name change being 
made, the component model 165 may be configured to alert 
the developer that other elements (possibly of other models) 
need to be changed, automatically change other elements, or 
mark the other elements to be changed by, for example, 
Setting model field values for the other elements. 
0470 Source reproducability refers to the ability of the 
component model 165 to reproduce the source of first 
component 158 from which it was generated. For example, 
the component model 165 may maintain comments, 
whitespaces, and other formatting aspects of program that 
may be crucial to human understanding of the code. Source 
reproducability may be useful for integration with Source or 
version control of a programming application or porting of 
an application. Thus, the component model 165 may act as 
both a Source and target of a transformation. Source repro 
ducability may only apply to models that include a Source 
level of discrete representation, as described above, Such 
that Source code of the first component is represented by the 
model. 

0471 Optionally, a first component model 165 may be 
capable of being persisted. 
0472. These optional properties provide a component 
model 165, particularly a robust component model, with a 
general usability and flexibility that distinguishes it from 
other digital entities that may be referred to as “models”. For 
example, a typical parse tree for a Software program may be 
considered a model. A parse tree typically: does not repre 
Sent redundant whitespace or comments Such that the origi 
nal Software component cannot be reproduced from the 
parse tree, does not represent Subcomponents as relation 
Ship-aware elements, and is not capable of being persisted 
because parsers typically do not expect to Save their State 
because they are assumed to be dealing with a transient form 
of information. 

0473. Thus, a parse tree would not have the general 
usability and flexibility of a first component model having 
any of the properties of discrete representability, component 
relationship awareness, or Source reproducability. 

0474. Other examples of models may be the object files 
and executable images that are created during a traditional 
transformation from Source code to an executable image. 
The first Step of compiling Source code produces object code 
that is used as input for the Second Step of linking to produce 
an executable image. The parse tree of the Source code is not 



US 2005/0149914 A1 

exposed for querying or manipulation, but is geared for 
providing information to the compiler backend in a conve 
nient manner. The resulting intermediate object file is a 
limited model (if it is considered a model at all) because it 
is generally not understood by humans, cannot be manipu 
lated by humans and is only usable by a linker. The final 
result of building an executable image, a compiled execut 
able file, may also be considered a limited model (if it is 
considered a model at all) because it also is generally not 
understandable, cannot be or manipulated by humans and is 
typical only usable by the platform or environment on which 
it is run. Thus, a typical compiling and linking transforma 
tion process does not allow manipulation of any intermedi 
ate representations and is clearly a one-way process. 
0475 Accordingly, object files and executable images do 
not have the general usability and flexibility of a first 
component model 165 having any of the properties of 
discrete representability, component relationship awareness, 
or Source reproducability. 
0476 Returning to FIG. 23, the first component model 
165 may be modified with additional information 166. Such 
additional information may include modifications made by a 
developer, including removal of model elements or parts of 
a model element (e.g., code). Further, additional information 
may include other components of the first component's 
domain. For example, if the domain is a programming 
language, the additional information may include Source 
code that is inserted into an element of the first component 
model 165. 

0477 Model transformer 168 may receive the first com 
ponent model 165 and model transformation parameters 
178, which may be part of transformation parameters 160. 
The model transformer 168 may be configured to generate a 
second component 163 or a second component model 170 of 
one or more domains. Further, the model transformer 168 
may be configured to transform a first component model into 
either a proxy component or a proxy component model. 
Model transformer may be programmed with model trans 
formation parameters 178, and may be implemented using 
Software, firmware, hardware, or any combination thereof. 
0478. The second component model 170 may be similar 
to first component model 165, except that the Second com 
ponent model may represent a component of a Second 
domain. For example, if the first component model 165 
represents Pascal components, the model transformer 168 
may transform the Pascal component model 165 into a 
Smalltalk component model 170. As described above with 
respect to first component model 165, Second component 
model 170 may have any of the properties of discrete 
representability, component relationship awareness, and 
Source reproducability. Further, as described above with 
respect to first component model 165, Second component 
model 170 may be modified with additional information. 
0479. The component exporter 174 may receive the sec 
ond component model 170 and export parameters 180, and 
generate the Second component 163. The component 
exporter 174 may be configured to produce a Second com 
ponent of a particular form. For example, if the Second 
component model models a C component, the component 
exporter may generate a Source or compiled C component. 
The component exporter 174 may be configured with export 
parameters 180 and may be implemented using Software, 
firmware, hardware, or any combination thereof. 

Jul. 7, 2005 

0480 Component models will now be described in con 
nection to FIGS. 24-26. 

0481 FIG. 24 is a Java code fragment illustrating an 
example embodiment of a Java class 300a that includes: 
Java fields 304a-310a, Java constructors 312a and 314a; and 
Java methods 316a-322a. 

0482 Model generator 164 may receive Java class 300a 
and produce a Java class model 165. FIG. 25 illustrates an 
example of a GUI for representing and manipulating a Java 
model. Although Java model representation 324 is merely an 
incomplete, example GUI representation of a Java model, 
for illustrative purposes, GUI representation 324 may be 
referred to herein as a Java model 324. Java model 324 
includes a Java model tree panel 326 and a Java model 
textbox panel 328. Both Java model tree panel 326 and Java 
model textbox panel 328 represent Java class 300a Subcom 
ponents 304a-322a as discrete elements 304b-322b. 
0483 Java model text box panel 330 includes an orga 
nized representation of Java class 300a, including a com 
ponent name box 330, a class file name box 332, a class 
Source name box 334, a fields table 336, and a methods table 
338. 

0484) The field table 336 may include: a field name 
column 325 that holds the name of field entry, and an 
accessibility column 327 that contains the accessibility of 
each field entry, a type column 329 that contains the type of 
each field entry, a Static column 331 that contains check 
boxes that represent whether a field entry is Static, a final 
column 333 that contains check boxes that represents 
whether a field entry is final, and a generate column 335 that 
contains check boxes that represent whether a field entry is 
to be transformed. In this example, the field table 336 
contains four entries, UP, DOWN, max, and direction, 
corresponding to the fields 304a-310a of Java class 300a. 
0485 The methods table 338 may include a name column 
337 that contains the names of the method entries; an 
accessibility column 339 that contains the accessibility of 
each method entry; a type column 341 that contains the type 
of each method entry; a Static column 343 that contains 
check boxes that indicate whether a method entry is Static; 
a final column 345 that includes check boxes where each 
check box represents whether a method entry is final; and a 
generates column 347 that represents whether a method 
entry is to be transformed or exported. 
0486 The Java model tree panel 326 provides a hierar 
chical representation of Java class 300a. Each element of the 
Java model tree panel 326, including elements 300b-322b, 
may be followed by a check box corresponding to the 
generate columns 335 and 347. A check box being checked 
may indicate that the corresponding element is to be trans 
formed or exported. A check box not being checked may 
indicate that an element is not to be transformed or exported. 
For example, the check boxes 325 of elements 308b and 
310b (representing the max field and direction field 308a 
and 310a, respectively, of Java class 300a) are not checked, 
and therefore, indicate that elements 308b and 310b are not 
to be transformed to the C++ domain after that transforma 
tion is requested by the developer. 
0487 FIG. 26 is an incomplete, example GUI represen 
tation 340 of a C++ model that for illustrative purposes may 
be referred to herein as C++ model 340. C++ model 340 



US 2005/0149914 A1 

includes a C++ model tree panel 342 and a C++ model 
textbox panel 344, and maintains similar information as 
maintained by Java model 324. C++ model 340 represents a 
C++ proxy class Counter that wraps Java class 300a. As a 
result of populating the C++ model by means of a proxy 
transformation from Java model 324, the classes in the 
resulting C++ model 340 are C++ proxy classes for Java 
classes. Although C++ model 340 is still capable of repre 
Senting any valid C++ component, due to its origin, it may 
now also be referred to as “C++ proxy model” and the 
classes that it contains may be referred to as “C++ proxy 
classes.” 

0488 C++ model tree panel 342 includes a hierarchical 
representation that includes elements 304C-322c and 356 
that represent Subcomponents of the C++ proxy class 
Counter. C++ proxy class Counter includes proxy Support 
elements described above in connection to FIGS. 7 and 8 
that are represented by model elements. 

0489 C++ model 340 indicates that Java model elements 
308b and 310b of Java model 324 were not transformed into 
corresponding C++ model elements as a result of not having 
their check boxes 325 selected. 

0490 C++ proxy class model 340 indicates that model 
element 316c has been Selected. Accordingly, C++ model 
text box panel 344 may include information specific to 
model element 316c, as opposed to information about the 
entire C++ proxy class Counter. C++ model textbox panel 
344 includes a method name textbox 346, a method return 
Selection box 347, check boxes 348-353, C++ header file 
name text box 350 and C++ implementation file name 
textbox 352, file selection box 356, and method body 
window 354. 

0491 Return type selection box 347 allows a developer 
to select the return type of the method indicated by method 
name textbox 6. 

0492. The “generates' check box 348 indicates whether 
the method indicated in the method name texbox 346 is to 
generate, i.e. export, a corresponding C++ proxy compo 
nent. Virtual check box 349 indicates whether the method 
indicated in method name textbox 346 is to generate a C++ 
proxy method that is virtual or non-virtual. Static text box 
351 indicates whether the C++ method indicated by method 
name textbox 346 is to generate a C++ proxy method that is 
static or not. Const textbox 353 indicates whether the C++ 
method indicated by C++ method name textbox 346 is to 
generate a const or nonconst proxy method. 
0493 File selection box 356 allows a developer to choose 
whether to view the resulting code fragment in the imple 
mentation file or the one in the header file of the C++ method 
indicated by method name textbox 346. In the example of 
FIG. 26, a developer has chosen to view the implementation 
file and, correspondingly text window 354 represents the 
C++ Source code that would be exported into the Selected 
implementation file if the developer chose to export the C++ 
model to Source code. 

0494 C++ class model 340 may be received by the 
component exporter and exported into a C++ proxy class. 

0495. The GUI model representations 324 and 340 may 
permit a developer to manipulate the Java and C++ models, 
respectively, that they represent. In both representations, 

32 
Jul. 7, 2005 

additional information may be added to the underlying 
model by a developer by, for example, changing the name of 
an element, inserting or deleting code, checking or uncheck 
ing a checkbox, and Selecting certain values. Some of the 
information represented by the GUI model representation 
324 and 340 may be used to configure the model transformer 
168 (and thus may be considered a model transformer 
parameter 16). For example, checkboxes 329 of GUI model 
representation 324 may configure the model transformer 168 
not to transform model elements 308b and 310b to corre 
sponding C++ model elements. 
0496 Robust models offer a far more useful approach to 
manipulating components that have a useful representation 
in more than one domain. Consider, for example, a trans 
formation that transforms Java components to C++ proxy 
components. An alternative to using two models is to skip 
the representation of one domain entirely, for example, by 
importing a Java class directly into a C++ model using a 
combination of the techniques described above in connec 
tion to model generator 164 and model transformer 168, or, 
as described above, by generating a Second component 163 
directly from a first model 165 using the model transformer 
168. 

0497 Each model 165 and 170, however, permits a 
developer the flexibility of manipulation in a particular 
domain, which may be lost if only a Single model is used. 
Further, both models 165 and 170 may of course be com 
bined into a single model, but Such a model may be limited 
to representing only Java and C++ components and not 
components from other domains. 
0498. Therefore, when transforming a component from a 

first domain to a Second domain, providing a model, par 
ticularly a robust model, for each component in its respec 
tive domain provides flexibility in the manipulation of Such 
components. Although models and robust models have been 
described above in connection to C++ and Java, Such models 
may be used to convert components between a variety of 
domains Such as, for example, other programming lan 
guages, document mark-up languages, and object-oriented 
technologies. 
0499 Port-by-Proxy 
0500 Transforming a first component of a first digital 
domain to a proxy component of a Second digital domain 
may be applied to gradually port a digital entity from the 
Second digital domain to the first digital domain. The 
gradual transformation of a digital entity from a first domain 
to a Second domain using proxy components may be referred 
to herein as "port-by-proxy For example, a C++ application 
may be ported gradually from C++ to Java using C++ proxy 
components. 
0501) A port-by-proxy of a digital entity of a first domain 
to a Second domain may include: manually writing a Second 
domain component that defines the Same concept as a first 
domain component of the first digital entity; transforming 
the Second domain component into a first domain proxy 
component that wraps the Second domain component; and 
replacing the first domain component in the digital entity 
with the first domain proxy component. This process may be 
repeated to completely port-by-proxy the digital entity from 
the first domain to the Second domain. 

0502. The order or strategy by which a digital entity is 
ported may depend on Several factorS Such as, for example, 



US 2005/0149914 A1 

the Structure of the digital entity, the preferences of a 
developer, and Several other factors. For example, a devel 
oper may employ a bottom-up or top-down Strategy, or for 
a client/server application, a developer may apply client-first 
port-by-proxy or a Server-first port-by-proxy Strategy. Fur 
ther, a developer may employ an I/O-module-first, or GUI 
module-first Strategy or Several other Strategies. 
0503 FIGS. 27a-27f are block diagrams that together 

illustrate an exemplary port-by-proxy process, in which a 
pure C++ application gradually is ported to being a Java 
application using a bottom-up Strategy. Referring to FIG. 
27a, the original C++ application 600 is a hierarchically 
organized C++ application, including a main module 602 at 
a highest level, functional modules 604 and 606 at a next 
highest level, and at a lowest level three general purpose 
modules, DB utils module 608, log-in modules 610 and 
Security module 612. Each of these modules may contain the 
declarations and implementations of Several C++ compo 
nents such as, for example, classes or structs. In FIGS. 
27a-27f, the lines between modules indicate directional 
“use' relationships from the higher-level modules to the 
lower-level modules. 

0504 FIG. 27b represents the application 600 after a 
possible first Step of the port-by-proxy process. In the first 
step, the C++DB utils module 608 has been ported to Java 
resulting in Java module 608a'. Java module 608a' may be 
used to generate C++ proxy components 608b' in accordance 
with the process described in connection to FIGS. 20-21 
above. Together, Java components 608a and corresponding 
C++ proxy components 608b' form C++ proxy module 608". 
C++ proxy components 608b' represent a Same concept as 
original C++ components module 608 and have a Semantic 
usability that Strongly corresponds with the Semantic usabil 
ity of the original C++ components of module 608. Thus, 
functional module 604 may require minimal or no changes 
to implement the same concept using module 608" instead of 
module 608. Consequently, a part (608a) of the original 
C++ application 600 may now be implemented in Java while 
the majority of the application remains unchanged in C++. 

0505 FIG. 27.c illustrates a possible second step in the 
bottom-up port-by-proxy process. In this Second step, the 
C++ logging proxy module 610 has been replaced with C++ 
proxy logging proxy module 610' which includes Java code 
610a' and generated C++ proxy layer 610b'. Generated C++ 
proxy layer 610b' allows the proxy logging proxy module 
610 to be reintegrated seamlessly into the application 600. 

0506 FIG. 27d illustrates a possible third step in the 
bottom-up port-by-proxy process. In this third Step, C++ 
function module 604 has been replaced by C++ proxy 
function proxy module 604, which includes Java code 604a' 
and generated C++ proxy layer 604b'. 

0507 Because C++ function module 604 has been 
replaced with proxy function module 604, and because 
module 604 is the only user of DB utils module 608, the DB 
utils proxy layer 608b' may be discarded. As a result, Java 
code 604a' may interact directly with Java DB utils module 
608a' without a C++ proxy layer 608b'. 
0508 FIG. 27e represents the application 600 after a 
fourth Step of the bottom-up port-by-proxy process. In this 
fourth step, C++ function module 606 has been replaced 
with C++ proxy module 606", which includes Java code 

33 
Jul. 7, 2005 

606a' and generated C++ proxy layers 606b' and 606c'. 
Accordingly, the C++ proxy logging module 610b' may be 
discarded. Generated proxy layer 606c' is necessary to 
integrate C++ security module 612. Proxy layer 606c' may 
be a Java proxy layer for C++ Security module 612, and may 
use C++ proxy classes in the native implementations of Java 
methods as described above in connection to FIG. 17. 

0509 Further, in this fourth step, new functionality may 
be added to the application 600 by directly adding function 
module 614 to the application. The additional functionality 
represented by module 614 may be written in C++ or in Java, 
but if the goal is to port the whole application 600 from C++ 
to Java, it may be preferable to implement module 614 in 
Java from the Start. Choosing Java as the implementation 
language, C++ proxy components 614b may then be gen 
erated and used to integrate the additional functionality with 
the application. Proxy function module 614 may be added at 
any Step of the bottom-up port-by-proxy process, and is 
added in Step 4 merely for illustrative purposes. 
0510 FIG. 27frepresents the application 600 after a fifth 
step. In the fifth step, C++ main module 602 is replaced with 
Java main module 602". Consequently, all of the proxy 
function modules 614b, 604b' and 606b' may be discarded. 
C++ Security module 612 illustrates that an application may 
be ported by proxy in parts as it also may be desirable to 
leave parts of an application in C++. 
0511 Porting an application using a port-by-proxy 
approach makes the porting process more manageable, less 
risky and allows the maintenance of the original application 
while the port is in process. An inexpensive generation of 
C++ proxy components of high Semantic usability as 
described in detail above enhances even further the benefits 
of a port-by-proxy proceSS because the proxy layers that are 
discarded in the process do not represent Significant effort or 
COSt. 

0512) Use Cases 
0513. The several embodiments described above for shar 
ing Java and C++ components between Java and C++ 
domains may have many applications in Software engineer 
ing. These applications include, but are not limited to, 
Enterprise JavaBeans (EJB), JavaDatabaseGonnectivity 
(JDBC), Jini, and Swing. 
0514 EJB is a new specification for designing and imple 
menting enterprise applications. Enterprise applications 
typically distinguish themselves from other applications 
through higher demands in areas Such as: Scalability, robust 
neSS, data integrity, distributability and database connectiv 
ity. 

0515 EJB is designed with all the above goals in mind. 
One of EJB's major shortcomings, however, is that it 
represents a Java-only solution. CORBA can be used at a 
high level to integrate with Software written in other lan 
guages and Some EJB containers include Support for vendor 
Specific non-Java legacy Software. All Such non-Java Sup 
port imposes either vendor-lockin or the use of a 
heavyweight technology like CORBA. 
0516 C++ proxy components may be used with EJB in 
any of the following manners. First, C++ proxy components 
may be used to write EJB Beans in C++. These EJB Beans 
ideally may be used as part of a Server-Side of an application. 



US 2005/0149914 A1 

The C++ proxy classes may wrap key classes and interfaces 
of this EJB framework (e.g., EntityBean or Session Bean). A 
developer may write Subclasses for these C++ proxy classes 
in C++ to create Server-side beans that may be used to call 
C or C++ legacy code by third-party applications. This 
Subclassing of C++ proxy classes and interfaces may incor 
porate the C++ proxy template method Support described 
above in connection to FIGS. 14-17. Most, if not all, of the 
methods to be implemented by these Subclasses may be 
called not only by a developer from C++, but by a Java EJB 
container or another EJBBean. 

0517 C++ proxy components may also be used to allow 
C++ clients access to EJB applications (i.e., on the client 
Side of an application). EJB is designed to be extremely easy 
to use from a Java client. If the client is written in C++ 
though, the EJB client-side bindings are typically useleSS 
and the developer has to resort to CORBA or another, less 
appropriate mechanism. 
0518. To provide support for non-Java client applica 
tions, C++ proxy components may wrap client interfaces and 
related classes. Consequently, it would not be necessary to 
rewrite an existing C++ client completely in Java or resort 
to other technologies. Rather, the C++ client need only have 
part of its implementation changed to use the C++ proxy 
classes, as opposed to using whatever mechanism was being 
used before to communicate with a C++ based server (if the 
EJB Server replaces a legacy C++ Server). This client-side 
Solution may not rely So heavily on the template method 
Support described above, but may rely more on general C++ 
Support SemanticS Such as, for example, inheritance, method 
calls, etc. 
0519 C++ proxy components may also be applied to 
assist an implementor of an EJB container in gaining acceSS 
to native functionality. EJB container developers often need 
access to functionality that is not available through Java. For 
example, in order to provide a transaction Service to EJB 
beans, the EJB container might need to wrap an existing 
transactionalization Service in Java, i.e., Java classes with 
native methods need to be written. C++ proxy classes may 
wrap a concrete container class and related classes, thereby 
Simplifying the native implementation of these methods. 
The use of C++ proxy classes in natively-implemented 
methods allows programming at a higher level of abstraction 
within the native methods. For example, rather than calling 
JNI functions to Set a field, a C++ assignment Statement may 
be used. 

0520 JDBC is a set of Java classes that standardize 
database access in Java, similarly to how ODBC has stan 
dardized database access in C programs. Advantages of 
JDBC over ODBC include: availability through the Java 
environment Such that it is not necessary to purchase dif 
ferent third-party connectivity tools for different platforms; 
JDBC's use of portable, Standardized types as opposed to 
database-specific types, which eliminates the need to per 
form unsafe type-casts to arrive at native platform types, and 
JDBC's ability to represent the full UNICODE character set 
for Strings. 

0521. A drawback for JDBC is that it is only available for 
Java applications, which may cause major problems if both 
a Java and a C++ client need to access the same database. In 
Such a situation, both the Java and C++ client would require 
different database drivers, which is inherently worrisome. 

34 
Jul. 7, 2005 

Requiring different database drivers adds an additional bur 
den on application designers and implementors, a quality 
assurance team, and an application install team. By wrap 
ping JDBC with C++ proxy components and possibly Some 
related classes (i.e., String, Integer, etc. . . . ), a C++ database 
client may take advantage of the entire, easy-to-use JDBC 
interface on any platform supported by JDBC. Further, 
wrapping the JDBC API with C++ proxy components pro 
vides consistency in configuration, character-Set interpreta 
tion, Semantics, and database drivers between Java and C++ 
clients. 

0522 JiniTM is a powerful Java technology that assists 
Java developerS in writing distributed applications. Jini is 
built around the concept of EntryS. An Entry may be copied 
into a context, removed from a context and looked-up. A 
typical context in which EntryS are used is called a Jav 
aSpace, which is accessible by distributed Systems. An Entry 
itself is not concerned with traditional distributed develop 
ment problems like transactionalization and persistence. All 
distribution-related issues are the duty of the context in 
which the Entry is used. Jini and JavaSpaces define the 
Semantics of operations that may be performed with EntryS, 
and enable the construction of complex, distributed Systems 
from Simple components. 
0523 C++ proxy components may be applied to Jini to 
enable C++ Jini clients and assist in developing of C++ Jini 
Services. Specifically, C++ proxy components may wrap 
concrete EntryS and Jini Support classes Such as, for 
example, JavaSpace, and Lease, etc. These C++ proxy 
components may enable a C++ application to be a Jini client 
that may write Entrys into a JavaSpace, read Entry's from a 
JavaSpace, and receive JavaSpace notifications. If a C++ 
Jini client is interested in receiving JavaSpace event notifi 
cations, it may rely heavily on the template method Support 
described in detail above. Other Jini use-cases may rely 
more on general C++ SemanticS Support, Such as field access, 
method calls, etc. Such enablement allows C++ executables 
to participate in a distributed Jini environment which would 
otherwise be very hard to achieve. 
0524. Further, because many Jini services that address 
platform issues are eventually implemented in native code, 
a C++ proxy component may assist in implementing Such 
native Jini Services. 

0525 Swing constitutes a large part of the Java Founda 
tion Classes that may be used to build portable and relatively 
platform-independent Graphical User Interfaces (GUIs). 
Developers of C++ applications have consistently Struggled 
with providing an elegant GUI in a platform-independent 
manner. Although third-party vendors have developed por 
table libraries, acceptance of these libraries has been mini 
mal because typically these libraries: are expensive; have a 
Small user base (and therefore few experienced developers); 
require a great deal of experience to use well; lag behind 
platform-specific GUIs in functionality; and often have a 
non-native "look-and-feel”. 

0526 Swing is a relatively new GUI standard for Java 
applications that has pluggable look-and-feels, i.e., Swing 
enables an application's GUI to look and feel like Windows, 
Macintosh, Motif, and several other GUIs. C++ proxy 
classes may wrap Swing classes or user-written Swing 
based classes, thereby providing Such portable GUI func 
tionality to C++ programs. This functionality may be used in 



US 2005/0149914 A1 

Several different ways Such as, for example, Subclassing 
concrete JComponents in C++, and providing a portable 
GUI for C++ applications. 
0527 JComponent is the base class of all graphical 
components in Swing. JComponents may be specialized by 
Several different concrete classes to provide buttons, text edit 
fields, menus, etc. By wrapping Such concrete components 
with C++ proxy components, these concrete components 
may be further specialized in C++ to provide more native 
functionality or be tailored to the requirements of a particu 
lar C++ application. 
0528 Wrapping Swing classes with C++ proxy classes 
may provide a portable GUI for a C++ application. For 
example, consider a C++ Server application. C++ Server 
applications typically only contain little platform Specific 
code. Most of the platform-specific code is typically in the 
areas of networking or file I/O. It may often be desirable to 
provide an administrative GUI for such a server. GUIs, 
however, are highly platform-specific. C++ proxy classes 
that wrap Swing classes may provide a Standardized, por 
table, well-documented and freely available GUI as an 
alternative to native platform GUI's Such as, for example, 
Motif for UNIX or MFC for Windows. An application 
developer may choose to use Such C++ proxy classes in any 
of a variety of ways. For example, concrete, application 
Specific dialogs and windows may be written in Java and 
then wrapped with C++ proxy classes for use in C++. 
Alternatively, C++ proxy classes may wrap lower-level 
Swing classes, and be used by a C++ developer to program 
Virtually exclusively in C++, by using the low-level proxy 
classes to assemble a dialog or window in C++. 
0529. By design, Swing relies heavily on Listener inter 
faces (described in detail above) for event processing. Thus, 
use of C++ proxy classes for Swing classes or for Java 
classes built using Swing classes may rely heavily on the 
template method Support described above. 
0530 Having now described some embodiments, it 
should be apparent to those skilled in the art that the 
foregoing is merely illustrative and not limiting, having been 
presented by way of example only. Numerous modifications 
and other embodiments are within the Scope of one of 
ordinary skill in the art and are contemplated as falling 
within the scope of the invention. 

What is claimed is: 

1-48. (canceled) 
49. A method of porting a digital entity from a first 

functional domain to a Second functional domain, the digital 
entity including a first component that defines at least a first 
concept, the method comprising acts of: 

(a) creating a second component in the Second functional 
domain, the Second component defining at least the first 
concept, 

(b) transforming the Second component into a first proxy 
component of the first functional domain; and 

(c) replacing the first component in the digital represen 
tation with the first proxy component. 

50. The method of claim 49, wherein the digital entity 
includes a plurality of components, the method further 
comprising the act of 

35 
Jul. 7, 2005 

(d) for at least a third component of the digital entity, 
performing acts (a)-(c). 

51. The method of claim 50, wherein the first and third 
components are related to a fourth component of the digital 
entity, the method further comprising an act of: 

(e) after performing steps (a)-(c) on the first and third 
components, performing Steps (a)-(c) on the fourth 
component to produce a proxy component of the fourth 
component. 

52. The method of claim 49, further comprising acts of: 
(e) executing the first proxy component of the digital 

entity in the first functional domain at runtime; and 
(f) as a result of interpreting the first proxy component, 

executing the Second component in the Second func 
tional domain. 

53. The method of claim 49, wherein act (b) includes: 
(i) generating a robust model from the Second component; 

and 

(ii) generating the first proxy component from the robust 
model. 

54. The method of claim 49, wherein the first proxy 
component has a Semantic usability in the first domain 
closely corresponding to the Semantic usability of the Second 
component in the Second domain. 

55. The method of claim 54, wherein the first proxy 
component includes one or more of proxy Support elements. 

56. The method of claim 55, wherein one or more of the 
proxy Support elements allow an instance of the first proxy 
class to be context-aware. 

57. A method of modeling a first component of a first 
functional domain, wherein the first component defines a 
first concept and includes one or more Subcomponents, the 
method comprising acts of: 

(a) receiving the first component; and 
(b) generating a first model of the first component, includ 

ing: 

(i) for each Subcomponent of the first component, 
generating a discrete element of the first model to 
represent the Subcomponent; and 

(ii) providing the first model with a property of rela 
tionship awareneSS Such that, if a first discrete ele 
ment or attribute of the first model is changed, the 
first model is operative to: 
determine if the first discrete element or attribute has 

one or more elements and attributes related to the 
first discrete element or attribute, 

if the first discrete element or attribute has one or 
more related elements and attributes, determine 
whether to change the one or more related ele 
ments, and 

if it is determined to change one or more related 
elements and attributes, change Such one or more 
elements and attributes in accordance with the 
changed first discrete element or attribute. 

58. The method of claim 57, wherein the first model is 
operative to be transformed into a Second component of a 
Second domain that defines at least the concept defined by 
the first component. 



US 2005/0149914 A1 

59. The method of claim 57, wherein the first model is 
operative to be transformed into a proxy component of a 
Second domain that wraps the first component. 

60. The method of claim 57, wherein the first component 
is a Source component operative to be reproduced from the 
first model. 

61. The method of claim 57, wherein the first component 
is received in parsed form. 

62. The method of claim 57, wherein each discrete 
element is query able as to its attributes. 

63. The method of claim 57, wherein each discrete 
element is modifiable. 

64. The method of claim 57, wherein act (b)(ii) includes: 
maintaining relationship information regarding a relation 

ship between the first model and the first component. 
65. The method of claim 57, wherein act (b)(ii) includes: 
for one or more of the discrete elements, maintaining 

relationship information regarding a relationship 
between the discrete element and a Subcomponent that 
it represents. 

66. The method of claim 57, wherein the concept is a 
dynamic concept. 

67. The method of claim 57, further comprising an act of: 
(c) adding additional information to the first model. 
68. The method of claim 57, further comprising an act of: 
(c) editing the first model. 
69. The method of claim 57, further comprising an act of: 
(c) transforming the first model into a second model of a 

Second component of a Second domain that defines at 
least the concept defined by the first component. 

70. The method of claim 69, wherein the second model is 
operative to be transformed into the Second component of 
the Second domain. 

71. The method of claim 69, wherein the second model is 
operative to be transformed into a proxy component of a 
Second domain that wraps the first component. 

36 
Jul. 7, 2005 

72. The method of claim 69, wherein the second compo 
nent includes one or more Subcomponents, and act (c) 
includes: 

(i) for each Subcomponent of the Second component, 
generating a discrete element of the Second model to 
represent the Subcomponent; and 

(ii) providing the Second model with a property of rela 
tionship awareneSS Such that, if a Second discrete 
element or attribute of the Second model is changed, the 
Second model is operative to: 
determine if the Second discrete element or attribute has 

one or more elements and attributes related to the 
Second discrete element or attribute, if the Second 
discrete element or attribute has one or more related 
elements and attributes, determine whether to change 
the one or more related elements, and 

if it is determined to change one or more related 
elements and attributes, change Such one or more 
elements and attributes in accordance with the 
changed Second discrete element or attribute. 

73. The method of claim 72, wherein act (c)(ii) includes: 
maintaining relationship information regarding a relation 

ship between the Second model and the Second com 
ponent. 

74. The method of claim 72, wherein act (c) (ii) includes: 
for one or more of the discrete elements of the Second 

model, maintaining relationship information regarding 
a relationship between the discrete element and a 
Subcomponent of the Second component that it repre 
SentS. 

75. The method of claim 69, wherein the second domain 
is a functional domain. 

76-104. (canceled) 


