

1581 664

(21) Application No. 16404/77 (22) Filed 20 April 1977 (19)
 (31) Convention Application No. 5745/76 (32) Filed 29 April 1976 in
 (33) Australia (AU)
 (44) Complete Specification published 17 Dec. 1980
 (51) INT. CL.³ F24J 3/02 F25B 13/00 29/00
 (52) Index at acceptance

F4U 60
 F4H G12 G2A G2N G2S G2X1

(54) SOLAR BOOSTED HEAT PUMP

(71) We, THE UNIVERSITY OF MELBOURNE, a body politic and corporate established under the Melbourne University Act of the State of Victoria, of Grattan Street, Parkville, Victoria, Australia, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention relates to a solar boosted heat pump and in particular to an air source heat pump which is satisfactory for use in areas in which there are periods of available solar radiation and ambient air temperatures which may be lower than those required for effective operation of other heat pump systems. Using this system the temperature of the refrigerant vapour at the outlet from the evaporator may be above that of the low temperature source because of the trapped solar energy.

There have previously been proposed heat pumps which rely on air passing through an evaporator to effect evaporation of a refrigerant fluid. It is found with such pumps that the compressor power used may be such that they are not economically feasible for heating purposes.

It is an object of the invention to provide a heat pump which reduces the compressor power necessary by increasing the suction temperature of the compressor vapour charge.

In one aspect, the invention provides a solar boosted heat pump for providing heating for domestic and other purposes, comprising a thermally uninsulated or partly thermally insulated heat conducting plate which in operation is exposed to the sun and atmosphere, said plate having at least one fluid carrying tube in heat transfer relationship with the plate, said tube(s) forming part of a closed refrigerant flow system and having an inlet and an outlet, said plate operating as a solar absorber, said refrigerant flow system including a compressor and a heat exchanger in heat exchange relationship with a heat transfer medium and

including connections between the outlet of the plate and the inlet of the compressor and between the outlet of the compressor and the heat exchanger, said heat exchanger also being connected to the inlet of the plate, valve means controlling refrigerant flow through the plate, said valve means being controlled by the temperature of the refrigerant leaving the plate through its outlet.

In another aspect, the invention provides a solar boosted heat pump for providing cooling for domestic and other purposes, comprising a thermally uninsulated or partly thermally insulated heat conducting plate which in operation is exposed to the atmosphere, said plate having at least one fluid carrying tube in heat transfer relationship with the plate, said tube(s) forming part of a closed refrigerant flow system and having an inlet and an outlet, said plate operating as a radiator, said refrigerant flow system including a compressor and a heat exchanger in heat exchange relationship with a heat transfer medium, and including connections between the outlet of the compressor and the inlet of the plate and between the outlet of the heat exchanger and the inlet of the compressor, the outlet from the plate being in turn connected to the inlet of the heat exchanger through valve means controlled by the temperature of the refrigerant leaving the heat exchanger.

In a still further aspect, the invention provides a solar boosted heat pump for providing heating or cooling for domestic and other purposes, comprising thermally uninsulated or partly thermally insulated heat conducting plate which in operation is exposed to the sun and atmosphere, said plate having at least one fluid carrying tube in heat transfer relationship with the plate, said tube(s) forming part of a closed refrigerant flow system and having an inlet and an outlet, said plate operating as a solar absorber when the pump is in its heating mode and as a radiator when the pump is in its cooling mode, said refrigerant flow system also including a compressor and a

50

55

60

65

70

75

80

85

90

95

heat exchanger in heat exchange relationship with a heat transfer medium, valve means in said refrigerant flow system operable when the pump is in its heating mode

5 to connect the outlet of the plate to the inlet of the compressor and between the outlet of the compressor to the heat exchanger, said heat exchanger being connected to the inlet of the plate, valve means

10 at the plate inlet to control refrigerant flow through the plate, said valve means being controlled by the temperature of the refrigerant leaving the plate through its outlet, said valve means in the refrigerant flow system being operable when the pump is in its cooling mode to connect the outlet of the compressor with the inlet of the plate and the outlet of the heat exchanger with the inlet of the compressor, the refrigerant from

15 the plate outlet being directed to the inlet of the heat exchanger through valve means controlled by the temperature of the refrigerant leaving the heat exchanger.

20 We prefer that the speed or displacement rate of the compressor may be varied so that on variable conditions the most effective speed of operation can be selected.

This speed or displacement rate variation may be automatically controlled by solar radiation incident on the plate in various ways.

One way which can be used to vary the operation of the compressor is to provide a photo-electric or light-sensitive cell on or associated with the heat conducting plate which cell forms part of a gate fixing mechanism which controls the cyclic power applied to a universal, such as a brush type, motor which drives the compressor. Preferably if this form of control is used a delay system is built into the circuit to take into account of the delay between the change in conditions and the change in the outlet temperature, which is related to the suction pressure to the compressor.

A second way in which the control may be achieved is by providing a heat sensitive element at or adjacent to the outlet from the plate. This will provide an output which is dependent on the outlet temperature, and thus the suction pressure which output can be used to control the motor operation.

Where there is high incident radiation more energy can be removed from the plate by operating the compressor at relatively high speed and/or displacement rate although under these conditions the coefficient of performance (COP) is reduced.

In order that the invention may be more readily understood we shall describe one particular form of heat pump made in accordance with the invention with relation to the accompanying drawings.

In these drawings:—

Fig. 1 is a purely schematic view of the system of the invention;

Fig. 2 is a view of the components of the system;

Fig. 3 is an elevation of one form of absorber plate which is suitable for a dual mode machine;

Fig. 4 is an elevation of a second form of plate, suitable for heat pump operation with a flooded evaporator and float control;

Fig. 5 is a section along line 5—5 of Fig. 4;

Fig. 6 is an arrangement of absorber plate which permits angular adjustment of the plate;

Fig. 7 shows a domestic hot water supply, incorporating a heat pump in accordance with the invention, using a natural convection condenser located in the storage tank and which is suitable for installation in a roof space;

Figs. 8 and 9 show schematically the refrigerant and water paths when used for heating and cooling water respectively;

Fig. 10 shows schematically means to allow by-passing the storage tank when rapid heating/cooling is required.

Referring to the drawings Fig. 1 shows an idealised perspective of a part of a house 11 on which there is mounted a solar absorber plate 10. This plate would normally be northwardly directed in the southern hemisphere and southwardly directed in the northern hemisphere.

The angle at which the absorber plate is located relative to the horizontal is not critical but for optimum efficiency depends on the latitude of the place in which the unit is to be located and preferably also may be varied depending on the season of the year.

The latitude in Melbourne, Australia is 30°49' and an inclination of 53° for winter use is preferred. This angle gives, generally, the best overall absorption for the Melbourne winter heating period.

The total heat absorption into or transmission from the plate 10 is made up from two components, the first being direct radiation which is unidirectional and is received from the sun directly and the other being diffuse radiation which is solar radiation which has been scattered by atmospheric air, dust and clouds, and has been reflected from adjacent areas.

Also, in a stylised manner we illustrate in Fig. 2 a container 13 in which the various components of the heat pump, other than the absorber plate and heat sink are mounted.

Although these will be described further hereinafter in relation to the flow drawings of Figs. 8 and 9, the components in the container comprise a compressor 14 which, in the heating mode, receives gas from the absorber plate by means of a four way valve

15 which is in direct connection with the plate by line 16 and input being along line 17 and the output line 18 which returns to the four way valve. From the four way 5 valve and line 19, the hot gas passes along line 20 to a heat exchanger 21 in which it delivers up its heat and in the form of a liquid passes along line 22 through a refrigerant heat exchanger 40 which is only 10 operative in the cooling mode from whence it passes by lines 23 and 24 to a receiver 41 from whence, in due course, it passes by line 25 to the solar absorber plate.

15 In Fig. 2 we also show a large number of check valves, which are indicated in this figure as internally circled valves, the purposes of which will be described hereinafter with relation to Figs. 8 and 9.

20 To optimize performance it is necessary that the size of the absorber plate 10 and the displacement rate of the compressor 14 be closely matched.

25 The water circuit comprises a pump 26 which feeds, by line 27, water to the heat exchanger 21 and the water is returned to the heat sink by line 28.

The heat sink, as will be described hereinafter, can be of any one of several forms.

30 Because of the relatively low load temperatures preferred, the most satisfactory application of the invention in terms of COP is in heating swimming pools, both domestic and commercial pools. It will be appreciated that, depending on the volume of water in the pool, so the size of the absorber and the capacity of the compressor are varied.

35 Where the heat pump is to be used for heating swimming pools it will be appreciated that the condenser can be simply located in the filter line of the pool and that the pool itself will comprise the heat sink.

40 The invention can also show a good COP in the heating and cooling of dwellings and can be used for hot water supply although the COP in such application is definitely reduced.

45 The effectiveness of the unit in relatively high temperature operations can be increased by double staging the system using a flash inter cooler.

The relative COP's will be discussed hereinafter.

50 Fig. 3 shows one particular form of evaporator plate 10. In this form we have two runs of copper tubing 30, 31 mounted on a copper plate 32. The tubes, as can be seen, overlap to follow design calculations which appeared to give an extremely good 55 transmission of heat.

60 In practice, the tubes are soldered throughout their length to the plate so that good heat conduction is obtained. Associated with the inlet 33 to the plate we provide 65 a thermostatic control valve 34 which is

operated by bulb 77 connected through line 78 from adjacent the outlet 35 of the plate whereby the fluid flow through the plate can be automatically controlled so that the outlet superheat temperature of the vapour is that which is required for efficient operation of the unit. Depending on the application with which the unit is to be used, it will be understood that there can be wide variations in the required outlet temperature as, if the unit is to be used for low temperature applications, such as heating swimming pools, then the optimum conditions may be to obtain a high throughput at relatively low temperature rather than a lesser throughput at a higher temperature.

70 The inlet 36 to the thermostatically controlled valve 34 is a continuation of line 25 of Fig. 2 and in this there is a one way check valve 37 which permits flow in only the direction indicated by the arrow. There is a second inlet line 120 which passes through one way valve 121 which carries liquid from the outlet 35. There is a still further inlet line 38 which by-passes the thermostatic expansion valve and this also has a check valve 39 to prevent the liquid from by-passing the absorber plate. This inlet line 38, as will be described hereinafter, is used when the plate is being used as a 75 cooler.

80 The preferred absorber plate differs from conventional plates in that it is not thermally insulated and preferably, both sides of the plate can be exposed to the surround. In 90 areas of high solar insulation insulation may be used on one side only.

95 The reason for this is because the heat pump of the invention is designed to operate at relatively low temperatures near to air temperature and heat losses from the plate are not so important as in other solar devices. Thus the necessity of insulating the rear of the plate and providing a heat transparent cover, such as glass, is obviated and, 100 in fact, the plate can absorb energy from the wind.

105 Also, we have found that there is no necessity to provide a selective surface on the plate and it can be simply painted or otherwise treated to give a matte black 110 finish.

115 We have also found, particularly in the 120 latitude of Melbourne, Australia, 37°49', that although it is desirable to have the plate directed in a northerly direction the angle of the plate does not appear to be critical. In certain circumstances, for example, where the heat pump of the invention is to be used in a cooling cycle, it may be desirable 125 to have the plate at an angle higher than the optimum angle, such as 90° to the horizontal to permit maximum heat transfer to the surround but basically this has not been felt necessary. Should some modification for 130

cooling be required it may be better to directly cool the plate. This will be described more fully hereinafter.

Figs. 4 and 5 show a schematic view of 5 an alternative type of plate which also operates under different conditions to the form of Fig. 3. In these views it can be seen that the tubing 46 is formed integral with the plate 45 and in fact, two plate members 10 47, 48 are connected together with a single continuous tube being formed between the two plates. Such localized distortion of the two plates is effected by blowing or otherwise. This form of arrangement is basically 15 conventional and, normally, the metal would be aluminium rather than copper and we have found that where aluminium is painted black its thermal characteristics for this purpose are not essentially different from 20 copper. Also, where an absorber plate of this type is being used it is only possible to have one continuous tube, unless there is a sandwich of three plates, or it would be essential to provide means whereby the tubes 25 overlap. Thus the only practical method is a sandwich of three sheets with one tube between one outer sheet and the central sheet and the other tube between the outer sheet and the central sheet. It is possible to 30 optimise a single tube and the loss in efficiency would probably not be sufficient to make a three sheet sandwich economically viable.

As stated above Fig. 4 shows an evaporator operating in a mode different to that of Fig. 3. In this case a flooded evaporator system is used. The inlet to the tubing 46 is from a liquid reservoir 125 which at its outlet is associated with a pump 126 which 35 feeds the liquid to the tubing 46 and causes it to move through the tube to an outlet 127 in the reservoir. That which vapourises is drawn along a suction line 128 by the compressor. As the vapour is removed then 40 a float control valve 129 opens and additional liquid can enter the reservoir through pipe 130 which may be associated with a receiver to which the liquid from the heat 45 exchanger is fed.

Fig. 6 shows one particular means by 50 which an absorber plate, which may be a plate similar to that of Fig. 3 or Figs. 4 and 5, may be mounted to permit its angle to be varied provided flexible refrigerant connections be used.

This figure shows a frame 50 having a pair of outwardly extending apertured bars 51, the apertures 52 of which are spaced and the bars are pivoted around pivot 53 55 which bars are adapted to associate with side frame members 54 between which the absorber plate 10 or 45 is located. At its upper end, the absorber plate is provided with a hinge pin 55 and on releasing bolts 56 from each side of the side frame mem-

bers 54 so this member and the perforated bar 51 can be caused to take up one of a number of alternative positions which may provide a degree of movement shown by the arrow heads which can be a total movement of 40°. As an alternative a screw adjustment may be preferred in practice. As mentioned earlier, we find that, generally, such movement is not required but in some areas it could be useful to vary the effectiveness of the evaporator, particularly when it is radiating as a condenser during hot months.

Where the plate is moveable the inlet and outlet refrigerant lines are preferably flexible.

Schematically shown across the top of the absorber 10 or 45, there is a transverse member 57 which may serve one of two purposes. In either case it is designed to be used to cool the plate during the warm months when the plate is being used as a condenser and, in one form, comprises a slotted tube through which air may be passed to cool the surface of the plate and in another form may be a perforated water pipe or the like whereby water can be sprayed on the surface of the plate and, by evaporation, help cool its surface. Neither of these arrangements are shown fully as their operation should be completely understood from this description.

Figure 7 is a schematic view of a domestic hot water supply incorporating the concept of the invention. In this case there is an absorber plate 65 which may be located in 100 the same way as the absorber 10 of Fig 1 and which has located therebeneath a storage tank 66 which has therein a condenser 67 which may simply be a length of coiled copper tubing and from which the 105 liquified refrigerant can pass to a receiver 68 which passes, by way of a thermostatically controlled valve 69, to the absorber plate 65. The outlet of the absorber plate 65 passes to a compressor, shown diagrammatically at 70, and from the compressor to the condenser 67. The tank 66 is fed from a town water supply 71 by means of a header tank 72. Associated with the main tank there 110 may be an auxilliary heater 73 which can be thermostatically operated when the temperature of the water in the tank drops below a pre-determined minimum. Alternatively, this can operate on a night rate electricity supply and the solar energy can maintain the temperature during the day thus restricting the amount of night rate power required.

This arrangement can be designed to be totally enclosed within a ceiling space and thus does not encroach on any of the living 115 area of the house.

The operation of the heat pump of the present invention will now be described in reference to the flow sheets of Figs. 8 and 9, Fig. 8 being the heating cycle and Fig. 9 120 125 130

being the cooling cycle. When the compressor is started the liquid refrigerant, normally a Freon (Registered Trade Mark), commences to move from receiver 41 through check valves 75 and 76 and to the thermostatically controlled expansion valve 34.

From this valve, initially, a small quantity of the liquid is permitted to enter the tube or tubes on the plate 10 or 45, the drawing being labelled as plate 10. On movement along the tubes the liquid Freon vaporises and finally leaves the plate along line 16 which has associated therewith a sensor bulb 77 which is connected through line 78 to the thermostatically controlled expansion valve 34 so that the position of the valve can be controlled by the temperature of the out-flowing vapour.

Thermostatically controlled valves can be obtained in a wide range of temperatures and the valve used should, of course, be selected depending upon the particular application with which the heat pump is to be used.

Although not illustrated an alternative arrangement is to provide two or more thermostatic expansion valves each having a superheat setting higher than the previous valve of the series so that as the load increases so a further valve or further valves open.

The line 16 passes through a one way valve 79 and enters the solenoid operated four way valve 15 which is in the configuration indicated and the hot vapour passes to the compressor 14 by means of line 17 and the compressed hot vapor passes along line 18, again through the four way valve 15 along lines 19 and 20 through one way valve 80 to the heat exchanger 21. In the heat exchanger the hot vapour gives up its energy to water which passes from the storage 81, which may be a hot water storage tank, which may be for domestic or commercial hot water or to supply a heat source for a water/air heat exchanger, a storage tank having an internal coil to enable space water heating or may be a swimming pool or in the filter circuit of the swimming pool. As illustrated there is a pump 26 which pumps water along line 27 to the heat exchanger 21 through which it passes until it leaves the heat exchanger along line 28 and returns to the storage. If required, instead of a pump system being used a thermosyphon system could equally well be used or, as described with reference to Fig. 7, the heat exchanger coil may, in fact, be located within the storage 81 if the system is to be used only for restricted domestic, industrial or commercial water heating. The output of the heat exchanger, which is now liquid passes through the one way valve 82 through the refrigerant heat exchanger 40 and returns

along line 23 through one way valve 83 to the receiver 41.

The plate 10 may be provided with a solar sensor 84 which is connected to a controller of the compressor motor 85 so that the compressor speed or displacement can be varied. This arrangement may be such that where the incident solar radiation on the absorber plate is high the compressor speed can be increased and thus the throughput of the system can increase. This means that the total amount of heat being passed to the heat exchanger is greater than would otherwise be the case but the COP is, in fact, reduced. This solar sensor 84 can also operate when the incident solar energy is low to slow or stop the compressor and, if necessary, to initiate actions to cause a secondary heating system, such as a night rate electric heating system, or an auxilliary direct system 95 to be used.

The cooling cycle as shown in Fig. 9 is effectively the reverse of the cycle shown in Fig. 8.

In this case the four way valve 15 operates in the opposite sense and the vapour going to the compressor comes from the heat exchanger 21 by way of the refrigerant heat exchanger 40 to the valve 15 and thus the vapour is passed by line 17; the vapour is then transmitted by line 18 back to the four way valve 15 and from there by lines 16 and 94 through one way valve 85 to the inlet of the plate 10. During its passage through the plate the vapour liquefies and the liquid is passed by line 86 through one way valves 87 and 88 to the receiver. The liquid from the receiver passes through one way valve 89 to the refrigerant heat exchanger 40, from this through a one way valve 90 to a thermostatic expansion valve 91 by line 22 to the heat exchanger. In this case the water or other material from the storage 81 gives up its heat to the vapour in the heat exchanger and is therefore cooled.

Solar sensor 84 may also be used to initiate cooling on plate, as may a head pressure detector.

The COP of the heat pump when used in the cooling mode is not as great as in the heating mode and this can be overcome to a certain extent in one of two ways. In the first of these, as indicated by Fig. 6, the plate may be moveable so that it presents a less effective aspect for absorption and thus allows a better use of radiation to the atmosphere for condensation of the refrigerant. The second method which is shown diagrammatically in Fig. 6 is the provision of either an air blast or passage of water from the top of the plate, at 57, so that the plate is artificially helped to dissipate excess heat.

The arrangement of Fig. 10 shows a water to air transfer which can be used to either

70

75

80

85

90

95

100

105

110

115

120

125

130

heat or cool air without passage of heat transfer medium through the storage tank i.e. rapid heating or cooling.

Under normal circumstances, the source 5 of heat or cold, tank 81 is connected to an air heater/cooler 100 through valve 101, pump 102, auxiliary heater 103 and valve 104 and the return flow is along line 105 and through valve 106. When the cooling 10 cycle is in operation and it is required to obtain rapid cooling, that is not to await cooling of the whole of the water in tank 81 the inlet and outlet valves to the tank, valves 107 and 108, are closed as are the 15 valves 101, 106 and 104. Valves 109, 110 and 111 are opened and thus the tank is bypassed. Water flowing from the heat exchanger passes through valve 109 directly to the heater/cooler 100 and any reverse 20 flow is prevented as valve 104 is closed. The cool water then passes directly through the heater/cooler and a fan or the like associated therewith blows air over the fins of the heater/cooler thus lowering the 25 temperature of the air. The warm water then passes along path 105 through valve 110 to pump 102, which is the circulating pump and then returns along line 112 through valve 111 and into the heat 30 exchanger.

When normal conditions are required, it is only necessary to reclose valves 109, 110 and 111 and open valves 101, 104, 106, 107 and 108.

35 We have found that the COP of the heat pump of the invention is very good, as compared to other solar systems of which we are aware and this is particularly true where relatively low temperature heating is 40 required for the load condition.

For example, in Melbourne, when a heat pump of the invention was used with a swimming pool, or to develop the order of temperatures required in a swimming pool, 45 we obtained a COP of between 9 and 13 in the months preceding and after the normal swimming season. This indicates that in Melbourne's climatic conditions, the energy cost of pool heating using the heat pump 50 would be approximately 10% of the energy cost of using electricity directly. Even where low cost alternative fuels are available for pool heating, this invention will generally be very competitive.

55 For home heating the COP, during the winter months is of the order of 4 to 6 and again heat pump energy costs are relatively inexpensive when compared to conventional system energy costs.

60 For providing domestic hot water, the COP is of the order of 2.4 to 2.8 and the heat pump would be economic in areas having standard electricity rates, with no reduced rates for night water heating.

65 The above figures indicate that the inven-

tion is particularly suitable for applications where the end use temperature requirements are low.

It will be appreciated that the cost of the absorber of the invention may be relatively inexpensive compared with conventional solar receiving absorbers as there is no need for insulation, covering or selective surfaces. Many of the other components are readily available commercially.

WHAT WE CLAIM IS:—

1. A solar boosted heat pump for providing heating for domestic and other purposes, comprising a thermally uninsulated or partly thermally insulated heat conducting plate which in operation is exposed to the sun and atmosphere, said plate having at least one fluid carrying tube in heat transfer relationship with the plate, said tube(s) forming part of a closed refrigerant flow system and having an inlet and an outlet, said plate operating as a solar absorber, said refrigerant flow system including a compressor and a heat exchanger in heat exchange relationship with a heat transfer medium and including connections between the outlet of the plate and the inlet of the compressor and between the outlet of the compressor and the heat exchanger, said heat exchanger also being connected to the inlet of the plate, valve means controlling refrigerant flow through the plate, said valve means being controlled by the temperature of the refrigerant leaving the plate through its outlet.

2. A solar boosted heat pump for providing cooling for domestic and other purposes, comprising a thermally uninsulated or partly thermally insulated heat conducting plate which in operation is exposed to the atmosphere, said plate having at least one fluid carrying tube in heat transfer relationship with the plate, said tube(s) forming part of a closed refrigerant flow system and having an inlet and an outlet, said plate operating as a radiator, said refrigerant flow system including a compressor and a heat exchanger in heat exchange relationship with a heat transfer medium, and including connections between the outlet of the compressor and the inlet of the plate and between the outlet of the heat exchanger and the inlet of the compressor, the outlet from the plate being in turn connected to the inlet of the heat exchanger through valve means controlled by the temperature of the refrigerant leaving the heat exchanger.

3. A solar boosted heat pump for providing heating or cooling for domestic and other purposes, comprising a thermally uninsulated or partly thermally insulated heat conducting plate which in operation is exposed to the sun and atmosphere, said plate having at least one fluid carrying tube

in heat transfer relationship with the plate, said tube(s) forming part of a closed refrigerant flow system and having an inlet and an outlet, said plate operating as a solar absorber when the pump is in its heating mode and as a radiator when the pump is in its cooling mode, said refrigerant flow system also including a compressor and a heat exchanger in heat exchange relationship with a heat transfer medium, valve means in said refrigerant flow system operable when the pump is in its heating mode to connect the outlet of the plate to the inlet of the compressor and between the outlet of the compressor to the heat exchanger, said heat exchanger being connected to the inlet of the plate, valve means at the plate inlet to control refrigerant flow through the plate, said valve means being controlled by the temperature of the refrigerant leaving the plate through its outlet, said valve means in the refrigerant flow system being operable when the pump is in its cooling mode to connect the outlet of the compressor with the inlet of the plate and the outlet of the heat exchanger with the inlet of the compressor, the refrigerant from the plate outlet being directed to the inlet of the heat exchanger through valve means controlled by the temperature of the refrigerant leaving the heat exchanger.

4. A heat pump as claimed in claim 1 wherein said valve means in said refrigerant flow system comprises a four-way valve operable to convert operation of the heat pump from its heating mode to its cooling mode or vice versa.

5. A heat pump as claimed in any one of the preceding claims wherein the plate is thermally insulated only at its rear surface.

6. A heat pump as claimed in any one of the preceding claims wherein the plate is a metallic sheet having at least one continuous tube in heat exchange relationship therewith.

7. A heat pump as claimed in claim 4 wherein there are a pair of tubes in parallel relationship.

8. A heat pump as claimed in any one of claims 1 to 5 wherein the plate comprises two connected members having a tube formed by localized distortion of at least one of the two members.

9. A heat pump as claimed in any one of claims 6 to 8 wherein the tubes are located in substantially horizontal rows extending across the width of the plate and inter-connected at each end.

10. A heat pump as claimed in any one of claims 6 to 9 wherein the surface of the plate is matte black.

11. A heat pump as claimed in claim 1, or in any one of claims 3 to 10 when the heat pump is operating in its heating mode, wherein the plate inlet valve is a thermo-

statically controlled valve, the superheat temperature of operation of which is selected dependent on the application, the temperature of the refrigerant being sensed by a bulb at the outlet of the plate.

12. A heat pump as claimed in claim 2, or in any one of claims 3 to 10 when the heat pump is operating in its cooling mode, wherein the valve means associated with the inlet of the heat exchanger is a thermostatically controlled valve, the control being at the outlet of the heat exchanger.

13. A heat pump as claimed in any one of the preceding claims wherein the size of the absorber plate is closely matched to the displacement rate of the compressor.

14. A heat pump as claimed in any one of the preceding claims wherein the plate operates in flooded mode and has a reservoir of liquid refrigerant which is pumped through the tube(s) and wherein liquid from the outlet of the tube(s) is returned to the reservoir, the vapour being passed to the compressor and the liquid recycled.

15. A heat pump as claimed in claim 14 wherein means are provided to replenish the reservoir when its level drops.

16. A heat pump as claimed in claim 14 wherein there is a refrigerant liquid inlet into the reservoir and a level controlled valve to permit a predetermined level to be maintained.

17. A heat pump as claimed in any one of the preceding claims wherein the plate includes sensing means whereby the speed and/or displacement of the compressor can be varied depending on the incident light or energy on the plate.

18. A heat pump as claimed in claim 17 when appended to claim 1 or to any one of claims 3 to 16 when the heat pump is operating in its heating mode, wherein there is an auxiliary heating system associated with a load in connection with the heat exchanger and wherein this auxiliary heating system is activated when the sensing means reaches a predetermined parameter.

19. A heat pump as claimed in any one of the preceding claims wherein the angle of inclination of the plate can be adjusted.

20. A heat pump as claimed in any one of the preceding claims wherein, when rapid heating or cooling is required, the heat transfer medium by-passes any heat sink and is fed directly to a radiator or other user of energy.

21. A heat pump as claimed in claim 1 or any one of claims 3 to 20 when operating in the heating mode, wherein the heat exchanger is a condenser and is located within a water tank or the like.

22. A heat pump as claimed in claim 2 or any one of claims 3 to 20 when operating in the cooling mode, wherein the plate has means to assist cooling thereof.

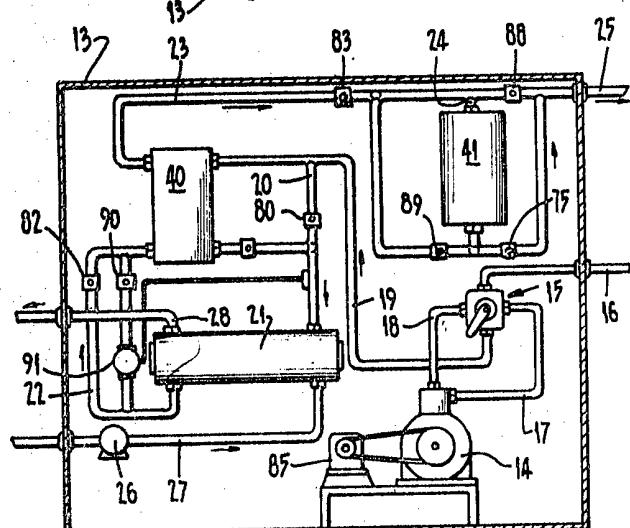
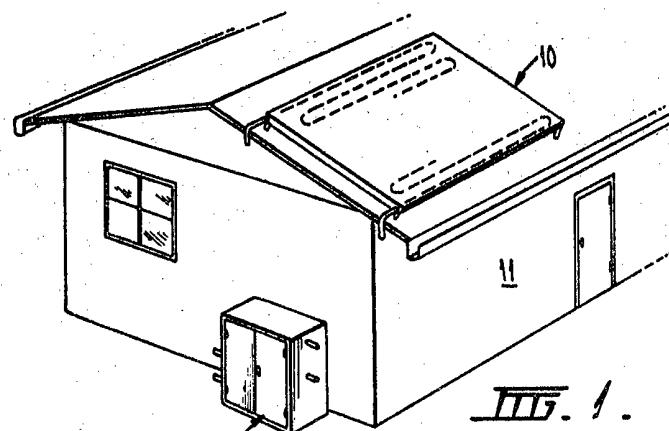
23. A heat pump as claimed in claim 22 wherein the cooling means is a slot at the top of the plate through which air can blow onto the plate.

5 24. A heat pump as claimed in claim 22 or 23 wherein the cooling means includes a perforated water pipe at the top of the plate through which water can be directed onto the plate.

10 25. A solar boosted heat pump substan-

tially as hereinbefore described with reference to Figures 1 to 3 of the accompanying drawings or as modified by Figures 4 or 5 or 6 or 7 or 8 or 9 or 10 of the accompanying drawings. 15

WITHERS & ROGERS,
Chartered Patent Agents,
4 Dyers Buildings, Holborn,
London EC1N 2JT.
Agents for the Applicant.



Printed for Her Majesty's Stationery Office by Burgess & Son (Abingdon), Ltd.—1980.
Published at The Patent Office, 25 Southampton Buildings, London, WC2A 1AY
from which copies may be obtained.

1581664

COMPLETE SPECIFICATION

5 SHEETS

This drawing is a reproduction of
the Original on a reduced scale
Sheet 1

III. 2.

1581664 COMPLETE SPECIFICATION
5 SHEETS This drawing is a reproduction of
the Original on a reduced scale
Sheet 2

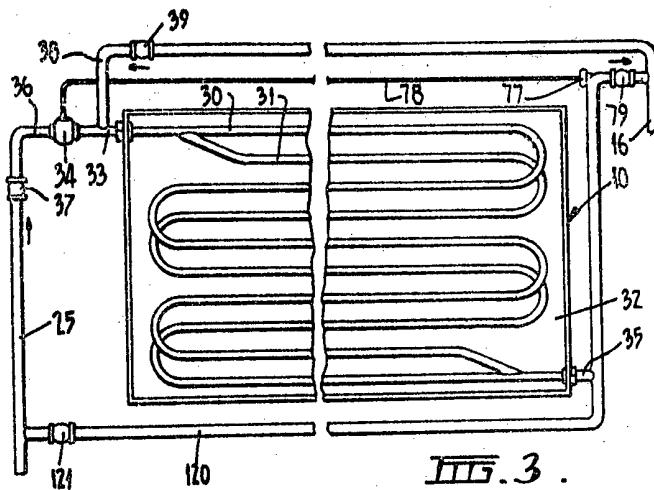


FIG. 3.

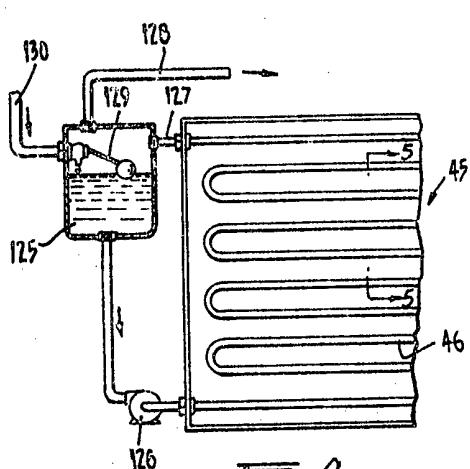
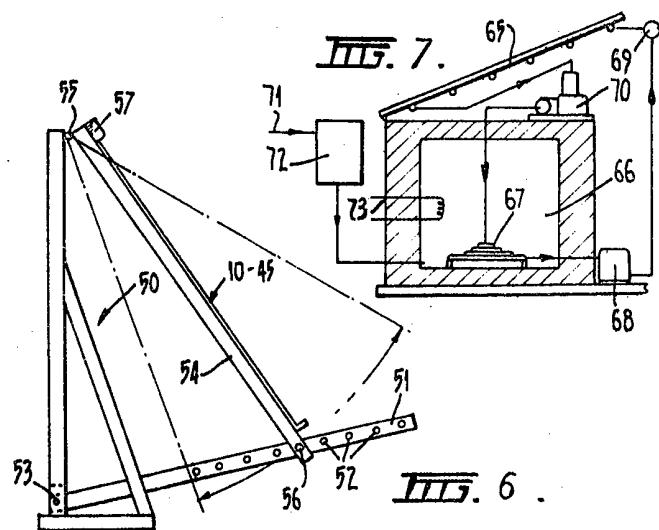
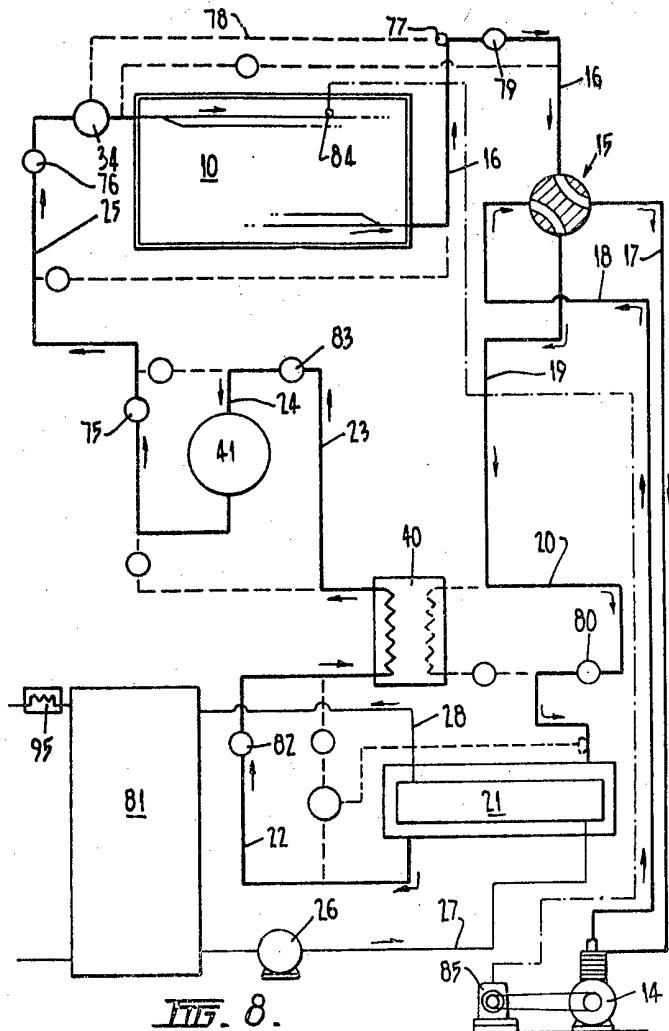


FIG. 4.

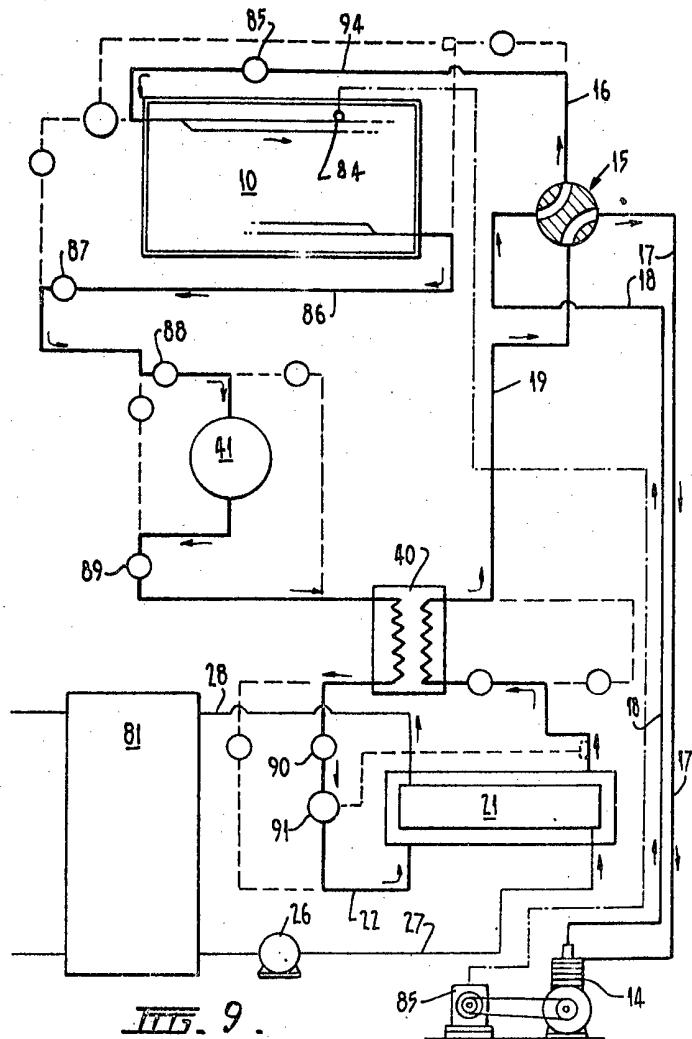

FIG. 5.


1581664

COMPLETE SPECIFICATION

5 SHEETS

This drawing is a reproduction of
the Original on a reduced scale
Sheet 3



1581664

COMPLETE SPECIFICATION

5 SHEETS

This drawing is a reproduction of
the Original on a reduced scale
Sheet 5

