wo 2011/076602 A1 IO 000 YOO OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

s . TN
(19) World Intellectual Property Organization /g [} 1M1 AN 000100 O 0O 0
nternational Bureau S,/) |
(43) International Publication Date \.;J Ik S (10) International Publication Number
30 June 2011 (30.06.2011) WO 2011/076602 A1
(51) International Patent Classification: 78758 (US). ALEXANDER, Gregory, William
GOG6F 9/38 (2006.01) [US/US]; IBM Coporation, 045-3D-030, 11400 Burnet

Road, Austin, Texas 78758 (US). ALEXANDER,

(21) International Application Number: Khary, Jason [US/US]; IBM Corporation, 705-2-L18,

PCT/EP2010/069496 2455 South Road, Poughkeepsie, New York 12601 (US).

(22) International Filing Date: CURRAN, Brian, William [US/US]; IBM Corporation,

13 December 2010 (13.12.2010) M/D P310, 2455 South Road, Poughkeepsie, New York

. . 12601 (US). MITCHELL, James, Russell [US/US];

(25) Filing Language: English IBM Corporation, M/D P318, 2455 South Road, Pough-
(26) Publication Language: English keepsie, New York 12601 (US). HSIEH, Jonathan, Ting
[US/US]; IBM Corporation, 705 2L04, 2455 South Road,

(30) Priority Data: Poughkeepsie, New York 12601 (US). PRASKY, Brian,
12/644,923 22 December 2009 (22.12.2009) us Robert [US/US]; IBM Corporation, M/D P312, 2455
12/822,960 24 June 2010 (24.06.2010) us South Road, Poughkeepsie, New York 12601 (US).

(71) Applicant (for all designated States except US): INTER- (74) Agent: WILLIAMS, Julian, David; IBM United King-
NATIONAL BUSINESS MACHINES CORPORA- dom Limited, Intellectual Property Law, Hursley Park,
TION [US/US]; New Orchard Road, Armonk, New York Winchester Hampshire SO21 2JN (GB).

10504 (US).
©S) (81) Designated States (unless otherwise indicated, for every

(72) Inventors; and kind of national protection available): AE, AG, AL, AM,

(75) Inventors/Applicants (for US only): JACOBI, Christian AO, AT, AU, AZ, BA, BB, BG, BI, BR, BW, BY, BZ,
[DE/DE]; IBM Deutschland Research & Development CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
GmbH, BOA, Schoenaicher Str. 220, 71032 Boeblingen DZ. EC. FE. EG. ES. FL GB. GD. GE. GH. GM. GT
(DE). THOMPTO, Brian, William [US/US]; IBM Cor- HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP.
poration, M/D 4361, 11400 Burnet Road, Austin, Texas KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

[Continued on next page]

(54) Title: PREDICTING AND AVOIDING OPERAND-STORE-COMPARE HAZARDS IN OUT-OF-ORDER MICROPRO-
CESSORS

(57) Abstract: A method and information processing sys-
404 406 408 410 tem manage load and store operations executed out-of-or-
S 5 2 5 der. At least one of a load instruction and a store instruc-
tion is executed. A determination is made that an operand

INSTR.

AR | VAUDBT | LOADEBIT | LOADwBIT I store compare hazard has been encountered. An entry
within an operand store compare hazard prediction table
?32 is created based on the determination. The entry includes

pr

at least an instruction address of the instruction that has
been executed and a hazard indicating flag associated
with the instruction. The hazard indicating flag indicates
that the instruction has encountered the operand store
compare hazard. When a load instruction is associated
with the hazard indicating flag the load instruction be-
comes dependent upon all store instructions associated
403 with a substantially similar flag.

412 414 416 c 418
N e N N

INSTR.

ADDR. VALID BIT STORE e-BIT STORE w-BIT

14
16

FIG. 4

WO 2011/076602 A1 I 000)00 RS OO

84)

ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SL, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

kind of regional protection available): ARTIPO (BW, GH, Published:

GM, KF, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, __

ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

with international search report (Art. 21(3))

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

PREDICTING AND AVOIDING OPERAND-STORE-COMPARE HAZARDS IN
OUT-OF-ORDER MICROPROCESSORS

FIELD OF THE INVENTION

The present invention generally relates to microprocessors, and more particularly relates to

managing load and store operations executed out-of-order.

BACKGROUND OF THE INVENTION

A microprocessor that is capable of issuing and executing machine instructions out of order
will in general permit loads to be executed ahead of stores. This feature permits a large
performance advantage provided that the load address and the store address do not both have
the same physical address. In typical programs, the frequency that a load proceeds ahead of
the store and that their physical address matches is low. However, since the discovery of
this store violation condition is typically late in the instruction execution pipeline, the
recovery penalty can be quite severe. For example, the recovery process typically involves
invalidating the load instruction that caused the violation and all newer instructions in
program order beyond the load instruction, and second reissuing the load instruction.
Conventional mechanisms for managing store-compare hazards generally do not manage

these hazards very effectively.

SUMMARY OF THE INVENTION

In one embodiment, a method for managing load and store operations executed out-of-order
is disclosed. The method comprises executing at least one of a load instruction and a store
instruction. A determination is made, based on the executing, that an operand store compare
hazard has been encountered. An entry within an operand store compare hazard prediction
table is created based on the determination. The entry comprises at least an instruction
address of the instruction that has been executed and a hazard indicating flag (such as a bit)
associated with the instruction. The hazard indicating flag indicates that the instruction has

encountered the operand store compare hazard.

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

In another embodiment, a method for managing load and store operations executed out-of-
order is disclosed. The method comprises fetching an instruction. The instruction is one of

a load instruction and a store instruction. The instruction is decoded.

An operand store compare hazard prediction table is queried with an instruction address of
the instruction in response to the decoding. The operand store compare hazard prediction
table comprises a first entry for a load instruction and a second entry for a store instruction.
The first and second entries are independent of each other. The first and second entries
indicate that the load instruction and the store instruction, respectively, have previously
encountered an operand store compare hazard. The first and second entries comprise at least
an instruction address of one of the load instruction and store instruction, respectively, and a
hazard indicating flag associated with an operand store compare hazard. A determination is
made, in response to querying the prediction table, that the instruction is associated with one
of the first and second entries in the operand store compare hazard prediction table. The
hazard indicating flag included within the one of the first and second entries associated with
the instruction is identified based on the determination. When the instruction is associated
with the first entry, the instruction is a load instruction. The instruction is marked based on
the hazard indicating flag that has been identified. The marking makes an execution of the
instruction dependent upon at least one store instruction, associated with an entry of the
prediction table comprising a hazard indicating flag substantially similar to the hazard
indicating flag associated with the instruction, having reached a given execution stage.
When the instruction is associated with the second entry, the instruction is a store

instruction.

In yet another embodiment, an information processing system for managing load and store
operations executed out-of-order is disclosed. The information processing system comprises
a memory and a processor that is communicatively coupled to the memory. The processor is
configured to perform a method comprising executing at least one of a load instruction and a
store instruction. A determination is made, based on the executing, that an operand store
compare hazard has been encountered. An entry within an operand store compare hazard
prediction table is created based on the determination. The entry comprises at least an

instruction address of the instruction that has been executed and a hazard indicating flag

10

15

20

25

WO 2011/076602 PCT/EP2010/069496

(such as a bit) associated with the instruction. The hazard indicating flag indicates that the

instruction has encountered the operand store compare hazard.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying figures where like reference numerals refer to identical or functionally
similar elements throughout the separate views, and which together with the detailed
description below are incorporated in and form part of the specification, serve to further
illustrate various embodiments and to explain various principles and advantages all in

accordance with the present invention, in which:

FIG. 1 illustrates one example of an operating environment according to one embodiment of

the present invention;

FIG. 2 shows one example of a load queue entry according to one embodiment of the present

invention;

FIG. 3 shows one example of a store queue entry according to one embodiment of the

present invention;

FIG. 4 shows one example of an operand store compare hazard prediction table entry

according to one embodiment of the present invention;

FIGs. 5-7 are operational flow diagrams illustrating various examples of creating an entry in
an operand store compare hazard prediction table according to various embodiments of the

present invention;

FIG. 8 is an operational flow diagram illustrating one example of predicting and preventing
operand store compare hazards according to various embodiments of the present invention;

and

FIG. 9 is a block diagram illustrating one example of an information processing system

according to one embodiment of the present invention.

10

15

20

25

WO 2011/076602 PCT/EP2010/069496

DETAILED DESCRIPTION

As required, detailed embodiments of the present invention are disclosed herein; however, it
is to be understood that the disclosed embodiments are merely examples of the invention,
which can be embodied in various forms. Therefore, specific structural and functional
details disclosed herein are not to be interpreted as limiting, but merely as a basis for the
claims and as a representative basis for teaching one skilled in the art to variously employ
the present invention in virtually any appropriately detailed structure and function. Further,
the terms and phrases used herein are not intended to be limiting; but rather, to provide an

understandable description of the invention.

The terms “a” or “an”, as used herein, are defined as one or more than one. The term
plurality, as used herein, is defined as two or more than two. The term another, as used
herein, is defined as at least a second or more. The terms including and/or having, as used
herein, are defined as comprising (i.e., open language). The term coupled, as used herein, is
defined as connected, although not necessarily directly, and not necessarily mechanically.

Plural and singular terms are the same unless expressly stated otherwise.
Overview

In microprocessors that execute load and store instructions out-of-order, three operand-store-
compare hazards (store-hit-load, non-forwardable load-hit store, and persistent non-
forwardable load-hit store) can occur due to reordering between dependent loads and stores.
For example, assume that a Store to address A is followed by a Load to address A. In one
situation the Load can execute before the Store, i.¢., the Store Queue (STQ) does not
comprise the store address information. Therefore, the store queue does not indicate a
conflict when the load executes. Once the Load finishes execution, the Store executes and
detects the conflict against the already finished Load in the load queue and flushes the
pipeline to stop the Load and any subsequent instruction. This is a very costly operation
since a large amount of work needs to be redone (the Load and all future instructions that
were already executed speculatively before). The situation above is referred to as a Store-

hit-Load (SHL).

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

In another situation the Store executes its address calculation, but the data for the Store is
delayed, e.g. because the data-producing instruction is has a long latency (e.g. divide). Then
the Load executes before the store data is written into the STQ. The Load detects that it is
dependent on the Store, but the Load cannot perform store-data-forwarding since the data is
not available. Therefore, the Load needs to reject and retry later on after the store data has
become available. This situation is referred to as a non-forwardable Load-hit-Store (nf-

LHS).

In yet another situation, similar to the nf-LHS situation discussed above, certain store
instructions (e.g. if they are line-crossing, or if the length > 8 bytes) may not be forwardable
in general (per the specific STQ design). In this situation, the Load, even if the store data is
already written into the STQ, needs to recycle over and over again until the Store is written

back into the L1 cache. This situation is referred to as a “persistent nf-LHS”.

Conventional mechanisms for managing out-of-order processing, in general, do not
effectively handle the three hazards discussed above. For example, some conventional
mechanisms restrict Instruction-Level-Parallelism (ILP) by making the Load dependent on
all prior Store instructions. Other conventional mechanisms generally cannot handle the
common case where a Load instruction is dependent on multiple store instructions, where
those multiple store instructions may be on different branch paths leading to the Load

instruction.

However, one advantage of the various embodiments of the present invention is that the
three hazards discussed above are effectively avoided. A prediction table, in at least one
embodiment, is created that predicts which Loads and Stores have dependencies, and the
type of these dependencies (such as e-bit or w-bit dependencies). Then after instruction
decoding, e-bit Loads are made dependent on all prior e-bit Stores, and are treated by the
instruction issue logic as if there was a regular register dependency. This effectively delays
execution of the e-bit Load instruction until after all e-bit Stores have executed their address
calculation, and written their data into the STQ. This in effect removes SHL and nf-LHS
hazards. For w-bit dependencies, the Load is made dependent on the L1 cache writeback of
the last store that was predicted as w-bit Store. This effectively prevents persistent nf-LHS

hazards.

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

Operating Environment

FIG. 1 is a block diagram illustrating one example of an operating environment 100
applicable to one or more processes instructions and data in accordance with one or more
embodiments of the present invention. The processor 101 comprises a single integrated
circuit processor such as a superscalar processor, which, includes various execution units,
registers, buffers, memories, and other functional units that are all formed by integrated
circuitry. The processor 101, in one embodiment, is capable of issuing and executing

instructions out-of-order.

The processor 101, in one embodiment, comprises an instruction fetch unit (IFU) 102, an
instruction decode unit (IDU) 104, an instruction issue unit (ISU) 106, a load/store unit
(LSU) 108, an operand address generation unit 110, a fixed point unit 112 (or any other
execution unit(s)), and other components 114 such as various other execution units, registers,
buffers, memories, and other functional units. The IFU 102, in one embodiment, comprises
an operand-store-compare (OSC) prediction table 116. The OSC prediction table 116 is

discussed in greater detail below.

The issue unit 106, in this embodiment, comprises an issue queue 118. The LSU 106, in this
embodiment, comprises a load queue (LDQ) 120, a store queue (STQ) 122, and an L1 cache
124. The LDQ 120 and the STQ 122 each comprise entries 126, 128, respectively, that track
additional information associated with outstanding load and store instructions. It should be
noted that various embodiments of the present invention are not limited to the configuration
of the processor 101 as shown in FIG. 1. The embodiments of the present invention are

applicable to a variety of architectures which can vary from the example shown in FIG. 1.

In general, the IFU 102 fetches instruction codes stored in an I-cache, which can be part of
the L1 cache 124. These fetched instruction codes are decoded by the IDU 104 into
instruction processing data. Once decoded, the instructions are dispatched and temporarily
placed in an appropriate issue queue 118. The instructions are held in the issue queue 118
until all their required operands are available. From the issue queue(s) 118, instructions can
be issued opportunistically to the execution units, e.g., LSU 108, FXU 112, etc., of the
processor 100 for execution. In other words, the instructions can be issued out-of-order.

The instructions, however, are maintained in the issue queue(s) 118 until execution of the

10

15

20

25

WO 2011/076602 PCT/EP2010/069496

instructions is complete, and the result data, if any, are written back, in case any of the

instructions needs to be reissued.

During execution within one of the execution units 108, 112 an instruction receives
operands, if any, from one or more architected and/or rename registers within a register file
coupled to the execution unit. After an execution unit finishes execution of an instruction,
the execution unit writes the result to the designated destination as specified by the
instruction and removes the instruction from the issue queue and the completion of
instructions can then be scheduled in program order. The operand address generation unit
110 generates operand address information for load and store instructions and writes these
addresses into the respective LDQ 120 and the STQ 122. The FXU 112 writes data values in
the STQ 122.

The LSU 108, as discussed above, receives load and store instructions from the ISU 106, and
executes the load and store instructions. In general, each load instruction includes address
information specifying an address of needed data. In one embodiment, the LSU 108
supports out of order executions of load and store instructions, thereby achieving a high level
of performance. In one embodiment, the LSU 108 is pipelined. That is, the LSU 108
executes load and store instructions via a set of ordered pipeline stages performed in

sequence.

OSC Hazard Management

As discussed above, three types of hazards (store-hit-load, non-forwardable load-hit store,
and persistent non-forwardable load-hit store) can occur in a processor that executes load
and store instructions out-of-order. Therefore, in addition to the general processing
mechanisms discussed above with respect to FIG. 1, one or more of the following
embodiments can also be implemented within the processor 100 to predict and avoid these

OSC hazards.

In general, every Load is allocated an entry in the LDQ 120, which saves the address of each
load after it executed until completion. Every Store is allocated an entry in the STQ 122,
which similarly saves the store address, from execution of the store address computation

until the store completes and has written its data to the L1 cache 124. However, based on

10

15

20

25

WO 2011/076602 PCT/EP2010/069496

the type of hazard detected, an LDQ entry and an STQ entry can also comprise additional

information to predict and avoid OSC hazards.

For example, in one embodiment, the LSU 108 executes a load instruction and compares this
load to a corresponding entry in the STQ 122. The load instruction determines that store-
data-forwarding cannot be performed. For example, the load is executing prior to the store
data being written to the STQ (nf-LHS) or store-data-forwarding is not allowed even when
the data is available (persistent nf-LHS). The load instruction then sets an OSC hazard bit
such as an “e-flag” (e.g., an execution flag) in the STQ entry it compared against if the load
instruction detected an nf-LHS hazard. Alternatively, the load instruction sets an OSC
hazard bit such as a “w-flag” (e.g., a write flag) in the STQ entry it compared against if the
load instruction detected a persistent nf-LHS hazard. The load instruction also sets the same

OSC hazard bit such as the e-flag or the w-flag in its own entry in the LDQ 120.

When an executed store instruction detects an SHL hazard and performs an SHL flush
against an LDQ entry, the store instruction sets an OSC hazard bit such as the “e-flag” in its
own STQ entry, and also sets an OSC hazard bit such as the “e-flag” in the (oldest) LDQ
entry the instructions compares against. It should be noted that this LDQ entry is invalidated
due to the resulting flush, but the “e-flag” is retained in the LDQ 120. When the processor
pipeline starts refetching and re-executing the flushed instructions, the same load is allocated

the same LDQ entry, which now has the “e-flag” set from before the flush.

FIGs 2-3 show one example of an LDQ 226 and STQ 328 entry, respectively, according to
one embodiment of the present invention. As can be seen in FIG. 2, in addition to general
information such as operand address information 204, valid bit information 206, and other
general information 210, an entry 226 in the LDQ queue 120 also comprises one or more
OSC hazard bits 208. As discussed above, this OSC hazard indicating bit 208 can be an e-
flag or a w-flag depending on whether the load instruction encountered an nf-LHS hazard or
a persistent nf-LHS hazard. This OSC hazard bit 208 can also be set by a store instruction,
as discussed above. It should be noted that other types of flags, etc., can also be used to
designate that the load instruction encountered an nf-LHS hazard or a persistent nf-LHS

hazard.

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

As can be seen in FIG. 3, in addition to general information such as operand address
information 304, valid bit information 306, data value information 308, and other general
information 312, an entry 328 in the STQ queue 120 also comprises one or more OSC
hazard bits 310. As discussed above, this OSC hazard bit 310 can be an e-flag or a w-flag
depending on whether a load instruction encountered an nf-LHS hazard or a persistent nf-
LHS hazard. Also, this OSC hazard bit 310 can be an e-flag if the store instruction

encountered an SHL hazard, as discussed above.

It should be noted that other types of flags, etc., can also be used to designate that the load
instruction encountered an nf-LHS hazard or a persistent nf-LHS hazard and/or that a store
instruction encountered an SHL hazard. Also, an OSC hazard indicating bit 208, 310 in one
of the queues 120, 122 will match at least one OSC hazard indicating bit 208, 310 in the
other queue 120, 122 since the load or store instruction sets the same bit in an entry of the
other queue as it sets in an entry of its own queue. Also, a discussion on how the OSC

hazard bit information 208, 310 is used to predict and avoid OSC hazards is given below.

Once the load instruction completes, the load instruction determines if it has OSC hazard bit
information, such as an e-flag or a w-flag, in the LDQ 120. If so, the load instruction
indicates this to the IFU 102. The IFU 102, in one embodiment, then generates an entry in
an OSC prediction table 116 for this particular load instruction. The OSC prediction table
will create an entry based on the instruction address of the Load and remember the one or
more flags for this Load. For example, an entry in OSC prediction table indicates whether a
Load is associated with an e-flag and/or a w-flag, where the Load can have both flags if the

Load compares against multiple store queues.

When a store instruction has completed and is written back to the L1 cache 124, the store
instruction determines if it has OSC hazard bit information, such as an e-flag or a w-flag, in
the STQ 122. If so, the store instruction indicates this to the IFU 102. The IFU 102 then
generates an entry in an OSC prediction table 116, for this particular store instruction
comprising the instruction address of the store instruction and the one or more flags under
the instruction address of the Store. Also, when the store instruction is written back to the
L1 cache 124, the STQ 122 informs the ISU 106 of the STQ-entry-number (stag) of that

given store instruction within the STQ 122.

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

10

FIG. 4 shows one example of a Load instruction entry and a Store instruction entry within
the OSC prediction table 116. In particular, FIG. 4 shows that the Load instruction entry 402
comprises the instruction address 404 of the instruction, an entry valid bit 406, and one or
more hazard indicating bits such as a load “e” bit 408 and a load “w” bit 410. The Store
instruction entry 403 comprises the instruction address 412 of the instruction, an entry valid
bit 414, and one or more hazard indicating bits such as a store “e¢” bit 416 and a store “w” bit
418. The OSC hazard indicating bits 408, 410, 414, 416 are sct based on the information
obtained from the load instructions and the STQ 122, as discussed above. Each Load and
Store entry within the OSC prediction table 116 are created independent of each other. In
other words, a Load entry in the OSC prediction table 116 does not reference and is not
referenced by a Store entry in the OSC prediction table 116 or any other table for that matter,

and vice versa.

For example, a load instruction that has set an “¢” dependency bit in its LDQ entry and an
“e” bit in an STQ entry of a corresponding store instruction notifies the IFU 102 of this,
which then creates an entry 402, 403 for each of the load and store instructions in the
prediction table 116, as shown in FIG. 4. In this example, the load “e” bit 408 is set in the
Load instruction entry 402 and the store “e” bit 414 is set in the Store instruction entry 403.
It should also be noted that various techniques can be used to generate the prediction table
based on instruction addresses. For example, techniques directed to overflows (least-
recently-used techniques), read/write conflicts (queuing), and similar techniques for

prediction tables can be used.

Once the prediction table 116 has been populated, each time an instruction is fetched by the
IFU 102 and sent into the pipeline for decoding by the IDU 104, the IFU 102, in parallel,
queries the OSC prediction table 116 and sends this information to the IDU 104. This query
is used by the IDU 104 to determine whether the given fetched instruction is recognized as a
load and/or store comprising an “e” or “w” bit. For example, the IFU 102 uses the
instruction address of an instruction to query the prediction table 116 to identify an entry
with the corresponding instruction address. The information obtained from the OSC

prediction table 116 is passed from the IDU 104 to the ISU 106.

The ISU 106 uses this dependency information to perform the following. If the instruction

comprises a store-e-bit the ISU 106 remembers the instruction as a store-e-bit instruction. If

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

11

the instruction has a store-w-bit, the ISU 106 remembers the STQ entry number (“stag”) that
is allocated for the instruction. The ISU 106, in one embodiment, remembers the youngest
such stag, referred to as the w-stag. If the instruction has a load-e-bit, the ISU 106 marks
this instruction as being dependent on any prior instruction that -was marked with a store-e-
bit. This dependency is very similar to the dependency that is created between the writer and
the reader of a given General Purpose Register. The ISU 106 ensures that the load
instruction does not execute before the store instruction has successfully executed, and has
written the store address and data into its STQ entry. By delaying the load until that point,
the ISU 106 guarantees that the Load can obtain store-forwarded data from the STQ entry,
and thus, an SHL hazard or an nf-LHS hazard is prevented.

If the instruction has a load-w-bit, the Load is marked such that the ISU 106 does not allow
the load to execute until the stag of the last store-w-bit Store before the Load (i.c. the w-stag)
has written back to the L1 cache 124 (as discussed above, the STQ 122 informs the ISU 106
when the writeback occurs). By delaying the load until after the store has written back to the
L1 cache 124, persistent nf-LHS hazards are prevented. Effectively the above process
performed by the ISU 106 makes all e-bit-Loads dependent on all prior e-bit-Store’s

execution, and all w-bit-Loads dependent on all prior w-bit-Store’s write back.

It should be noted that sometimes the store instruction that last set the w-stag in the ISU 106
gets flushed, e.g., due to a branch wrong. However, the w-stag can still be tracked. For
example, in one embodiment, the youngest non-flushed w-bit store is designated as the saved
youngest w-bit store. This option may require significant tracking expense. In another
embodiment, the youngest non-flushed stag becomes the saved youngest w-bit store. This
store may not have actually been marked as a w-bit store. This option does not require much
tracking expense, but treats a store as a w-store even though that store may not have had a w-
bit prediction. This leads to a slight performance degradation. In yet another embodiment,
the saved youngest w-bit store is invalidated. W-bit loads dispatched while the saved

youngest w-bit store is still in an invalid state will not mark a stag dependency.

With respect to instructions that are both loads and stores, steps are taken to ensure that these
instructions do not mark a w-bit dependency on themselves. This is particularly a problem if
the instruction is made of multiple parts. Preventing this dependency can be accomplished,

in one embodiment, by ensuring that w-bit marked store-parts always follow the w-bit

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

12

marked load-parts, or by ensuring that the saved youngest w-bit store is not updated until all
of the parts of an instruction have dispatched. Generally, marking e-bit dependencies within
an instruction consisting of multiple parts is safe because the parts will simply be issued in-
order with respect to each other. However, it is possible to use similar methods to prevent

this dependency, if desired.

In a one embodiment, a vector of e-bit marked stores is maintained (other register
dependency-like tracking mechanisms are possible, 1 bit per issue queue entry, and e-bit
marked loads are made dependent on all older valid issue queue entries for which the
corresponding bit in the vector is set. Bits in the vector are written when an instruction is
dispatched into them, and are put in the set state if the instruction is an e-bit store or in the

unset state otherwise.

Alternatively, Loads and Stores can be tracked in groups of ¢ and w bits (e.g. there could be
5 e-bits el...e5, and only el-stores and el-loads are paired, and e2-stores and a2-loads are
paired, and so on). At hazard time, a random e-bit (e.g. €2) can be selected to set in the LDQ
and STQ. This design can be extended to the method discussed above where certain
instructions are both loads and stores (e.g. the CS instruction in System z), by treating the

two aspects separately, but enforcing the dependencies both as a Store and a Load.

As can be seen, the above embodiments of the present invention are advantageous in that a
prediction table is created that predicts which Loads and Stores have dependencies, and the
type of these dependencies (such as e-bit or w-bit dependencies. Then after instruction
decoding, e-bit Loads are made dependent on all prior e-bit Stores, and are treated by the
instruction issue logic as if there was a regular register dependency. This effectively delays
execution of the e-bit Load instruction until after all e-bit Stores have executed their address
calculation, and written their data into the STQ. This in effect removes SHL and nf-LHS
hazards. For w-bit dependencies, the Load is made dependent on the L1 cache writeback of
the last store that was predicted as w-bit Store. This effectively prevents persistent nf-LHS
hazards. Each Load entry and each Store entry are independent of each other within the
OSC prediction table. In other words, a Load instruction entry does not reference a Store
instruction entry and vice versa. This allows dependencies to be created between multiple

store instructions and multiple loads.

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

13

Moreover, according to one embodiment, if a Load has both an e-bit and a w-bit set, the
Load is delayed until after all e-bit Stores and after all w-bit Stores indicated in the OSC
prediction table. That is, the Load is delayed until after all e-bit Stores have executed their
address calculation, and written their data into the STQ, and the Load is also made

dependent on the L1 cache writeback of the last w-bit Store.

Also, according to one example, if a Load has an e-bit set in the OSC table and a Store has
both an e-bit and a w-bit set in the OSC table, the Load is delayed until after the Store with
the e-bit set, has executed its address calculation, and written its data into the STQ (e.g., the
data is forwarded). If a Load has a w-bit set and a Store has both an e-bit and a w-bit set in
the OSC table, the Load is delayed until after the Store with the w-bit set, has executed the
L1 cache writeback. Lastly, if a Load has both the e-bit set and the w-bit set, and a Store has
both the e-bit set and the w-bit set, the w-bit prevails. The Load with the w-bit set is delayed
until after the execution of the Store with the w-bit set, which corresponds to the longest

delay (dependent on the L1 cache writeback) of the Store with the w-bit set.

According to one embodiment, one or more Loads and one or more Stores can be included in
one complex instruction. Various examples of this type of complex instruction may be
found in the following publication entitled “z/Architecture Principles of Operation”, SA22-
7832-07, Eighth Edition, published February 2009, by International Business Machines.

That is, one instruction can be considered a Load and a Store. The same instruction can
create one or more Load entries and one or more Store entries in the OSC table. These
Loads and Stores can be tracked according to their respective e-bits and w-bits in the OSC

table.

Operational Flow Diagram

FIG. 5 is an operational flow diagram illustrating one example of generating an entry in an
OSC prediction table 116 for predicting and preventing OSC hazards. The operational flow
diagram of FIG. 5 begins at step 502 and flows directly into step 504. A load instruction, at
step 504, begins executing prior to an associated store instruction. The load instruction, at
step 506, obtains data from a memory location where the store instruction will write to in the
future. The load instruction, at step 508, finishes executing. The store instruction, at step

510, begins to execute. The store instruction, at step 512, determines that the load

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

14

instruction has previously obtained data from a memory location that the store instruction is

currently writing to.

The store instruction, at step 514, determines that an SHL hazard has been encountered. The
store instruction, at step 516, then sets a flag bit such as an e-flag bit to indicate this
instruction is a candidate for an OSC hazard situation. This e-flag bit is set in the oldest
LDQ entry that store instruction compares against. The store instruction, at step 518, sets an
e-flag bit in the STQ entry associated with the store instruction in the STQ 122. The store
instruction, at step 520, then flushes the load instruction and all younger load instructions

from the pipeline.

The store instruction, at step 522, writes back to the L1 cache 124. The store instruction, at
step 524, informs the IFU 102 that the store instruction has an e-flag (or w-flag as set by a
load instruction) bit pending. The IFU 102, at step 526, generates an entry for the store
instruction in the OSC prediction table 116. This entry includes an instruction address of the
store instruction, a valid bit, and an indication that the store instruction is associated with an
e-flag. For example, a bit or flag can be set in the entry indicating that the instruction is
associated with a store-e-bit. The IFU 102, at step 527, also generates an entry for the load
instruction in the OSC prediction table 116. For example, after the load is flushed from the
SHL at step 520 the pipeline re-executes the load, which uses the same LDQ entry as before.
After the load completes the load writes its flag (e.g., e-bit) into the IFU prediction table
116. This entry includes an instruction address of the load instruction, a valid bit, and an
indication that the load instruction is associated with an e-flag. The store and load entries
are independent of each other and do not reference each other in anyway. The STQ 122, at
step 528, informs the ISU 106 of the STQ entry number (stag) of the store instruction that
has written back to the L1 cache 124. The control flow then exits at step 530.

FIG. 6 is an operational flow diagram illustrating another example of generating an entry in
an OSC prediction table 116 for predicting and preventing OSC hazards. The operational
flow diagram of FIG. 6 begins at step 602 and flows directly into step 604. A store
instruction, at step 604, executes its address calculation. The data for the store instruction, at
step 606, is delayed. The load instruction, at step 608, executes before the store data is
written into the STQ 122. The load instruction, at step 610, determines that it is dependent

on the store instruction and cannot perform store-data-forwarding.

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

15

The load instruction, at step 612, determines that an nf-LHS situation has been encountered.
The load instruction, at step 614, sets an e-flag bit in the STQ entry of the store instruction.
The load instruction, at step 616, sets an e-flag bit in a corresponding LDQ entry. The load
instruction, at step 618, finishes executing. The load instruction, at step 620, sends
information to the IFU 102 that it has set an e-flag bit in the LDQ 120. The IFU, at step 622,
generates an entry for the load instruction in an OSC prediction table 116. This entry
includes an instruction address of the load instruction, a valid bit, and an indication that the
load instruction is associated with an e-flag bit. For example, a bit can or flag can be set in
the entry indicating that the instruction is associated with a load-e-bit. The IFU 102, at step
623, also generates an entry for the store instruction in the OSC prediction table 116. For
example, when the store instruction writes back into the L1-cache 206 (which can happen
before or after step 620) the flag (e-bit) in the STQ is communicated to the IFU 102 and an
entry for the store is created in the table 116. This entry includes an instruction address of
the store instruction, a valid bit, and an indication that the store instruction is associated with
an e-flag bit. The load and store entries are independent of each other and do not reference

cach other in anyway. The control flow then exits at step 624.

FIG. 7 is an operational flow diagram illustrating yet another example of generating an entry
in an OSC prediction table 116 for predicting and preventing OSC hazards. The operational
flow diagram of FIG. 7 begins at step 702 and flows directly into step 704. A store
instruction, at step 704, executes its address calculation. A load instruction, at step 706,
begins its execution. The load instruction, at step 708, determines that it is dependent on the

store instruction and cannot perform store-data-forwarding.

The load instruction, at step 710, determines that a persistent nf-LHS situation has been
encountered. The load instruction, at step 712, sets a w-flag bit in the STQ entry of the store
instruction. The load instruction, at step 714, sets a w-flag bit in a corresponding LDQ
entry. The load instruction, at step 716, finishes executing. The load instruction, at step
718, informs the IFU 102 that it has set a w-flag bit in the LDQ 120. The IFU, at step 720,
generates an entry for the load instruction in an OSC prediction table 116. This entry
includes an instruction address of the load instruction, a valid bit, and an indication that the
load instruction is associated with a w-flag bit. For example, a bit can or flag can be set in

the entry indicating that the instruction is associated with a load-w-bit. The IFU, at step 721,

10

15

20

25

WO 2011/076602 PCT/EP2010/069496

16

generates an entry for the store instruction in an OSC prediction table 116. For example,
when the store instruction writes back into the L1-cache 206 (which can happen before or
after step 718) the flag (e-bit) in the STQ is communicated to the IFU 102 and an entry for
the store is created in the table 116. This entry includes an instruction address of the store
instruction, a valid bit, and an indication that the store instruction is associated with a w-flag
bit. The load and store entries are independent of each other and do not reference each other

in anyway. The control flow then exits at step 722.

FIG. 8 is an operational flow diagram illustrating one example of predicting and preventing
OSC hazards. The operational flow diagram of FIG. 8 begins at step 802 and flows directly
into step 804. The IFU 102, at step 804, fetches an instruction. The IFU 102, at step 806, in
parallel, queries the OSC prediction table 116 with the instruction address of the instruction.
The IFU 102, at step 808, determines if the instruction comprises an entry in the prediction
table 116. Ifthe result of this determination is negative, conventional processing, at step
810, is performed. The control flow then exits at step 812. If the result of the determination
is positive, the IFU 102, at step 813, sends the instruction and the OSC hazard information
associated with the instruction obtained from the OSC prediction table 116 to the IDU 104.
The IDU 104, at step 814, decodes the instruction.

If the result of the determination at step 808 is positive, the IDU 104, at step 816, determines
if the instruction comprises a store-e-bit (e.g., the instruction is a store with an e-flag bit). If
the result of this determination is positive, the ISU 106, at step 818, remembers the store
instruction as a store-e-bit. If this instruction only comprises a single bit then the control
flow then returns to step 804. However, if the instruction comprises multiple bits because it
performs both one or more loads and one or more stores, the IDU performs steps 826 and

828 if the other bit is a load “e” bit or performs step 832 if the other bit is a load “w” bit.

If the result of the determination at step 816 is negative, the IDU 104, at step 820,
determines if the instruction comprises a store-w-bit (e.g., the instruction is a store with a w-
flag bit). If the result of this determination is positive, the ISU 106, at step 822, remembers
the STQ entry number (stag) that is allocated to the store instruction. The control flow then

returns to step 804.

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

17

If the result of the determination at step 820 is negative, the IDU 104, at step 824,
determines if the instruction comprises a load-e-bit (e.g., the instruction is a load with an e-
flag bit). If the result of this determination is positive, the ISU 106, at step 826, marks the
load instruction as being dependent on any prior instruction that was marked with a store-e-
bit. The load instruction, as a result of being marked, at step 828, is prevented from
executing before the Store has successfully executed and written the store address and data

into its STQ entry. The control flow then returns to step 804.

If the result of the determination at step 824 is negative, the instruction, at step 830, is
determined to be a load with a w-flag bit. The ISU 106, at step 832 , marks this instruction
so as not to execute until the stag of the last store-w-bit Store before the Load (i.e., the w-

stag) has written back to the L1 cache. The control flow then returns to step 804.

Information Processing System

FIG. 9 is a block diagram illustrating detailed view an information processing system 900
according to one embodiment of the present invention. The information processing system
900 1s based upon a suitably configured processing system adapted to implement one or
more embodiments of the present invention. Any suitably configured processing system is
similarly able to be used as the information processing system 900 by embodiments of the

present invention.

The information processing system 900 includes a computer 902. The computer 902 has a
processor(s) 101 such as the processor of FIG. 1. The processor 101 comprises the IFU 102
including the OSC prediction table 116; the IDU 104; the ISU 106 comprising the issue
queue 118; the LSU 108 comprising the LDQ 120, the STQ 122, and the L1 cache 124; the
operand address generating unit 110, the FXU 112, and various other components 114, as

shown in FIG. 1.

The processor 101 is connected to a main memory 906, mass storage interface 908, and
network adapter hardware 910. A system bus 912 interconnects these system components.
The mass storage interface 908 is used to connect mass storage devices, such as data storage
device 914, to the information processing system 900. One specific type of data storage

device is an optical drive such as a CD/DVD drive, which may be used to store data to and

10

15

20

25

WO 2011/076602 PCT/EP2010/069496

18

read data from a computer readable medium or storage product such as (but not limited to) a
CD/DVD 916. Another type of data storage device is a data storage device configured to

support, for example, file system operations.

In one embodiment, the information processing system 600 utilizes conventional virtual
addressing mechanisms to allow programs to behave as if they have access to a large, single
storage entity, referred to herein as a computer system memory, instead of access to
multiple, smaller storage entities such as the main memory 906 and data storage device 916.
Note that the term “computer system memory” is used herein to generically refer to the

entire virtual memory of the information processing system 900.

Although only one processor 101 is illustrated for computer 902, computer systems with
multiple processors can be used equally effectively. Various embodiments of the present
invention further incorporate interfaces that each includes separate, fully programmed
microprocessors that are used to off-load processing from the processor 101. An operating
system (not shown) included in the main memory is a suitable multitasking operating system
such as, and not for limitation, the GNU/Linux, AIX, Solaris, and HP-UX. Various
embodiments of the present invention are able to use any other suitable operating system.
Some embodiments of the present invention utilize architectures, such as an object oriented
framework mechanism, that allow instructions of the components of operating system (not
shown) to be executed on any processor located within the information processing system
900. The network adapter hardware 910 is used to provide an interface to one or more
networks 918. Various embodiments of the present invention are able to be adapted to work
with any data communications connections including present day analog and/or digital

techniques or via a future networking mechanism.

Although the exemplary embodiments of the present invention are described in the context
of a fully functional computer system, those skilled in the art will appreciate that
embodiments are capable of being distributed as a program product via CD or DVD, e.g. CD
916, CD ROM, or other form of recordable media, or via any type of electronic transmission

mechanism.

10

WO 2011/076602 PCT/EP2010/069496
19

Non-Limiting Examples

Although specific embodiments of the invention have been disclosed, those having ordinary
skill in the art will understand that changes can be made to the specific embodiments without
departing from the spirit and scope of the invention. The scope of the invention is not to be
restricted, therefore, to the specific embodiments, and it is intended that the appended claims
cover any and all such applications, modifications, and embodiments within the scope of the

present invention.

Although various example embodiments of the present invention have been discussed in the
context of a fully functional computer system, those of ordinary skill in the art will
appreciate that various embodiments are capable of being distributed as a program product
via CD or DVD, e.g. CD 916, CD ROM, or other form of recordable media, or via any type

of electronic transmission mechanism.

10

15

20

25

WO 2011/076602 PCT/EP2010/069496

20

CLAIMS

1. A method for managing load and store operations executed out-of-order, the method
comprising:

executing at least one instruction of a load instruction and a store instruction;

determining, based on the executing, that an operand store compare hazard has been
encountered;

creating, based on the determining, an entry within an operand store compare hazard
prediction table comprising at least an instruction address of the at least one instruction that
has been executed and a hazard indicating flag associated with the at least one instruction
that has been executed, wherein the hazard indicating flag indicates that the at least one

instruction that has been executed has encountered the operand store compare hazard.

2. The method of claim 1, wherein the executing comprises executing one instruction
selected from the load instruction and the store instruction; and further comprising:

creating, based on the determining, an entry within the operand store compare hazard
prediction table comprising an instruction address of the other one instruction of the load
instruction and the store instruction that was not selected, and a hazard indicating flag
associated with the other one instruction, wherein the hazard indicating flag associated with
the other one instruction is substantially similar to the hazard indicating flag associated with
the one instruction that has been executed, wherein the hazard indicating flag associated with
the other one instruction indicates that the other one instruction has encountered the operand

store compare hazard.

3. The method of claim 1, wherein the executing comprises:
executing the load instruction prior to the store instruction; and
executing the store instruction after the load instruction finishes executing,
wherein the load instruction obtains a data set from a memory location where the

store instruction performs a subsequent write operation.

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

21

4. The method of claim 3, further comprising:

determining, by the store instruction, that the load instruction has obtained the data
set from the memory location;

determining, by the store instruction in response to the determining, that a store-hit-
load hazard has been encountered; and

setting, by the store instruction in response to determining that the store-hit-load
hazard has been encountered, a hazard indicating flag in an oldest load queue entry
compared against by the store instruction when determining that the load instruction has
obtained the data set from the memory location, wherein the hazard indicating flag indicates

that the load instruction is associated with the store-hit-load hazard.

5. The method of claim 4, further comprising at least one of:

informing, by the store instruction, an instruction fetch unit comprising the operand
store compare hazard prediction table that the store instruction has set the hazard indicating
flag, wherein the instruction fetch unit generates the entry in response to the informing;

informing, by a store queue in response to the store instruction setting the hazard
flag, an instruction issue unit of a store queue entry number within the store queue of the
store instruction; and

informing, by the load instruction, the instruction fetch unit comprising the operand
store compare hazard prediction table that the store instruction has set the hazard indicating

flag, wherein the instruction fetch unit generates the entry in response to the informing.

6. The method of claim 1, wherein the executing further comprises:

executing the store instruction prior to the load instruction, wherein a data set
associated with the store instruction is delayed; and

executing the load instruction prior to the data set being written into a store queue by

the store instruction.

7. The method of claim 6, further comprising:
determining, by the load instruction based on being executed prior to the data set
being written into a store queue by the store instruction, that the load instruction depends on

the store instruction;

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

22

determining, by the load instruction based on determining that the load instruction
depends on the store instruction, that store-data-forwarding cannot be performed; and

determining, by the load instruction based on determining that store-data-forwarding
cannot be performed, that the load instruction has encountered a non-forwardable load-hit-

store hazard.

8. The method of claim 7, further comprising:

setting, by the load instruction based on determining that the load instruction has
encountered the non-forwardable load-hit-store hazard, a hazard indicating flag in a store
queue entry within the store queue associated with the store instruction, wherein the hazard
indicating flag indicates that the store instruction is associated with the non-forwardable
load-hit-store hazard; and

setting, by the load instruction based on determining that the load instruction has
encountered the non-forwardable load-hit-store hazard, a hazard indicating flag in a load
queue entry within a load queue associated with the load instruction, wherein the hazard
indicating flag within the load queue entry indicates that the load instruction has encountered

the persistent non-forwardable load-hit-store hazard.

9. The method of claim &, further comprising at least one of:

informing, by the load instruction, an instruction fetch unit comprising the operand
store compare hazard prediction table that the load instruction has set the hazard indicating
flag within the load queue entry, wherein the instruction fetch unit generates the entry in
response to the informing; and

informing, by the store instruction, the instruction fetch unit comprising the operand
store compare hazard prediction table that the load instruction has set the hazard indicating
flag within the store queue entry, wherein the instruction fetch unit generates the entry in

response to the informing.

10. The method of claim 1, wherein the executing further comprises:
executing the store instruction prior to the load instruction, wherein a data set
associated with the store instruction is persistently unavailable;

executing the load instruction after the store instruction.

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

23

11. The method of claim 10, further comprising:

determining, by the load instruction based on the data set being persistently
unavailable, that the load instruction depends on the store instruction;

determining, by the load instruction based on determining that the load instruction
depends on the store instruction, that store-data-forwarding cannot be performed; and

determining, by the load instruction based on determining that store-data-forwarding
cannot be performed and the data set being persistently unavailable, that the load instruction

has encountered a persistent non-forwardable load-hit-store hazard.

12. The method of claim 11, further comprising:

setting, by the load instruction based on determining that the load instruction has
encountered the persistent non-forwardable load-hit-store hazard, a hazard indicating flag in
a store queue entry within the store queue associated with the store instruction, wherein the
hazard indicating flag indicates that the store instruction is associated with the persistent
non-forwardable load-hit-store hazard; and

setting, by the load instruction based on determining that the load instruction has
encountered the persistent non-forwardable load-hit-store hazard, a hazard indicating flag in
a load queue entry within a load queue associated with the load instruction, wherein the
hazard indicating flag within the load queue entry indicates that the load instruction has

encountered the persistent non-forwardable load-hit-store hazard.

13. The method of claim 12, further comprising at least one of:

informing, by the load instruction, an instruction fetch unit comprising the operand
store compare hazard prediction table that the load instruction has set the hazard indicating
flag within the load queue entry, wherein the instruction fetch unit generates the entry in
response to the informing; and

informing, by the store instruction, the instruction fetch unit comprising the operand
store compare hazard prediction table that the load instruction has set the hazard indicating
flag within the store queue entry, wherein the instruction fetch unit generates the entry in

response to the informing.

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

24

14. The method of claim 1 further comprising;:

decoding the instruction;

querying the operand store compare hazard prediction table with the instruction
address of the instruction, wherein the operand store compare hazard prediction table
comprises a first entry for a load instruction and a second entry for a store instruction,
wherein the first and second entries are independent of each other, and wherein the first and
second entries indicate that the load instruction and the store instruction, respectively, have
previously encountered an operand store compare hazard, and wherein the first and second
entries comprise at least an instruction address of one of the load instruction and store
instruction, respectively, and a hazard indicating flag associated with an operand store
compare hazard;

determining, in response to querying the prediction table, that the instruction is
associated with one of the first and second entries in the operand store compare hazard
prediction table;

identifying, based on the determining, the hazard indicating flag included within the
one of the first and second entries associated with the instruction;

wherein when the instruction is associated with the first entry, the instruction is a
load instruction, and

marking the instruction based on the hazard indicating flag that has been

identified, wherein the marking makes an execution of the instruction dependent

upon at least one store instruction, associated with the second entry of the prediction

table comprising a hazard indicating flag substantially similar to the hazard

indicating flag associated with the instruction, having reached a given execution

stage; and

wherein when the instruction is associated with the second entry, the instruction is a

store instruction.

15. The method of claim 14, wherein the hazard indicating flag associated with the
instruction indicates that the instruction has previously encountered a non-forwardable load-
hit-store hazard, and

wherein the marking makes an execution of the instruction dependent upon all store

instructions, associated with an entry of the prediction table comprising the hazard indicating

10

15

20

25

30

WO 2011/076602 PCT/EP2010/069496

25

flag substantially similar to the hazard indicating flag associated with the instruction, having

reached a stage where stores are forwardable.

16. The method of claim 14, wherein the hazard indicating flag associated with the
instruction indicates that the instruction has previously encountered a persistent non-
forwardable load-hit-store hazard, and

wherein the hazard indicating flag associated with the at least one store instruction
indicates that the at least one store instruction has previously encountered a persistent non-
forwardable load-hit-store hazard.
17. The method of claim 14, wherein the hazard indicating flag associated with the
instruction indicates that the instruction has previously encountered a store-hit-load hazard,
and

wherein the hazard indicating flag associated with the at least one store instruction
indicates that the at least one store instruction has previously encountered a store-hit-load

hazard.

18. The method of claim 14, further comprising:

delaying, based on the marking, the execution of the load instruction until after all
store instructions associated with an entry of the prediction table comprising the hazard
indicating flag substantially similar to the hazard indicating flag associated with the
instruction have executed their address calculation and have written their data in a

corresponding entry in a store queue.

19. The method of claim 14, wherein the at least one store instruction is a youngest store
instruction comprising the hazard indicating flag substantially similar to the hazard
indicating flag associated with the instruction, and further comprising:

delaying, based on the marking, the execution of the instruction until after the at least

one store instruction has performed an L1 cache writeback.

20. A system comprising means adapted for carrying out all the steps of the method

according to any preceding method claim.

WO 2011/076602 PCT/EP2010/069496
26

21. A computer program comprising instructions for carrying out all the steps of the
method according to any preceding method claim, when said computer program is executed

on a computer system.

WO 2011/076602 PCT/EP2010/069496

176
1o§
101
/
102 o
(R 04 % &
03 . SSE | Ae
161 pREDICTION DU OEE 1
TABLE
10 e
N L) Mevres
ADDRESS -
GENERATION UNIT J 1o
ENTRIES |
N 122
12
\ B | 124
YU
/LU
14 108
\
OTHER
COMPONENTS

FIG.

WO 2011/076602 PCT/EP2010/069496
218
120
LOAD QUELE /
226~ OP ADDR VALDBIT | DEPENDENCY BIT
S S S S
204 206 208 210
F l G . 2
122
STORE QUEUE /
3286~J] 0P ADDR VALDBIT | DATA |DEPENDENCY BIT

FIG. 5

WO 2011/076602 PCT/EP2010/069496
516
404 406 4086 410
e § ; \
INSTR.
ADDR VALID BIT LOAD e-BIT LOAD w-BIT
S
402
412 414 410 4186
S . N N
INSTR.
ADDR VALID BIT STORE e-BIT STORE w-BIT
S
403

1o

FIG. 4

WO 2011/076602 PCT/EP2010/069496

476

A LOAD INSTRUCTION EXECUTES BEFORE A STORE INSTRUCTION |~ 204
THE LOAD INSTRUCTION OBT/'XINS DATA FROM A LOCATION | ~506
WHERE THE STORE INSTRUCTION WILL WRITE TO IN THE FUTURE
THE LOAD INSTRUCTIO'N FINISHES EXECUTING |~ 20&
THE STORE INSTRIJCTION EXECUTES 210

]

THE STORE INSTRUCTION DETERMINES THAT THE LOAD INSTRUCTION HAS PREVIOUSLY
OBTAINED DATA FROM A MEMORY LOCATION THAT THE STORE IS CURRENTLY WRITING TO

|~ 512

!
THE STORE INSTRUCTION DETECTS AN SHL HAZARD SITUATION |~ 214
!
THE STORE INSTRUCTION SETS AN E-FLAG BIT IN THE OLDEST | ~516
LDQ ENTRY THAT THE STORE INSTRUCTION COMPARES AGAINST
!
THE STORE INSTRUCTION SETS ANE-FLAGIN THE] ~518
STQ ENTRY OF THE STORE INSTRUCTION
!
THE STORE INSTRUCTION FLUSHES THE LOAD ~520
INSTRUCTION AND ALL YOUNGER LOAD INSTRUCTIONS
!
THE STORE INSTRUCTION WRITES BACK TO THE L1 CACHE =922
]
THE STORE INSTRUCTION INFORMS THE IFU THAT THE 524
STORE INSTRUCTION HAS AN E-FLAG BIT PENDING
!

THE IFU GENERATES AN ENTRY FOR THE STORE INSTRUCTION IN AN OSC PREDICTION TABLE,

AND AN INDICATION THAT THE STORE INSTRUCTION IS ASSOCIATED WITH AN E-FLAG BIT

WHERE THE ENTRY INCLUDES AN INSTRUCTION ADDRESS OF THE STORE INSTRUCTION, A VALID BIT, |~ 526

]

THE IFU GENERATES AN ENTRY FOR THE LOAD INSTRUCTION IN AN OSC PREDICTION TABLE,

AND AN INDICATION THAT THE LOAD INSTRUCTION IS ASSOCIATED WITH AN E-FLAG BIT

WHERE THE ENTRY INCLUDES AN INSTRUCTION ADDRESS OF THE LOAD INSTRUCTION, A VALD BIT, |~ 527

]

THE STQ INFORMS THE ISU OF THE STQ ENTRY NUMBER (STAG) OF THE STORE INSTRUCTION

|~ 528

FIG. B

WO 2011/076602 PCT/EP2010/069496

576

A STORE INSTRUCTION EXECUTES TS ADDRESS CALCULATION}~ €04

THE DATA FOR THE STORE INSTRUCTION IS DELAYED ~ |~©06

!

A LOAD INSTRUCTION EXECUTES BEFORE THE STORE DATA IS WRITTEN IN THE STQ 608

!

THE LOAD INSTRUCTION DETERMINES THAT IT IS DEPENDENT ON | ~610
THE STORE INSTRUCTION AND CANNOT PERFORM STORE-DATA-FORWARDING

!

THE LOAD INSTRUCTION DETECTS AN NF-LHS HAZARD SITUATION L~612

THE LOAD INSTRUCTION SETS AN E-FLAGBITINTHE | - 514
STQ ENTRY OF THE STORE INSTRUCTION

&
THE LOAD INSTRUCTION SETS AN E-FLAG BIT IN A CORRESPONDING LDQ ENTRY |~ 616
!
THE LOAD INSTRUCTION FINISHES EXECUTING | ~615
!

THE LOAD INSTRUCTION INFORMS THE IFU THAT | ~620
IT HAS SET AN E-FLAG BIT IN THE LDQ

!

THE IFU GENERATES AN ENTRY FOR THE LOAD INSTRUCTION IN AN OSC PREDICTION TABLE,
WHERE THE ENTRY INCLUDES AN INSTRUCTION ADDRESS OF THE LOAD INSTRUCTION, A VALID BIT, 622
AND AN INDICATION THAT THE LOAD INSTRUCTION IS ASSOCIATED WITH AN E-FLAG BIT

!

THE IFU GENERATES AN ENTRY FOR THE STORE INSTRUCTION IN AN OSC PREDICTION TABLE,
WHERE THE ENTRY INCLUDES AN INSTRUCTION ADDRESS OF THE STORE INSTRUCTION, A VALD 623
BIT, AND AN INDICATION THAT THE STORE INSTRUCTION IS ASSOCIATED WITH AN E-FLAG

FIG. ©

WO 2011/076602 PCT/EP2010/069496

©l&

(i)70z

A STORE INSTRUCTION EXECUTES ITS ADDRESS CALCULATION |~ 704

A LOAD INSTRUCTION EXECUTES |~ 70@

THE LOAD INSTRUCTION DETERMINES THAT IT IS DEPENDENT ON 7086
THE STORE INSTRUCTION AND CANNOT PERFORM STORE-DATA-FORWARDING

THE LOAD INSTRUCTION DETECTS A PERSISTENT NF-LHS HAZARD SITUATION |~ 710

THE LOAD INSTRUCTION SETS A W-FLAGBIT | ~ 712
IN THE STQ ENTRY OF THE STORE INSTRUCTION

THE LOAD INSTRUCTION SETS A W-FLAG BIT IN' A CORRESPONDING LDQ ENTRY P~ 714

THE LOAD INSTRUCTION FINISHES EXECUTING |~ /1@

THE LOAD INSTRUCTION INFORMS THE IFU THAT| - 718
IT HAS SET A W-FLAG BIT IN THE LDQ

THE IFU GENERATES AN ENTRY FOR THE LOAD INSTRUCTION IN AN OSC PREDICTION TABLE, 750
WHERE THE ENTRY INCLUDES AN INSTRUCTION ADDRESS OF THE LOAD INSTRUCTION, A VALID BIT, |~
AND AN INDICATION THAT THE LOAD INSTRUCTION IS ASSOCIATED WITH A W-FLAG BIT.

THE IFU GENERATES AN ENTRY FOR THE STORE INSTRUCTION IN AN OSC PREDICTION TABLE, 701
WHERE THE ENTRY INCLUDES AN INSTRUCTION ADDRESS OF THE STORE INSTRUCTION, A VALID BIT.H~
AND AN INDICATION THAT THE STORE INSTRUCTION IS ASSOCIATED WITH A W-FLAG

(mr 722
FIG. 7

WO 2011/076602

PCT/EP2010/069496

715

(mmR)80z

IFU FETCHES AN INSTRUCTION |~ &04

IFU QUERIES THE OSC PREDICTION TABLE WITH INSTRUCTION ADDRESS OF THE INSTRUCTION |~ 806

OMPRISES AN ENTRY FOR TH

808 810
DOES THE /
PREDICTION TABLE NO__| PERFORM CONVENTIONAL

PROCESSING

C oir o2

INSTRUCTION?

IFU SENDS THE INSTRUCTION WITH THE OSC PREDICTION TABLE INFORMATION TO THE DU |~ 19

IDU DECODES THE INSTRUCTION |~ 814

816
/
REMEMBER THE STORE
INSTRUCTION AS A

STORE-E-BIT INSTRUCTION

REMEMBER THE STQ ENTRY
NUMBER (STAG) THAT IS
ALLOCATED FOR THE STORE
2826 INSTRUCTION
\ N
MARK THE LOAD INSTRUCTION AS 822
BEING DEPENDENT ON ANY PRIOR
INSTRUCTION THAT WAS MARKED
WITH A STORE-E-BIT 8:/50

E26~

THE LOAD INSTRUCTION, AS A
RESULT OF BEING MARKED, DOES
NOT EXECUTE BEFORE THE STORE

HAS SUCCESSFULLY EXECUTED AND

WRITTEN THE STORE ADDRESS

INSTRUCTION IS A LOAD INSTRUCTION WITH A LOAD-W-BIT

MARK THIS INSTRUCTION SO AS NOT TO EXECUTE UNTIL THE
STAG OF THE LAST STORE-W-BIT STORE BEFORE THE LOAD
(i, THE W-STAG) HAS WRITTEN BACK TO THE L1 CACHE

AND DATA INTO ITS STQ ENTRY

FIG. & sb

WO 2011/076602 PCT/EP2010/069496

&/
200
/
PROCESSOR(S) | ~101 902
906
/
MAIN MEMORY
|~ 912
9086 910
/ /
MASS STORAGE NETWORK
I/F ADAPTER H/W
14
/
MASSESvTSEAGE NETWORK, -~ 918
916

&

FIG. 9

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2010/069496

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO06F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimurmn documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, IBM-TDB, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where apprdpriate, of the relevant passages

Relevant to claim No.

MOSHOVOS A ET AL: "Streamlining
inter-operation memory communication via
data dependence prediction”,

PROCEEDINGS OF THE 30TH ANNUAL IEEE/ACM

1-21

INTERNATIONAL SYMPOSIUM ON

ALAMITOS, CA :
vol. 30TH CONF,

IEEE COMPUTER,
235-245, XP010261300,
ISBN: 978-0-8186-7977-3

and 4.4
figures 2,3

MICROARCHITECTURE. MICRO-30. RESEARCH
TRIANGLE PARK, NC, DEC. 1 - 3, 1997;
[PROCEEDINGS OF THE ANNUAL INTERNATIONAL
SYMPOSIUM ON MICROARCHITEC TURE], LOS

1 December 1997 (1997-12-01), pages

DOI: DOI:10.1109/MICRO.1997.645814

Pages 237-238, paragraphs 4, 4.1, 4.2, 4.3

m Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

‘P* document published prior to the international filing date but
later than the priority date claimed

“T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory undetlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
me;}ns, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent famity

Date of the aclual completion of the international search

18 January 2011

Date of mailing of the intemational search report

26/01/2011

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31~70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Thibaudeau, dJean

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2010/069496

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 6 463 523 B1 (KESSLER RICHARD EUGENE
[US] ET AL) 8 October 2002 (2002-10-08)
column 2, 1ine 39 - last line

WO 2005/111794 A1 (ADVANCED MICRO DEVICES
INC [US]; SANDER BENJAMIN T [US]; RAMANI
KRISHN) 24 November 2005 (2005-11-24)
paragraphs [0064] - [0068], [0077];
figures 4A,4B

US 5 781 752 A (MOSHOVOS ANDREAS I [US] ET

AL) 14 July 1998 (1998-07-14)

column 3, 1ine 51 - line 62

cotumn 4, line 38 - line 65

US 5 913 048 A (CHEONG HOICHI [uS] ET AL)
15 June 1999 (1999-06-15)

column 17, line 66 - column 18, line 27
WO 01/35212 A1 (ADVANCED MICRO DEVICES INC
[US]) 17 May 2001 (2001-05-17)

page 1, 1ine 25 - 1ine 31

page 28, line 28 - page 29, line 5

US 2009/210679 Al (TSAI AARON [US] ET AL)
20 August 2009 (2009-08-20)

paragraphs [0013], [0033]

1-21

1-21

1-21

1-21

1-21

1-21

Fomn PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

» information on patent family members

International application No

PCT/EP2010/069496

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 6463523 Bl 08-10-2002 NONE

WO 2005111794 Al 24-11-2005 CN 1954290 A 25-04-2007
DE 112004002848 T5 05-04-2007
DE 112004002848 B4 17-06-2010
GB 2429557 A 28-02-2007
JP 2007536626 T 13-12-2007
US 2005247774 Al 10-11-2005

uUsS 5781752 A 14-07-1998 1D 19326 A 02-07-1998

US 5913048 A 15-06-1999 JpP 10283180 A 23-10-1998

WO 0135212 Al 17-05-2001 DE 60025028 T2 24-08-2006
EP 1228426 Al 07-08-2002
JP 2003514299 T 15-04-2003
W 548548 B 21-08-2003
us 6662280 B1 09-12-2003

usS 2009210679 Al 20-08-2009 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report
	Page 39 - wo-search-report

