（54）实用新型名称
铷钟驯服系统

（57）摘要
本实用新型公开了铷钟驯服系统，包括依次串联连接的标准信号发生模块、高精度时间间隔测试电路、中央处理器、铷振荡器电路，所述铷振荡器电路包括10MHz输出口和铷秒脉冲输出口，且所述高精度时间间隔测试电路与铷秒脉冲输出口连接。可对铷钟进行及时修正。在外标准时间脉冲信号（1PPS）有效时，驯服内铷原子频率源，以获得很高的频率准确度。在外标准时间脉冲信号（1PPS）无效（或系统设置）时，提供高精度的频率保持精度，以确保系统维持在高精度的工作状态。最终输出信号的精度可以达到1E-12。
1. 钟表驯服系统，其特征在于：包括依次串联连接的标准信号发生模块、高精度时间间隔测试电路、中央处理器、微振荡器电路，所述微振荡器电路包括 10MHz 输出口和微秒脉冲输出口，且所述高精度时间间隔测试电路与微秒脉冲输出口连接。

2. 根据权利要求 1 所述的微秒脉冲输出口，其特征在于：所述中央处理器为单片机。

3. 根据权利要求 1 所述的微秒脉冲输出口，其特征在于：所述标准信号发生模块为标准脉冲信号发生器或 GPS 时间信号发生器。

4. 根据权利要求 1 所述的微秒脉冲输出口，其特征在于：还包括分别与 10MHz 输出口和微秒脉冲输出口相连接的 10MHz 输出端子和微秒脉冲输出端子。

5. 根据权利要求 1 所述的微秒脉冲输出口，其特征在于：所述微振荡器电路还包含恒温晶振，所述恒温晶振与微秒脉冲输出口连接。

6. 根据权利要求 1-5 中任意一项所述的微秒脉冲输出口，其特征在于：所述中央处理器与微振荡器电路之间还连接有数模转换器。

7. 根据权利要求 5 所述的微秒脉冲输出口，其特征在于：所述数模转换器为 22 位数模转换器。
铷钟驯服系统

技术领域
[0001] 本实用新型涉及铷钟驯服系统。

背景技术
[0002] 铷原子钟是一款高精度、高可靠性和同步时钟产品，该时钟将高稳定性铷振荡器与GPS高精度授时、测频及时间同步技术有机结合在一起，使铷振荡器输出频率同步于GPS卫星铯原子钟信号上，提高了频率信号的长期稳定性和准确度，能够提供铯钟量级的高精度时间频率标准，是通信广电等部门替代铯钟的高性价比产品。
[0003] 而铷原子频率标准是应用铷同位素 ^{87}Rb 原子超精细结构能级跃迁微波吸收谱线作频率基准，对晶体振荡器的频率进行自动控制，从而得到高稳定度的标准频率。因此根据铷原子频率标准我们可以制造高精度的铷原子钟。
[0004] 在铷原子钟的应用中，常常需要GPS信号(或北斗)作为母钟进行守时，而在GPS信号(或北斗)产生100ns的瞬时跳变是非常正常的，所以去抖动是必须的。
[0005] 因此在采用GPS信号(或北斗)进行守时时，我们需要对铷钟进行校对，使其铷钟无限接近标准时间，而校准后的精度越高越好。

实用新型内容
[0006] 本实用新型的目的在于解决对铷钟进行驯服处理，使铷钟达到较高的精度，同时无限接近标准时间，而提供一种铷钟驯服系统。
[0007] 本实用新型的目的通过下述技术方案实现：铷钟驯服系统，包括依次串连连接的标准信号发生模块、高精度时间间隔测试电路、中央处理器、铷振荡器电路，所述铷振荡器电路包括10MHz输出口和滈秒脉冲输出口，且所述高精度时间间隔测试电路与铷秒脉冲输出口连接。
[0008] 标准信号发生模块，为本铷钟驯服系统提供标准时间脉冲信号(1PPS)。
[0009] 高精度时间间隔测试电路，为测试标准时间脉冲信号(1PPS)和铷秒脉冲输出口发出的铷秒脉冲信号(铷 1PPS)的时间间隔，并计算出二者的时间差值，同时将时间差值信号传输到中央处理器中处理运算；
[0010] 铷振荡器电路，在接收到中央处理器发出的修正控制信号后，根据修正控制信号，做出修正，从而根据修正控制信号进行修正后发出接近标准时间脉冲信号，铷秒脉冲信号(铷 1PPS)。
[0011] 中央处理器，为根据时间差值信号，做出运算后对铷振荡器电路发出修正控制信号。
[0012] 所述中央处理器为单片机。
[0013] 所述标准信号发生模块为标准秒脉冲信号发生器或GPS时间信号发生器或北斗时间信号发生器。
[0014] 铷钟驯服系统还包括分别与10MHz输出口和铷秒脉冲输出口相连接的10MHz输出
端子和铷秒脉冲输出端子。
[0015] 所述铷振荡器电路还包括恒温晶振，所述恒温晶振与铷秒脉冲输出口连接。
[0016] 所述中央处理器与铷振荡器电路之间还连接有数模转换器。
[0017] 所述数模转换器为 22 位数模转换器。
[0018] 本实用新型的工作原理：高精度时间间隔测试电路接收来自标准秒脉冲信号发生器或 GPS 时信号发生器或北斗时信号发生器发出标准时间脉冲信号（1PPS）和铷秒脉冲输出口发出的铷秒脉冲（铷 1PPS），然后采用频率控制相位的原理，即标准时间脉冲信号（1PPS）和铷秒脉冲（铷 1PPS）的相位相参，通过高精度时差测量，计算出时间差值，并获得铷钟输出频率的准确度值，根据其数值在单片机的控制下设置频率微调量，即修正控制信号，当频率准确度驯服到 3E-12 范围内后，根据时差测量得相位偏差量，用超精细的频率微调（1E-12 单步）控制相位同步精度。其中高精度时间间隔测试电路采用内插脉冲测量技术（分辨率：0.5ns），因此可以获得很高的相位测量精度，保证了系统同步程度的需要。
[0019] GPS 信号（或北斗）产生 100ns 精度时信号是不正常的，所以去抖动是必须的，为此本系统使用了标准方波，对多次测试值进行偏差估算，以及卡尔曼滤波器平滑处理标准信号的抖动，实现精确的频率偏差测量，通过偏差对铷原子振荡器电路发出的频率进行修正，其修正方式采用逐步逼近。为了更好地克服 GPS 的固有抖动，利用铷钟输出频率低漂移特性，逐步延长测量的取样时间，通过这些措施有力保证了频率驯服精度和相位同步精度。这种方式克服采用的移相模式的时间同步时的输出信号相位抖动的问题。
[0020] 本实用新型的有益效果是：可对铷钟进行及时修正，在外标准时间脉冲信号（1PPS）有效时，驯服内铷原子频率源，以获得很高的频率准确性，在外标准时间脉冲信号（1PPS）无效（或系统设置）时，提供高精度的频率保持精度，以确保系统维持在高精度的工作状态。最终输出信号的精度可以达到 1E-12。

附图说明
[0021] 图 1 为本实用新型结构示意图。
[0022] 图 2 为卡尔曼方程式图。
[0023] 图 3 为卡尔曼数学模型图。
[0024] 图 4 本实用新型驯服频率流程图。

具体实施方式
[0025] 下面结合实施例及附图，对本实用新型作进一步的详细说明，但本实用新型的实施方式不仅限于此。
[0026] 实施例一
[0027] 如图 1 所示：铷钟驯服系统，包括依次串联连接的标准信号发生模块、高精度时间间隔测试电路、中央处理器、铷振荡器电路，所述铷振荡器电路包括 10MHz 输出口和铷秒脉冲输出口，且所述高精度时间间隔测试电路与铷秒脉冲输出口连接。
[0028] 标准信号发生模块，为本铷钟驯服系统提供标准时间脉冲信号（1PPS）；
[0029] 高精度时间间隔测试电路，为测试标准时间脉冲信号（1PPS）和铷秒脉冲输出口发出的铷秒脉冲信号（铷 1PPS）的时间间隔，并计算出二者的时间差值，同时将时间差值信号
传输到中央处理器中处理运算；
[0030] 钨振荡器电路，在接收到中央处理器发出的修正控制信号后，根据修正控制信号，
做出修正，从而根据修正控制信号进行修正后发出接近标准时间脉冲信号（1PPS）的微秒脉
冲信号（伽 1PPS）；
[0031] 中央处理器，为根据时间差值信号，做出运算后对钨振荡器电路发出修正控制信
号。
[0032] 所述中央处理器为单片机。
[0033] 所述标准信号发生模块为标准秒脉冲信号发生器或 GPS 时间信号发生器或北斗
时间信号发生器。
[0034] 钨钟驯服系统还包括分别与 10MHZ 输出口和微秒脉冲输出口相连接的 10MHZ 输出
端子和微秒脉冲输出端子。
[0035] 所述微振荡器电路还包括恒温晶振，所述恒温晶振与微秒脉冲输出口连接。
[0036] 所述中央处理器与微振荡器电路之间还连接有数模转换器。
[0037] 所述数模转换器为 22 位数模转换器。数模转换器将单片机中的数字信号转为模
拟信号，以此控制微振荡器电路。
[0038] 钨振荡器电路是以超精细 $2.0 \leftrightarrow 1.0$ 跃迁频率 (6834.68750MHz) 作为
标准频率，控制恒温晶体振荡器的振荡频率，从而使晶振输出准确、稳定的频率给用户。
10MHz 晶体振荡器的输出信号分为两路。一路被伺服电路输出的 127Hz 正弦波调相后，再
经六次倍频到 60MHz，另一路经频率综合器得到频 5.3125MHz 的输出信号，两路信号在倍
频综合上相加，然后再送到谐振腔内的阶跃恢复二极管上，对 60MHz 信号进行 114 次倍频
得 6840MHz 的信号，该信号与 5.317460MHz 的信号相减后，得到 6834.6875MHz 的信号，进
入谐振腔派励铷原子基态 0-0 能级上的原子跃迁。当微波激励信号的频率与 $87Rb$ 原子
$2.0 \leftrightarrow 1.0$ 跃迁频率不相符时，则谐振器有一误差信号输出，误差信号经伺服电路
进行放大、滤波、解调得到一个直流的控制电压，并反馈到晶体振荡器进行频率自动微调，
使晶振输出的频率同铷原子基态 0-0 能级上的原子跃迁频率一样准确、稳定。晶振的输
出信号送到放大器区分为 10MHz 正弦信号供给用户。10MHz 正弦信号通过 10MHZ 输出口输出。
[0039] 钨振荡器电路产生的鲁秒脉冲（伽 1PPS）一部分输出给用户，一部分传输到高精度
时间间隔测试电路，经过高精度时间间隔测试电路将鲁秒脉冲（伽 1PPS）和标准时间脉冲信
号（1PPS）做比较和计算后，输出时间差值信号传输到单片机运算，单片机输出修正控制信
号，以此控制微振荡器电路修正其输出的鲁秒脉冲（伽 1PPS），最终达到微秒脉冲（伽 1PPS）
接近标准时间脉冲信号（1PPS）。
[0040] 其中，在高精度时间间隔测试电路中对测量误差分析采用如下原理：
[0041] $\Delta T \delta = G_s + S_{8}$
[0042] 其中 G_s—GPS 秒信号抖动随机误差，G_s 的不确定度是 ± 80ns；S_{8}—Rb 秒信号
漂移系统误差；
[0043] 时差测量真值的可信度：
[0044] $\Delta T/T = (\Delta T - \Delta T1)/t = (G_s + S_{82} - S_{81})/t$
[0045] 根据上式可知，系统测量精度与 G_s 和取样时间间隔有关；
假定 \(G_0 \) 的不确定度是 \(\pm 80 \text{ns} \)；

那么，得到 \(1 \times 10^{-12} \) 的测量精度，其时间间隔 \(t = 80 \times 10^{-12} \times 80000 \text{秒} \approx 1 \text{天} \)；

如图 2 所示：为了提高测量精度，只有改善 \(G_0 \) 的性能，最好的方法是卡尔曼算法。

卡尔曼算法：

模型方程:

\[X_k = X_{k-1} + w_k \]

其中 \(w_k \) 为系统噪声

\[Z_k = Z_{k-1} + r_k \]

\(r_k \) 为观测噪声

(1) 计算滤波初始值：

\[X_0 = \frac{1}{m} \sum_{i=1}^{m} X_i \]

即为前 \(m \) 个值求平均值

\[P_0 = \left(\frac{1}{m} \sum_{i=1}^{m} (X_i - X_0)(X_i - X_0) \right) / m \]

初始协方差

(2) 计算滤波值：

\[X_k = X_{k-1} + K_k (Z_k - Z_{k-1}) \]

\[K_k = P_{k-1} (Z_{k-1} - Z_k) \]

其中，\(Z_k \) 为滤波计算如图 3 卡尔曼数学模型所示；

其中，为初始的观测噪声，以后随着滤波的进行，观测噪声为自适应值。见图 2 滤波计算流程。\(\rho_0 = 50.0 \)。

\(\rho_0 \) 为系统噪声，此值可以根据反复试验，确定此值，此值基本上是常数，这里取 \(\rho_0 = 0.05 \)。\(0 < b < 1 \) 为遗忘因子，一般取 \(0.95 - 0.99 \)，这里取 \(b = 0.95 \)。

上图中的 \(Z_k \) 为观测序列值，在这里就为秒差值。

通过卡尔曼的数字滤波处理，将使 \(G_0 \) 有很好的改善，得到我们满意的 \(\pm 25 \text{ns} \)。

由上式可知 \(1 \times 10^{-12} \) 的频率测量精度所需的时间 \(25000 \text{秒} \)。

本实用新型中的频率驯服流程：

根据卡尔曼滤波的置信区间，测量精度，设置了 3 个频率驯服过程：

① 时差测量 Rb 秒产生；

② 初始化频率驯服，如图 4 所示；

③ 当时间间隔是 200 秒，算法如下：

\[\Delta F/F = (T_2 - T_1) / 200 \text{（单位 e-9）} \]

如果 \(\Delta F/F \geq 5 \times 10^{-10} \) 进行频率修正，设置 SF=-250，返回时差测量 Rb 秒产生；

\[\Delta F/F \leq 5 \times 10^{-10} \]

③ 当时间间隔是 300 秒，算法如下：

\[\Delta F/F = (T_2 - T_1) / 400 \text{（单位 e-9）} \]

如果 \(\Delta F/F \geq 3 \times 10^{-10} \) 进行频率修正，设置 SF=-150，返回时差测量 Rb 秒产生；

\[\Delta F/F \leq 3 \times 10^{-10} \]

③ 当时间间隔是 600 秒，算法如下：

\[\Delta F/F = (T_4 - T_1) / 600 \text{（单位 e-9）} \]

如果 \(\Delta F/F \geq 2 \times 10^{-10} \) 进行频率修正，设置 SF=-100，返回时差测量 Rb 秒产生；

\[\Delta F/F \leq 2 \times 10^{-10} \]

③ 当时间间隔是 800 秒，算法如下：

\[\Delta F/F = (T_4 - T_1) / 800 \text{（单位 e-9）} \]

如果 \(\Delta F/F \geq 1 \times 10^{-10} \) 进行频率修正，设置 SF=-50，返回时差测量 Rb 秒产生；

\[\Delta F/F \leq 1 \times 10^{-10} \]
F ≤ 1E-10，就顺序测量:

【0074】 \[\Delta F/F = (T_5 - T_1)/1000 \] （单位 e-9）

【0075】如果：\(\Delta F/F \geq 1E-10 \) 进行频率修正，设置 SF=-50，返回时差测量 Rb 秒产生；\(\Delta F/F \leq 1E-10 \)，就顺序测量（进入中精度测量）

【0076】③信号同步:

【0077】信号同步，系统采用移相式相位同步技术，将测量时差所需要的微秒脉冲信号（微秒秒）与输出的微秒脉冲信号（微秒秒）好好分开，这样可以直接移相式相位同步而不影响系统的测量机制。

【0078】采取上述方式，就能较好地实现本实用新型。
图 1

图 2
图 3
图 4