(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2013202007 B2

(54)

(51)

(21)
(30)

(31)

(43)
(43)
(44)
(71)
(72)

(74)

(56)

Title

Data selection and identification

International Patent Classification(s)

GO6F 12/02 (2006.01)

GO6F 12/06 (2006.01)

Application No: 2013202007 (22) Date of Filing: 2013.03.26

Priority Data

Number
61/615,469

Publication Date:
Publication Journal Date:
Accepted Journal Date:

Applicant(s)
Good Red Innovation Pty Ltd

Inventor(s)

(32) Date (33) Country
2012.03.26 us

2013.10.10

2013.10.10

2015.10.08

Price, Russell Francis;Scott, Timothy

Agent / Attorney

Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

Related Art
US 5051745 A
US 2008/0120333 A1

2013202007 22 Sep 2015

H:nlb\Interwoven\NRPortb ARDCC\NLB\8497685_1.doc-22/09/2015

Abstract

A method of selecting source data as part of a process of source data extraction, the
method being executed by one or more computer processors and including the steps of:
selecting at least a first portion of the source data; and assigning a variable to the first
portion of the source data to enable the first portion of the source data to be referred to and

extracted using the variable by the one or more computer processors.

2013202007 26 Mar 2013

Australian Patents Act 1990 — Regulation 3.2

ORIGINAL COMPLETE SPECIFICATION
STANDARD PATENT

Invention Title

nn

""Data selection and identification

The following statement is a full description of this invention, including the best method of
performing it known to me/us:-

Document1? - 26/3/13

2013202007 22 Sep 2015

10

15

20

25

30

H:\nlb\Interwoven\NRPortbhRDCC\NLB\8497685_1.doc-22/09/2015

Technical Field

This invention generally relates to methods for migrating source data to target data,
including, for example, validating source data, for example as part of a data migration from

a source application to a target application.

Background

Businesses wishing to upgrade their computer software generally replace a source
application with a new application. This generally involves having data previously created,
managed and/or controlled by the legacy (or source) application, managed and/or
controlled by the new, or target application. However, the internal data structures of the
data stores used by the source application and the target application are typically not
interchangeable, so a data migration from the source application data store to the target
application data store is generally undertaken. The data migration typically involves the
Extraction, Transformation and Loading (or "ETL") of data from the source application
data store into the target application data store. This process is sometimes referred to as
copying data from the source application into the target, or new, application. For small data
volumes, it can be cost effective to employ people to manually copy data from the source
application into the new application. However, for larger data volumes, an automated or

semi-automated data migration approach is typically employed.

The migration of data from a source application data store to a new application data store
represents a substantial undertaking for a business. Such migrations typically involve
many people, run for many months, and operate in two distinct phases: the first is the build
and test phase where the data migration software is created and proven; the second is the
actual execution of the data migration software (also known as the "Go Live" phase) which
prepares the new application for production use by populating the new application data
store with data from the source application data store. The "Go Live" phase can be
performed as a single event or implemented over an extended period. For example, an

insurance company could migrate its entire portfolio from its source application into its

2013202007 22 Sep 2015

10

15

20

25

30

H:\nlb\Interwoven\NRPortbhRDCC\NLB\8497685_1.doc-22/09/2015

new application in a single migration run, or it could run weekly migrations over the

course of a year, selecting policies as they fall due for renewal.

The build and test phase can involve multiple test executions of the data migration
software to ensure that a sufficient amount of the data in the source application data store
is migrated to the new application data store, and that the migrated data is accurate and
consistent with the legacy data. This often involves a time-consuming, iterative process
wherein the migration software is modified between multiple test executions to improve
the accuracy and completeness of the migration, until the migration software is sufficiently

accurate and complete to be used in the "Go Live" phase.

It is desired to facilitate the migration of data in a source application to a new or target
application, address or ameliorate one or more disadvantages or drawbacks of the prior art,

or at least provide a useful alternative.

Summary

In at least one embodiment, the present invention provides a method of selecting source
data as part of a process of source data extraction, the source data including a plurality of
data entries, each data entry including one or more values corresponding to respective
attributes, the method being executed by one or more computer processors and including
the steps of’

selecting at least a first portion of the source data, the first position consisting of
one or more data entries; and

assigning a variable to the first portion of the source data to enable the first portion
of the source data to be referred to and extracted using the variable by the one or more
computer processors,

wherein the selecting and the assigning is performed before any of the source data

is extracted.

Embodiments of the present invention also provide a method of selecting source data

accessible to a source application for use in a data migration generating target data

2013202007 22 Sep 2015

10

15

20

25

30

H:\nlb\Interwoven\NRPortbhRDCC\NLB\8497685_1.doc-22/09/2015

accessible to a target application, the source data including a plurality of data entries, each
data entry including one or more values corresponding to respective attributes, the method
being executed by one or more computer processors and including the steps of:

selecting at least a first portion of the source data, the first position consisting of
one or more data entries; and

assigning a variable to the first portion of the source data to enable the first portion
of the source data to be referred to using the variable by the one or more computer
processors in generating the target data,

wherein the selecting and the assigning is performed before any of the source data

is extracted for the migration.

Embodiments of the present invention also provide a method of generating target
data compatible with a target application from source data accessible to a source
application as part of a migration from a source application to a target application, the
source data including a plurality of data entries, each data entry including one or more
values corresponding to respective attributes, the method being executed by one or more
computer processors and including the steps of

selecting at least a first portion of the source data from a source data store, the first
position consisting of one or more data entries; and

assigning a variable to the first portion of the source data to enable the first portion
of the source data to be referred to using the variable by the one or more computer
processors in a subsequent generation of further target data from the source data,

wherein the selecting and the assigning is performed before any of the source data

from the source data store is extracted for the migration.

In at least some embodiments, the present invention also provides a system for
generating target data compatible with a target computing software application from source
data compatible with a source computing application as part of a migration from a source
computing application to a target computing application, the source data including a

plurality of data entries, each data entry including one or more values corresponding to

2013202007 22 Sep 2015

10

15

20

25

30

H:\nlb\Interwoven\NRPortbhRDCC\NLB\8497685_1.doc-22/09/2015

-3a-

respective attributes, the system comprising:

a source data store storing the source data;
one or more computer processors which:

select at least a first portion of the source data stored in the source data
store, the first portion consisting of one or more data entries; and

assign a variable to the first portion of the source data to enable the first
portion of the source data to be referred to using the variable by the one or more
computer processors in a subsequent generation of further target data from the
source data,
wherein the selecting and the assigning is performed before any of the source data

from the source data store is extracted for the migration.

In further embodiments, the present invention further provides a computer readable
medium containing computer-executable instructions which, when executed by a
processor, cause it to execute operations for generating target data compatible with a target
computing software application from source data compatible with a source computing
application as part of a migration from a source computing application to a target
computing application, the operations including the steps of’

selecting at least a first portion of the source data from a source data store, the
source data including a plurality of data entries, each data entry associated with one or
more values corresponding to respective attributes, the first portion consisting of one or
more data entries; and

assigning a variable to the first portion of the source data to enable the first portion
of the source data to be referred to using the variable by the one or more computer
processors in a subsequent generation of further target data from the source data,

wherein the selecting and the assigning is performed before any of the source data

from the source data store is extracted for the migration.

Brief Description Of The Drawings

Some embodiments of the present invention are hereinafter described, by way of example

only, with reference to the accompanying drawings, wherein:

2013202007 26 Mar 2013

10

15

20

25

11 nlbUnterwovemNR Portb\DC CYWLB\S018225 | .doc-26/03/2013

-4 -

Figure 1 is an architectural diagram of a data scoping and migration system in
accordance with an embodiment of the present invention.

Figure 2 is a relationship diagram illustrating key entity relationships which may
define a Data Scope Template.

Figure 3 is a table consisting of exemplary instances of Data Scope Templates.

Figure 4 is an illustration of a hierarchy of variables.

Figure 5 is an exemplary XML structure of an unresolved hierarchical Data Scope
Template.

Figure 6 is an exemplary XML structure of a resolved hierarchical Data Scope
Template.

Figures 7 and 7a are first and second portions, respectively, of an exemplary XML
structure of a resolved Data Scope Template including results which consist of Target Data
Keys (identifying target data entries), Comparison Data and failure data

Figure 8 is a flow diagram illustrating an exemplary process for constructing a Data
Scope Template using definition data, characteristic data, and hierarchies of sub-variables.

Figure 9 is a diagram illustrating an exemplary process for Source Data Key
resolution and data migration, including generation of a list of source entries, failure data,
source values and target values.

Figure 10 is an exemplary failure data and comparison report illustrating the use of
Comparison Data in failure data reporting.

Figure 11 is an exemplary financial reconciliation report illustrating the use of
Comparison Data in financial reconciliation.

Figure 12 is a schematic diagram of Comparison Data.

Figure 13 is an exemplary architecture diagram illustrating the architecture of a

computer system or processor suitable for use with embodiments of the present invention.

2013202007 26 Mar 2013

10

15

20

25

30

H:nlb\nterwovemNRPonbhDC CNLBAS018225_1.doc-26/03/2013

Detailed Description

Overview

As described above, data migration processes generally involve an ETL process. When
testing a data migration process, a portion or subset of data is selected from a source data
base for migration, and subsequently extracted. The portion or subset of data sclected from
the source database may be all of the contents of the database, or alt of a defined part of the
contents of the database. In some embodiments of the present invention, the extracted data
may be validated, to ensure that it does not contain irregular data (for example, a phone

number in an area code field). The validated data is then migrated.

Embodiments of the present invention provide a method for selecting a set of source
entries representing a portion of the source data, for subsequent extraction, and possibly
validation and/or migration to target data (which may be data compatible with a target
application, or data in an intermediate form). In this regard, the data migration may be the
complete migration from data compatible with a source application to data suitable for use
with the target application, or may be one of the migration steps within the complete
migration process (for example, the migration of source data to an intermediate form,
migration of data from an intermediate form to a form usable by the target application, or

migration of data between two intermediate forms).

When testing such migrations, it would be useful to specify a set of source entries
representing a portion of the source data, as this would enable the testing of the migration
software to focus on the behaviour of specific types of source data and migration,

extraction or validation logic.

For example, when migrating insurance data, if a developer had been allocated the specific
task of migrating motor vehicle insurance policies, then the developer may wish to select

only policies from the portion of insurance policies that relate to motor vehicles.

2013202007 26 Mar 2013

10

15

20

25

30

HAntb\UnterwovemNRPortbDCCANLBYS018225_ 1 doc-26/03/2013

Migrating policies outside of this portion would distract the developer, extend the duration

of the migration process and waste computer resources.

As another example, when migrating "live" production data, for example, when migrating
from one system to another, the requirement may be to migrate all, or only a portion of, the
available source data. If it were possible to simply and easily specify portions of source
data to which the migration would be applied, the data could be divided into portions to be
migrated in parallel, thus shortening the duration of the overall migration process. Source
data could also be divided into data migration phases, such as a "pilot" phase followed by
the balance of the data. In the insurance industry, policies could be migrated in weekly
phases as they fall due for renewal. Embodiments of the present invention facilitate source
data selection by providing a flexible, extendable and reusable scoping mechanism.
("Scoping" involves identifying the portions of source data to be used in a process, in this

case, an extraction and/or migration process.)

A Software Toolset in accordance with one embodiment of the invention provides the

ability to scope the data that is to be manipulated during the migration process.

Where data is to be extracted from a source database, embodiments of the present
invention provide for a computer-implemented method of selecting the source data, the
method including the steps of selecting at least a portion of the source data, and assigning
to this identified portion a variable. The portion of source data to be extracted may be
referred to using the variable, so that subsequent steps in the extraction process (including
any subsequent validation or migration processes) can use the variable to refer to the

portion of source data.

Similarly, where a portion of source data (being data accessible to and compatible with a
source application) is to be used in a data migration process (where that data migration
process generates target data, being data compatible with and accessible to a target
application), that portion of source data may be selected and assigned a variable. This

variable may be subsequently used in the data migration process to generate target data.

2013202007 26 Mar 2013

10

15

20

25

30

H nlb\InterwovenNRPorbhDCCINLBYS018225 1 doc-26/03/2013

-7

Where multiple migration runs are executed (for example, during the "build" phase, to
ensure that the migration logic is effective), the variable may be used in the subsequent
migration runs (that is, in subsequent generation of further target data from the source

data).

The variable may be assigned to the portion of the source data by means of a Data Scope
Template. As further explained below with reference to Figure 3, the Data Scope Template
332 may assign a variable (such as a "name") to data identifying the portion of the source
data. (Each row in Figure 3, apart from the header row, is a separate data scope template.)
The part of the Data Scope Template that identifies the portion of the source data is called
a Data Scope Definition 334. A Data Scope Template can contain multiple Data Scope
Definitions and can (alternatively or additionally) consist of one or more hierarchies of

variables 336.

Identification of the portion of source data to be assigned to a variable may involve
receiving identifying data that identifies the portion. This identifying data is generally
derived from operator input or configuration files. The identifying data may be stored in a
Data Scope Template after it has been received. As indicated above, such information
within a Data Scope Template 332 is called a Data Scope Definition 334. A Data Scope
Template may include a configurable mix of Data Scope Definitions 334. A first type of
Data Scope Definition consists of definition data 338 defining data entries within a Source
Data Store (for example, specific data keys in a database, such as policy numbers in a
database of insurance policies). A second type of Data Scope Definition is an interpretable
definition, which consists of characteristic data 340 defining data characteristics, wherein
the characteristic data 340 is used to identify by description data entries within a Source
Data Store. The characteristic data is interpreted to enable identification of specific data
entries. For example, characteristic data may define "10 % of motor vehicle policies" or

"all policies due to expire next month".

If an interpretable definition (that is, a definition including characteristic data) is used, the

characteristic data is resolved into a specific set of data entries within the Source Data

2013202007 26 Mar 2013

10

15

20

25

30

H:nlb\nterwoven\NRPortb'DC CINLBYS018225_1.doe-26/03/2013

-8-

Store. This resolution of characteristic data to specific data entries need only be done once.
A Data Scope Template having characteristic data may be modified to store or refer to the
resolved data entries, so that if the Data Scope Template is subsequently reused (for
example in a subsequent data migration), the resolved data entries may be used instead of
the characteristic data. A resolved Data Scope Template will therefore generally use only
definition data whenused as part of a migration process , all of the characteristic data

having been previously resolved.

One use of a Data Scope Template is to facilitate regression testing of the data migration
software or logic. Regression testing of the data migration may be achieved by comparing

the results of repeated use of a Data Scope Template in altered migration processes.

Data migration processes transform source values to generate interim and target values.
The complete migration involves a sequence of data transformations, and each
transformation generates an interim value, the final transformation generating a target
value. For each source value to be transformed, embodiments of the present invention
provide a method of recording value(s) that have been generated in the target system(s)
that correspond to the source value (including interim values stored temporarily during the
migration process in an intermediate form). Furthermore, embodiments of the present
invention provide a method of comparing the source, interim and target values. For
example, if "premium" is nominated as a value in an insurance data migration, then target
premium values can be reconciled to source premium values for each policy. This
facilitates auditing of the migration process. Where there is a variance, interim values can
be checked to see where in the migration process the failure occurred, aiding reconciliation

and debugging (rectification) of the data migration software or logic.

The following description primarily employs examples from the insurance industry for
ease of explanation and understanding of the invention. However, embodiments of the
invention may be used in the context of data migration in any industry; insurance data

migration is just one of these.

2013202007 26 Mar 2013

10

15

20

25

30

ElnlbMnterwoven NR Portb\DC CINLBASO 18225 _1.doc-26/03/2013

Definitions

The following terminology is used in this description:

Comparison Data is a collective expression for associated Comparison Values and their

corresponding Comparison Name(s). (See item 1202 of Figure 12.)

Comparison Name (see item 1204 of Figure 12) refers to a label corresponding to one or
more associated Comparison Values, and is recorded with its corresponding Comparison
Values 1206 in a Data Scope Template Execution Results file. A Comparison Name may
at least partially denote or describe its corresponding Comparison Values. Examples of
Comparison Names, in an exemplary insurance data migration context, include "premium

income”, "outstanding claims liability” or "claim payment", each of which corresponds to
g y pay p

one or more Comparison Values.

Comparison Result Data refers to data representing the results of comparing associated
Comparison Values (being Comparison Values associated with a common Comparison
Name). In the example described in the ‘Comparison Value’ definition below, the
Comparison Result Data for Comparison Name "outstanding claims liability” is generated
by comparing source Comparison Value of $10,000 (see item 1208 of Figure 12) to target
Comparison Value of $6,000 (see item 1210 of Figure 12). The Comparison Result Data
value is, therefore, $4,000. In another example, a Comparison Name may be "start date",
the source Comparison Value being "20-Nov-2011" and the target Comparison Value
being "22-Nov-2011". The Comparison Result may be a boolean value indicating whether
the source Comparison Value is the same as the target Comparison Value. Alternatively, or
in addition, the Comparison Result may be the difference between the source Comparison

Value and the target Comparison Value (e.g. 2 days).

Where a first migration process results in a first target Comparison Value (first target
value), and a second migration process results in a second target Comparison Value
{(second target value), Comparison Result Data may be generated by comparing the first

target value with the second target value.

2013202007 26 Mar 2013

10

15

20

25

30

Hintb\[nterwoven\NRPontbNDCC\NLB S0 18225 _1.doc-26/03/2013

-10 -

Comparison Value refers to an attribute of a data entry (see items 1206 of Figure 12). The
data entry may be a data entry in a Source Data Store (1208) or a Target Data Store (1210).
The data entry may also be an entry temporarily created during an extraction or migration
process. Multiple Comparison Values may be associated with each other where they are
derived from a common attribute of a common Source Data Store entry. For example,
during one or more steps of one or more executions of a migration process, interim or
temporary data entries may be generated from a common Source Data Store entry (to
facilitate auditing or testing of the migration process). If the migration process is
suceessful, a Target Data Store entry will be generated. Each of the temporary data entries
and the Target Data Store entries may have attributes in common with the Source Data
Store entry from which they have been generated, and these attributes are considered
"associated", and correspond with a single, common Comparison Name (see, for example,

item 1202 of Figure 12).

An associated set of Comparison Values 1206 will always include at least a source value
1208, and will also have target value(s) 1210 where the migration was successful. A first
migration may result in a first target value, and a second migration may result in a second
target value, both of which are examples of Comparison Values. As described above, an
associated set of Comparison Values may also include interim target values 1212
representing various stages of the migration process. The Comparison Values 1206 for a
Comparison Name 1204 (for example, outstanding claims liability) are useful in
determining where an error was introduced in the data migration process. For example, the
Source Data Store entry 1208 may have an attribute denoting an outstanding claims
liability, corresponding to the Comparison Name "outstanding claims liability". The
Comparison Value in the Source Data Store for this Comparison Name may be $10,000. If
the associated Comparison Value 1210 in the Target Data Store (also associated with the
Comparison Name "outstanding claims liability") is $6,000 (ie. a variance of $4,000), the
interim Comparison Values 1212 associated with the "outstanding claims liability"
Comparison Name can be reviewed to see where in the migration process the error

(variance) was introduced. Comparison Values may be persistently stored, facilitating the

2013202007 26 Mar 2013

10

15

20

25

30

Hnib\Interwoven\NRPortb I DCCANLBYS018225 _1.doc-26/03/2013

-11-

comparison of the results of two executions of the data migration process (which may be

used to generate Comparison Result Data).

Data Scope Characteristic refers to characteristic data which defines data characteristics,
and is used to identify data entries within a Source Data Store. It can take the form of a
data attribute of a Data Scope Template. It is interpreted and resolved to Source Data Keys
the first time that the Data Scope Template is used during an extraction or migration
process. An example of characteristic data in the context of a general insurance migration

is "10% of policies"; another example is "200 claims",

Data Scope Definition (see item 340 of Figure 3) is the collective expression for Source
Data Keys (definition data) (see item 338 of Figure 3) and Data Scope Characteristics
(characteristic data) (see item 340 of Figure 3). In the present embodiment, Data Scope

Definitions nearly always form part of a Data Scope Template.

Variable Hierarchy is an ordered set of variables linked in parent to child relationships.
A child can have an unlimited number of siblings within any hierarchy and an unlimited
number of generations of ancestors within any hierarchy. A child may participate in
multiple different hierarchies. A variable hierarchy may be implemented using a hierarchy
of Data Scope Templates. Child variables may be referred to as sub-variables, and

grandchild variables may be referred to as further sub-variables.

Data Scope Template is a computer-readable document, (see also the rows of Figure 3)
which may be an empty structure or contain one or more Data Scope Definitions, which
define data to be assigned to a variable. It may also (or alternatively) contain or refer to
other variables, and may contain or refer to a hierarchy of variables. As further described
below, a Data Scope Template generally assigns a variable to data defined by Data Scope
Definitions referred to in the Data Scope Template. It may (alternatively or in addition)
assign the variable to data defined, wholly or in part, by one or more sub-variables, or a

hierarchy of sub-variables including further sub-variables.

2013202007 26 Mar 2013

10

15

20

25

30

H.\nlbtInterwovenNRPortb RDCCWNLBYS018225 1. doc-26/03/2013

-12-

Migration is the movement of data between a Source Data Store and a Target Data Store,
including any transformation required to modify the data for storage in the Target Data

Store(s) and make it compatible with the target application.

Source Data Key refers to definition data which defines data entries within a Source Data
Store. It is generally a unique identifier. In an exemplary insurance context, a data entry

defined by a Source Data Key may be an insurance policy number or claim number.

Source Data Store refers to one or more repositories storing data in the configuration and
structure used by a source application and can include, for example, databases, data
warehouses and other data stores, including data stores accessible through WebService

application programming interfaces (APIs).

Target Data Key refers to a unique identifier which defines a data entry within a Target

Data Store.

Target Data Store refers to one or more repositories storing data in the configuration and
structure used by the new (or target) application and can include, for example, databases,
data warehouses and other data stores, including data stores accessible through
WebService APIs. The Target Data Store may store target data, where the target data is the
result of the complete migration process. Where target data is intermediate (and therefore

not in its final form), it may be stored in another storage location or device.

Figure 1 illustrates a data scoping and migration system 100. Migration system 100
generally includes Source Data Store 104, computer processor 106 and Target Data Store
108. Computer processor 106 may consist of one or more physical computer processors,
which may be physically and/or geographically distributed, or may be affixed to a common
logic board. Tt is a logical computer processor, which may consist of multiple processes or

threads executing on any number of physical processors.

2013202007 26 Mar 2013

10

15

20

25

30

Hnlb\nterwovemNRPorb\DCC\NLBYS 018225 _(doc-26/03/2013

-13 -

In the described embodiment, the computer processor 106 is a standard computer system
such as an 32-bit or 64-bit Intel Architecture based computer system, as shown in Figure
13, and the methods executed by the processor 106 and described further below are
implemented in the form of programming instructions of one or more software modules
1302 stored on non-volatile (e.g., hard disk) storage 1304 associated with the computer
system, as shown in Figure 13. However, it will be apparent that at least parts of the
processes described below could alternatively be implemented as one or more dedicated
hardware components, such as application-specific integrated circuits (ASICs) and/or field

programmable gate arrays (FPGAs).

The system 106 includes standard computer components, including random access
memory (RAM) 1306, at least one processor 1308, and external interfaces 1310, 1312,
1314, all interconnected by a bus 1316. The external interfaces could include universal
serial bus (USB) interfaces 1310, at least one of which is connected to a keyboard and a
pointing device such as a mouse 1318, a network interface connector (NIC) 1312 which
could connect the system 106 to a communications network such as the Internet 1320, and
a display adapter 1314, which is connected to a display device such as an LCD panel
display 1322.

The system 106 also includes a number of standard software modules, including an

operating system 1324 such as Linux or Microsoft Windows.

Source Data Store 104 and Target Data Store 108 may contain data in any form of
electronic storage. A database is a common type of repository. Interaction with a data
repository (such as Source Data Store 104 and Target Data Store 108) can be via
Structured Query Language (SQL), any other form of Application Programming Interface

(API), or any combination thereof.

Data Scope Templates — characteristic data and definition data

2013202007 26 Mar 2013

10

15

20

25

30

Hnlb\nterwoven'™NRPorbhNDC C\NLB\SG18225_1.doc-26/03/2013

-14-

As described above, Data Scope Template 102 specifies at least a portion of the source
data in Source Data Store 104 to be extracted or migrated (or from which target data, be
that data in an intermediate or final form, may be generated). It preferably takes the form
of a computer readable document. The selection of at least a portion of the source data
from which target data is to be generated (referred to in the art as "data scoping”) may be
achieved through definition data, which represents one or more fixed definitions
containing specific sets of Source Data Keys, characteristic data (Data Scope
Characteristics which are interpreted (i.e resolved) during an extraction or migration
process by the computer processor 106 to identify Source Data Keys, if they have not been
previously interpreted), a hierarchical collection of variables, sub-variables and/or further

sub-variables, or any combination of these.

Data Scope Templates 102, including characteristic data such as Data Scope
Characteristics, definition data such as Source Data Keys, and one or more variables,
including Variable Hierarchies (which could include sub-variables and further sub-

variables) can be maintained via user interface 112.

The characteristic data and definition data of a Data Scope Template 102 are stored in
repository 110. Repository 110 may also store Data Scope Template 102, possibly in a
relational table and/or eXtensible Markup Language (XML) form.

Upon execution of an extraction or data migration process, computer processor 106

retrieves Data Scope Template 102 from repository 110.

Resolution of characteristic data

On the first processing of Data Scope Template 102 by computer processor 106, any
characteristic data of the Data Scope Template 102 (and any characteristic data referred to
by the Data Scope Template 102, for example through child Data Scope Templates), is
resolved by computer processor 106 into definition data, which takes the form ofa specific

set of Source Data Keys. In other words, the computer processor 106 uses the

2013202007 26 Mar 2013

10

15

20

25

30

H:nlb\aterwoven\NRPortbiDCCANLBAS018225_1 doc-26/03/2013

-15 -

characteristic data to identify the specific data entries within the Source Data Store 104
that are to be extracted or migrated. This is achieved by passing the characteristic data to
data scope builder process 114. Data scope builder process 114 retums the definition data
determined from the characteristic data (the definition data taking the form of Source Data
Keys) to computer processor 106, which in turn writes the Source Data Keys into the Data
Scope Template 102 and includes them in a "run time data scope key list". The run time
data scope key list is a temporary list maintained by computer processor 106 that identifies
all of the Source Data Keys that will be used in an extraction or migration process. In one
embodiment, the data scope builder process 114 may write the definition data directly into

the Data Scope Template 102.

Generating and storing failure and Comparison Data

The specific Source Data Keys in the run time data scope key list are used by computer
processor 106 to scope the data for migration or extraction (that is, select the portion of the
source data to be extracted or migrated). As part of the data migration or extraction
process, a Data Scope Template Results Container 132 is constructed. It includes the Data
Scope Template 102 and may also include Data Scope Template Execution Results 130.
The Data Scope Template Execution Resuits 130 may contain Target Data Keys, failure
data and Comparison Data (representing Comparison Values associated with a Comparison
Name at various stages of the migration process) associated with each Source Data Key in
the Data Scope Template 102. Successfully generated target data is stored in one or more
Target Data Stores 108. For example, the target data may be simultaneously stored in a
Target Data Store associated with a data warehouse, and a Target Data Store associated

with an application for processing insurance policies,

At the conclusion of the data migration or extraction process, Data Scope Template Results
Container 132, consisting of Data Scope Template 102 (which includes any newly resolved
Source Data Keys), and Data Scope Template Execution Results 130 (which includes
Comparison Data, failure data and Target Data Keys representing target data entries), is

stored in repository 110.

2013202007 26 Mar 2013

10

15

20

25

30

Hinlbinterwoven\NRPortbhDCCANLB\S 018225 _| doc-26/03/2013

-16-

De-duplication of Source Data Keys

A specific Source Data Key representing a source entry may be referenced by multiple
Data Scope Definitions within the same Data Scope Template 102, or by any combination
of Data Scope Templates 102 within a Variable Hierarchy. In this circumstance, the
specific Source Data Key is only processed once for the data migration or extraction (that
is, target data is generated from the source data represented by the Source Data Key only
once). This is facilitated by the generation of a run time data scope key list, which
contains the Source Data Keys representing the source data to be processed. The run time
data scope key list is a set of source entries (Source Data Keys), where each source entry
corresponds to a data entry within the source data store, and is associated with one or more
variables, sub-variables or further sub-variables. The run time data scope key list is
processed so as to remove any duplicates. Any Comparison Data, failure data and Target
Data Keys stored in Repository 110 are associated with each Data Scope Template 102
which refers to the corresponding Source Data Key. In other words, where an extraction or
migration is successful, the system of the described embodiment receives one or more
respective target data entries generated from corresponding source data entries through the
extraction or migration process, and associates each of the respective target data entries
with the variables, sub-variables or further sub-variables associated with the corresponding
source data entry. Tn addition, any failure data generated as a result of an unsuccessful
extraction, validation or migration of source data entries is also associated with the
variables, sub-variables or further sub-variables associated with the corresponding source
data entries. Amongst other things, this allows each use of a Data Scope Template 102 to

be compared against prior uses (e.g. executions of the migration process).

For example, assume that insurance policies relating to motor vehicles is selected, and
assigned the variable "Car insurance". There are 10 relevant policies, each of which has a
corresponding key (Source Data Key) which identifies it.. Discounted insurance policies
are also selected, and are assigned the variable "Discounted”. There are 10 discounted

policies, 2 of which are also motor vehicle policies. A run time data scope key list is

2013202007 26 Mar 2013

10

15

20

25

30

H:\nlb\Interwoven\NRPortbhDC CYNLBAS018225_1.doc-26/03/2013

17 -

generated, and contains 18 Source Data Keys (each of which is associated with one or
more variables, sub-variables or further sub-variables). Two of those Source Data Keys
(relating to discounted motor vehicle insurance) are assigned to both the "Car insurance”

variable and the "Discounted" variable.

For each of the 18 Source Data Keys, data validation, extraction or migration will either
succeed or fail. Where data migration succeeds, target data is generated, and each Target
Data Key is associated with the variable or variables related to the corresponding Source
Data Key. So Target Data Keys generated from Source Data Keys relating to motor vehicle
insurance will also be assigned the variable "Car insurance". Similarly, where data
extraction, validation or migration fails, failure data is generated, and the failure data is
associated with the variable relating to the corresponding Source Data Key. If only 50% of
the Source Data Keys assigned the "Car insurance" variable are successfully extracted,
validated or migrated, then 5 of the Source Data Keys will have associated Target Data
Keys, and the remaining 5 Source Data Keys will have associated failure data. The "Car

insurance” variable will have a 50% success rate.

If one of the "Car insurance" Source Data Keys which is associated with failure data is also
assigned to the "Discounted" variable, it is not attempted to be re-extracted, re-migrated or
re-validated, but the failure data counts against (is assigned to) both the "Car insurance”

and "Discounted" variables.

If the Data Scope Template 102 is subsequently reused (in a subsequent migration process
or test process), the Source Data Keys stored in Repository 110 are used, avoiding the need

for any interpretable definitions (characteristic data) to be re-evaluated.

System 100 is intended for use by business analysts, developers and testers of data
migrations, as well as the support staff that execute "Go Live" data migrations resulting in

target applications being populated with data for production use by business.

2013202007 26 Mar 2013

10

15

20

25

30

H:nlb\InterwovemNRPorbDCCAWNLBYS018225_1 doc-26/03/2013

-18 -

The design is not bound to any specific industry. However, it is well suited to the needs of
complex financial applications such as those used by the general insurance (or "property

and casualty") industry.

Benefits of Data Scoping using variables

The advantages of using variables are realised during the development phase of a
migration project as well as during the production "live" migration. The advantages are as

follows.

1. The ability to select a portion of data (rather than all of the source data) means that
the migration process executes more quickly, allowing more test migrations to be executed
to prove the reliability and/or accuracy of the process. It also reduces the amount of

computer resources required during the development phase of a project.

2. The ability to define a set of persistent Source Data Keys (definition data) within a
Data Scope Template means that re-executing the migration process that uses that Data
Scope Template is efficient (as the source data does not need to be re-selected) and

accurate (as the same Source Data Keys are always selected).

3. During the development phase of a migration process it is common that a target
system has to be modified to support the source system data and that these modifications
are delivered incrementally. For example, in an insurance data migration, the target system
may support motor vehicle policies some months before it supports home and contents
policies. Without an effective data scoping mechanism, developers and testers have to
filter test results to remove failure data which is due to the target system not supporting the
particular source data. Such failure data can be distracting and may not be readily
differentiable. The ability to limit the migration process to portions of the source data
which are supported by the target system (and progressively increase the scope of source
data as the target system support is increased), significantly aids the development and

testing process.

2013202007 26 Mar 2013

10

15

20

25

30

H-nlbnterwoven' NRPorbhDC C\NLBYS0 18225 _1 doe-26/03/2013

-19-

4, Hierarchical Variables and Data Scope Templates greatly aid regression testing.
For example, they allow a project manager to insist that developers always include
regression test variables or Data Scope Templates when testing new software, and do not
promote the software from their development environments to the system test environment
until the regression test has been passed. From the developers’ perspective, this is simply a
matter of adding the regression test suite variable Data Scope Template as a sub-variable
or child of the Data Scope Template that he or she has built to unit test his or her new

program code.

5. Using a data scope builder 114 to resolve data sets (rather than having migration
programmers build it into the migration process) results in resolution algorithms that are
encapsulated, well tested and consistent. The algorithms are more easily maintained as
they are in one place. This encapsulation allows specialists, who understand the intricacies
of the source system, to be used to correctly interpret the characteristic data provided for

resolution.

6. The conventional method of identifying test data involves business analysts
identifying scenarios and asking data migration developers to provide data that meet these
criteria. This involves a risk of misinterpretation. The ability for business analysts and
testers to provide their own Source Data Keys (definition data) for inclusion in Data Scope
Templates reduces this risk of misinterpretation and allows the business to identify known
problem data. In the insurance industry, it means that a Data Scope Template may be
constructed from policies that data processing staff have identified as having problems or
being complex. This enables greater involvement by processing staff and management. It

also reduces reliance on developers, aiding productivity and reducing cost.

7. Several months prior to the conclusion of the development phase of a migration
project, a "code freeze" is usually implemented, whereby program code cannot be altered.
If data scoping logic were integrated into the validation, extraction or migration logic, it

too would be frozen, and no new scenarios could be introduced to further test the migration

2013202007 26 Mar 2013

10

15

20

25

30

1L nlbUnterwoven\NRPonbhDCC\NLBYS018225_1.doc-26/03/2013

-20-

process. By using definition data and characteristic data, new tests can be created

throughout the freeze period without changing program code.

8. The production of objective testing evidence (in the form of failure data,
Comparison Data (representing Comparison Values associated with a Comparison Name at
various stages of the migration process) and Target Data Keys (representing target data
entries)), allows the project manager to monitor the testing efforts of members of the
project team. For example, the project manager can sec whether a developer ran and
passed the regression test suite prior to submitting his migration logic changes for

promotion to the system test environment.

9. The execution of a migration task may not be trivial, especially if there are
constraints on the available computer resources (e.g. computer processors). The migration
process can take several days to execute and can involve complex set up and monitoring
steps requiring specialist input. The ability to have a multi-level hierarchy of variables or
Data Scope Templates extends the benefits of parent to child Data Scope Templates and
Variable Hierarchies. It enables test cases to be designed and assembled in component
form and executed in a single migration run. This allows for the interests of several
audiences (eg. developers, system testers, acceptance testers and project managers) to be
addressed in a single migration run, The accurate scoping and reuse of hierarchies proven
in earlier migration runs, and logging of failure data and Comparison Data reduces the

opportunity for human error to invalidate a migration run.

10. The production run of a migration process is expected to be "clean", having few, if
any, source data entries that, when attempted to be extracted, validated or migrated, will
result in failure data. When performance testing, it is useful to test with clean data samples
so that all data entries successfully pass through the entire extraction, validation and/or
migration process, accurately simulating the production run. Creating "clean” variables or

Data Scope Templates supports realistic performance testing.

2013202007 26 Mar 2013

10

15

20

25

30

H:tnlb\nterwoven\NRPortbhDCCANLEBAS018225_1.d0c-26/03/2013

221 -

11. The design of test scenarios (represented by selected portions of source data, ie
Data Scope Templates) that thoroughly test migration logic can be a complex and time
consuming activity. The ability to add existing variables or Data Scope Templates as

children of other variables or Data Scope Templates allows the reuse of existing scenarios.

12. The automated resolution of Data Scope Characteristics (i.e. characteristic data) to
specified data entries (i.e. Source Data Keys or data entries within the Source Data Store)
provides an efficient method of constructing test cases that accurately represent defined

scenarios.

13. Associating each Target Data Key with a Data Scope Template (represented by a
variable) and its corresponding source entry aids reconciliation as there is a clear link
between source data and target data entries. The link to variables (and their descendants)
aids analysis by category of the results of a migration run including analysis by Data Scope
Characteristic (eg. by entity type or product type), and assessment of the success of

regression testing and quality of newly introduced functionality in the target application.

14. Generating failure data and Comparison Data (representing Comparison Values
associated with a Comparison Name at various stages of the migration process), and
associating it with a variable provides the ability to analyse why particular source data
entries did not extract, validate or migrate, showing how and where the extraction,
validation or migration process broke down. This allows developers to assess what
changes are required to the extraction, validation or migration logic to address the issue,
alter the logic and rerun the extraction, validation or migration process. Comparing the
results (in the form of failure data and Comparison Result Data) of the same Data Scope
Template(s) executed at different points in time (with modified logic) enables regression
testing and trend analysis. Although this regression testing and trend analysis can be
undertaken manually, one advantage of embodiments of the present invention is the
facilitation of automated regression testing and trend analysis. Executing an extraction,
validation or migration process using Variable Hierarchies (or hierarchies of Data Scope

Templates) may show, for example, that whenever the claims development team modifies

2013202007 26 Mar 2013

10

15

20

25

30

Hanlb\mierwovenNRPortb"\DC CWNLLBYS0 18225 _1.doc-26/03/2013

-2

program code, the claims regression test fails, indicating that more rigorous testing is
required of this team prior to the deployment of their changes to the system test
environment. Such metrics are valuable to project managers in tracking the quality and

progress of a data extraction, validation or migration development team.

15. Storing the results in a repository allows the extraction, validation or migration
environment to be altered/rebuilt/replaced without loss of the metrics from prior extraction,

validation or migration runs.

16. Storing historical Comparison Data permanently in a repository facilitates and

simplifies the analysis of the impact on Comparison Data of altering the migration process.

17. The use of Comparison Data reduces the effort and cost of the data migration

recongciliation and auditing process.

Figure 2 is an entity relationship diagram illustrating exemplary relational database tables
that reside in Repository 110 for construction of Data Scope Template 102 (Data Scope
Template construction entities 201) and the storage of results of the use of Data Scope
Template 102 (Data Scope Template Execution Results 130) by computer processor 106 in
a data migration. The information stored in data tables within Data Scope Template
Construction Entities 201 1s used to generate the XML which forms Data Scope Template
102. DataScopeHeader 202 is the root level entity. Data Scope Template Execution Result
Entities 227 stores the results of using Data Scope Template 102. This schema stores the
variable assigned to a portion of the source data, keys representing source entries and
target data entries, characteristic data, definition data, failure data, source values and target

values.

The Data Scope Template Construction Entities 201 include DataScopeHeader 202,
DataScopeDefinition 204 and DataScopeHierarchy 208.

2013202007 26 Mar 2013

10

15

20

25

30

H:inlb\nterwoven\NRPorbDCC\NLEVS018225_ 1. doc-26/03/2013

223 -

DataScopeHeader 202 is uniquely identified by GUID 230 (globally unique identifier).

DataScopeHeader 202 contains a variable that is assigned to a portion of the source data.

Data Scope Characteristic Data 203 contains interpretable (characteristic) data that is used

to identify source data entries within the Source Data Store.

A row of data stored in DataScopeHeader 202 can optionally have zero, one or more
related data rows stored in DataScopeDefinition 204. DataScopeDefinition 204 provides

the storage location for users to specify the data range of a particular Data Scope Template.

When a row of data is added to DataScopeDefinition 204, the row may contain details to
create a fixed definition in the form of definition data which defines data entries within the
Source Data Store, or an interpretable definition in the form of characteristic data, which

may be used to identify data entries within the Source Data Store.

A fixed definition stored in DataScopeDefimtion 204 contains a reference to an entry
stored in DataEntityType 220 and provides a specific set of Source Data Keys (identifying

source entries) which are stored in DataScopeDefinitionKey 210.

An interpretable definition (in the form of characteristic data) stored in
DataScopeDefinition 204 contains a reference to an entry stored in DataScopeEntityType
220, DataScopeBuilderRegister 222, DataScopeUnitOfMeasure 224, and can optionally
contain a reference to DataScopeFilter 226. When characteristic data is first processed, the
definition is resolved into a specific set of Source Data Keys (representing source entries)
which can then be stored in DataScopeDefinitionKey 210. Subsequent use of the
DataScopeDefinition 204 resuits in the previously resolved Source Data Keys taking
precedence over the interpretable definition instructions (that is to say, the list of source

entries generated on first use will be used rather than reinterpreting the characteristic data).

DataScopeEntity Type 220 stores a set of data entity names relating to the primary data

entities in Source Data Store 104, and provides the mechanism for easily adapting a

2013202007 26 Mar 2013

10

15

20

25

30

Hnlb\nterwovemNRPorbWDCCINLBAS0 18225 |.doe-26/03/2013

S04

migration process to the specifics of different industries. For example, in the general
insurance context, primary data entities would typically include "Parties”, "Policies” and

"Claims".

DataScopeBuilderRegister 222 stores a set of algorithm names identifying Data Scope
Template resolution algorithms which are used to resolve DataScopeDefinition 204 into a
list of Source Data Keys pertaining to the user-chosen DataScopeEntityType 220 during
the execution of the migration process (that is, the algorithms which interpret characteristic
data to generate a list of source entries). The creation of Data Scope Template resolution
algorithms is typically a bespoke activity due to the high variability and industry specific
nature of Source Data Store 104. Registering the Data Scope Template resolution
algorithms in DataScopeBuilderRegister 222 allows non-technical users to easily select an
appropriate data reselution algorithm, and allows the User Interface 112 to be easily reused

in a variety of industries.

DataScopeUnitOfMeasure 224 stores a set of available measurement units that are applied
to DataScopeDefinition 204. Typical units of measure are "Percent" and "Units", allowing
the user to select a relative or absolute modifier for the value of units in

DataScopeDefinition 204.

DataScopeFilter 226 stores a hierarchical set of filtering constraint names. These
constraints typically relate to conceptual portions of data in Source Data Store 104. For
example, for a particular insurance entity of "Policy", there may be "Motor" products and
"Home and Contents" products, both of which can be added as DataScopeFilter 226
entries. Users can select filter constraints and these will be applied by the Data Scope
Template resolution algerithms referred to in DataScopeBuilderRegister 222. These are a

further form of characteristic data.

A row of data stored in DataScopeHeader 202 can optionally have zero, one or more

related entries stored in DataScopeHierachy 208. DataScopeHierachy 208 allows users to

2013202007 26 Mar 2013

10

15

20

25

30

H:nlb\InterwoventNRPortbNDCCINLBAS0L8225 1 doe-26/03/2013

_25 -

store parent to child relationships between rows stored in DataScopeHeader 202. This

allows the creation of hierarchies of variables, sub-variables, and further sub-variables.

The Data Scope Template Execution Result Entities 227 include DataScopeFailureData
232. Failure data is stored in DataScopeFailureData 232, linking the failure data to its
related Source Data Key (ie. source entry, which is in turn related to a variable referring
directly or indirectly to the Source Data Key) and making the failure data available for
regression testing analysis. Comparison Data is stored in DataScopeComparisonData 234,
making the Comparison Data available for regression testing analysis, audit and

reconciliation,

The entity relationship diagram illustrated by Figure 2 illustrates a data storage design
allowing several benefits of embodiments of the invention to be achieved. The ability to
define characteristic data using data scope characteristic data 203 supports the efficient and
accurate selection of portions of source data that meet user defined scenarios. The storage
of definition data in the form of Source Data Keys (in DataScopeDefinitionKey 210)
allows end users to specify source data entries that are known to have problems or are
complex. It also allows resolved Data Scope Templates to use the same Source Data Keys
when re-executed, facilitating a "like-to-like" comparison. The support for sub-variables
via a hierarchical structure supported by DataScopeHierarchy 208 aids efficiency in
testing, as variables and Data Scope Templates representing various data scenarios can be
easily reused. The storage of Source Data Keys and the corresponding Target Data Keys
(in DataScopeTargetKeys 230) representing target data entries allows users to easily
compare data entries in the legacy (source) and target applications, enhancing efficiency in
testing. The storage of Comparison Data in the form of source values and target values (in
DataScopeComparisonData 234), supports simpler and more efficient audit and
reconciliation processes. The support for failure data (DataScopeFailureData 232), allows
more efficient defect identification. Finally, the association of DataScope Characteristic
Data 203 with DataScopeComparisonData 234 and DataScopeFailureData 232 via
DataScopeDefinition 204 and DataScopeDefinitionKey 210 facilitates the analysis of

Comparison Result Data and failure data by category. This allows the efficient review by

2013202007 26 Mar 2013

10

15

20

25

30

H nib\InterwovenNRPorb\DCCANLBYS018225_1.doe-26/03/2013

.26 -

entity type and/or filter, providing data that facilitates the answering of questions such as
"what proportion of (entity type) claims have failure data?" and "do motor or home

policies have greater premium variances?".

Figure 3 is a table 300 illustrating various elements of exemplary Data Scope Template
Construction Entities 201. Each row of the table represents a single Data Scope Template

102.

Data Scope Template 302, which assigns the variable "10% of policies", illustrates a
definition defining a 10% selection of all policies. Data Scope Template 302 includes
characteristic data as illustrated in Figure 3, which the computer processor 106 uses to
select data entries (that is, Source Data Keys) within the Source Data Store (that is, Source
Data Store 104). This portion of source data (being 10% of all policies) is assigned a
variable, namely "10% of all policies", to enable this portion of the source data to be
referred to using the variable by one or more computer processors 106 in an extraction
process, including the generation of target data, and/or a generation of further target data

from the source data (that is, in a second or subsequent migration run).

Data Scope Template 306, which assigns the variable "6 claims”, similarly includes

characteristic data defining the data characteristics of 6 open claims.

Data Scope Template 310, which assigns the variable "Combined policies (.005%) and
claims (6)", illustrates an exemplary combination of characteristic data and a child Data
Scope Template. This Data Scope Template 310 includes characteristic data (.005% of
combined motor policies) in addition to a sub-variable, being "6 claims”. This sub-variable
was assigned by Data Scope Template 306, which identifies a second portion of the source
data (being 6 claims). In this way variable "6 claims" is reused in the definition of the first
portion of data associated with the "Combined policies (.005%), and claims (6)" variable,
eliminating the need to separately specify the "6 claims” definition within Data Scope

Template 310,

2013202007 26 Mar 2013

10

15

20

25

30

H:nlb\Interwoven\NRPortb\DCCYNLBS018225_1 . doc-26/03/2013

-27-

Data Scope Template 318, which assigns the variable "Regression Test 1", illustrates a
Data Scope Template containing references to data that is solely defined by sub-variables.
That is, Data Scope Template 318 assigns the variable "Regression Test 1" to definition
data defining data entries within Source Data Store 104, where the definition data includes
the sub-variables "10% of policies" and "6 claims" which are associated with "10% of
policies" (assigned by Data Scope Template 302) and "6 claims" (assigned by Data Scope
Template 306) respectively.

Data Scope Template 320, which assigns the variable "Qutstanding Claims", illustrates the
use of an alternative Data Scope Template builder 114, and in this case the builder 114

would only select "open" (as distinct from "finalised") claims.

Data Scope Template 322, which assigns the variable "Motor Policies 20% + 3 defects",
illustrates the use of multiple Data Scope Template definitions. The first defimition
(consisting of characteristic data) instructs the Data Scope Template builder 114 to restrict
policy selection to 20% of policies which relate to motor vehicles. The second definition
provides definition data in the form of a fixed list of 3 policy keys (representing source
entries) which happen to have project defects recorded against them. These policy keys
will have been inserted into the DataScopeDefinitionKey 210 table (as definition data) for

direct use.

Data Scope Template 328, which assigns variable "Regression Test 2", illustrates a
composite Data Scope Template containing both a Data Scope Definition (25 Home
Insurance policies — defined by characteristic data) and a list sub-variables. The inclusion
of the "Regression Test 1" variable as a sub-variable of the "Regression Test 2" variable
illustrates the ability to create multiple level Variable Hierarchies. In this context, the
variable "Regression Test 1" is a sub-variable of "Regression Test 2", and "10% of all

policies" and "6 claims" are both further sub-variables of "Regression Test 2".

Data Scope Template 330, which assigns variable "2 specified glass policies”, includes a

list of defined entries (definition data) selected to represent glass policies.

2013202007 26 Mar 2013

10

15

20

25

30

H:\nlb\Interwoven™NRPartbiDC CANLBAS0 18225 _| doe-26/03/2013

-98 -

A benefit of variables as illustrated in Figure 3 is that they allow the easy and reliable
selection of data that is of interest to an individual or a group. Whether selecting data on
the basis of its characteristics (eg. motor vehicle policies) or definition data representing
source entries (eg. a list of insurance policies with known defects), this embodiment of the
present invention allows the easy selection of required data, associates that data with a
variable for ease of identification and reuse, and excludes data that is not required (and so
might cause distraction). The use of a structured variable naming convention would further
improve human understanding of the purpose of each variable. A further benefit is that
variables within hierarchies may be reused, which is especially important in the context of

regression testing.

Figure 4 is a block diagram illustrating the composition of variables into a Variable
Hierarchy 400. It shows a hierarchy of variables, sub-variables and further sub-variables.
Each of the variables is assigned to a first portion of the source data by a Data Scope
Template. Variable hierarchies can be built up over time allowing users who are concerned
with development and testing to create and execute increasingly comprehensive test cases.

After a user creates (or assigns) Variable A 402 it can be used in isolation and have the
results of its use (including, for example, Comparison Data and failure data, and possibly
Target Data Keys) recorded against it in Data Scope Template Execution Results for
regression testing analysis. After a user creates or assigns Variable B 403, it can also be
used in isolation and have the results of its use recorded against it in Data Scope Template

Execution Results for regression testing analysis.

After a user creates a Data Scope Template which assigns Variable C 404 and makes a
parent to child relationship from it to Data Scope Templates which assign Variable A 402
and Variable B 403 respectively (making Variable A 402 and Variable B 403 sub-
variables of Variable C 404), the processing by computer processor 106 of the Data Scope
Template which assigns Variable C 404 will result in the use of all child Data Scope
Templates (and therefore of the variables they respectively assign, being Variable A 402
and Variable B 403)

2013202007 26 Mar 2013

10

15

20

25

30

HonibUnterwoven WRPorb\DCC\NLBYS 018225 1.doc-26/03/2013

-29.

While a variable (eg: Variable A 402) can be used directly, or indirectly via a Vartable
Hierarchy (eg: via Variable C 404), there is no difference in the recording of results in
repository 110. In each case the results are recorded against the variable in Data Scope
Template Execution Results 130, and may be used in subsequent extractions or migrations,

or regression testing analysis.

User created Variable Hierarchies can model a wide range of test scenarios. For example,
Variable G 408 has 4 direct sub-variables (Variables C-F), and when the Data Scope
Template by which it is assigned is processed, it will result in the processing of the Data
Scope Templates assigning all sub-variables and further sub-variables, including Variable

A 402 and Variable B 403. Variable N 410 exemplifies a further hierarchical composition.

The use of hierarchies of sub-variables and further sub-variables as illustrated within
Figure 4 provides a number of advantages. Firstly, it aids regression testing. For example,
it allows a project manager to insist that developers always include regression test
variables or Data Scope Templates when testing new software, and do not promote the
software from their development environments to the system test environment until the
regression test has been passed. Secondly, it allows numerous Data Scope Templates
representing the interests of different groups to be executed in a single test run. This is
important where resources (e.g. computer processors) are limited, and it may only be
possible to execute test migrations at night. A key benefit is reuse; the design of test
scenarios (represented by selected portions of source data) that thoroughly test migration
logic can be a complex and time consuming activity. The ability to add existing variables

as children of other variables allows the reuse of existing scenarios.

Figure 5 illustrates an exemplary XML structure 500 of an unresolved hierarchical Data
Scope Template corresponding to Data Scope Template 310, which assigns the variable
"Combined policies (.005%) and claims (6)" (see Figure 3). In other words, it illustrates
the use of characteristic data to select data entries within a Source Data Store, and

associating that characteristic data with a variable. XML structure 500 contains root

2013202007 26 Mar 2013

10

15

20

25

30

Hnlb\InterwovenWRPanbhDCCWNLBAS018225_1 doc-26/03/2013

-130 -

<DataScopeTemplate> tag 502. This tag assigns the variable (labelled as a "name")
"Combined policies (.005%) and claims (6)" to the data identified in the remainder of the
XML structure 500. <DataScopeTemplate> tag 502 has its own <DataScopeDefinition>
tag 504, which is characteristic data defining data characteristics (namely .005% of motor
vehicle policies). Root <DataScopeTemplate> tag 502 is hierarchical because it contains
child <DataScopeTemplate> tag 506 (assigning sub-variable "Claims (6)"), which also has
its own <DataScopeDefinition> tag 508 (identifying by means of characteristic data the
portion of the source data associated with the sub-variable). The DataScopeTemplate is
considered unresolved as it contains the parameters (i.¢. characteristic data) to resolve the
Data Scope Template (i.e. .005% of motor policies in <DataScopeDefinition> tag 504 and
6 unspecified open claims in <DataScopeDefinition> tag 508), and the
<DataScopeDefinition> tags are yet to contain any <Key> tags which store specific Source

Data Keys (representing source entries).

The use of XML to store and transport data, as illustrated in Figure 5 (and later in Figures
6 and 7) provides the data with strongly typed data structures, human readability, and
flexible data transport methods (i.e. the transport methods are not restricted to database
communication protocols). The use of XML also allows Data Scope Templates to be
stored as reference documents in version management systems or even technical
specifications. The XML structure is simple to interpret, so it is easy to write Data Scope
Builders 114 to navigate and read the XML structure. A data compression XML envelope
which compresses the DataScopeTemplate and DataScopeTemplateResultsContainer can

be easily added if desired.

Figure 6 illustrates an exemplary XML structure 600 of a resolved hierarchical Data Scope
Template, corresponding to Data Scope Template 310 assigning the variable "Combined
policies (.005%) and claims (6)" (see Figure 3). In other words, it illustrates a list of source
entries generated from characteristic data to select data entries within a Source Data Store,
wherein each source entry corresponds to a data entry within the Source Data Store, and is
associated with a variable. It is the same example used in Figure 5, but is resolved. The

Data Scope Template is resolved because the Data Scope Template resolution process has

2013202007 26 Mar 2013

10

15

20

25

30

Hnlb\nternvoven'NRPortb NDCCINLBYSO 18225 _1 doc-26/03/2013

231 -

been completed (that is, the computer processor 106 has invoked Data Scope Builders 114
to use the characteristic data to identify data entries (Source Data Keys) within the Source
Data Store) for each <DataScopeDefinition> tag as evidenced by the <Key> tags (606,
607, 608, 616) containing a list of source entries. XML structure 600 contains a root
<DataScopeTemplate> tag 602 and a child <DataScopeTemplate> tag 610. The
<DataScopeDefinition> tags 604 and 611 have had Data Scope Template resolution
algorithms applied to them that resolved characteristic data into specific Source Data Keys
(representing source entries). In <DataScopeDefinition> tag 604, ".005% of motor
policies” were determined to be 3 policies listed as <Key> tag(s) (606, 607 and 608). The
EntityType="Policy" attribute of <DataScopeDefinition> tag 604 identifies the contained
<Key> tags as being "Policy keys". Similarly, the resolved Source Data Keys of

<DataScopeDefinition> tag 611 returned 6 open claims listed in <Key> tags 616.

In this example, the Source Data Keys have been generated as lists of source entries from
characteristic data by data scope builders 114; receiving definition data defining the data
entries within the Source Data Store would have yielded the same result, but would have

obviated the need for data scope builders 114.

Figures 7 and 7a together illustrate an exemplary XML structure of an executed Data
Scope Template represented by a Data Scope Template Results Container. The XML
structure spans Figures 7 and 7a. It consists of a resolved hierarchical Data Scope
Template and extraction/validation/migration results. It includes Target Data Keys,
Comparison Data (representing Comparison Values associated with a Comparison Name at
various stages of the migration process) and failure data, and corresponds to Data Scope
Template 310 assigning the variable "Combined policies (.005%) and claims (6)" (see
Figure 3). It illustrates failure data representing migration failures, source data entries
associated with source values and target data entries associated with target values, where
the failure data, source values and target values are associated with variables which
correspond to source entries. It also illustrates associating target entries to the variable with
which the corresponding source data entry is associated. It is the same example used in

Figure 6, but it includes results.

2013202007 26 Mar 2013

10

15

20

25

30

H:AnlbiInterwoven'NRPonblDC C\NLBYS018225_1.doc-26/03/2013

-32.

The top level tag is <DataScopeTemplateResultsContainer> 701. At the next level there is
<DataScopeTemplate> 702 (as in Figure 6) and <DataScopeTemplateExecutionResults>
704. <DataScopeTemplateExecutionResults> consists of two key elements; <KeyMap>
706 which links the Target Data Keys to Source Data Keys (associating target data entries
with source entries) and <ResultSet> 714. <ResultSet> 714 contains failure data and
Comparison Data (representing Comparison Values associated with a Comparison Name at
various stages of the migration process) for each "Policy" Source Data Key. <Result> tag
716 relates to Source Data Key 4428218, <Result> tag 750 relates to Source Data Key
8855452 and <Result> tag 770 (Figure 7a) relates to Source Data Key 2833254. The
<Result> 716 consists of <FailureResultSet> 720 which shows the failure data for a
particular Source Data Key, and <ComparisonResultSet> 730 which shows the
Comparison Data for a particular Source Data Key. This Comparison Data illustrates
source values and target values (Comparison Values) corresponding to the Comparison
Name "premium". The source and target values may represent financial values associated

with a financial account relating to insurance premiums.

The <FailureResultSet> 720 and <ComparisonResultSet> 730 for Source Data Key
4428218 under <Result> tag 716 illustrate useful data that is stored in the
<DataScopeTemplateExecutionResults> 704. The subsequent use of this data is illustrated
in the regression analysis report of Figure 10 (row 1020) and the reconciliation report of

Figure 11 (row 1120).

<FailureResultSet> 720 shows a FailureType of "Invalid Start Date" (722). It illustrates
the generation of failure data representing a migration failure (caused by an invalid start
date) and the association of the failure data with the "Combined policies (.005%) and

claims (6)" variable referred to in <DataScopeTemplate> tag 702.

<ComparisonResultSet> 730 contains four <ComparisonResult> entries, labelled 732, 736,
740 and 744. <ComparisonResult> 732 contains a "Source" insurance premium financial

value of $3,125.15 (also shown in Figure 11 reference 1150), illustrating a source value

2013202007 26 Mar 2013

10

15

20

25

30

HnlbiInterwoven\NRPortbh\DCCYNLBIS018225 1 .doc-26/03/2013

-33 -

within a Source Data Store (StageName = "Sourcel™). <ComparisonResult> 736 contains
a "Extract” insurance premium value $4,068.86 (ref. 737) (also shown in Figure 11
reference 1152), illustrating a target value within an (interim) Target Data Store
(StageName = "Extract"). <ComparisonResult> 740 contains a zero "Transform"
insurance premium value (ref. 741) (also shown in Figure 11 reference 1154), illustrating a
target value within a target Data Store (StageName = "Transform"). <ComparisonResult>
744 contains a zero "Target" insurance premium (also shown in Figure 11 reference 1156),
illustrating a target value within a target Data Store (StageName = "Targetl"). "Extract”
insurance premium value 737 and "Transform" insurance premium value 741 are examples
of interim target premium values. Comparing the insurance premium values for each of

the <ComparisonResults> generates Comparison Result Data.

The <FailureResultSet> 752 and <ComparisonResultSet> 760 for Source Data Key
8455452 under <Result> tag 750 illustrate useful data that is stored by the
<DataScopeTemplateExecutionResults> 704. The use of this data is subsequently
illustrated in the regression analysis report of Figure 10 (row 1024) and reconciliation
report of Figure 11 (row 1124). It is a further illustration of the generation of failure data
representing a migration failure, a source value within a Source Data Store, a target value
within a Target Data Store and the association of each of the failure data, source value and

target value with the variable.

<Result> tag 770 for Source Data Key 2883254 is further illustrated in the reconciliation
report of Figure 11 (row 1144). It is an illustration of a successful migration of a source
value within a Source Data Store to a target value within a Target Data Store and the
association of the target data with the variable. It is successful as it does not contain any
failure data against the <FailureResultSet> tag 772, and the <ComparisonResulis> for the
insurance premium values are identical from the Source Data Store of 710.80 (774) to the

Target Data Store of 710.80 (776).

The data structure illustrated in Figures 7 and 7a offers several benefits. Firstly, it stores

information on failures and source values and target values, highlighting when and how the

2013202007 26 Mar 2013

10

15

20

25

30

H:nlb\nterwovenNRPortbhDCCANLBYS 018225 _1 doc-26/03/2013

=34 -

failure data and Comparison Result Data were generated; this simplifies the process of
"debugging” extraction transformation and/or migration software. Another benefit of the
use of an XML format is that it allows flexibility in the data transportation mechanism and
loading of the <DataScopeTemplateResultsContainer> 701 into a data repository 110. For
example the data repository 110 and computer processor 106 can be installed in separate
computer networks and a network bridge (e.g via File Transport Protocol (FTP})) can be
implemented to facilitate reading from and writing to the repository 110 . A further
benefit in storing migration result data in a form that associates it with the Source Data
Keys and Target Data Keys is that that it aids regression testing and reconciliation (as
subsequently illustrated in figures 10 and 11). The regression testing and reconciliation
reporting capabilities are further enhanced when the
<DataScopeTemplateResultsContainer> 701 data is stored in a relational database
structure as illustrated by the entity relationship diagram of Figure 2. A still further benefit
of storing <DataScopeTemplateResultsContainer> 701 data is that it provides objective
evidence that a Data Scope Template has been processed. This is very useful for project

managers when checking that testing protocols have been observed.

Figure 8 is a process diagram illustrating Data Scope Template construction process 800.
It illustrates the process of associating portions of source data with a variable by receiving
definition data, receiving characteristic data, and optionally generating a hierarchy of sub-

variables.

At step 801 the variable is created and header details are added to the Data Scope Template
(step 801). A hierarchy of sub-variables may be added (step 802) to create a hierarchical

link between one or more existing variables and the new one created at step 801.

At step 804, Data Scope Definitions may be added to the Template to enable the
identification of the data items to be included. The Data Scope Definition may be a fixed
definition in the form of definition data defining data entries within a Source Data Store

such as Source Data Store 104, or may be an interpretable definition in the form of

2013202007 26 Mar 2013

10

15

20

25

30

Hnlb\nterwovenNRPortbEDCCINLB1YS018225 1 doc-26/03/2013

-35.

characteristic data defining data characteristics which may be used to identify data entries

within the Source Data Store.

If the Data Scope Definition includes definition data, a Data Scope Entity is selected, and a
specific set of Source Data Keys (representing source entries) is loaded on instruction from
an operator (step 810). In this way, the Data Scope Definition of the Data Scope Template
may be manually resolved. Comparing the "Load Source Data Keys" step 810 to the
exemplary resolved hierarchical Data Scope Template 600 of Figure 6, if
<DataScopeDefinition> tag 604 were created as a fixed definition, the <Keys> tag(s) (606,
607 and 608) would be loaded on explicit instruction from an operator. In other words, the
<Keys> tag(s) (606, 607 and 608) would look the same, whether created from

characteristic data or definition data.

If the Data Scope Definition includes characteristic data, the computer processor 106
receives the characteristic data necessary for computer processor 106 to resolve the Data
Scope Template (step 812). The Data Scope Characteristics provided as part of step 812
may include: entity type (eg. "Policy", "Claim"); Data Scope Template builder
identification to determine the algorithm to be used in resolving the Data Scope Definition;
unit of measure (eg."units" or "percent"); number of units; and a filter (eg."Motor policies

only" or "All").

Figure 8 illustrates the simplicity and efficiency of the Data Scope Template construction
process. Having a simple process for the creation of variables and association of Source
Data Keys, characteristic data and even other variables (hence re-using prior Data Scope
Template construction effort), allows both technical and non-technical staff to use the

system.

Figure 9 is a diagram illustrating Source Data Key resolution and data migration processes.
It illustrates the generation of a list of source entries, the generation of failure data, source
values and target values, and the association of failure data, source values, target values

and target data entries with a variable and the corresponding source entries.

2013202007 26 Mar 2013

10

15

20

25

30

H:\nlb\nterwoventNRPortbDC CNLBYS018225 1. dec-26/03/2013

- 36 -

Upon initiation, the migration process reads Data Scope Template 102 from the repository
110, retrieving definition data defining data entries (Source Data Keys) and characteristic
data defining data characteristics (step 902). The Source Data Keys are loaded into a "run
time data scope key list" at step 911. As described above, the run time data scope key list
generated at step 911 comprises a set of source entries (Source Data Keys), wherein each
source entry corresponds to a data entry within the source data store, and is associated with

one or more variables, sub-variables or further sub-variables.

At step 905, a Data Scope Orchestrator program reads the characteristic data for each Data
Scope Definition and allocates the interpretation (or resolution) work to the defined Data
Scope Template builder program 114. As explained above, Data Scope Template Builders
114 are custom built programs designed to resolve characteristic data to specific Source
Data Keys from a particular source system. The Data Scope Template Builder 114 then
reads the instructions of the DataScopeDefinition 204 and selects a set of Source Data
Keys (representing source entries) for the nominated DataScopeEntityType 220 in
accordance with the instructions (ie. characteristic = data) of the
DataScopeCharacteristicData 203 (step 904). The Source Data Keys are added to the run
time data scope key list at step 911 and added to the Data Scope Template 102 (at step
907).

The process continues for each Data Scope Builder 114 referenced by a Data Scope

Definition in the Data Scope Template 102 (and any child Data Scope Templates).

Once all Data Scope Definitions have been resolved and loaded into the run time data
scope key list, a distinct set of Source Data Keys is created from the run time data scope
key list (step 906) by removing duplicate Source Data Keys. This distinct list represents

the source entries to be migrated by computer processor 106.

In the event that a specific Source Data Key appears in more than one Data Scope

Definition within a Data Scope Template, when the migration which refers to the Data

2013202007 26 Mar 2013

10

15

20

25

30

H:nlbinterwovenNRPortbiDC C\NLBYS018225_1.doc-26/03/2013

-37-

Scope Template is executed by computer processor 106, that Source Data Key will only be
processed once. However, the Source Data Key is associated with each Data Scope
Definition within which it appears, as is any target data, failure data and Comparison Data

associated with the Source Data Key.

Computer processor 106 migrates the portion of source data identified by the distinct set of

Source Data Keys (step 908).

If a migration failure generates failure data during the migration process, the failure data
and any Comparison Data (representing Comparison Values associated with a Comparison
Name at various stages of the migration process) for the failed data entries are recorded in
Data Scope Template Execution Results 130 (step 910), and are associated with the
variable assigned to the Data Scope Templates with which their corresponding Source

Data Keys (representing source data entries) are associated.

If data is successfully migrated (that is, if target data entries are successfully generated
from each of the data entries in the Source Data Store identified by the Source Data Keys),
the target data entries are loaded into the Target Data Store (eg. the Target Data Store 108)
(step 914).

The Target Data Keys and any Comparison Data for the migration run are recorded in
Data Scope Template Execution Results 130 (step 912) and associated with the variable
assigned by the Data Scope Templates with which their corresponding Source Data Keys

(source entries) are associated.

At the conclusion of the migration process, Data Scope Template Results Container 132,
including Data Scope Template 102 and Data Scope Template Execution Results 130 are

stored in repository 110 (step 916).

To illustrate the process in Figure 9, consider the XML structures in Figures 5, 6, 7 and 7a.

If the Data Scope Template in Figure 5 were being processed, it would be passed as

2013202007 26 Mar 2013

10

15

20

25

30

Hnlbuaterwoven\NRPortbDCCANLBASO18225_1.doc-26/03/2013

-38-

unresolved definitions (characteristic data) to the Data Scope Builders 114 (steps 904 and
905). This would generate the lists of source entries (keys 606, 607, 608 and 616} and
write them into the Data Scope Template 102 (as illustrated in Figure 6). In subsequent or
repeat processing, the Data Scope Template definition would already be resolved so once
the Data Scope Template is read at step 902, the Source Data Keys would be immediately
added to the runtime data scope key list (step 911), and the process would then proceed
directly to creating a distinct set of Source Data Keys (step 906). The Data Scope Template
Execution Results (illustrated by <DataScopeTemplateExecutionResults> 704) would be
stored as <KeyMap> 706 (linking Target Data Keys to Source Data Keys, including
associating the one or more respective target data entries with the one or more variables,
sub-variables or further sub-variables to which the corresponding source entry is
associated), <FailureResultSet> 720 (that is, failure data, associated with the one or more
variables, sub-variables or further sub-variables to which the corresponding source entry is
associated) and <ComparisonResultSet> 730 (Comparison Data, consisting of source

values and target values).

The process illustrated by Figure 9 has several advantages. [t accurately selects data for
processing based on characteristic data and definition data. It processes each source entry
once, regardless of how many Data Scope Templates within a hierarchy contain it, aiding
processing efficiency. It records Target Data Keys, providing a link between source and
target systems. Furthermore, it records Comparison Data that can be used for reporting
purposes and data (metrics) analysis as is subsequently illustrated in Figure 10 and Figure

11.

Figure 10 is a table 1000 illustrating the use of Comparison Result Data in a regression
analysis report. It illustrates the use and usefulness of failure data and source values, and
the comparison of source data from two migration runs. The report compares summarised
failure data resulting from two uses (on 20-Nov-2011 (1004) and 21-Nov-2011 (1006)) of
the variable "Combined policies (.005%) and claims (6)" (labelled 1002) in a migration.

The report presents the financial impact of the failure data by showing the summarised

2013202007 26 Mar 2013

10

15

20

25

30

HnibAInterwovemNRPortbADCCYWNLBYS0 182251 doc-26/03/2013

-39

Comparison Data and Comparison Result Data for each failure. In this instance the source

value relates to insurance premium source values.

It highlights the use of failure data to show where (as indicated by "Stage" 1008) and why
(as indicated by "Failure Type" 1009) failures occurred in the migration process. The
information illustrated in Figure 10 has several benefits. Firstly, it can be used to prioritise
the order in which errors are to be addressed (eg. address first those with the greatest
materiality (impact on aggregated source values "Use 2 Comparison Value Impact” 1013)
or highest count ("Use 2 Failure Count" 1011)). Secondly, the Stage 1008 at which the
failure occurred indicates project progress. For example, if all failures were in the "TLoad"
stage, this would suggest that the "Extract” and "Transform" stages had been executed.
However, if all failures were in the "Extract” stage, then the project manager would not be
able to assess the robustness of the "Transform" and "Load" stages. Thirdly, it shows the
impact of changes to migration software, indicating whether the team responsible is
improving the software. For example, row 1020 shows an improvement, as the Failure
Count movement 1012 reflects a reduction in the failure count from Use 1 (1010) to Use 2
(ie. from 1 error to zero). Zero errors is typically the desired result, so this report illustrates
an improvement from Use 1 1014 to Use 2 1015. "Comparison Value Impact Movement"
1016 of (3,125.15) reflects a reduction from Use 1 1014 to Use 2 1015 (ie. from a variance
of 3,125.15 to a variance of zero). Zero variance is typically the desired result so this report
illustrates an improvement from Use 1 1014 to Use 2 1015. The underlying data for "Use
1" values in row 1020 is illustrated in Figure 7, under <Result> tag 716. Similarly, the
underlying data for "Use 1" values in row 1024 is illustrated in Figure 7, under <Result>

tag 750.

Figure 11 is a table 1100 illustrating a detailed reconciliation report of source data to target
data based on Comparison Result Data for the "Premium" Comparison Name. It illustrates
the comparison of target values to source values to generate Comparison Result Data, the
use of failure data, and the association of target data entries to the variable to which the
corresponding source entry is associated. The report presents the results of using the

variable "Combined policies (.005%) and claims (6)" 1102 on November 20 2011 (1104)

2013202007 26 Mar 2013

10

15

20

25

30

Hinlb\Interwoven\NRPortbDCCANLBAS018225_|.doc-26/03/2013

- 40 -

in a migration to target application "Targetl" (1106). It associates the source and target
values to the variable and source and target data entries, and compares the source and
target values producing Comparison Result Data. Furthermore it uses failure data to help

explain the Comparison Result Data.

For example, row 1120 shows that Source Data Key 1108 had a source premium 1150 of
3,125.15 and an extract premium 1152 of 4,068.86, indicating that a variance was
introduced during the extraction process. It has no Transform Premium 1154 or Target
Premium 1156, due to a failure in the extracted data . That failure was due to an "Invalid
Start Date" (1115). The impact of that failure variance 1116 and absolute variance 1117
(reflecting Comparison Result Data) is the difference between the Source Premium 1150
and Target Premium 1156. The underlying data in row 1120 is illustrated in Figure 7,
under <Result> tag 716. A further example is shown on row 1144. It shows that Source
Policy 2833254 has completely reconciled. Source, Extract, Transform and Target
Premiums are all equal, and the Variance and Absolute Variance are zero. The underlying

data in row 1144 is illustrated in Figure 7, under <Result> tag 750.

Whilst this example illustrates the loading a single Target Data Store, it could also be used
to report on variances on two Target Data Stores loaded simultaneously. For example, it
could report on the results of simultancously loading Target Data Stores associated with an

application for processing insurance policies, and a data warchouse.

This report has several benefits. It reduces the effort and cost of reconciliation by showing
the Stage 1114, Failure Type 1115 and financial materiality 1116 and 1117 of variances,
thus simplifying analysis. It reduces the effort and cost of the data migration audit process

by presenting Comparison Result Data in a clearly explained, granular format.

Many modifications will be apparent to those skilled in the art without departing from the

scope of the present invention,

2013202007 26 Mar 2013

Honlbnterwoven\NRPonb\DCCYNLEBYS018225_1 doc-26/03/2013

-41 -

The reference in this specification to any prior publication (or information derived from it),
or to any matter which is known, is not, and should not be taken as an acknowledgment or
admission or any form of suggestion that that prior publication (or information derived
from it) or known matter forms part of the common general knowledge in the field of

endeavour to which this specification relates.

2013202007 22 Sep 2015

10

15

20

25

30

H:\nlb\Interwoven\NRPortbhRDCC\NLB\8497685_1.doc-22/09/2015

-42 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of selecting source data as part of a process of source data extraction,
the source data including a plurality of data entries, each data entry including one or
more values corresponding to respective attributes, the method being executed by one or
more computer processors and including the steps of:

selecting at least a first portion of the source data, the first portion consisting of
one or more data entries; and

assigning a variable to the first portion of the source data to enable the first
portion of the source data to be referred to and extracted using the variable by the one or
more computer processors,

wherein the selecting and the assigning is performed before any of the source

data is extracted.

2. A method of selecting source data accessible to a source application for use in a
data migration generating target data accessible to a target application, the source data
including a plurality of data entries, each data entry including one or more values
corresponding to respective attributes, the method being executed by one or more
computer processors and including the steps of

selecting at least a first portion of the source data, the first portion consisting of
one or more data entries; and

assigning a variable to the first portion of the source data to enable the first
portion of the source data to be referred to using the variable by the one or more
computer processors in generating the target data,

wherein the selecting and the assigning is performed before any of the source

data is extracted for the migration.

3. A method of generating target data accessible to a target application from source
data accessible to a source application as part of a migration from a source application

to a target application, the source data including a plurality of data entries, each data

2013202007 22 Sep 2015

10

15

20

25

H:\nlb\Interwoven\NRPortbhRDCC\NLB\8497685_1.doc-22/09/2015

-43 -

entry including one or more values corresponding to respective attributes, the method
being executed by one or more computer processors and including the steps of’

selecting at least a first portion of the source data from a source data store, the
first portion consisting of one or more data entries; and

assigning a variable to the first portion of the source data to enable the first
portion of the source data to be referred to using the variable by the one or more
computer processors in a subsequent generation of further target data from the source
data,

wherein the selecting and the assigning is performed before any of the source

data from the source data store is extracted for the migration.

4. The method of any one of the preceding claims, wherein the step of selecting the
at least a portion of the source data includes one or both of:

receiving definition data identifying data entries within the source data store;
and

receiving characteristic data defining data characteristics, wherein the
characteristic data is used by the one or more computer processors to select data entries

within the source data store.

5. A method as claimed in claim 4, wherein the step of receiving definition data
includes the step of receiving one or more sub-variables, wherein each of the one or
more sub-variables represents one or more of’

a second portion of the source data, the second portion consisting of one or more
data entries; and

one or more further sub-variables.

6. A method as claimed in claim 5, wherein the one or more further sub-variables

includes one or more variables or sub-variables.

2013202007 22 Sep 2015

10

15

20

25

30

H:\nlb\Interwoven\NRPortbRDCC\NLB\8497685_1.doc-22/09/2015

-44 -

7. A method as claimed in any one of claims 1-3, wherein the step of selecting at
least a portion of the source data includes selecting a hierarchy of sub-variables,

wherein each of the sub-variables represents a portion of the source data.

8. A method as claimed in any one of the preceding claims further including the
step of generating a set of source entries, wherein each source entry corresponds to a
data entry within the source data store, and is associated with one or more variables,

sub-variables or further sub-variables.

9. A method as claimed in claim 8, further including the steps of:

recelving one or more respective target data entries generated from
corresponding data entries within the source data store; and

associating each of the one or more respective received target data entries with
the one or more variables, sub-variables or further sub-variables to which the

corresponding source entry is associated.

10. A method as claimed in claim 8, further including the steps of:

receiving one or more failure data entries associated with corresponding data
entries within the source data store, the failure data being generated as a result of an
unsuccessful extraction, validation or migration of the data entries within the source
data store;

associating each of the one or more failure data entries with the one or more
variables, sub-variables or further sub-variables to which the corresponding source entry

is associated.

11. A method as claimed in claim 8, further including the steps of:

attempting to generate one or more respective target data entries from each
corresponding data entry within the source database; and

if one or more respective target data entries is successfully generated from a

corresponding data entry within the source data store, associating the one or more

2013202007 22 Sep 2015

10

15

20

25

30

H:\nlb\Interwoven\NRPortbhRDCC\NLB\8497685_1.doc-22/09/2015

- 45 -

respective target data entries with the one or more variables, sub-variables or further
sub-variables to which the corresponding source entry is associated; and
if one or more respective target data entries is not successfully generated from a
corresponding data entry within the source data store:
generating failure data representing a migration failure; and
associating the failure data with the one or more variables, sub-variables

or further sub-variables to which the corresponding source entry is associated.

12. A method as claimed in claim 9 or 11, wherein each corresponding data entry
within the source data store is associated with a source value, and each respective target
data entry is associated with a target value, the method further including the step of
associating the source value with the one or more variables, sub-variables or further
sub-variables, and for each successfully generated corresponding target data entry,
associating the target value with the one or more variables, sub-variables or further sub-

variables.

13. A method as claimed 12, wherein each of the source values and target values

corresponds to financial value.

14. A method as claimed in claim 13, wherein each of the source values and target
values corresponds to one of:
the quantum of an outstanding claim; or

an insurance premium.

15. A method as hereinbefore described with reference to the Figures.

16. A computer-readable medium storing computer-executable instructions for

executing a method as claimed in any of the preceding claims.

17. A system for generating target data compatible with a target computing software

application from source data compatible with a source computing application as part of

2013202007 22 Sep 2015

10

15

20

25

H:\nlb\Interwoven\NRPortbhRDCC\NLB\8497685_1.doc-22/09/2015

- 46 -

a migration from a source computing application to a target computing application, the
source data including a plurality of data entries, each data entry including one or more
values corresponding to respective attributes, the system comprising:
a source data store storing the source data;
one or more computer processors which:
select at least a first portion of the source data stored in the source data
store, the first portion consisting of one or more data entries; and
assign a variable to the first portion of the source data to enable the first
portion of the source data to be referred to using the variable by the one or more
computer processors in a subsequent generation of further target data from the
source data,
wherein the selecting and the assigning is performed before any of the source

data from the source data store is extracted for the migration.

18. A system as claimed in claim 17, wherein the one or more computer processors:
extract data from the source data store;
transform data extracted from the source data store; or
load data extracted and transformed from the source data store into a

target data store using the assigned variable.

19. A system as claimed in claim 17, wherein the one or more computer processors
select data entries from within the source data store using one or both of:
definition data identifying data entries within the source data store; and
characteristic data defining data characteristics of data entries within the source

data store.

20 A system as claimed in claim 19, wherein the one or more computer processors
resolve the characteristic data to select data entries within the source data store for

subsequent extraction, transformation or loading.

2013202007 22 Sep 2015

10

15

20

25

30

H:\nlb\Interwoven\NRPortbhRDCC\NLB\8497685_1.doc-22/09/2015

-47 -

21. A system as claimed in claim 19 wherein the one or more computer processors
assign to the first portion of the source data a variable that is part of a variable

hierarchy.

22. A system as claimed in claim 21, wherein the variable hierarchy comprises one

or more sub-variables and further sub-variables.

23. A system as hereinbefore described with reference to the Figures.

24, A computer readable medium containing computer-executable instructions
which, when executed by a processor, cause it to execute operations for generating
target data compatible with a target computing software application from source data
compatible with a source computing application as part of a migration from a source
computing application to a target computing application, the operations including the
steps of’

selecting at least a first portion of the source data from a source data store, the
source data including a plurality of data entries, each data entry associated with one or
more values corresponding to respective attributes, the first portion consisting of one or
more data entries; and

assigning a variable to the first portion of the source data to enable the first
portion of the source data to be referred to using the variable by the one or more
computer processors in a subsequent generation of further target data from the source
data,

wherein the selecting and the assigning is performed before any of the source

data from the source data store is extracted for the migration..

25. A computer readable medium as claimed in claim 24 wherein the computer-
executable instructions include instructions which, when executed by a processor, cause
the processor to execute the steps of:

receiving definition data identifying data entries within a source data store; and

2013202007 22 Sep 2015

10

15

20

25

30

H:\nlb\Interwoven\NRPortbhRDCC\NLB\8497685_1.doc-22/09/2015

-48 -

receiving characteristic data defining data characteristics, wherein the
characteristic data is used by the one or more computer processors to select data entries

within a source data store.

26. A computer readable medium as claimed in claim 25, wherein the step of receiving
definition data includes the step of receiving one or more sub-variables, wherein each of
the one or more sub-variables comprises one or more of:

data identifying a second portion of the source data, the second portion
consisting of one or more data entries; and

one or more further sub-variables.

27. A computer readable medium as claimed in claim 26, wherein the one or more

further sub-variables comprises one or more variables or sub-variables.

28. A computer readable medium as claimed in claim 27 further comprising
instructions which, when executed by the processor, cause it to execute the step of
generating a set of source entries, wherein each source entry corresponds to a data entry
within the source data store, and is associated with one or more variables, sub-variables

or further sub-variables.

29. A computer readable medium as claimed in claim 28, further including instructions
which, when executed by the processor, cause the processor to execute the steps of:
generating one or more respective target data entries of said target data store
from corresponding data entries within the source data store; and
associating each of the one or more respective received generated target data
entries with the one or more variables, sub-variables or further sub-variables to which

the corresponding source entry is associated.

30. A computer-readable medium as claimed in claim 27, further comprising

instructions which, when executed by the processor, cause it to execute the steps of:

2013202007 22 Sep 2015

H:\nlb\Interwoven\NRPortbhRDCC\NLB\8497685_1.doc-22/09/2015

-49 -

attempting to generate one or more respective target data entries of said target
data store from each corresponding data entry within the source database; and
if one or more respective target data entries is successfully generated from a
corresponding data entry within the source data store, associating the one or more
5 respective target data entries with the one or more variables, sub-variables or further
sub-variables to which the corresponding source entry is associated; and
if one or more respective target data entries is not successfully generated from a
corresponding data entry within the source data store:
generating failure data representing a migration failure; and
10 associating the failure data with the one or more variables, sub-variables

or further sub-variables to which the corresponding source entry is associated.

2013202007 26 Mar 2013

1/13

Figure 1

112

/

Characteristics

User
interface

or Data Keys 110
. A/ Data
——»| Repository SouSrtcgre
T R 132
y jData Scopg :
5€ Template ,‘/
XML I Results I
:Containerv : v
; Template |y Returned__|Processor
| (XML) “l DCata Keys
- |
|
107 | !
| | Data Scope : Comparison Data,
| Template <= Failure Data & —
Execution | | Target Keys
130 | [Results (xmL) |
]
1

3 /
Target Data

Store

H:\nlb\Interwoven\NRPortb\DCCA\NLB\S0194387_1.dac

100

104

./

106

4« Return-—--p-

Data Keys

108

114

_/

!
Data Scopeg
Builder

2013202007 26 Mar 2013

2/13

Figure 2 201 ;

i Data Scope Template Construction Entities iiData Scope Templale
i dExecution Result [ntities :
208 i ;
| 230 ;
202 N DataScopeHeader Ly el bataseopatierarchy DataScopeTage(Keys <)
— Guid S 7 :

(Voriable) {sub-Variables) | | O'(
i 210
230

A\

204 DataScopeDefinitionKoy DataScopeComparisonData
HOm == =
\L ? {Data Entries) (K
DataScopeDefinition b~
freeniO N : ? :
] : - ‘
I PO === ! 5 :
! g ! bl i|DataScopeFaitureData 234 :
! i :
: : | e OF
{ i | 1 :
I 1 ! 1
: | : |
I
]
iDataScope Characteristic Dath d ! 232
5 y f . |
i i]
: 220 ! 1224 E
1 *]] ¢)
!] !] ;s -
= \ + : 203
H ! 1 1 \
i DatascopeEntityTypel E DataScopeUnitOfMeasurg |
i : H
‘ i
!]
)

HO-
H

DataScopeBuilderRegister DatuScopekilter

227 226 .

HAnIb\Interwoven\NRPortb \OCCA\NLB\5019487_1.doc

3/13

00e

oce 123 ,
A A S
U A . oee
YIN L9E°EPS V/N viN VN V/N Adl|04 s&31j0d $58)2 painads ¢
T 159] uO[Ssaiday ALES S A‘.I.\ g7¢
1
swie)s Ripuelsing
'$129.9p € + %07 Sel3|jod ._05_2_ T4 spuM YNEYSC| SWoH Adljod Z 159 uolssaiday
1
VINT9SLPEE €T |€ SICN VN V/N Rocd T
VN ue w8isd HnEjEds 010N AJtiod $39942p € - %07 59121104 010 | ' 44>
v/N 0L Juatlad sune|g uadg v/N WiED swiep BUIpUEISING ONW
swefdg 5101100 |6 %01 VN /N VIN| Y/N v/N 11521 LoIssa.98Y g —— B | €
SWIE S 5000 33134 UNBJEG| do10n faijoq (9) swiep pue (3%50¢°) sanod pouiqwo? lep————0 L€
VN 5 TN SWED USa0| wIN WS T T swep g l(m
/N o1 EIVCRIER] 1nejzd viN Ajed $313) 0t
PIOdJO %OT N
[SIUM | 24NSEIN Japling| 31141 3dAy Alug c0¢
(sajgouop-gns)| (sauu3 JouuN. {s31q0140A)
L i
ua4pliys hmt.ﬂ.mnu@ ?.U.N.GQ .u._ﬂm._tmh.ucgn‘&bx IWEN
o1e|dwa adoog e1eQ | SA9Y BIRQ uonuyaq 9ie|dwaadoos e1eQg 91e|dwa tadoog e1eg

\
8ce

¢I0CTEIN9C L00C0CTET0T

\

¢ 94n314

1.doc

YNRPorthADCCYNLBAS019487

hInterwaven

HAnlk

W 3IgeLEeA
HE 4 s|gelEA
g olqzlEA -
m 3 B|gelea — ob
..,u.l 3 S|gEHEA v S|qBMEA, -
< [31qeldep R o
Q sigenen J3lgqeuen
[GELEA e
H aIceLeA w.ov\k D S|qeliEA
wo.m N 3qeuep
OLvy /\‘
¥ 24n814
00v

¢I0CTEIN9C L00C0CTET0T

HAnlb\Interwoven\NRPortb \DCC\NLE\S019487_1.doc

2013202007 26 Mar 2013

5/13

500
Figure 5 /
Y,
/
502
"

<DataScopceTemplate Id="5" name="Combined policies {.005%) and claims (6)">
504 — <DataScopeDefinition 1d="50" Sequence="1"EntityType="Policy” Filter="Motor" Builder
="Default"UnitOfMeasureType="Percent” Units=".005" />
__—r <DataScopeTemplate Id="4" name="Claims (6}">
__r <DataScopeDefinition ld="45" Sequence="1"EntityType="Claim" Filter="" Builder
="0Open Claims"UnitCfMeasureType="Units" Units="6"/>
</DataScopeTemplate>

506
508

</DataScopcTemplate>

Figure 6

600

602 ?

N

<DataScopeTemplate 1d="5" namc="Combined policies {.005%} and claims {6)">
504 __ <DataScopeDefinition 1d="50" Sequence="1"EntityType="Policy" Filter="Motor" Builder
="Default"UnitGfMeasureType="Percent" Units=".005">
606 —— <Key>903212381</Key>
<Key>4428218</Key> +—- 607
» <Key>8455452</Key>
</DataScopeDefinition> 610
<DataScopcTemplate 1d="4" name="Claims (6)">/
611 —» <DataScopeDefinition 1d="45" Sequence="1"EntityType="Claim" Filter="" Builder
="Open Claims"UnitOfMeasureType="Units" Units="6">
616 <Key>CL2345</Key>
TR <Key>CL345</Key>
<Key>CL2727</Key>
<Key>CL984567</Key>
<Key>CL35755</Key>
<Key>CL35633</Key>
</DataScopeDefinition>

608

</DataScopeTemplate>
</DataScopeTemplate>

H:ArIb\Interwoven\NRPorto \DCCANLB\5019487_1.doc

2013202007 26 Mar 2013

6/13

Figure 7

701
Q <DataScopeTemplateResultsContainer 1d="101" name-"Cembined policies (.005%) and claims {6)

executed November 20, 2011 5t 11:03 am">
<DataScopeTemplate Id="5" name="Combined policies {.005%) and claims (6}"> «——702
..{As per Figure 6}
</DataScopeTemplate>
<DataScopeTemplateExecutionResults Id="1" DateTime="20-Nov-2011 at 11:03:023"> «— 704
706 .y <KeyMap EntityType="Policy” TargetName="Targetl"”>
<KeyPair SourceKey = "903212381" TargetKey= "Mot-903212381" />
<KeyPair SourceKey = "4428218" TargetKey = "Mot-579383247" />
<KeyPair SourceKey = "8455452" TargetKey = "Mot-873424356" />
</KeyMap>
714 * <ResultSet EntityType="Policy" >
<Result SourceKey="4428218"> «—716
720 — <FailureResultSet>
<FailureResult StageName="Sourcel"
" FailurcStage="Source” FailureType="Invalid Start Date" FailureDescription="Start date
20103131 is invalid"/> é
</FailureResultSet> B 2
-<ComparisonResultSet> a7
732 — 3 <ComparisonResult StageName= "Sourcel" Type="Source">

730

<CamparisonResultEntry Name="Premium" value="3,125.15"/>
736 </ComparisonResult>
Tk <ComparisonResult StageName="Extract" Type="Interim">
<CamparisonResultEntry Name="Premium" valug="4,086.86"/>

740 </ComparisonResult>
<ComparisonResult StageName="Transform" Type="Interim"> 137
244 <ComparisonResultEntry Name="Premium" value=)'/>
</ComparisgnResult>
<ComparisonResult StageName="Targetl" Type="Target"> /41
<ComparisonResultEntry Name="Premium" value=""/>
</ComparisgnResult>
</ComparisonResultSet>
</Result>
750 ——» <Result SourceKey="8455452">
<FailureResultSet>
<FaitureResult StageName="Sourcel" FailureStage="Source" FailureType="Invalid
752 Profit Centre” Description=" Profit Centre of of 9999 is invalid "/>

H:nlb\Interwoven\NARPortb \DCC\NLBY5019487 _1.dac

2013202007 26 Mar 2013

7/13

Figure 7a

</FailureResultSet>
760 ——» .<ComparisonResultSet >
<ComparisonResult StageName="Sourcel" Type="Source">
<ComparisonResultEntry Name="Premium" value="700.59"/>
</ComparisonResult>
<ComparisonResult StageName="Extract" Type="interim">
<ComparisonResultEntry Name="Premium" value="700.59"/>
</ComparisonResult>
<CompariscnResult StageName="Transform" Type="Interim">
<ComparisonResultEntry Name="Premium" value=""/>
</ComparisonResult>
<ComparisonResult StageName="Targetl" Type="Target">
<ComparisonResultEntry Name="Premium" value=""/>
</ComparisonResult>
</ComparisonResultSet>
</Result>
770 » <Result SourceKey="2833254">
<FailureResultSet />
-<ComparisonResultSet>
772 <ComparisonResult StageName="Sourcel" Type="Saurce">
<ComparisonResultEntry Name="Premium" value="710.80"/>
<fComparisonResult>
<ComparisonResult StageName="Extract" Type="Interim">
<ComparisonResultEntry Name="Premium" value="710.80"/>
</ComparisonResult>
<ComparisonResult StageName="Transform" Type="Interim">
<ComparisonResultEntry Name="Premium" value-"710.80"/>
</ComparisonResult>
<CamparisonResult StageName="Targetl" Type="Target">
<ComparisonResultEntry Name-"Premium" value="710.80"/>
</ComparisonResult> "\
</ComparisonResultSet> 776
</Result>
</ResultSet>
</DataScopeTemplateExecutionResults>
</DataScopeTemplateResullsContainer>

HAnIb\interwevenyNRPortbIA\DCCAMLB\5019487_1.doc

774

2013202007 26 Mar 2013

8/13

Figure8

{ Start } 800
v 801

Create variable ‘g
(Add header details)

|

A Continuing
TaoeT construction
A
!
Conslrulction X,
complete ~.c
302 804
| . Y 5
Add sub-variable Add Data Scope
(existing Data Scope Definition
Template)
4
Fixed Definition-<_>— Interpretable definition
Load Source Data Receive definition;
Keys - Entity Type |
k - Data Scope Builder
AN - Unit of Measure
810 - Filter
812
y
End

H:Anlp\Interwoven\NRPartb \DCCA\NLBYS015487 _1.due

2013202007 26 Mar 2013

Figure 9

902

Y

Start

Read Data Scope
Template(s}

9/13

911

Y

Add keys to run time
data scope key list

110

XML e REPOSItOTY,
retrieved
A
& New Data 904

Keys

l Data Scope Orchestrator Template builders
o w———passes unresolved —»

All Data Scope
Definitions resalved

Data Scope

P

916

Definition(s} to select Data ‘g
Builder source Keys Datascope ~ T L
905 I'Template Results
‘Container

New Data Keys

906

Create distinct key list / 3

for processing

, | Data Scope

207

908

Yy
Perform
migration

.
Success

A 4

910

Template
(XML)

by

Failure data and
Comparison Data

Target Data Keys & -—v—w—w——Ly

Y

Data Scope
Template
Execution

Results (XML)

Comparison Data

912

Distinct entries
Loaded into target

+— 914

e

H:AnIb\Interwoven\NRPortb \DCC\NLB\5019487 _1.doc

2013202007 26 Mar 2013

Figure 10

10/13

1000

1024

1002
Data Scope Template Combined policies (.005%) and claims (6) 4
name i}
04 —w» Use 1 Date 20 November 2011 at 11:03:023
¥ Use2 Date 21 November 2011 at 08:17:534
106 ' i
Usel Use 2 Comparison
Failure Usel Use2 Failure Comparison Comparison Comparison Value
Stage Fallure Failure Count Name Value Value - Impact
Failure Type Count Count Movement Impact Impact Movement
Futract Invalid Start Premium
- Date 1 0 -1 3,125.15 0.00 {3,125.15)
20 Extract | Invalid Fnd Date 1 0 1| Premium 475.84 0.00 (475.84)
Extract Invalid Profit Premium {700.59)
" Centre 1 -1 700.59 0.00
Transform Job Step I—ailed_ 4 0 Premium 19,487.33 19,487.33 0.00
Transform | Invalid Glass Premium
Type 1 0 1 _ 1915.76 0.00 | (1,915.76)
Mransform | invalid Property Premium
tlag 1 0 -1 2,218.97 0.00 | {2,218.97)
1008 1009 1010 1011 1012 1013 1014 1015 1016

HAnIb\Interwoven\NRPortb \DCC\NLB\5019487_1.doc

11/13

o
o
o
@\l ,
= Figure 11 1100
\O /
1@\
~ 1152 1154 .
- 1102 2
S Ny . = ; .
~ Data Scope Template name Comblned/polmes (.Oosfgdland claims (6)
< 104 —» Use Date 20 Noven;‘ber 2011 at 11:03:023 .
@\ Target Name | Target1]
o Source
o
o Data Target Data | Source Extract{ | Transforfy Target bsolute
~ D*——\»K:L\ Key Premium | Premiym| Premi Premium age Failure Type ariance
20 -
~a i S v Y v lnvalid Sta&/ v «l 7
4428218 | M(Q1-4428218| 3,125.15 | 4,068.86 0 0 | Extract Date 3,125.15 | 3,125.15
Invalid End
8248538 | MOT-8248538 475.84 475.84 0 0 | Extract Date 4/5.84 A4/5 84
124 -
1 Invalid Profit
8455452 | MOT-8455452 700,59 700.59 0 0 | Extract Centre 700.59 700.59
Jab Step
8846643 | MOT-8846648 312.51 300.00 300.00 0 | Transform| Failed 312,51 312,51
lob Step
8481236 | MOT-8481236| 3,079.85 | 3,475.07 | 4,437.33 01 Iransform! Failed 3,07¢.85 | 3,075.85
lob Step
8964534 | MOT-8964534| 2,635.36 | 3,224.19 | 3,224.19 0 | Transform| Failed 263536 | 2,635.36
30,077.5 lob Step
1859288 | MO1-1859288]13,459.57 | 14,285.15 5 0 | Transform| Failed 13,4559.57 113,455.5/
{nvalid Glass
1644768 | MOT-1644268| 1,915.76 } 2,409.14 | 2,403.14 0 | Transform| Type 191576 | 1,915.76
invalid ‘
Property
8869549 | MOT-8869549 1,915.76 | 2,219.14 | 2,219.14 0 | Transform| Flag 2,218.97 | 2,218.97
Reconciliation
issue at
3623484 | MOT-8623434 904.97 1 1,283.18 | 1,283.18 | 1,283.13 | Extract extract {378.21) 378.21
Reconciliation
issue at
5543495 | MOT-5543495 726.26 720.00 720.00 720.00 | Cxtract extract 6.26 6.26
1144 —m»| 2833254 | MOT-2833254 710.80 710.80 710.80 710.80 | NA NA 0.00 0.00
3641488 | M(OT-3641488 53212 532.12 53212 532.12 | NA NA 0.00 0.00
5381944 | MOT-5381944 510.30 510.30 510.30 510,30 | NA NA 0.00 0.00
Total 27,551.6%| 23,208.11

H:nIb\Interwoven\NRPotbNOCCYNL8\5019487 _1.doc

12/13

Oicl

clel

rocl

S

000'9%

000°9%

0000L$

0000.%

Aingel swied Buipueisino

¢I0CTEIN9C L00C0CTET0T

,<
9021

404"

ARIIE

H:Anlb\Interwoven\NRPur IbLNDCCANLBYS5019487 1.doc

2013202007 26 Mar 2013

Figure 13

13/13

1302 H

015 1324

HAnIb\Interwoven\NRPortb \DCCA\NLB\5019487_1.doc

_HDD
1304
< " pus 1316 >
i i i i i
CPU RAM
¥
1308 ¥ 1306 Jispiay
USB NIC adapter
1310 1312 1314
Iy
Y
keyboard/ N | display
mousc 1320 | 1322
1318

106

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

