wo 2012/0692776 A 1[I NI NPF 0 0O 0.0 0O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/069276 Al

(51

eay)

(22)

(25)
(26)
(30)

1

1

(72)
(73)

31 May 2012 (31.05.2012) WIPOIPCT
International Patent Classification:
GO6F 9/455 (2006.01)
International Application Number:
PCT/EP2011/068987

International Filing Date:
28 October 2011 (28.10.2011)

Filing Language: English
Publication Language: English
Priority Data:

12/953,483 24 November 2010 (24.11.2010) US

Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; P.O. Box 41, North Harbour, Ports-
mouth, Hampshire PO6 3AU (GB).

Inventors; and

Inventors/Applicants (for US only): TRAEGER, Avishay
[IL/IL]; IBM Israel, Haifa University Campus, Mount Car-
mel, 31905 Haifa (IL). BEN YEHUDA, Shmuel [IL/IL];
IBM Israel, Haifa University Campus, Mount Carmel,
31905 Haifa (IL). YASSOUR, Ben-Ami [IL/IL]; IBM Is-

(74

(8D

(84)

rael, c/o Intellectual Property Law, Haifa University Cam-
pus, Mount Carmel, 31905 Haifa (IL). FACTOR, Michael
[IL/IL]; IBM Israel, Matam Advanced Technology Centre,
31905 Haifa (IL). BOROVIK, Eran [IL/IL]; IBM Israel,
c¢/o Intellectual Property Law Dept, Haifa University Cam-
pus, Mount Carmel, 31905 Haifa (IL). MACHULSKY,
Zorik [IL/IL]; IBM Israel, Haifa University Campus,
Mount Carmel, 31905 Haifa (IL). METH, Kalman
[IL/IL]; IBM Israel, Haifa University Campus, Mount Car-
mel, 31905 Haifa (IL).

Agent: WILLIAMS, Julian, David; IBM United King-
dom Limited, Intellectual Property Law, Hursley Park,
Winchester, Hampshire SO21 2JN (GB).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: DEVICE EMULATION IN A VIRTUALIZED COMPUTING ENVIRONMENT

Hypervisor 100 7y

VM 105

VM user space application 107

VM operating system 109

Device Driver 120 I
Emulated Device I4OI

Memony 160

i Sl

Physical Device 180

FIG. 1

(57) Abstract: Systems and methods for op-
timizing operation of a physical device in a
virtualized computing environment are
provided. The method comprises monitoring
instructions issued by an application run-
ning on a virtual machine's (VM) operating
system, wherein the VM is hosted by a hy-
pervisor providing access to a physical
device connected to a virtualized computing
environment; wherein a device driver sup-
ported by the operating system issues one or
more instructions to an emulated device
supported by the hypervisor to control the
physical device according to the issued in-
structions, wherein the emulated device's re-
gisters are implemented in memory of the
hypervisor and the instructions issued by the
device driver are stored in said registers,
wherein the hypervisor handles the instruc-
tions, in response to learning that the in-
structions are stored in said registers.

wO 2012/069276 A1 W00V 0RO

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, .

DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, Yublished:

LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, — with international search report (Art. 21(3))

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987

DEVICE EMULATION IN A VIRTUALIZED COMPUTING ENVIRONMENT

TECHNICAL FIELD
The present invention relates generally to virtual machines and, more particularly, to a
system and method for optimizing data operations for a device emulated in a virtualized

environment.

BACKGROUND
A virtual machine (VM) is a software implementation of a machine (i.e., a computer) that
executes programs like a physical machine would. Generally, access to resources in
virtualized environments is associated with a high level of overhead because the VM
typically cannot directly communicate with a virtualized resource. A hypervisor that hosts
the VM generally has the burden of emulating the needed interface or driver on behalf of the
VM. In other words, the hypervisor presents the VM with a virtual platform and monitors
the execution of the VM and how the VM accesses the available hardware resources and

devices.

For example, for a VM to read or write data to a virtualized storage device, control of the
read or write operations will have to be transferred between the VM and the hypervisor. In a
purely emulated case, the VM has no knowledge that the emulated device is not a real
physical device, because the hypervisor emulates the interface in software. A high overhead
is associated with such emulation. The operational overhead is even more costly, if there is
a need for transferring control intermittently between the VM and the hypervisor when

accessing a device.

SUMMARY
For purposes of summarizing, certain aspects, advantages, and novel features have been
described herein. It is to be understood that not all such advantages may be achieved in
accordance with any one particular embodiment. Thus, the disclosed subject matter may be
embodied or carried out in a manner that achieves or optimizes one advantage or group of

advantages without achieving all advantages as may be taught or suggested herein.

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987

Systems and methods for optimizing operation of a physical device in a virtualized
computing environment are provided. The method comprises monitoring instructions issued
by an application running on a virtual machine’s (VM) operating system, wherein the VM is
hosted by a hypervisor providing access to a physical device connected to a virtualized
computing environment; wherein a device driver supported by the operating system issues
one or more instructions to an emulated device supported by the hypervisor to control the
physical device according to the issued instructions, wherein the emulated device’s registers
are implemented in memory of the hypervisor and the instructions issued by the device
driver are stored in said registers, wherein the hypervisor handles the instructions, in

response to learning that the instructions are stored in said registers.

In accordance with one or more embodiments, a system comprising one or more logic units
is provided. The one or more logic units are configured to perform the functions and
operations associated with the above-disclosed methods. In yet another embodiment, a
computer program product comprising a computer readable storage medium having a
computer readable program is provided. The computer readable program when executed on
a computer causes the computer to perform the functions and operations associated with the

above-disclosed methods.

One or more of the above-disclosed embodiments in addition to certain alternatives are
provided in further detail below with reference to the attached figures. The disclosed subject

matter is not, however, limited to any particular embodiment disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed embodiments may be better understood by referring to the figures in the

attached drawings, as provided below.

FIGS. 1 and 2 illustrate exemplary computing environments in accordance with one or more
embodiments, wherein a VM hosted by a hypervisor is implemented to communicate with a

device accessible via the hypervisor.

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987

FIGS. 3A and 3B are exemplary flow diagrams of methods for handling instructions to

control the device illustrated FIGS. 1 and 2 in accordance with one embodiment.

FIGS. 4A and 4B are block diagrams of hardware and software environments in which the

disclosed systems and methods may operate, in accordance with one or more embodiments.

Features, elements, and aspects that are referenced by the same numerals in different figures
represent the same, equivalent, or similar features, elements, or aspects, in accordance with

one or more embodiments.

DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
In the following, numerous specific details are set forth to provide a thorough description of
various embodiments. Certain embodiments may be practiced without these specific details
or with some variations in detail. In some instances, certain features are described in less
detail so as not to obscure other aspects. The level of detail associated with each of the
elements or features should not be construed to qualify the novelty or importance of one

feature over the others.

Referring to FIG. 1, in accordance with one embodiment, a VM 105 may be hosted by a
hypervisor 100, in a computing environment. The hypervisor 100 may be implemented to
support the emulation of a physical device (e.g., a disk storage device) to allow the VM 105
communicate with a resource (e.g., physical device 180). Emulated device 140 acts as an
interface between the device driver 120 and physical device 180. For example, emulated
device 140 may support a standard protocol for interfacing with device driver 120, where the
protocol defines the manner of use of the device registers and the respective I/O

functionality.

Emulated device 140 may be implemented in software or firmware to emulate some physical
device so that a VM may communicate with the physical device 180 without any knowledge
of the exact structure or nature of the particular interface requirements of physical device
180. Depending on implementation, the overhead associated with the emulation and the

need for transfer of control between VM 105 and the hypervisor 100 may be reduced by way

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987

of using a para-virtualized device to act as an interface between the device driver 120 and
physical device 180. In one embodiment, para-virtualization of a device may be
accomplished by using a virtualized component (e.g., a custom driver) to enhance the
system’s performance by, for example, batching multiple instructions or I/O requests and

using shared memory to avoid multiple data copies.

As shown in FIG. 1, a computer-implemented application such as a software code (e.g., user
space application 107) may be running on a VM operating system 109 executed on VM 105.
The VM operating system 109 may support a device driver 120 and the hypervisor 100 may
support an emulated device 140 capable of communicating with the device driver 120 and
physical device 180. A device assignment option may be utilized, in one implementation, to
allow the VM 105 access physical device 180. A device assignment grants the VM 105,
desirably, full access to physical device 180 so that the VM 105 may send I/O requests
directly to physical device 180, where interrupts may be routed through the hypervisor 100.
Device assignment option may not be desirable if physical device 180 is intended for sharing
among several VMs and the hypervisor and does not support VM migration due to the VM’s

direct interface assignment to a particular device.

In one implementation, the emulated device 140 has registers that are virtually implemented
in the hypervisor 105 memory 160. That is, a portion of hypervisor 105 memory 160 may be
shared or reserved for the emulated device 140, wherein any instructions issued by the
device driver 120 are written to said shared memory area. In this manner, the device driver
120 and the emulated device 140 may be configured to allow hypervisor 100 to monitor or

control corresponding operations on physical device 180.

In one embodiment, an instruction written to the emulated device 140 registers (i.e., shared
hypervisor 100 memory 160) may be controlled by the VM operating system 109, or
monitored by the hypervisor 100 or the emulated device 140. It is noteworthy that the
emulated device 160 registers may be fully accessible from the hypervisor 100 as the
registers are implemented in the hypervisor 105 memory 160. In accordance with one
embodiment, device driver 120 is unaware that it is communicating with emulated device

140 and not physical device 180 when issuing the respective instructions.

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987

As provided in further detail below, the emulated device 140 or the hypervisor 100 may
monitor the shared memory 160 to determine when an instruction is sent from device driver
120 to emulated device 140. Upon detecting such instruction, the hypervisor 100 is engaged
to handle the instruction by emulating the proper behavior for the physical device 180. In
this manner, the overall operational performance of the physical device 180 is improved as
the number of control switches between the VM 105 and the hypervisor 100 is minimized.
In one embodiment, the monitoring of the shared memory 160 takes place by way executing
a separate thread of execution from the VM 105 to allow the emulated device 140 or the
hypervisor 100 to determine if instructions are written to the memory 160, while the VM 105

continues to run.

As such, in the above exemplary scenario, when the device driver 120 writes to a device
register implemented in shared memory 160, the VM 105 continues to run, while in a
separate thread of execution, the emulated device 140 or the hypervisor 100 continues to
monitor data written to the device registers in shared memory 160. In response to noticing a
change in the register value (i.e., resulting from a write operation from the device driver 120)
the emulated device 140 or the hypervisor 100 performs the task to handle the instruction
without the VM 105 having to exit and explicitly notify the hypervisor of changes in the

register value (i.e., cause a switch in CPU control from the VM to the hypervisor).

Referring to FIGS. 2 and 3A, in one embodiment, VM user space application 107 may issue
a system call. The VM’s operating system 109 monitors the system calls for input/output
(I/0) operations or other issued instructions and determines whether an instruction was sent
from the device driver 120 to emulated device 140 (S310). For example, the device driver
120 in VM 105 may send and instruction to the emulated device 140 using a programmed

input/output (PI0) or a memory-mapped I/O (MMIQO) method.

PIO and MMIO are methods of transferring data and performing I/O between a CPU and one
or more physical devices 180 (e.g., network adapters, storage devices, etc.). For example, a
PIO may happen when VM user space application 107 issues CPU instructions that access
I/O address space to perform data transfers to or from physical device 180. MMIO may use

an address interface (e.g., a bus) to address both memory 160 and physical device 180. The

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987

CPU instructions used to access memory 160 may be also used for accessing physical device

180.

In one embodiment, areas of the CPU's addressable space may be reserved for I/O. The
reservation may be temporary or permanent, for example. Depending on implementation,
physical device 180 may monitor the CPU's address bus and respond to the CPU's access of
device-assigned address space, connecting the data bus to the physical device 180 hardware

register.

In the virtualized system illustrated in FIG. 2, the VM operating system 109 may detect that
a CPU instruction is issued from the device driver 120 to the emulated device 140 (S320). If
so, the VM operating system 109 generates a signal (e.g., triggers a trap) to notify the

emulated device 140 of the arrival of the instruction (S330).

It is noteworthy that since the VM user space application 107 is executed within the context
of the VM 105, the VM 105 is responsible for handling the respective CPU instructions. In
one embodiment, the hypervisor 100 causes control of the CPU to be switched from the VM
105 to the hypervisor 100 (S340), in response to the above-mentioned trap being triggered.
As such, depending on implementation, the emulated device 140 or hypervisor 100 may

directly handle the instruction (S350).

Referring to FIGS. 2 and 3B, in an alternative implementation, the emulated device 140 or
hypervisor 100 actively monitors (e.g., polls) the emulated device 140 registers (i.e., areas of
memory 160 shared with the hypervisor) for instructions issued by the device driver 120 for
the emulated device 140 (S410). If the registers are written to (S420), then the emulated
device 140 or hypervisor 100 handles the instruction (S430).

In different embodiments, the claimed subject matter may be implemented as a combination
of both hardware and software elements, or alternatively either entirely in the form of
hardware or entirely in the form of software. Further, computing systems and program
software disclosed herein may comprise a controlled computing environment that may be

presented in terms of hardware components or logic code executed to perform methods and

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987

processes that achieve the results contemplated herein. Said methods and processes, when
performed by a general purpose computing system or machine, convert the general purpose

machine to a specific purpose machine.

Referring to FIGS. 4A and 4B, a computing system environment in accordance with an
exemplary embodiment may be composed of a hardware environment 1110 and a software
environment 1120. The hardware environment 1110 may comprise logic units, circuits or
other machinery and equipments that provide an execution environment for the components
of software environment 1120. In turn, the software environment 1120 may provide the
execution instructions, including the underlying operational settings and configurations, for

the various components of hardware environment 1110.

Referring to FIG. 4A, the application software and logic code disclosed herein may be
implemented in the form of computer readable code executed over one or more computing
systems represented by the exemplary hardware environment 1110. As illustrated, hardware
environment 110 may comprise a processor 1101 coupled to one or more storage elements
by way of a system bus 1100. The storage elements, for example, may comprise local
memory 1102, storage media 1106, cache memory 1104 or other computer-usable or
computer readable media. Within the context of this disclosure, a computer usable or
computer readable storage medium may include any recordable article that may be utilized

to contain, store, communicate, propagate or transport program code.

A computer readable storage medium may be an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor medium, system, apparatus or device. The
computer readable storage medium may also be implemented in a propagation medium,
without limitation, to the extent that such implementation is deemed statutory subject matter.
Examples of a computer readable storage medium may include a semiconductor or solid-
state memory, magnetic tape, a removable computer diskette, a random access memory
(RAM), a read-only memory (ROM), a rigid magnetic disk, an optical disk, or a carrier
wave, where appropriate. Current examples of optical disks include compact disk, read only
memory (CD-ROM), compact disk read/write (CD-R/W), digital video disk (DVD), high
definition video disk (HD-DVD) or Blue-ray™ disk.

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987

In one embodiment, processor 1101 loads executable code from storage media 1106 to local
memory 1102, Cache memory 1104 optimizes processing time by providing temporary
storage that helps reduce the number of times code is loaded for execution. One or more
user interface devices 1105 (e.g., keyboard, pointing device, etc.) and a display screen 1107
may be coupled to the other elements in the hardware environment 1110 either directly or
through an intervening I/O controller 1103, for example. A communication interface unit
1108, such as a network adapter, may be provided to enable the hardware environment 1110
to communicate with local or remotely located computing systems, printers and storage
devices via intervening private or public networks (e.g., the Internet). Wired or wireless

modems and Ethernet cards are a few of the exemplary types of network adapters.

It is noteworthy that hardware environment 1110, in certain implementations, may not
include some or all the above components, or may comprise additional components to
provide supplemental functionality or utility. Depending on the contemplated use and
configuration, hardware environment 1110 may be a desktop or a laptop computer, or other
computing device optionally embodied in an embedded system such as a set-top box, a
personal digital assistant (PDA), a personal media player, a mobile communication unit (e.g.,
a wireless phone), or other similar hardware platforms that have information processing or

data storage capabilities.

In some embodiments, communication interface 1108 acts as a data communication port to
provide means of communication with one or more computing systems by sending and
receiving digital, electrical, electromagnetic or optical signals that carry analog or digital
data streams representing various types of information, including program code. The
communication may be established by way of a local or a remote network, or alternatively
by way of transmission over the air or other medium, including without limitation

propagation over a carrier wave.

As provided here, the disclosed software elements that are executed on the illustrated
hardware elements are defined according to logical or functional relationships that are
exemplary in nature. It should be noted, however, that the respective methods that are

implemented by way of said exemplary software elements may be also encoded in said

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987

hardware elements by way of configured and programmed processors, application specific
integrated circuits (ASICs), field programmable gate arrays (FPGAs) and digital signal

processors (DSPs), for example.

Referring to FIG. 4B, software environment 1120 may be generally divided into two classes
comprising system software 1121 and application software 1122 as executed on one or more
hardware environments 1110. In one embodiment, the methods and processes disclosed here
may be implemented as system software 1121, application software 1122, or a combination
thereof. System software 1121 may comprise control programs, such as an operating system
(OS) or an information management system, that instruct one or more processors 1101 (e.g.,
microcontrollers) in the hardware environment 1110 on how to function and process
information. Application software 1122 may comprise but is not limited to program code,
data structures, firmware, resident software, microcode or any other form of information or

routine that may be read, analyzed or executed by a processor 1101.

In other words, application software 1122 may be implemented as program code embedded
in a computer program product in form of a computer-usable or computer readable storage
medium that provides program code for use by, or in connection with, a computer or any
instruction execution system. Moreover, application software 1122 may comprise one or
more computer programs that are executed on top of system software 1121 after being
loaded from storage media 1106 into local memory 1102. In a client-server architecture,
application software 1122 may comprise client software and server software. For example,
in one embodiment, client software may be executed on a client computing system that is

distinct and separable from a server computing system on which server software is executed.

Software environment 1120 may also comprise browser software 1126 for accessing data
available over local or remote computing networks. Further, software environment 1120
may comprise a user interface 1124 (e.g., a graphical user interface (GUI)) for receiving user
commands and data. It is worthy to repeat that the hardware and software architectures and
environments described above are for purposes of example. As such, one or more
embodiments may be implemented over any type of system architecture, functional or

logical platform or processing environment.

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987
10

It should also be understood that the logic code, programs, modules, processes, methods and
the order in which the respective processes of each method are performed are purely
exemplary. Depending on implementation, the processes or any underlying sub-processes
and methods may be performed in any order or concurrently, unless indicated otherwise in
the present disclosure. Further, unless stated otherwise with specificity, the definition of
logic code within the context of this disclosure is not related or limited to any particular
programming language, and may comprise one or more modules that may be executed on
one or more processors in distributed, non-distributed, single or multiprocessing

environments.

As will be appreciated by one skilled in the art, a software embodiment may include
firmware, resident software, micro-code, etc. Certain components including software or
hardware or combining software and hardware aspects may generally be referred to herein as

2%

a “circuit,” “module” or “system.” Furthermore, the subject matter disclosed may be
implemented as a computer program product embodied in one or more computer readable
storage medium(s) having computer readable program code embodied thereon. Any
combination of one or more computer readable storage medium(s) may be utilized. The
computer readable storage medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable storage medium may be, for

example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or

semiconductor system, apparatus, or device, or any suitable combination of the foregoing.

In the context of this document, a computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in connection with an instruction
execution system, apparatus, or device. A computer readable signal medium may include a
propagated data signal with computer readable program code embodied therein, for example,
in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety
of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination
thereof. A computer readable signal medium may be any computer readable medium that is
not a computer readable storage medium and that can communicate, propagate, or transport a
program for use by or in connection with an instruction execution system, apparatus, or

device.

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987
11

Program code embodied on a computer readable storage medium may be transmitted using
any appropriate medium, including but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing. Computer program code for carrying
out the disclosed operations may be written in any combination of one or more programming
languages, including an object oriented programming language such as Java, Smalltalk, C++
or the like and conventional procedural programming languages, such as the "C"

programming language or similar programming languages.

The program code may execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer through any type of network,
including a local area network (LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the Internet using an Internet Service

Provider).

Certain embodiments are disclosed with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer program products according to
embodiments. It will be understood that each block of the flowchart illustrations and/or
block diagrams, and combinations of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instructions. These computer program
instructions may be provided to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus to produce a machine, such that
the instructions, which execute via the processor of the computer or other programmable
data processing apparatus, create means for implementing the functions/acts specified in the

flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in a computer readable storage
medium that can direct a computer, other programmable data processing apparatus, or other
devices to function in a particular manner, such that the instructions stored in the computer
readable storage medium produce an article of manufacture including instructions which

implement the function/act specified in the flowchart and/or block diagram block or blocks.

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987
12

The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other devices to
produce a computer implemented process such that the instructions which execute on the
computer or other programmable apparatus provide processes for implementing the

functions/acts specified in the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate the architecture, functionality, and
operation of possible implementations of systems, methods and computer program products
according to various embodiments. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of code, which comprises one or
more executable instructions for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the functions noted in the block may

occur out of the order noted in the figures.

For example, two blocks shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in the reverse order, depending upon
the functionality involved. It will also be noted that each block of the block diagrams and/or
flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special purpose hardware and computer

instructions.

The claimed subject matter has been provided here with reference to one or more features or
embodiments. Those skilled in the art will recognize and appreciate that, despite of the
detailed nature of the exemplary embodiments provided here, changes and modifications
may be applied to said embodiments without limiting or departing from the generally
intended scope. These and various other adaptations and combinations of the embodiments
provided here are within the scope of the disclosed subject matter as defined by the claims

and their full set of equivalents.

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987
13

CLAIMS

1. A computer implemented method for optimizing operation of a physical device in a
virtualized computing environment, the method comprising:

monitoring instructions issued by an application running on a virtual machine’s (VM)
operating system, wherein the VM is hosted by a hypervisor providing access to a physical
device connected to a virtualized computing environment;

wherein a device driver supported by the operating system issues one or more
instructions to an emulated device supported by the hypervisor to control the physical device
according to the issued instructions,

wherein the emulated device’s registers are implemented in memory of the
hypervisor and the instructions issued by the device driver are stored in said registers,

wherein the hypervisor handles the instructions, in response to learning that the

instructions are stored in said registers.

2. The method of claim 1, wherein the operating system controls whether the issued

instructions are stored in said registers.

3. The method of claim 1, wherein the emulated device monitors whether the issued

instructions are stored in said registers.

4. The method of claim 1, wherein the hypervisor monitors whether the issued
instructions are stored in said registers and notifies the emulated device the instructions are

stored in said registers.

5. A computer implemented method of handling instructions for managing a physical
device in a virtualized computing environment, the method comprising:

monitoring whether an instruction is issued by a device driver to an emulated device,
wherein the device driver is running over a virtual machine (VM) operating system, and the

emulated device is running over a hypervisor, which host the VM

10

15

20

25

30

WO 2012/069276 PCT/EP2011/068987
14

triggering a trap to notify the emulated device that an instruction is issued by the
device driver, in response to determining that an instruction is written to the emulated
device’s register;

wherein the hypervisor switches control of CPU handling the instruction from the

VM to the hypervisor.

6. The method of claim 5, wherein the hypervisor handles the instruction.

7. The method of claim 5, wherein the emulated device handles the instruction.

8. The method of claim 5, wherein the VM operating system monitors whether an

instruction is issued by the device driver.

0. The method of claim 5, wherein the emulated device’s registers are implemented in

the hypervisor’s memory.

10. A computer implemented method of handling instructions for managing a physical
device in a virtualized computing environment, the method comprising:

monitoring whether an instruction issued by a device driver to an emulated device is
written to the emulated device’s registers, wherein the device driver is running over a virtual
machine (VM) operating system, and the emulated device is running over a hypervisor,
which hosts the VM,

handling the issued instruction.

11. The method of claim 10, wherein the emulated device’s registers are implemented in

the hypervisor’s memory.

12. The method of claim 10, wherein the hypervisor performs the monitoring.

13. The method of claim 10, wherein the emulated device performs the monitoring.

14. The method of claim 10, wherein the hypervisor handles the issued instruction.

10

15

20

WO 2012/069276 PCT/EP2011/068987

15
15. The method of claim 10, wherein the emulated device handles the issued instruction.
16. A computer-implemented system for optimizing operation of a physical device in a

virtualized computing environment, the system comprising:

a logic unit for monitoring instructions issued by an application running on a virtual
machine’s (VM) operating system, wherein the VM is hosted by a hypervisor providing
access to a physical device connected to a virtualized computing environment;

a device driver supported by the operating system issuing one or more instructions to
an emulated device supported by the hypervisor to control the physical device according to
the issued instructions,

wherein the emulated device’s registers are implemented in memory of the
hypervisor and the instructions issued by the device driver are stored in said registers,

wherein the hypervisor handles the instructions, in response to learning that the

instructions are stored in said registers.

17. The system of claim 16, wherein the operating system controls whether the issued

instructions are stored in said registers.

18. The system of claim 16, wherein the emulated device monitors whether the issued

instructions are stored in said registers.

19. The system of claim 16, wherein the hypervisor monitors whether the issued
instructions are stored in said registers and notifies the emulated device the instructions are

stored in said registers.

PCT/EP2011/068987

WO 2012/069276

1/6

I ‘OIH4

081 99149 [eoISAYd

—oi oo1Aa(] pole[nwIyg

— 0T 1 J9ALI(991A2(J

_ 091 A10WOA _

601 wI3sAs suneaado WA

L0T uoneddde souds Josn A A

SOT INA

R _ 001 10siaaadAyg

PCT/EP2011/068987

WO 2012/069276

2/6

< OIA

081 901A2(] [ea1SAYd

— 01 99149 parernurg

_ 0T 1 JOALI(T 991A3(]

601 wasis Supeaado WA _ 091 AIoWaN _

»

L01 uoneadde ooeds Josn WA
SOT INA

R _ 001 10siaaadAyg

WO 2012/069276

3/6

VM OS monitors an
instruction sent from
the device driver to

the emulated device

PCT/EP2011/068987

S310
/_\

Was an instruction sent?

Yes
v

VM OS triggers a
trap to notify the
emulated device

e S330

Hypervisor
switches control of
CPU from VM to

hypervisor

Hypervisor or
emulated device

handles the
mstruction

End

FIG. 34

WO 2012/069276

PCT/EP2011/068987
4/6

Emulated device or
hypervisor monitors
the emulated S410
device’s registers for f
an instruction sent
from the device
No driver

Registers written to?

Yes

!

Emulated device or 3430
hypervisor handles v
the mstruction

End

FIG. 3B

PCT/EP2011/068987

WO 2012/069276

5/6

S0BLIUY
uoneduNwIo’)

0011 sng

Vi "OIA

$301A9(]

u2I0S BIPIN

Aejdsiq a3eI101§ Sou oI

180

KIOWSN
ayoe))

Ja[onuo) Krowap\

JOSSd001]
O/11 [B207]

// vOTL1

// €011 // (8! // 1011

R— OTI] JUSUIUOIAUT dICMPIEH

WO 2012/069276 PCT/EP2011/068987
6/6

Software Environment 1120 —\

User Applicatinon
Interface Softw;ue Browser
1124 1122 1126
‘ System Software 1121 I
‘ Hardware Environment 1110 I

FIG. 4B

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2011/068987

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/455
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, COMPENDEX, INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 20609/006074 Al (GREEN DUSTIN L [US]) 1-19
1 January 2009 (2009-01-01)
paragraph [0001] - paragraph [0004]
paragraph [0011]

paragraph [0015]

paragraph [0032]

A XINMEI HUANG ET AL: "Accelerating the 1-19
Emulational Device Model in Virtualization
System",

EMBEDDED SOFTWARE AND SYSTEMS, 2008. ICESS
'08. INTERNATIONAL CONFERENCE ON, IEEE,
PISCATAWAY, NJ, USA,

29 July 2008 (2008-07-29), pages 181-186,
XP031303449,

ISBN: 978-0-7695-3287-5

the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : i i i "

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to

"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

"Q" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
7 December 2011 15/12/2011
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3018 Lo Turco, Salvatore

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/EP2011/068987
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2009006074 Al 01-01-2009 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - wo-search-report
	Page 25 - wo-search-report

