

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2018/081391 A1

(43) International Publication Date

03 May 2018 (03.05.2018)

(51) International Patent Classification:

B65D 51/24 (2006.01) G10K 11/168 (2006.01)

(21) International Application Number:

PCT/US2017/058485

(22) International Filing Date:

26 October 2017 (26.10.2017)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/414,040 28 October 2016 (28.10.2016) US

(71) Applicant: DEE ZEE, INC. [US/US]; 1572 North East 58th Avenue, Des Moines, Iowa 50313 (US).

(72) Inventor: SCHULING, Eric; 304 2nd Street North West, Bondurant, Iowa 50035 (US).

(74) Agent: LAHMANN, Bethany R. et al.; Dinsmore & Shohl LLP, 255 East Fifth Street, Suite 1900, Cincinnati, Ohio 45202 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))

(54) Title: LID ASSEMBLIES FOR STORAGE CONTAINERS INCLUDING VIBRATION DAMPING SUBSTRATES

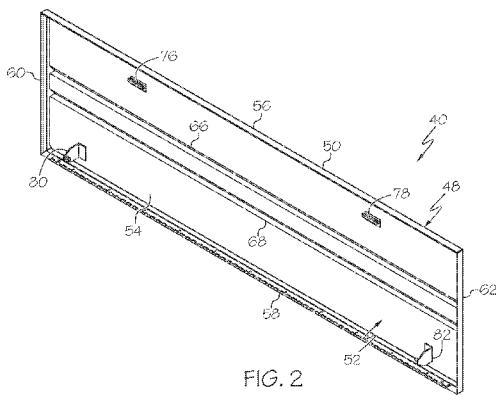
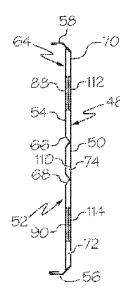



FIG. 2

(57) **Abstract:** A lid assembly for a storage container includes an outer panel (48) having an inner facing surface and a reinforcement panel (52) extending parallel to the outer panel. The outer panel includes an out-facing surface in opposition to the inner facing surface of the outer panel. A first vibration damping substrate (112, 114) is coupled to the inner facing surface of the outer panel. A second vibration damping substrate (88, 90) is coupled to the out-facing surface of the reinforcement panel.

LID ASSEMBLIES FOR STORAGE CONTAINERS INCLUDING VIBRATION DAMPING SUBSTRATES

CROSS-REFERENCE TO RELATED APPLICATION

[0001] The present application claims priority to U.S. Provisional Application 62/414,040 filed October 28, 2016, the entirety of which is incorporated by reference herein in its entirety.

TECHNICAL FIELD

[0002] The present specification generally relates to storage containers and methods for forming the same and, more specifically, to vehicle storage containers with lid assemblies that include vibration damping substrates.

BACKGROUND

[0003] Storage containers come in all shapes and sizes. Some storage containers are designed specifically to be installed in a rear bed of a vehicle, namely a truck. Such storage containers are often assembled by a manufacturer at a plant and are then shipped to consumers or to retail locations. Often these storage containers are formed of a number of metal sheets that are prone to vibration and sounds resulting from those vibrations. One area of interest in controlling sound is at the lid assemblies of the storage containers. Closing the lid assemblies can result in vibration related noises. Additionally, the lid assemblies, along with the remaining exterior of the storage containers are often coated and cured under elevated temperatures. These curing temperatures can limit the types of materials that are used in producing the lid assemblies.

[0004] Accordingly, a need exists for storage container designs that control vibration related noise when closing their lid assemblies. Another need exists for a vibration damping substrate that can be applied to a lid assembly of a storage container that can withstand temperatures of a powder coating process when coating the storage container.

SUMMARY

[0005] In a first aspect, a lid assembly for a storage container includes an outer panel having an inner facing surface and a reinforcement panel extending parallel to the outer

panel. The outer panel includes an out-facing surface in opposition to the inner facing surface of the outer panel. A first vibration damping substrate is coupled to the inner facing surface of the outer panel. A second vibration damping substrate is coupled to the out-facing surface of the reinforcement panel.

[0006] A second aspect according to the first aspect, wherein the reinforcement panel includes one or more reinforcement grooves extending out of a plane of the reinforcement panel and defining outboard pockets of space between the outer panel and the reinforcement panel, wherein the first vibration damping substrate and the second vibration damping substrate are positioned within at least one of the outboard pockets of space.

[0007] A third aspect according to any preceding aspect, wherein at least one of the first vibration damping substrate and the second vibration damping substrate has a multi-layer structure having a base layer and an outer layer.

[0008] A fourth aspect according to the third aspect, wherein the outer layer has a higher stiffness than the base layer.

[0009] A fifth aspect according to any preceding aspect, wherein the first and second vibration damping substrates include a non-curing thermal resistant material capable of withstanding temperatures of up to at least 200 °C.

[0010] A sixth aspect according to any preceding aspect, wherein at least one of the first vibration damping substrate and the second vibration damping substrate includes at least two vibration damping substrates.

[0011] A seventh aspect according to any preceding aspect, wherein the lid assembly is powder coated.

[0012] In an eighth aspect, a lid assembly for a storage container includes an outer panel having an inner facing surface and a reinforcement panel extending parallel to the outer panel. The reinforcement panel includes an out-facing surface in opposition to the inner facing surface of the outer panel, and one or more reinforcement grooves extending out of a plane of the reinforcement panel and defining outboard pockets of space between the outer panel and the reinforcement panel. A first vibration damping substrate is coupled to the inner facing surface of the outer panel within one of the outboard pockets of space. A second

vibration damping substrate is coupled to the out-facing surface of the reinforcement panel with one of the outboard pockets of space. A sealant strip is located at an apex of the one or more reinforcement grooves between the reinforcement panel and the out panel.

[0013] A ninth aspect according to the eighth aspect, wherein at least one of the first vibration damping substrate and the second vibration damping substrate includes a multi-layer structure comprising a base layer and an outer layer.

[0014] A tenth aspect according to the eighth or ninth aspect, wherein the outer layer has a higher stiffness than the base layer.

[0015] An eleventh aspect according to any one of the eighth through tenth aspects, wherein the first and second vibration damping substrates include a non-curing thermal resistant material capable of withstanding temperatures of up to at least 200 °C.

[0016] A twelfth aspect according to any one of the eighth through eleventh aspects, wherein the sealant strip is in contact with the outer panel.

[0017] A thirteenth aspect according to any one of the eighth through twelfth aspects, wherein at least one of the first vibration damping substrate and the second vibration damping substrate includes at least two vibration damping substrates.

[0018] A fourteenth aspect according to any one of the eighth through thirteenth aspects, wherein the lid assembly is powder coated.

[0019] A fifteenth aspect according to any one of the eight through fourteenth aspects, wherein the first vibration damping substrate and the second vibration damping substrate are adhesively coupled to the outer panel and the reinforcement panel, respectively.

[0020] In a sixteenth aspect, a method of forming a storage container includes assembling a lid assembly. Assembling the lid assembly includes coupling a first vibration damping substrate to an inner facing surface of an outer panel of the lid assembly. Coupling a second vibration damping substrate to an out-facing surface of a reinforcement panel of the lid assembly, and coupling the outer panel of the lid assembly to the reinforcement panel of the lid assembly so that the inner facing surface of the outer panel opposes the out-facing surface of the reinforcement panel. The method further includes coupling the lid assembly to a base portion, wherein the base portion defines an interior of the storage container.

[0021] A seventeenth aspect according to the sixteenth aspect, further including powder coating the assembled lid assembly.

[0022] An eighteenth aspect according to the sixteenth aspect or the seventeenth aspect, wherein the reinforcement panel includes one or more reinforcement grooves extending out of a plane of the reinforcement panel and defining outboard pockets of space between the outer panel and the reinforcement panel.

[0023] A nineteenth aspect according to the eighteenth aspect, further including applying a sealant strip to an apex of the one or more reinforcement grooves between the reinforcement panel and the outer panel.

[0024] A twentieth aspect according to the eighteenth aspect or the nineteenth aspect, wherein the first vibration damping substrate and the second vibration damping substrate are positioned within at least one of the outboard pockets of space.

[0025] These and additional features provided by the embodiments described herein will be more fully understood in view of the following detailed description, in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] The embodiments set forth in the drawings are illustrative and exemplary in nature and are not intended to limit the subject matter defined by the claims. The following detailed description of the illustrative embodiments can be understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:

[0027] FIG. 1 depicts a perspective view of a storage container, according to one or more embodiments shown and described herein;

[0028] FIG. 2 depicts a perspective view of a lid assembly for use with the storage container of FIG. 1, according to one or more embodiments shown and described herein;

[0029] FIG. 3 depicts a section view of the lid assembly along line 3-3 of FIG. 2, according to one or more embodiments shown and described herein;

[0030] FIG. 4 depicts a bottom view of a reinforcement panel of the lid assembly of FIG. 2, according to one or more embodiments shown and described herein;

[0031] FIG. 5 depicts a section view of the reinforcement panel along line 5-5 of FIG. 4, according to one or more embodiments shown and described herein;

[0032] FIG. 6 depicts a section view of a vibration damping substrate, according to one or more embodiments shown and described herein;

[0033] FIG. 7 depicts a bottom view of an outer panel for use with the lid assembly of FIG. 2, according to one or more embodiments shown and described herein; and

[0034] FIG. 8 depicts a method of forming the storage container of FIG. 1, according to one or more embodiments shown and described herein.

DETAILED DESCRIPTION

[0035] Embodiments disclosed herein are directed to storage containers, such as truck tool boxes, including lid assemblies that include vibration damping substrates. The vibration damping substrates can be used to deaden vibrations of sheet metal due to opening and closing of the lid assemblies, which can improve the sound and feel of the lid assemblies to a user. The vibration damping substrates may be a constrained layer damper that includes multiple layers including a visco-elastic polymer material that is adhered directly to a sheet metal panel of the lid assembly to reduce lid vibrations when the lid is opened and closed.

[0036] Referring to FIG. 1, a storage container 10 (e.g., a truck tool box) includes a base portion 14 and an extending portion 12. In embodiments where the storage container 10 is a truck tool box, the base portion 14 is sized to fit between opposite truck bed side rails of a bed of a truck and the extending portion 12 is sized to extend beyond the base portion in at least a vehicle lateral direction (side-to-side) and over the opposite side rails to be supported thereon and/or attached thereto. In some embodiments, the extending portion 12 also extends beyond the base portion 14 in a vehicle longitudinal direction (front-to-back).

[0037] The base portion 14 includes upstanding walls, including a front facing wall 16, a rear facing wall 18, and side walls 20 and 22 that extend between the front facing wall 16 and the rear facing wall 18. In some embodiments, the base portion 14 also has a floor 24 that rests against an upper surface of the truck bed. The walls 16, 18, 20 and 22 may be

formed of any suitable material such as sheet metal (e.g., steel). The upper or extending portion 12 also includes a front facing wall 26, a rear facing wall 28, and side walls 30 and 32 that extend between the front facing wall 26 and the rear facing wall 18. Bottom walls 34 and 36 may extend outwardly from the base portion 14 to the side walls 30 and 32. The walls 26, 28, 30, 32, 34 and 36 may also be formed of any suitable material, such as sheet metal (e.g., steel).

[0038] A lid assembly 40 is provided on the extending portion 12. The lid assembly 40 is used to close an access opening that provides access to an interior of the storage container 10. A closure system (generally referred to as element 42) may be provided that includes handles 44 and 46 that can be used to latch the lid assembly 40 in the illustrated closed configuration. In some embodiments, a locking device may be provided that can be used to lock the lid assembly 40 in the closed configuration to prevent access to the interior of the storage container 10.

[0039] Referring to FIGS. 2 and 3, the lid assembly 40 can be a multi-panel construction and can include an outer panel 48, which provides an exterior surface 50 and an interior reinforcement panel 52 that reinforces the outer panel 48 and provides an interior surface 54. The outer panel 48 includes a front facing edge 56, a rear facing edge 58 and side edges 60 and 62 that extend between the front facing edge 56 and the rear facing edge 58. The edges 56, 58, 60 and 62 extend outwardly away from the exterior surface 50 and form an enclosure volume 64 into which the reinforcement panel 52 can be inserted and connected to the outer panel 48 in a face-to-face fashion.

[0040] The reinforcement panel 52 may include V-shaped reinforcement grooves 66 and 68 that extend continuously across a width of the reinforcement panel 52. As can be best seen by FIG. 3, the reinforcement grooves 66 extend out of the plane of the reinforcement panel 52 and can contact the outer panel 48 for added rigidity. The reinforcement grooves 66 and 68 also create space between the outer panel 48 and the reinforcement panel 52 forming outboard pockets 70 and 72 and a narrower inboard pocket 74 located between the reinforcement grooves 66 and 68. The reinforcement panel 52 may also include striker mounts 76 and 78 for use with the closure system 42 and gas shock mounts 80 and 82 that can be used to mount the lid assembly 40 to gas shocks, which are used in controlling movement of the lid assembly 40. The reinforcement panel 52 may be connected to the outer

panel 48 using any suitable process, such as stitch welding along all of the edges 56, 58, 60 and 62.

[0041] FIG. 4 illustrates an out-facing surface 86 of the reinforcement panel 52. The reinforcement panel 52 includes vibration damping substrates 88 and 90. The vibration damping substrate 88 is located to an outside of the reinforcement groove 66 and the vibration damping substrate 90 is located to an outside of the reinforcement groove 68. The vibration damping substrates 88 and 90 are each formed as elongated strips that extend along a width (e.g., at least about 10 percent of the width, such as at least about 20 percent, such as at least about 30 percent, such as at least about 40 percent, such as at least about 50 percent, such as at least about 60 percent, such as at least about 70 percent, such as at least about 80 percent, such as at least about 90 percent, such as at least about 100 percent, such as between about 10 percent and about 70 percent) of the reinforcement panel 52.

[0042] FIG. 5 depicts a partial section view of the reinforcement panel 52 illustrated in FIG. 4, including the reinforcement grooves 66 and 68. In some embodiments, sealant strips 92 and 94 are located at the apex of each reinforcement groove 66 and 68, which can provide a seal against the outer panel 48 (FIG. 3). Such sealant strips may be made from any material suitable for forming a seal between the outer panel 48 and the reinforcement panel 52, for example, isobutylene. The sealant strips 92, 94 may each be formed as elongated strips that extend along a width (e.g., at least about 10 percent of the width, such as at least about 20 percent, such as at least about 30 percent, such as at least about 40 percent, such as at least about 50 percent, such as at least about 60 percent, such as at least about 70 percent, such as at least about 80 percent, such as at least about 90 percent, such as at least about 100 percent, such as between about 10 percent and about 70 percent) of the reinforcement panel 52. In some embodiments, there may not be sealant strips 92, 94.

[0043] Referring to FIG. 6, the vibration damping substrates 88 and 90 (only vibration damping substrate 88 is shown) may be a multi-layer structure including a base layer 100 of an elastomeric material and an outer layer 102 that may also be a polymeric material having a higher stiffness than the base layer. The base layer 100 and outer layer 102 may be co-extruded and a top layer 104, such as an aluminum foil or a glass cloth may be applied to the outer layer 102. The base layer 100 may include tackifying agents that adhere to the material of the reinforcement panel 52. A release layer 106 may be applied to the base layer 100 that can be readily removed to expose the tacky base layer 100. Each of the layers

can have a thermal resistance that can withstand the temperatures of the powder coating process (e.g., up to 200 °C or more).

[0044] Referring to FIG. 7, an inner facing surface 110 of the outer panel 48 is shown. The outer panel 48 may also include vibration damping substrates 112 and 114. The vibration damping substrates 112 and 114 are each formed as elongated strips that extend along a width (e.g., at least about 10 percent of the width, such as at least about 20 percent, such as at least about 30 percent, such as at least about 40 percent, such as at least about 50 percent, such as at least about 60 percent, such as at least about 70 percent, such as at least about 80 percent, such as at least about 90 percent, such as at least about 100 percent, such as between about 10 percent and about 70 percent) of the outer panel 48. The vibration damping substrates 112 and 114 may have a similar construction to that described in regards to the vibration damping substrates 88 and 90.

[0045] Referring briefly back to FIG. 3, the vibration damping substrates 88, 90, 112, 114 may be located within the outboard pockets 70 and 72 opposite one another in a face-to-face relationship. In some embodiments, the opposing vibration damping substrates may abut one another. In some embodiments, and as illustrated in FIG. 3., the vibration damping substrates 88, 90, 112, and 114 may be spaced apart from one another such that there is a gap between the vibration damping substrates 88, 90 coupled to the out-facing surface 86 of the reinforcement panel 52 and the vibration damping substrates 112, 114 coupled to the inner facing surface 110 of the outer panel 48. Moreover, the vibration damping substrates 88, 90 coupled to the out-facing surface 86 of the reinforcement panel 52 and the vibration damping substrates 112, 114 coupled to the inner facing surface 110 of the outer panel 48 need not be positioned so as to be directly opposing each other. Instead, the vibration damping substrates 88, 90 coupled to the out-facing surface 86 of the reinforcement panel 52 and the vibration damping substrates 112, 114 coupled to the inner facing surface 110 of the outer panel 48 may be staggered. It should also be noted that while four vibration damping substrates are described above, there may be more or less than four vibration damping substrates depending, for example, on the dimensions and shape of the storage container.

[0046] Referring to FIG. 8, a method 120 of damping the lid assembly 40 using the vibration damping substrates (e.g., 88, 90, 112, and/or 114) is illustrated. At step 122, the body of the storage container is formed using various sheet metal panels, as described herein, and other components, such as the closure system. The lid assembly 40 may not be

completely assembled at this point to allow for the application of one or more vibration damping substrates (e.g., 88, 90, 112, and/or 114). For example, at step 124, the vibration damping substrates (e.g., 88, 90, 112, and/or 114) may be applied to the outer panel 48 and/or the reinforcement panel 52 of the lid assembly 40, as described above, at a location between the outer panel 48 and the reinforcement panel 52. For example a first vibration damping substrate (e.g., 112) may be coupled to an inner facing surface 110 of the outer panel 48 of the lid assembly 40. A second vibration damping substrate (e.g., 88) may be coupled to an out-facing surface 86 of the reinforcement panel 52. Once the vibration damping substrates are in place, the outer panel 48 of the lid assembly 40 is coupled to the reinforcement panel 52 of the lid assembly 40 so that the inner facing surface 110 of the outer panel 48 opposes the out-facing surface 86 of the reinforcement panel 52. The lid assembly 40 may then be coupled to the base portion 14.

[0047] Once assembled, the storage container 10 may be powder coated at step 126. The vibration damping substrates (e.g., 88, 90, 112, and/or 114) are non-curing and have a thermal resistance that can withstand the temperatures of the powder coating process (e.g., up to 200 °C or more) without damage to the vibration damping substrates (e.g., 88, 90, 112, and/or 114). This can allow for application of the vibration damping substrates (e.g., 88, 90, 112, and/or 114) before the powder coating process, which can reduce manufacture time and complexity.

[0048] It should now be understood that embodiments of the present disclosure are directed toward storage containers, such as truck tool boxes, that include lid assemblies that include vibration damping substrates. The vibration damping substrates can be used to deaden vibrations of sheet metal due to opening and closing of the lid assemblies, which can improve the sound and feel of the lid assemblies to a user. The vibration damping substrates may be a constrained layer damper that includes multiple layers including a visco-elastic polymer material that is adhered directly to a sheet metal panel of the lid assembly to reduce lid vibrations when the lid is opened and closed.

[0049] It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments described herein without departing from the spirit and scope. Thus it is intended that the embodiments described herein cover any modifications and variations provided they come within the scope of the appended claims and their equivalents.

What is claimed is:

1. A lid assembly for a storage container, comprising:
 - an outer panel comprising an inner facing surface;
 - a reinforcement panel extending parallel to the outer panel and comprising an out-facing surface in opposition to the inner facing surface of the outer panel;
 - a first vibration damping substrate coupled to the inner facing surface of the outer panel;and
 - a second vibration damping substrate coupled to the out-facing surface of the reinforcement panel.
2. The lid assembly of claim 1, wherein the reinforcement panel comprises one or more reinforcement grooves extending out of a plane of the reinforcement panel and defining outboard pockets of space between the outer panel and the reinforcement panel, wherein the first vibration damping substrate and the second vibration damping substrate are positioned within at least one of the outboard pockets of space.
3. The lid assembly of any one of claims 1 or 2, wherein at least one of the first vibration damping substrate and the second vibration damping substrate comprise a multi-layer structure comprising a base layer and an outer layer.
4. The lid assembly of any one of claim 3, wherein the outer layer comprises a higher stiffness than the base layer.
5. The lid assembly of any one of claims 1-4, wherein the first and second vibration damping substrates comprise a non-curing thermal resistant material capable of withstanding temperatures of up to at least 200 °C.
6. The lid assembly of any one of claims 1-5, wherein at least one of the first vibration damping substrate and the second vibration damping substrate comprises at least two vibration damping substrates.
7. The lid assembly of any one of claims 1-6, wherein the lid assembly is powder coated.

8. A lid assembly for a storage container, comprising:
 - an outer panel comprising an inner facing surface;
 - a reinforcement panel extending parallel to the outer panel and comprising:
 - an out-facing surface in opposition to the inner facing surface of the outer panel; and
 - one or more reinforcement grooves extending out of a plane of the reinforcement panel and defining outboard pockets of space between the outer panel and the reinforcement panel;
 - a first vibration damping substrate coupled to the inner facing surface of the outer panel within one of the outboard pockets of space;
 - a second vibration damping substrate coupled to the out-facing surface of the reinforcement panel within one of the outboard pockets of space;
 - a sealant strip located at an apex of the one or more reinforcement grooves between the reinforcement panel and the outer panel.
9. The lid assembly of claim 8, wherein at least one of the first vibration damping substrate and the second vibration damping substrate comprise a multi-layer structure comprising a base layer and an outer layer.
10. The lid assembly of any one of claims 8 or 9, wherein the outer layer comprises a higher stiffness than the base layer.
11. The lid assembly of any one of claims 8-10, wherein the first and second vibration damping substrates comprise a non-curing thermal resistant material capable of withstanding temperatures of up to at least 200 °C.
12. The lid assembly of any one of claims 8-11, wherein the sealant strip is in contact with the outer panel.
13. The lid assembly of any one of claims 8-12, wherein at least one of the first vibration damping substrate and the second vibration damping substrate comprises at least two vibration damping substrates.

14. The lid assembly of any one of claims 8-13, wherein the lid assembly is powder coated.

15. The lid assembly of any one of claims 8-15, wherein the first vibration damping substrate and the second vibration damping substrate are adhesively coupled to the outer panel and the reinforcement panel, respectively.

16. A method of producing a storage container:

assembling a lid assembly, comprising:

coupling a first vibration damping substrate to an inner facing surface of an outer panel of the lid assembly;

coupling a second vibration damping substrate to an out-facing surface of a reinforcement panel of the lid assembly;

coupling the outer panel of the lid assembly to the reinforcement panel of the lid assembly so that the inner facing surface of the outer panel opposes the out-facing surface of the reinforcement panel; and

coupling the lid assembly to a base portion, wherein the base portion defines an interior of the storage container.

17. The method of claim 16, further comprising powder coating the assembled lid assembly.

18. The method of any one of claims 16 or 17, wherein the reinforcement panel comprises one or more reinforcement grooves extending out of a plane of the reinforcement panel and defining outboard pockets of space between the outer panel and the reinforcement panel.

19. The method of claim 18, further comprising applying a sealant strip to an apex of the one or more reinforcement grooves between the reinforcement panel and the outer panel.

20. The method of any one of claims 18 or 19, wherein the first vibration damping substrate and the second vibration damping substrate are positioned within at least one of the outboard pockets of space.

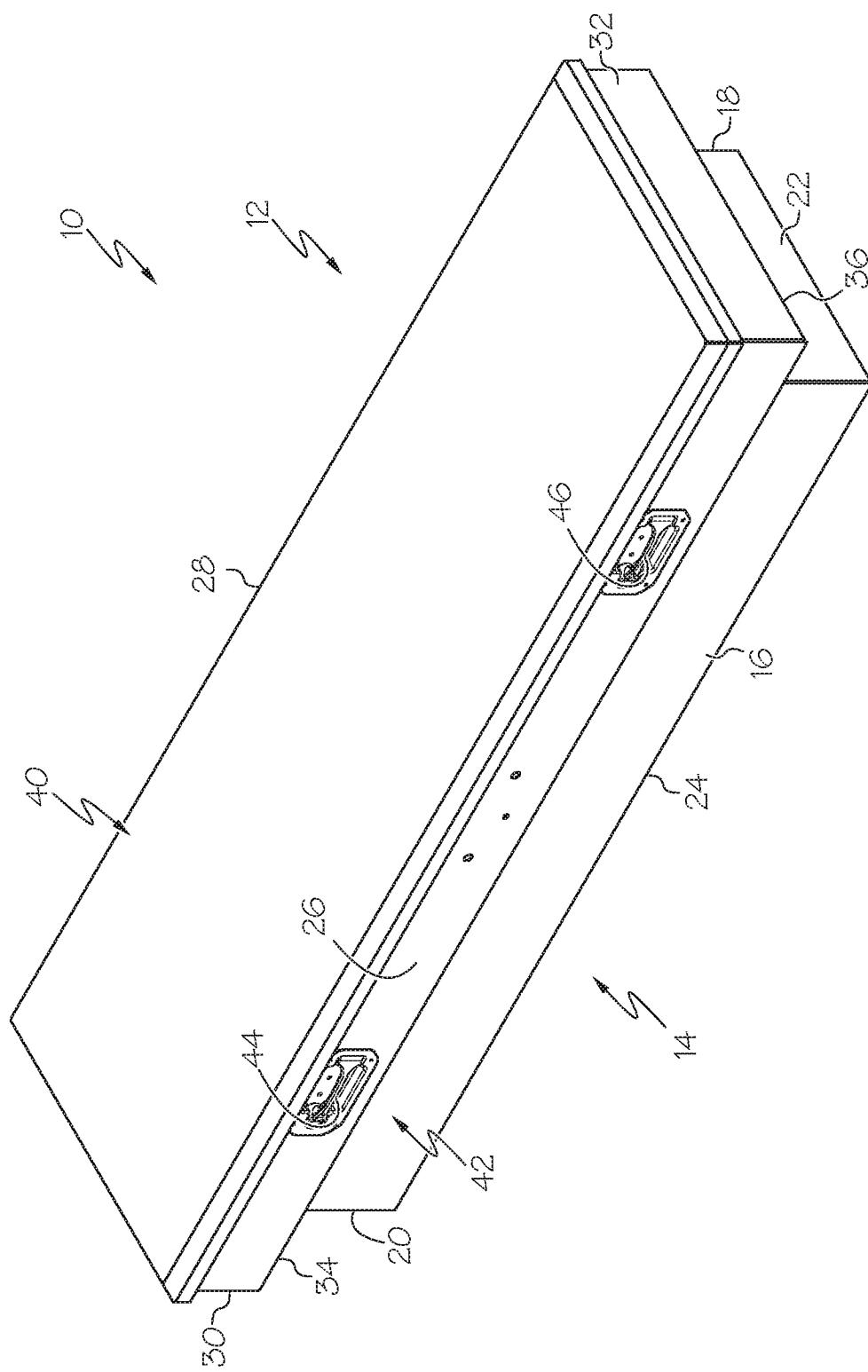


FIG. 1

215

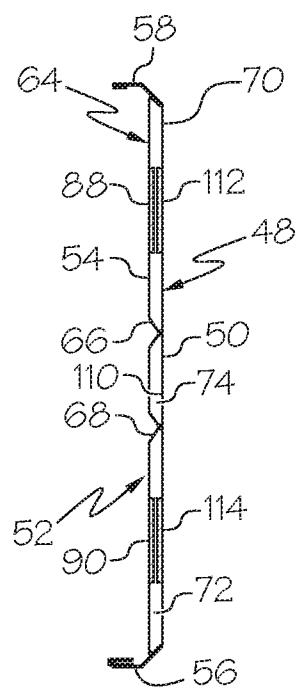
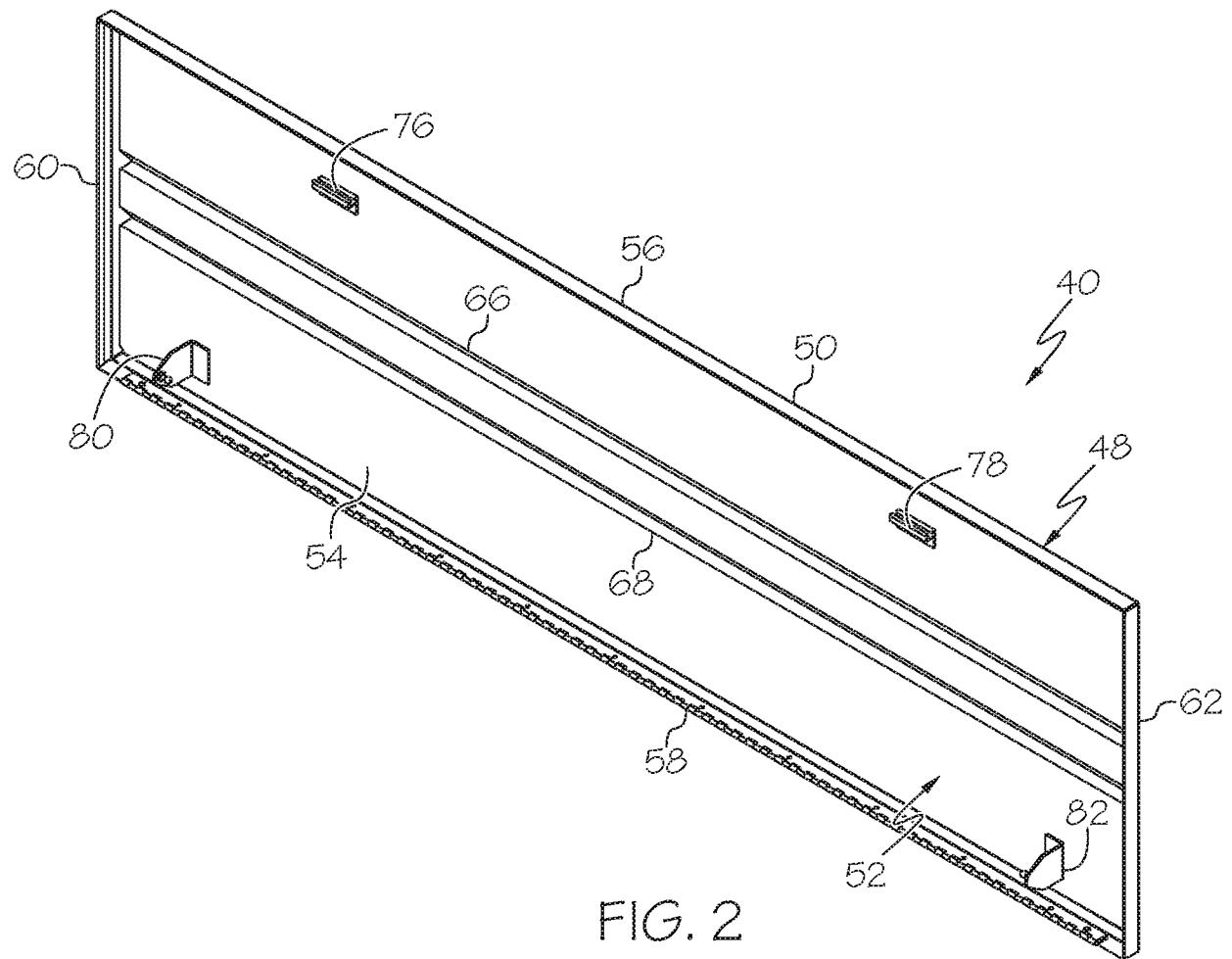
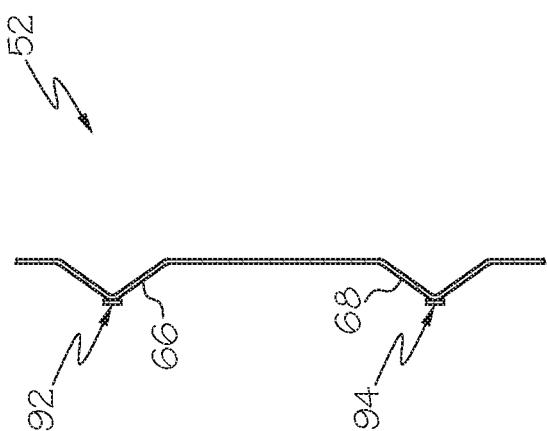
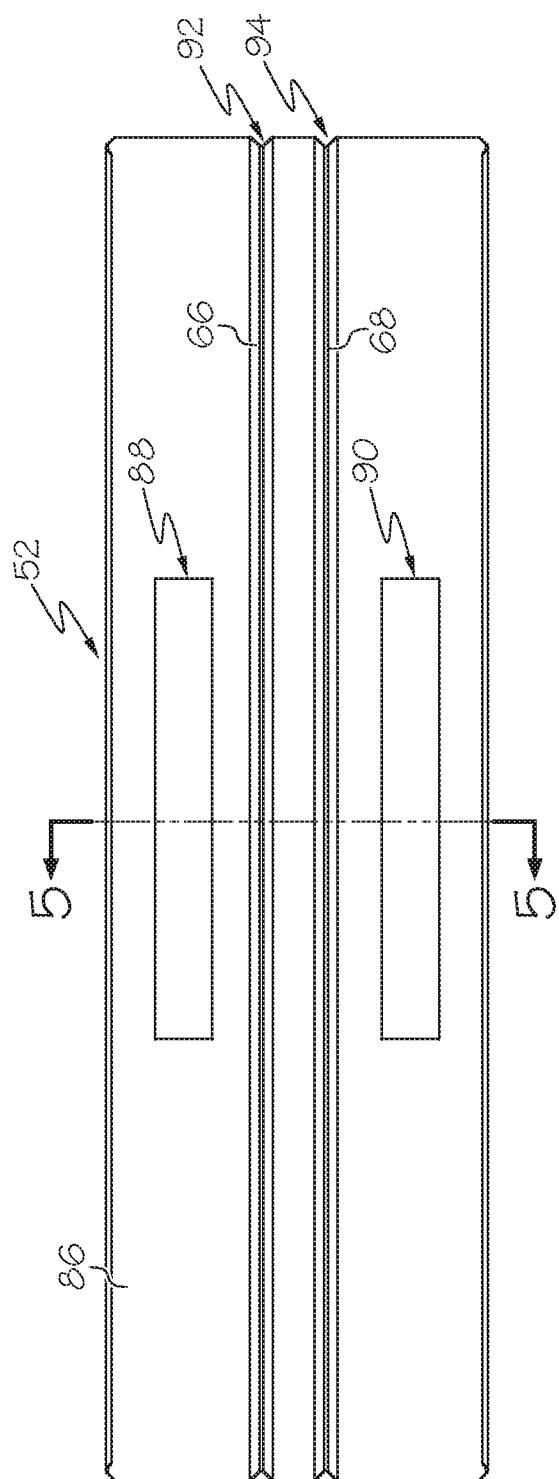





FIG. 3

4 / 5

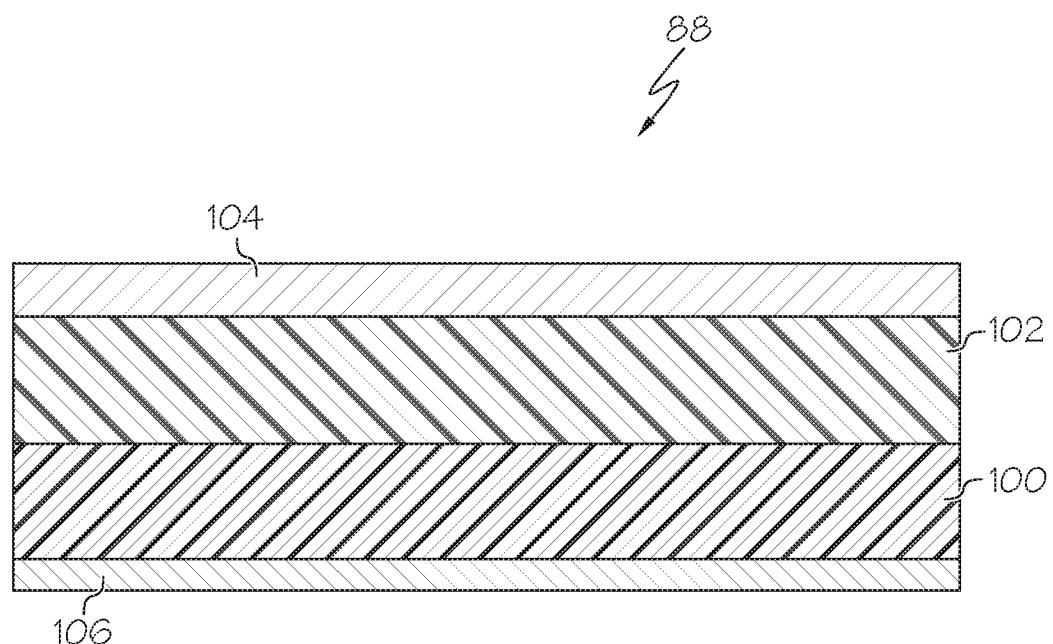


FIG. 6

5 / 5

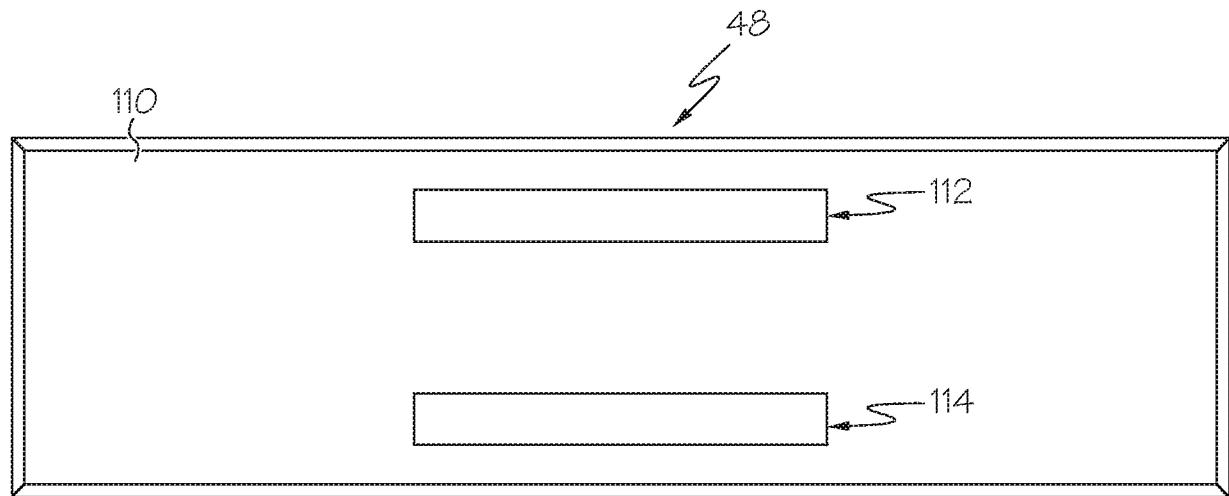


FIG. 7

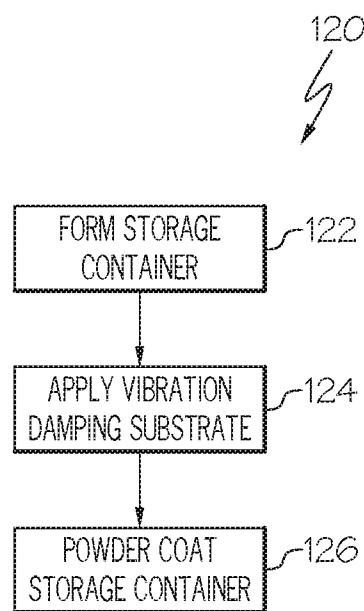


FIG. 8

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2017/058485

A. CLASSIFICATION OF SUBJECT MATTER
INV. B65D51/24 G10K11/168
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B60R B25H B65D G10K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2015/321336 A1 (HARRISON CRAIG [US]) 12 November 2015 (2015-11-12) paragraph [0023] - paragraph [0025]; figure 2 ----- FR 2 698 059 A1 (OLIN [FR]) 20 May 1994 (1994-05-20) page 3, line 13 - line 23 page 5, line 21 - page 6, line 2 page 6, line 17 - line 20 page 7, line 21 - line 26 page 8, line 20 - line 26 figure 1 -----	1-20
Y		1-20

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
18 December 2017	03/01/2018
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3046	Authorized officer Bridault, Alain

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/058485

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
US 2015321336	A1	12-11-2015		NONE	
FR 2698059	A1	20-05-1994	AT AU CN DE DE DK EP ES FR GR TR TW WO ZA	140333 T 5425094 A 1089555 A 69303622 D1 69303622 T2 0670074 T3 0670074 A1 2089861 T3 2698059 A1 3020886 T3 28266 A 294629 B 9411860 A1 9308479 B	15-07-1996 08-06-1994 20-07-1994 14-08-1996 07-11-1996 07-10-1996 06-09-1995 01-10-1996 20-05-1994 30-11-1996 17-04-1996 01-01-1997 26-05-1994 07-07-1994