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(57) ABSTRACT 
Described is a system for object tracking with integrated 
motion-based object detection and enhanced Kalman-type 
filtering. The system detects a location of a moving object in 
an image frame using an object detection MogS module, 
thereby generating an object detection. For each image 
frame in a sequence of image frames, the system predicts the 
location of the moving object in the next image frame using 
a Kalman filter prediction module to generate a predicted 
object location. The predicted object location is refined 
using a Kalman filter updating module, and the Kalman filter 
updating module is controlled by a controller module that 
monitors a similarity between the predicted object location 
and the moving object's location in a previous image frame. 
Finally, a set of detected moving object locations in the 
sequence of image frames is output. 
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OBJECT TRACKING WITH INTEGRATED 
MOTION-BASED OBJECT DETECTION 

(MOGS) AND ENHANCED KALMAN-TYPE 
FILTERING 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This is a Continuation-in-Part application of U.S. Non 
Provisional application Ser. No. 13/669,269, filed on Nov. 5, 
2012, entitled, “Motion-Seeded Object Based Attention for 
Dynamic Visual Imagery', which is a Non-Provisional 
Application of U.S. Provisional Application No. 61/589,781 
application, filed on Jan. 23, 2012, entitled, “Motion-Seeded 
Object Based Attention for Dynamic Visual Imagery.” 

This is also a Continuation-in-Part application of U.S. 
Non-Provisional application Ser. No. 13/743,742, filed on 
Jan. 17, 2013, entitled, “Method and System for Fusion of 
Fast Surprise and Motion-Based Saliency for Finding 
Objects of Interest in Dynamic Scenes', which is a Non 
Provisional Application of U.S. Provisional Application No. 
61/589,761 application, filed on Jan. 23, 2012, entitled, 
“Method and System for Fusion of Fast Surprise and 
Motion-Based Saliency for Finding Objects of Interest in 
Dynamic Scenes.” 

GOVERNMENT LICENSE RIGHTS 

This invention was made with government Support under 
U.S. Government Contract Number W31P4Q-08-C-0264. 
The government has certain rights in the invention. 

BACKGROUND OF THE INVENTION 

(1) Field of Invention 
The present invention relates to a system for object 

tracking and, more particularly, to a system for object 
tracking using motion-based object detection and an 
enhanced Kalman-type filtering. 

(2) Description of Related Art 
Object tracking remains an unsolved problem in the 

computer vision and machine learning Society. Many 
advanced approaches often rely on hand-crafted models and 
require complex computation, making them rather "expen 
sive for resource-restrictive and large-throughput-required 
applications. Motion-based object detection (MogS) tech 
nology is described in U.S. application Ser. No. 13/669.269 
(hereinafter referred to as the 269 application) and U.S. 
application Ser. No. 13/743,742 (hereinafter referred to as 
the 742 application), both of which are hereby incorporated 
by reference as though fully set forth herein. MogS is based 
on a simple, yet powerful, background modeling and learn 
ing approach. Given an online updated background model, 
moving objects can be detected simply by measuring the 
difference between the current frame and the background 
model. Nevertheless, MogS itself does not have tracking 
capability and, therefore, may miss detecting the objects in 
different places. 
The Kalman filter is a process that uses a series of 

measurements observed over time, containing noise and 
other inaccuracies, and produces estimates of unknown 
variables that tend to be more precise than those based on a 
single measurement alone, as described by D. Simon in 
“Kalman Filtering with State Constraints: A Survey of 
Linear and Nonlinear Algorithms, IET Control Theory & 
Applications, Volume 4, Issue 8, August 2010, pp. 1303 
1318, which is hereby incorporated by reference as though 
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2 
fully set forth herein. The Kalman filter is a widely used 
simple and efficient tracking technique. The conventional 
Kalman filter can be added into any object detection process 
to form a simple object tracking system. Using the target 
location detected by MogS, one could apply Kalman filter 
ing to predict and track the object's moving trajectory. 
However, the conventional Kalman filter is too simple to 
deal with the loss of tracking issue for MogS detection. 

Each of the prior methods described above exhibit limi 
tations that prevent them from being able to deal with the 
loss of tracking issue. Thus, a continuing need exists for an 
enhanced Kalman filtering process that improves motion 
tracking. 

SUMMARY OF THE INVENTION 

The present invention relates to a system for object 
tracking and, more particularly, to a system for object 
tracking using motion-based object detection and an 
enhanced Kalman-type filtering. The system comprises one 
or more processors and a memory having instructions such 
that when the instructions are executed, the one or more 
processors perform multiple operations. First, a location of 
a moving object is detected in an image frame of a sequence 
of image frames using a motion-based object detection 
MogS module, thereby generating an object detection. For 
each image frame in the sequence of image frames, the 
location of the moving object in the next image frame is 
predicted using a Kalman filter prediction module, thereby 
generating a predicted object location. The predicted object 
location is refined using a Kalman filter updating module, 
and the Kalman filter updating module is controlled by a 
controller module that monitors a similarity between the 
predicted object location and the moving objects location in 
a previous image frame. Finally, a set of detected moving 
object locations in the sequence of image frames is output. 

In another aspect, the system determines a spatial distance 
d between each object detection in a current image frame 
and the object detection in the previous image frame with the 
controller module. 

In another aspect, the system determines a dissimilarity 
metric diff between the predicted object location and a target 
image template stored in a historical template database. 

In another aspect, the system merges the spatial distance 
d with the dissimilarity metric diff to generate a combined 
dissimilarity measure D that quantifies the dissimilarity of 
the predicted object location with the moving objects 
location in the previous image frame. 

In another aspect, the system generates the combined 
dissimilarity measure D according to the following: 

+ (1 - a): diff, 

where Ce(0,1) is a constant Scalar, de0, BD1 is a constant 
Scalar, * denotes multiplication, and e represents an expo 
nential function. 

In another aspect, the system updates a background model 
comprising a plurality of pixels belonging to a background 
of an image frame. In each image frame, at least one moving 
pixel is detected by Subtracting the current image frame 
from the background model, generating detected moving 
pixels. The detected moving pixels are processed to reduce 
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noise. Blobs of foreground pixels are detected through 
morphological operations and blob detection, resulting in an 
object detection. 
As can be appreciated by one skilled in the art, in another 

aspect, the present invention also comprises a method for 
causing a processor to perform the operations described 
herein. 

Finally, in another aspect, the present invention also 
comprises a computer program product comprising com 
puter-readable instructions stored on a non-transitory com 
puter-readable medium that are executable by a computer 
having a processor for causing the processor to perform the 
operations described herein. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The objects, features and advantages of the present inven 
tion will be apparent from the following detailed descrip 
tions of the various aspects of the invention in conjunction 
with reference to the following drawings, where: 

FIG. 1 is a flow diagram illustrating an object detection 
and tracking system using motion-based object detection 
(MogS) and enhanced Kalman filtering (EKF) according to 
the principles of present invention; 

FIG. 2 illustrates a Kalman filter controller working with 
MogS detection according to the principles of the present 
invention; 

FIG. 3A illustrates a scene showing MogS object detec 
tion without EKF according to the principles of the present 
invention; 

FIG. 3B illustrates a scene showing MogS object detec 
tion with EKF according to the principles of the present 
invention; 

FIG. 4A illustrates receiver operating characteristic 
(ROC) curves for an electro-optical (EO) video comparing 
MogS detection results with MogS and EKF detection 
results according to the principles of the present invention; 

FIG. 4B illustrates receiver operating characteristic 
(ROC) curves for an infrared (IR) video comparing MogS 
detection results with MogS and EKF detection results 
according to the principles of the present invention; 

FIG. 4C illustrates receiver operating characteristic 
(ROC) curves for an EO video comparing MogS detection 
results with MogS and EKF detection results according to 
the principles of the present invention; 

FIG. 4D illustrates receiver operating characteristic 
(ROC) curves for an IR video comparing MogS detection 
results with MogS and EKF detection results according to 
the principles of the present invention; 

FIG. 4E illustrates receiver operating characteristic 
(ROC) curves for an EO video comparing MogS detection 
results with MogS and EKF detection results according to 
the principles of the present invention; 

FIG. 4F illustrates receiver operating characteristic 
(ROC) curves for an IR video comparing MogS detection 
results with MogS and EKF detection results according to 
the principles of the present invention; 

FIG. 5 is an illustration of a data processing system 
according to the principles of the present invention; and 

FIG. 6 is an illustration of a computer program product 
according to the principles of the present invention. 

DETAILED DESCRIPTION 

The present invention relates to a system for object 
tracking and, more particularly, to a system for object 
tracking using motion-based object detection and an 
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4 
enhanced Kalman-type filtering. The following description 
is presented to enable one of ordinary skill in the art to make 
and use the invention and to incorporate it in the context of 
particular applications. Various modifications, as well as a 
variety of uses, in different applications will be readily 
apparent to those skilled in the art, and the general principles 
defined herein may be applied to a wide range of embodi 
ments. Thus, the present invention is not intended to be 
limited to the embodiments presented, but is to be accorded 
with the widest scope consistent with the principles and 
novel features disclosed herein. 

In the following detailed description, numerous specific 
details are set forth in order to provide a more thorough 
understanding of the present invention. However, it will be 
apparent to one skilled in the art that the present invention 
may be practiced without necessarily being limited to these 
specific details. In other instances, well-known structures 
and devices are shown in block diagram form, rather than in 
detail, in order to avoid obscuring the present invention. 
The readers attention is directed to all papers and docu 

ments which are filed concurrently with this specification 
and which are open to public inspection with this specifi 
cation, and the contents of all Such papers and documents are 
incorporated herein by reference. All the features disclosed 
in this specification, (including any accompanying claims, 
abstract, and drawings) may be replaced by alternative 
features serving the same, equivalent or similar purpose, 
unless expressly stated otherwise. Thus, unless expressly 
stated otherwise, each feature disclosed is one example only 
of a generic series of equivalent or similar features. 

Furthermore, any element in a claim that does not explic 
itly state “means for performing a specified function, or 
“step for performing a specific function, is not to be 
interpreted as a “means' or “step’ clause as specified in 35 
U.S.C. Section 112, Paragraph 6. In particular, the use of 
“step of or “act of in the claims herein is not intended to 
invoke the provisions of 35 U.S.C. 112, Paragraph 6. 

Please note, if used, the labels left, right, front, back, top, 
bottom, forward, reverse, clockwise and counter-clockwise 
have been used for convenience purposes only and are not 
intended to imply any particular fixed direction. Instead, 
they are used to reflect relative locations and/or directions 
between various portions of an object. As such, as the 
present invention is changed, the above labels may change 
their orientation. 

Before describing the invention in detail, first an intro 
duction provides the reader with a general understanding of 
the present invention. Next, a description of various princi 
pal aspects of the present invention is provided. Finally, 
specific details of the present invention are provided to give 
an understanding of the specific aspects. 

(1) Principal Aspects 
The present invention has three “principal aspects. The 

first is a system for object tracking. The system is typically 
in the form of a computer system, computer component, or 
computer network operating software or in the form of a 
“hard-coded instruction set. This system may take a variety 
of forms with a variety of hardware devices and may include 
computer networks, handheld computing devices, cellular 
networks, satellite networks, and other communication 
devices. As can be appreciated by one skilled in the art, this 
system may be incorporated into a wide variety of devices 
that provide different functionalities. The second principal 
aspect is a method for object tracking. The third principal 
aspect is a computer program product. The computer pro 
gram product generally represents computer-readable 
instruction means (instructions) stored on a non-transitory 
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computer-readable medium Such as an optical storage 
device, e.g., a compact disc (CD) or digital versatile disc 
(DVD), or a magnetic storage device Such as a floppy disk 
or magnetic tape. Other, non-limiting examples of computer 
readable media include hard disks, read-only memory 
(ROM), and flash-type memories. 
The term “instructions' as used with respect to this 

invention generally indicates a set of operations to be 
performed on a computer, and may represent pieces of a 
whole program or individual, separable, software modules. 
Non-limiting examples of “instructions’ include computer 
program code (Source or object code) and "hard-coded” 
electronics (i.e., computer operations coded into a computer 
chip). The “instructions' may be stored on any non-transi 
tory computer-readable medium such as a floppy disk, a 
CD-ROM, a flash drive, and in the memory of a computer. 

(2) Introduction 
Object detection and tracking have wide applications in 

intelligence, Surveillance, and reconnaissance (ISR). Many 
modern technologies require hand-crafted object tracking 
models. These models are often very complex and require 
high computation, making them less attractive for resource 
limited platforms. Motion-based object detection technol 
ogy, or MogS, as described in the 269 application and the 
742 application, is computationally efficient and requires 
low memory. It has demonstrated good moving target detec 
tion performance in several projects. 

Nevertheless, MogS itself is only an object detection 
technology, which does not rely on any tracking mechanism. 
In practice, it was determined that MogS may miss detection 
in some frames. This is understandable because MogS is 
primarily a frame-by-frame detection approach. In addition, 
it was observed that MogS detection could drift away due to 
distraction, appearance change, or occlusion, for instance. 
These drawbacks called for additional processes to enhance 
and improve MogS object detection performance. 
The Kalman filter is a widely used simple and efficient 

tracking technique. A conventional Kalman filter can be 
added into any object detection algorithm to form a simple 
object tracking system. Using the target location detected by 
MogS, one could apply Kalman filtering to predict and track 
the objects moving trajectory. This can potentially track the 
objects location even when MogS sporadically fails to 
detect the object. However, the conventional Kalman filter is 
too simple to deal with the loss of tracking issue for MogS 
detection. To address this issue, the Kalman filter was 
enhanced by adding additional modules to control the Kal 
man updating process based on a spatial distance constraint 
and an appearance-based matching score. These added mod 
ules automatically detect the loss of detection (e.g., drifting 
away) and modify Kalman updating under certain condi 
tions. In experimental studies, it was found that the 
enhanced Kalman filter (EKF) described herein significantly 
reduced the missed detections and sometimes even re 
tracked the target after loss of tracking, as will be described 
in detail below. 

(3) Specific Details 
(3.1) System Overview 
According to the principles of the present invention and as 

shown in FIG. 1, the object tracking system comprises two 
components: a motion-based object detection component, 
Such as a MogS component 100, and an enhanced Kalman 
filter (EKF) component 102. FIG. 1 illustrates the compo 
nents and major processes in the object tracking system of 
the present invention. The MogS component 100 performs 
frame-by-frame moving object detection in an input video 
104. In a first step 106, the MogS component 100 maintains 
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6 
and online updates a background model that consists of 
static pixels belonging to the background. During a second 
step 108, in each new frame the moving pixel can be 
detected by subtracting the current frame from the back 
ground model. In a third step 110 of the process, detected 
moving pixels are further processed to reduce noise, and 
blobs of foreground pixels are detected through morpho 
logical operation and blob detection. 
The MogS component's 100 frame-by-frame detection 

serves as the evidence of moving objects locations in the 
EKF component 102. A Kalman filter prediction module 112 
of the EKF component 102 performs prediction of the 
objects location for the next frame, and a Kalman filter 
updating module 114 refines the predicted object location 
using the new evidence for the next frame. Since new 
evidence is not always available from the MogS component 
100 and sometimes the new evidence is not desired, a 
controller 116 is used to monitor the tracked moving object 
path and determine when and how to control the Kalman 
filter updating module 114. In addition, the parameters of the 
Kalman filter are online updated in a Kalman filter param 
eters updating module 118 so as to adapt to the dynamics of 
the moving object. The final output of the system is a set of 
detected moving objects locations 120 in different frames. 
Each of these processes/modules is described in further 
detail below. 

(3.2) Motion-Based Object Detection (MogS) 
The MogS process was previously described in the 269 

application and the 742 application. It is designed to detect 
moving objects in videos captured by static cameras. MogS 
maintains and updates a background model for each and 
every pixel in the image dimension. For each pixel, it builds 
a codebook that models different modes of pixel color that 
ever appeared at that pixel location, which is described in 
detail by Kyungnam Kim et al. in “Real-time foreground 
background segmentation using codebook model.” in Real 
Time Imaging, Volume 11, Issue 3, June 2005 (hereby 
incorporated by reference as though fully set forth herein). 
To better deal with color change and illumination changes 
due to light, view angle, and other factors, MogS dissemi 
nates RGB (red, green, blue) color to “color and “bright 
ness' components. A codeword is the center of a cluster of 
pixel values restricted by the cylinder feature space illus 
trated in the aforementioned reference. It corresponds to one 
mode of the pixel’s values. Multiple codewords compose the 
codebook that models the pixel’s values at one image 
location. All codebooks at different locations together form 
the background model, which is updated as new pixels 
values become available. The update of the background 
model is important, because natural background often 
undergoes slow changes. 

With the background model, foreground pixels can be 
easily detected by comparing the new frame with the back 
ground model. More specifically, for each pixel, its value is 
compared to the codewords based on the nearest-neighbor 
criterion. If no codeword is found close enough to the pixels 
value, the pixel most likely has not appeared at this location 
before and is likely to be in the foreground. Each pixel can 
be processed in parallel by comparing its value to its 
codebook. Individually detected foreground pixels will be 
further processed for reducing noise and be formed into 
groups using morphological operation. Blob detection 
detects groups of connected pixels via connected component 
analysis. The bounding boxes (i.e., detection boxes) of these 
detected blobs are the output of the MogS component (FIG. 
1, element 100), and they indicate the objects detected by the 
MogS component (FIG. 1, element 100). The bounding 
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boxes are used in the following EKF component (FIG. 1, 
element 102) for object tracking purposes. 

(3.3) Enhanced Kalman-Type Filtering (EKF) 
The conventional Kalman filter is a relatively simple and 

robust process for estimating a linear dynamic system based 
on noisy observations (i.e., evidence). It has wide applica 
tions in control, navigation, computer vision, signal process 
ing, and econometrics. The Kalman filter primarily consists 
of two stages: prediction and updating. In the prediction 
stage, the Kalman filter predicts the new states of the 
dynamic system based on the past learned model. When new 
evidence is available, the Kalman filter updates the predic 
tion to yield better estimation in the updating stage. 
When applied for object tracking, the conventional Kal 

man filter can interpolate missed object detection thanks to 
the predication stage. In other words, even without new 
evidence, the Kalman filter will still generate an estimate of 
the moving object’s new state. This property is valuable for 
frame-by-frame based object detection approaches including 
the MogS approach. It can solve the missed detection 
problem sometimes observed with MogS. 

However, the conventional Kalman filter cannot deal with 
gradual drifting of tracking due to distraction, error propa 
gation, or incorrect observation, for instance. Gradual drift 
ing usually does not violate the Smooth dynamics of the 
object's motion. The Kalman filter will be updated as usual 
but in the wrong direction due to incorrect observations. To 
address this issue, a controller (FIG. 1, element 116) was 
added that monitors the tracking drift and Supervises the 
Kalman filter updating module (FIG. 1, element 114). The 
controller (FIG. 1, element 116) monitors the similarity 
between the predicted object and its previous status based on 
the spatial distance and an appearance-based matching 
score. If the similarity falls below a predetermined thresh 
old, the prediction is most likely incorrect and the controller 
(FIG. 1, element 116) will modify the Kalman filter updating 
module (FIG. 1, element 114) so as to generate a better 
estimation. The approach is hereinafter referred to as an 
enhanced Kalman filter (EKF). The working flow of the 
EKF is illustrated by the flowchart in FIG. 2. Additional 
details are included in the following Sub-sections. 

(3.3.1) Modeling the Moving Object's Dynamic System 
In one aspect, the moving object’s dynamic system was 

modeled using a linear first-order motion model, as known 
to those skilled in the art of standard Kalman filter theory. 
The object’s status is characterized by its bounding box (i.e., 
detection box) defined by its top-left corner (x,y) and 
right-bottom corner (x,y), and a moving speed vector 
(dx.dy). Let X=(xxyy.dx.dy) denote the object’s state 
vector. The objects motion dynamics can be modeled 
according to the following: 

where F is the state transition model applied to the objects 
previous state vector, and w is a process noise that is 
assumed to follow a Zero mean multivariate Gaussian dis 
tribution N with covariance Q according to the following: 

The observation of the objects state can be modeled with 
a linear transformation with another Zero mean multivariate 
Gaussian distribution with covariance R according to the 
following: 

where H is the matrix that transforms the objects state into 
its observation and v' is the additive observation noise. 
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8 
(3.3.2) Kalman Filter Prediction and Updating 
Given the defined dynamic system and appropriate ini 

tialization, the Kalman filter iteratively runs prediction and 
updating to generate the refined estimation of the moving 
objects state. In the prediction stage, the Kalman filter 
generates the prediction of the object’s new state based on 
its updated dynamic model so far. Assuming there is no 
additional force to control the objects motion, the new state 
can be simply predicted according to the following: 

The estimate covariance matrix P that measures the 
accuracy of the state estimation is also predicted using the 
following equation: 

where T denotes matrix transpose. 
In the updating stage, the Kalman filter uses the objects 

location detected by the independent MogS approach as the 
observation Z, of the object's state and refines the Kalman 
filter prediction to generate Smooth tracking results. Stan 
dard Kalman filter updating consists of several processes. 
First, the measurement residual is calculated according to 
the following: 

Next, the residual covariance matrix S is calculated accord 
ing to the following: 

Then the optimal Kalman gain is calculated according to the 
following: 

Finally, the object’s state is updated according to the fol 
lowing: 

and the posteriori estimate covariance is updated according 
to the following: 

where I is the identity matrix. 
To start the Kalman filtering according to the principles of 

the present invention, the filter is initialized. Described 
below are the matrices used as initialization for experimental 
studies of the present invention. However, as can be appre 
ciated by one skilled in the art, the non-limiting example 
presented below should not be considered as a fixed initial 
ization process for different tasks. The conventional Kalman 
filter also needs some initialization. How to initialize the 
Kalman filter depends on the design and implementation for 
a specific task. 

Appropriate initialization is important and often requires 
cross validation or empirical adjustment according to the 
task. In one aspect of the present invention, manual detec 
tion is used for the first frame to initialize the object state 
vector x". Nevertheless, other form-based object detection 
methods, such as those that use saliency for object detection, 
can replace the manual detection process to initialize the 
object state. Saliency for object detection is described by Liu 
et al. in “Learning to Detect a Salient Object' In Proceedings 
of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), Minneapolis, Minn., 2007, which is 
hereby incorporated by reference as though fully set forth 
herein. The matrices used in Kalman filtering for the present 
invention were empirically initialized according to the fol 
lowing: 
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After initialization, for each new incoming frame, the Kal 
man filter sequentially does prediction and updating using as 
the above equations and generates the object's tracking 
results based on MogS frame-by-frame detection. 

(3.3.3.) Kalman Filter Controller 
The Kalman filter works well when the object undergoes 

linear Smooth motion and the observation is not significantly 30 
corrupted due to noise or other reasons. It can interpolate the 
object’s moving location to generate a smooth trace of 
motion. Even when MogS misses detecting the object spo 
radically, the Kalman filter can often estimate the objects 
location along its moving trajectory. 35 

Nevertheless, the conventional Kalman filter may also fail 
when the MogS detection is too noisy and incorrect. As a 
non-limiting example, the conventional Kalman filter may 
fail when there is distraction due to flying dust or other 
objects nearby, since MogS can detect them as moving 40 
objects. Such MogS detection gives incorrect information 
for the Kalman filter to update its dynamic model and its 
estimation of the objects true state. If MogS gives such 
incorrect detections continuously, the Kalman filter estima 
tion will gradually drift away from the object’s actual 45 
moving path, which leads to failed tracking. Therefore, 
according to the principles of the present invention, the 
conventional Kalman filter was enhanced by adding a con 
troller to ameliorate this issue. 
As illustrated in FIG. 2, the controller 116 is primarily 50 

responsible for monitoring the tracking quality and control 
ling the updating stage of the Kalman filter. The MogS 
component 100 processes the input video 104 as described 
above. To address the above issues due to incorrect obser 
vations, in a first step 200, the controller 116 first calculates 55 
the spatial distanced between each bounding box detected 
by the MogS component 100 and the final tracked objects 
bounding box in the previous frame, where de0. 

In a second step 202, the controller 116 calculates a 
dissimilarity metric diff between the predicted object (i.e., 60 
the image enclosed by the bounding box detected by the 
MogS component 100) and its historical template(s) stored 
in a template database 204. The historical template is the 
object’s image inside its bounding box that was tracked 
previously. Multiple template images can possibly be used in 65 
the template database 204 as well. The dissimilarity metric 
diff is calculated based on the appearance difference of the 

10 
image patch of each MogS detection centered at the pre 
dicted location and the target image template in the template 
database 204. 

In a third step 206, the dissimilarity metric diff from the 
second step 202 and the spatial distanced from the first step 
200 are used to calculate a combined dissimilarity measure 
D. Since the MogS component 100 can possibly generate 
multiple detections for the new frame, in a fourth step 208, 
the system finds the one with the lowest combined dissimi 
larity measure D calculated by the third step 206. The fourth 
step 208 only searches the detections within a searching 
range not far away from the tracked target's location in the 
previous frame. The searching range is controlled by a 
predefined distance threshold (i.e., control of searching 
range 210). The fourth step 208 is used to find the one 
detection with the lowest combined dissimilarity measure D 
that corresponds to the most likely tracked target in the 
current new frame, which acts to control the Kalman filter 
212. Specifically, based on its dissimilarity metric diff (i.e., 
appearance difference from the second step 202) and its 
spatial distance d from the tracked target's location in the 
previous frame (i.e., from the first step 200), the controller 
116 adjusts the Kalman filtering process (i.e., Kalman filter 
prediction and updating, elements 112, 114, and 116) and 
generates the tracked object’s location in output 120. 

Different metrics can be used to calculate the dissimilarity 
metric diff (FIG. 2, element 202). Two approaches were 
tested in experimental studies. First, an intensity histogram 
vector was generated for the image patch and the template 
image. For this approach, let f and f, denote the histogram 
vector for the image patch and the template image, respec 
tively. In one aspect, the dissimilarity metric diff can be 
calculated as the geometric difference between two vectors 
according to the following: 

1 

diff = X(fi-fi), 

where f denotes the ith bin of the histogram f, and M is the 
number of bins. 

Second, the average intensity difference between the 
image patch and the template image can be used to calculate 
the dissimilarity metric diff according to the following: 

1 X X 

diff = iI2. II -1. 
x,y 

where N is the total number of pixels in the image patch I 
and the template image I. Besides these methods to calcu 
late the dissimilarity metric diff, other approaches are within 
the scope of the principles of the present invention. 
Once the spatial distanced (FIG. 2, element 200) and the 

dissimilarity metric diff (FIG.2, element 202) are calculated, 
the two measurements are merged by a linear combination 
to generate a new combined dissimilarity measure D (FIG. 
2, element 206) that quantifies the dissimilarity between the 
object’s predicted State and its previous tracked location and 
its historical template image(s) according to the following: 

1 - Ad 
1 + efd + (1 - a): diff. 
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where Ce(0,1) is a constant Scalar, de0, and BDO is a constant 
scalar. Given a fixed B, the first part of equation for D, 

1 - efd 
1.e., 1 + efd 

is a function of the spatial distance d. If one plots this 
function versus different values of d, a curve is obtained. 
When B is changed to a different value, the steepness of the 
curve changes. Thus, BDO is a constant scalar to control the 
steepness of the curve. 
The combined dissimilarity measure D (FIG. 2, element 

206) takes into account both the spatial distanced (FIG. 2, 
element 200) and the dissimilarity metric diff (FIG. 2, 
element 202). It is within the principles of the present 
invention to combine the two measures other than that 
described herein. Additionally, it is within the principles of 
the present invention to use the measures, but not combine 
them. If the predicted location is too far from the previous 
tracked location, the combined dissimilarity measure D 
increases. If the appearance in the predicted location is very 
different from the images in the template database 204, the 
combined dissimilarity measure D also increases. Therefore, 
this combined dissimilarity measure D makes a compromise 
of two factors in estimating the prediction quality. Thus, the 
goal is to find the lowest combined dissimilarity measure D 
(i.e., the most matched detection) in the fourth step 208 to 
be used for Kalman filter prediction and updating (elements 
112, 114, and 118). 
One can use the combined dissimilarity measure D as a 

metric to monitor the quality of Kalman filter prediction 
using the controller 116. If the combined dissimilarity mea 
sure D is below a predetermined threshold, the controller 
116 will adjust the Kalman filter updating process (FIG. 1, 
element 114) accordingly so as to improve tracking. More 
specifically, if the spatial distanced between the predicted 
location and the object’s previous tracked location is above 
the predetermined threshold (e.g., too far), the new MogS 
observation will be ignored and the previous MogS detec 
tion will be used instead. Thus, the Kalman updating will be 
temporarily prevented for this frame. If the combined dis 
similarity measure D is above the predetermined threshold, 
the appearance of the predicted object is too different from 
the template image or the predicted location is too far from 
the previous tracking; in Such cases, the Kalman filter is 
reinitialized to re-learn the objects motion dynamics. With 
these careful controls, the enhanced Kalman filter can ame 
liorate the problem due to drifting, and recover object 
tracking even when MogS detection is continuously incor 
rect for a short period. 

FIGS. 3A and 3B illustrate non-limiting examples of such 
situations. As shown in FIG. 3A, without the aid of EKF in 
processing a scene 300, MogS detection (represented by a 
detection box 302) drifts far away from a moving objects 
(e.g., vehicle 304) location. FIG. 3B depicts another scene 
306 which was processed by both MogS and EKF. As shown 
in FIG. 3B, the combination of MogS and EKF can still 
reasonably estimate the moving vehicle's 304 location, 
which is not too far from its actual location, as indicated by 
the detection box 302 being closer to the moving vehicle 304 
than in FIG. 3A. However, it is impractical to fully eliminate 
the impact of the drifting to completely resolve this notori 
ous tracking challenge. 

Finally, for long-period tracking, the object may undergo 
appearance changes due to turning or environment changes, 
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12 
for example. Referring back to FIG. 2, in such cases, it is 
necessary to build a historical template database 204 that 
stores multiple significantly different modes of the objects 
appearance. A clustering based approach is used, such as the 
hierarchical clustering method described in detail by Deng 
Cai et al. in “Hierarchical clustering of WWW image search 
results using visual, textual and link information,” in the 
proceedings of the 12th annual ACM international confer 
ence on multimedia, pages 952-959, 2004, which is hereby 
incorporated by reference as though fully set forth herein. A 
clustering based approach can be used to detect if there is 
already a template that is close enough to the current objects 
appearance (i.e., a target template). When tracking goes 
along, the historical template database 204 may be updated 
So as to take into account the appearance change of the 
object. When there are multiple templates, the dissimilarity 
metric diff (element 202) should be calculated as the mini 
mum appearance-based dissimilarity of the current object 
prediction with respect to multiple image templates in the 
template database 204. 

(3.4) Experimental Studies 
The object tracking system according to the principles of 

the present invention was tested on six video sequences. 
Among the six video sequences, three videos were captured 
from electro-optical (EO) cameras at different ranges, and 
three videos were captured from infrared (IR) cameras. Each 
video had about 1800 frames and contained one moving 
target in some frames. The resolution of the EO videos was 
640x480 pixels, while the resolution of the IR videos was 
640x512 pixels. MogS detection and EKF were run for 
object tracking on the aforementioned videos. The tracking 
results were compared with the ground-truth frame-by 
frame to generate receiver operating characteristic (ROC) 
curves. ROC curves were also generated for MogS detection 
results (without EKF tracking) for comparison. Therefore, 
referring to FIGS. 1 and 2, object tracking results using only 
the MogS component 100 were compared to object tracking 
results using the MogS component 100 with the EKF 
component 102. 

FIGS. 4A-4E show the ROC curves for each testing 
video, with each solid curve 400 representing the combina 
tion of the MogS component with the EKF component, and 
each dashed curve 402 representing the MogS component 
alone. FIGS. 4A, 4C, and 4E are ROC curves for the three 
EO videos, while FIGS. 4B, 4D, and 4F are ROC curves for 
the three IR videos. It was observed that when using the EKF 
component with the MogS component, the moving object 
detection accuracy was generally improved. Additionally, 
the false positive per frame was reduced. The ROC curves 
for the MogS component with the EKF component (solid 
curves 400) usually shifted to the top left and had a higher 
area under curve (AUC) than the ROC curves for the MogS 
component alone (dashed curves 402). These results dem 
onstrated that the EKF technique could generally boost the 
moving object detection performance on top of the MogS 
detection. When MogS is integrated with EKF, they form a 
complete object tracking system that is simple, easy-to 
implement, computationally efficient, and appropriate for 
deployment in resource-limited platforms. 

Finally, the EKF technique is very general and can be 
used with other frame-based object detection systems as 
well. One can use the detection generated by other 
approaches as the evidence used in EKF. Then, EKF will 
take care of predicting and adjusting the updating of the 
prediction so as to achieve improved object detection/ 
tracking results. 
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An example of a computer system 500 in accordance with 
one aspect is shown in FIG. 5. The computer system 500 is 
configured to perform calculations, processes, operations, 
and/or functions associated with a program or algorithm. In 
one aspect, certain processes and steps discussed herein are 
realized as a series of instructions (e.g., Software program) 
that reside within computer readable memory units and are 
executed by one or more processors of the computer system 
500. When executed, the instructions cause the computer 
system 500 to perform specific actions and exhibit specific 
behavior, such as described herein. 

The computer system 500 may include an address/data 
bus 502 that is configured to communicate information. 
Additionally, one or more data processing units, such as a 
processor 504, are coupled with the address/data bus 502. 
The processor 504 is configured to process information and 
instructions. In one aspect, the processor 504 is a micropro 
cessor. Alternatively, the processor 504 may be a different 
type of processor Such as a parallel processor, or a field 
programmable gate array. 
The computer system 500 is configured to utilize one or 

more data storage units. The computer system 500 may 
include a volatile memory unit 506 (e.g., random access 
memory (“RAM), static RAM, dynamic RAM, etc.) 
coupled with the address/data bus 502, wherein a volatile 
memory unit 506 is configured to store information and 
instructions for the processor 504. The computer system 500 
further may include a non-volatile memory unit 508 (e.g., 
read-only memory (“ROM), programmable ROM 
(“PROM), erasable programmable ROM (“EPROM), 
electrically erasable programmable ROM “EEPROM), 
flash memory, etc.) coupled with the address/data bus 502, 
wherein the non-volatile memory unit 508 is configured to 
store static information and instructions for the processor 
504. Alternatively, the computer system 500 may execute 
instructions retrieved from an online data storage unit Such 
as in "Cloud computing. In an embodiment, the computer 
system 500 also may include one or more interfaces, such as 
an interface 510, coupled with the address/data bus 502. The 
one or more interfaces are configured to enable the computer 
system 500 to interface with other electronic devices and 
computer systems. The communication interfaces imple 
mented by the one or more interfaces may include wireline 
(e.g., serial cables, modems, network adaptors, etc.) and/or 
wireless (e.g., wireless modems, wireless network adaptors, 
etc.) communication technology. 

In one aspect, the computer system 500 may include an 
input device 512 coupled with the address/data bus 502, 
wherein the input device 512 is configured to communicate 
information and command selections to the processor 500. 
In accordance with one aspect, the input device 512 is an 
alphanumeric input device, Such as a keyboard, that may 
include alphanumeric and/or function keys. Alternatively, 
the input device 512 may be an input device other than an 
alphanumeric input device. In one aspect, the computer 
system 500 may include a cursor control device 514 coupled 
with the address/data bus 502, wherein the cursor control 
device 514 is configured to communicate user input infor 
mation and/or command selections to the processor 500. In 
one aspect, the cursor control device 514 is implemented 
using a device Such as a mouse, a track-ball, a track-pad, an 
optical tracking device, or a touch screen. The foregoing 
notwithstanding, in one aspect, the cursor control device 514 
is directed and/or activated via input from the input device 
512. Such as in response to the use of special keys and key 
sequence commands associated with the input device 512. In 
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14 
an alternative aspect, the cursor control device 514 is 
configured to be directed or guided by Voice commands. 

In one aspect, the computer system 500 further may 
include one or more optional computer usable data storage 
devices, such as a storage device 516, coupled with the 
address/data bus 502. The storage device 516 is configured 
to store information and/or computer executable instruc 
tions. In one aspect, the storage device 516 is a storage 
device Such as a magnetic or optical disk drive (e.g., hard 
disk drive (“HDD'), floppy diskette, compact disk read only 
memory (“CD-ROM'), digital versatile disk (“DVD)). 
Pursuant to one aspect, a display device 518 is coupled with 
the address/data bus 502, wherein the display device 518 is 
configured to display video and/or graphics. In one aspect, 
the display device 518 may include a cathode ray tube 
(“CRT), liquid crystal display (LCD), field emission 
display (“FED), plasma display, or any other display device 
Suitable for displaying video and/or graphic images and 
alphanumeric characters recognizable to a user. 
The computer system 500 presented herein is an example 

computing environment in accordance with one aspect. 
However, the non-limiting example of the computer system 
500 is not strictly limited to being a computer system. For 
example, one aspect provides that the computer system 500 
represents a type of data processing analysis that may be 
used in accordance with various aspects described herein. 
Moreover, other computing systems may also be imple 
mented. Indeed, the spirit and scope of the present technol 
ogy is not limited to any single data processing environment. 
Thus, in one aspect, one or more operations of various 
aspects of the present technology are controlled or imple 
mented using computer-executable instructions, such as 
program modules, being executed by a computer. In one 
implementation, Such program modules include routines, 
programs, objects, components and/or data structures that 
are configured to perform particular tasks or implement 
particular abstract data types. In addition, one aspect pro 
vides that one or more aspects of the present technology are 
implemented by utilizing one or more distributed computing 
environments. Such as where tasks are performed by remote 
processing devices that are linked through a communica 
tions network, or Such as where various program modules 
are located in both local and remote computer-storage media 
including memory-storage devices. 
An illustrative diagram of a computer program product 

embodying an aspect of the present invention is depicted in 
FIG. 6. As a non-limiting example, the computer program 
product is depicted as either a floppy disk 600 or an optical 
disk 602. However, as mentioned previously, the computer 
program product generally represents computer readable 
code (i.e., instruction means or instructions) stored on any 
compatible non-transitory computer readable medium. 
What is claimed is: 
1. A system for object tracking, the system comprising: 
one or more processors and a non-transitory memory 

having instructions encoded thereon Such that when the 
instructions are executed, the one or more processors 
perform operations of 

detecting a location of a moving object in an image frame 
of a sequence of image frames using a motion-based 
object detection MogS module, thereby generating an 
object detection; 

for each image frame in the sequence of image frames, 
predicting the location of the moving object in the next 
image frame through object tracking using a Kalman 
filter prediction module, thereby generating a predicted 
object location; 



more processors further performan operation of determining 

more processors further performan operation of determining 

more processors further perform operations of: 
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monitoring object tracking quality using a controller 
module; 

refining the predicted object location using a Kalman filter 
updating module: 

adjusting, by the controller module, the Kalman filter 5 
updating module according to a dissimilarity measure 
based on a spatial distance constraint and an appear 
ance-based matching score, thereby improving object 
tracking quality and ameliorating gradual drifting of 
object tracking; and 

outputting a set of detected moving object locations in the 
sequence of image frames. 

2. The system as set forth in claim 1, wherein the one or 

10 

15 
a spatial distance d between each object detection in a 
current image frame and the object detection in the previous 
image frame with the controller module. 

3. The system as set forth in claim 2, wherein the one or 
2O 

a dissimilarity metric diff based on the appearance difference 
between a detected image at the predicted object location 
and a target image template stored in a historical template 
database. 

4. The system as set forth in claim 3, wherein the one or 25 
more processors further perform an operation of merging the 
spatial distanced with the dissimilarity metric diff to gen 
erate a combined dissimilarity measure D that quantifies the 
dissimilarity of the predicted object location with the mov 
ing objects location in the previous image frame. 

5. The system as set forth in claim 4, wherein the one or 
30 

more processors further perform an operation of generating 
the combined dissimilarity measure D according to the 
following: 

35 

+ (1 - a): diff, 

40 

where Ce(0,1) is a constant Scalar, BDO is a constant Scalar, 
* denotes multiplication, de0, and e represents an expo 
nential function. 

6. The system as set forth in claim 5, wherein the one or 
45 

updating a background model comprising a plurality of 
pixels belonging to a background of an image frame; 

in each image frame, detecting at least one moving pixel 
by Subtracting the current image frame from the back 
ground model, generating detected moving pixels; 

processing the detected moving pixels to reduce noise; 
and 

detecting blobs of foreground pixels through morphologi 
cal operations and blob detection, resulting in an object 
detection. 

7. The system as set forth in claim 1, wherein the one or 
more processors further perform operations of: 

updating a background model comprising a plurality of 
pixels belonging to a background of an image frame; 

in each image frame, detecting at least one moving pixel 
by Subtracting the current image frame from the back 
ground model, generating detected moving pixels; 

processing the detected moving pixels to reduce noise; 
and 

detecting blobs of foreground pixels through morphologi 
cal operations and blob detection, resulting in an object 
detection. 

50 
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8. A computer-implemented method for object tracking, 

comprising: 
an act of causing a data processor to execute instructions 

stored on a non-transitory memory Such that upon 
execution, the data processor performs operations of: 

detecting a location of a moving object in an image frame 
of a sequence of image detecting a location of a moving 
object in an image frame of a sequence of image frames 
using a motion-based object detection MogS module, 
thereby generating an object detection; 

for each image frame in the sequence of image frames, 
predicting the location of the moving object in the next 
image frame through object tracking using a Kalman 
filter prediction module, thereby generating a predicted 
object location; 

monitoring object tracking quality using a controller 
module; 

refining the predicted object location using a Kalman filter 
updating module; 

adjusting, by the controller module, the Kalman filter 
updating module according to a dissimilarity measure 
based on a spatial distance constraint and an appear 
ance-based matching score, thereby improving object 
tracking quality and ameliorating gradual drifting of 
object tracking; and 

outputting a set of detected moving object locations in the 
sequence of image frames. 

9. The method as set forth in claim 8, wherein the data 
processor further performs an operation of determining a 
spatial distanced between each object detection in a current 
image frame and the object detection in the previous image 
frame with the controller module. 

10. The method as set forth in claim 9, wherein the data 
processor further perform an operation of determining a 
dissimilarity metric diff based on the appearance difference 
between a detected image at the predicted object location 
and a target image template stored in a historical template 
database. 

11. The method as set forth in claim 10, wherein the data 
processor further performs an operation of merging the 
spatial distanced with the dissimilarity metric diff to gen 
erate a combined dissimilarity measure D that quantifies the 
dissimilarity of the predicted object location with the mov 
ing objects location in the previous image frame. 

12. The method as set forth in claim 11, wherein the data 
processor further performs an operation of generating the 
combined dissimilarity measure D according to the follow 
1ng: 

1 -f-d 
+ (1 - a): diff, 

where Ce(0,1) is a constant Scalar, BDO is a constant Scalar, 
* denotes multiplication, de0, and e represents an expo 
nential function. 

13. The method as set forth in claim 12, wherein the data 
processor further performs operations of 

updating a background model comprising a plurality of 
pixels belonging to a background of an image frame; 

in each image frame, detecting at least one moving pixel 
by Subtracting the current image frame from the back 
ground model, generating detected moving pixels; 

processing the detected moving pixels to reduce noise; 
and 
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detecting blobs of foreground pixels through morphologi 
cal operations and blob detection, resulting in an object 
detection. 

14. The method as set forth in claim 8, wherein the data 
processor further performs operations of 

updating a background model comprising a plurality of 
pixels belonging to a background of an image frame; 

in each image frame, detecting at least one moving pixel 
by Subtracting the current image frame from the back 
ground model, generating detected moving pixels; 

processing the detected moving pixels to reduce noise; 
and 

detecting blobs of foreground pixels through morphologi 
cal operations and blob detection, resulting in an object 
detection. 

15. A computer program product for object tracking, the 
computer program product comprising computer-readable 
instructions stored on a non-transitory computer-readable 
medium that are executable by a computer having a proces 
sor for causing the processor to perform operations of: 

detecting a location of a moving object in an image frame 
of a sequence of image frames using a motion-based 
object detection MogS module, thereby generating an 
object detection; 

for each image frame in the sequence of image frames, 
predicting the location of the moving object in the next 
image frame through object tracking using a Kalman 
filter prediction module, thereby generating a predicted 
object location; 

monitoring object tracking quality using a controller 
module, 

refining the predicted object location using a Kalman filter 
updating module: 

adjusting, by the controller module, the Kalman filter 
updating module according to a dissimilarity measure 
based on a spatial distance constraint and an appear 
ance-based matching score, thereby improving object 
tracking quality and ameliorating gradual drifting of 
object tracking; and 

outputting a set of detected moving object locations in the 
sequence of image frames. 

16. The computer program product as set forth in claim 
15, further comprising instructions for causing the processor 
to perform an operation of determining a spatial distanced 
between each object detection in a current image frame and 
the object detection in the previous image frame with the 
controller module. 

17. The computer program product as set forth in claim 
16, further comprising instructions for causing the processor 
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to perform an operation of determining a dissimilarity metric 
diff based on the appearance difference between a detected 
image at the predicted object location and a target image 
template stored in a historical template database. 

18. The computer program product as set forth in claim 
17, further comprising instructions for causing the processor 
to perform an operation of merging the spatial distance d 
with the dissimilarity metric diff to generate a combined 
dissimilarity measure D that quantifies the dissimilarity of 
the predicted object location with the moving objects 
location in the previous image frame. 

19. The computer program product as set forth in claim 
18, further comprising instructions for causing the processor 
to perform an operation of generating the combined dissimi 
larity measure D according to the following: 

1 - Ad 
+ (1 - a): diff, 

where Ce(0,1) is a constant Scalar, BDO is a constant Scalar, 
* denotes multiplication, de0, and e represents an expo 
nential function. 

20. The computer program product as set forth in claim 
19, further comprising instructions for causing the processor 
to perform operations of 

updating a background model comprising a plurality of 
pixels belonging to a background of an image frame; 

in each image frame, detecting at least one moving pixel 
by Subtracting the current image frame from the back 
ground model, generating detected moving pixels; 

processing the detected moving pixels to reduce noise; 
and 

detecting blobs of foreground pixels through morphologi 
cal operations and blob detection, resulting in an object 
detection. 

21. The computer program product as set forth in claim 
15, further comprising instructions for causing the processor 
to perform operations of 

updating a background model comprising a plurality of 
pixels belonging to a background of an image frame; 

in each image frame, detecting at least one moving pixel 
by Subtracting the current image frame from the back 
ground model, generating detected moving pixels; 

processing the detected moving pixels to reduce noise; 
and 

detecting blobs of foreground pixels through morphologi 
cal operations and blob detection, resulting in an object 
detection. 


