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(57) This mvention 1s an apparatus and methods for
spectroscopic  detection of tissue  abnormality,
particularly pre-cancerous cervical tissue, using neural
networks (1000) to analyze i vivo measurements of
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neuroniques (1000) pour analyser les mesures 1 vivo des
spectres de fluorescence. La preésente mvention permet
d’exciter des spectres d’intensit¢ de fluorescence dans
les tissus normaux et dans les tissus anormaux. Ces
données de spectroscopie par fluorescence sont utilisees
pour 1'1nstruction d un groupe de réseaux neuronaux, de
preférence des réseaux neuronaux fonctions-base
radiaux. Une foi1s l'instruction terminée, les réseaux
neuronaux classent les donn¢es de spectroscopie par
fluorescence provenant d’echantillons de ftissus
inconnus. Ce processus est utilise pour distinguer les
tissus precancereux des tissus normaux, et 1l peut aussi
¢tre utilis¢ pour distinguer les ¢états précancereux
avances des ¢tats precancereux moindres. Dans un mode
de realisation, la présente invention permet de distinguer
les tissus précanceéreux des tissus normaux a cellules
squameuses et des tissus normaux a cellules cylindriques
par une analyse en une ¢tape. La présente mvention fait
preuve d’une variabilit¢ sensiblement inférieure dans
I"exactitude de la classification, ce qui augmente la
fiabilite¢ de la classification, et d’une sensibilité
supérieure. En outre, le mode de reéalisation en une ¢tape
de la présente mvention permet de ssmplifier le processus
de prise de decision par comparaison avec un mode de
re¢alisation en deux €tapes.
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fluorescence spectra. The invention excites fluorescence
intensity spectra i both normal and abnormal tissue.
This fluorescence spectroscopy data 1s used to train a
oroup of mneural networks, preferably radial basis
function neural networks. Once trained, fluorescence
spectroscopy data from unknown tissues samples 1s
classified by the neural networks. This process 1s used to
differentiate pre-cancers from normal tissues, and can
also be used to differentiate high grade pre-cancers from
low grade pre-cancers. One embodiment of the invention
1s able to distinguish pre-cancerous tissue from both
normal squamous tissue and normal columnar tissue 1n a
single stage analysis. The 1nvention demonstrates
significantly smaller vanability 1  classification
accuracy, resulting 1n more reliable classification, with
superior sensitivity. Moreover, the signal stage
embodiment of the mnvention simplifies the decision
making process as compared to a two-stage embodiment.
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spectra in both normal and abnormal tissue. This fluorescence spectroscopy data is used to train a group of neural networks, preferably
radial basis tunction neural networks. Once trained, fluorescence spectroscopy data from unknown tissues samples is classified by the neural
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and normal columnar tissue in a single stage analysis. The invention demonstrates significantly smaller vartability in classification accuracy,
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This invention is an apparatus and methods for spectroscopic detection of tissue abnormality, particularly pre-cancerous cervical
tissue, using neural networks (1000) to analyze in vivo measurements of fluorescence spectra. The invention excites fluorescence intensity
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SPECTROSCOPIC DETECTION OF CERVICAL PRE-CANCER
USING RADIAL BASIS FUNCTION NETWORKS

BACKGROUND OF INVENTION

1. Field of the Invention
The 1nvention relates to methods and apparatus used for the diagnosis of tissue
abnormalities, and more particularly to detection of cervical tissue abnormalities by

analysis of spectroscopic data.

2. Description of Related Art

Among the many forms of cancer, cervical cancer is the second most common malignancy
in women worldwide, exceeded only by breast cancer. In the United States, cervical
cancer 1s the third most common neoplasm of the female genital tract. In 1994, 15,000
new cases of invasive cervical cancer and 55,000 cases of carcinoma in situ (CIS) were
reported in the U.S. In the same year, an estimated 4,600 deaths occurred in the United
States alone from cervical cancer. Recently, the incidence of pre-invasivc; squamous
carcitnoma of the cervix has risen dramatically, especially among young women. Women
under the age of 35 years account for up to 24.5% of patients with invasive cervical
cancer, and the incidence 1s continuing to increase for women in this age group. It has
been estimated that the mortality of cervical cancer may rise by 20% in the next decade

unless further improvements are made in detection techniques.

Early detection of cervical cancer, or of the pre-cancerous state called squamous
intraepithelial lesion (SIL), can reduce the mortality associated with this disease.
Currently, a Pap smear is used to screen for CIS and cervical cancer in the general female
population. In a Pap smear, a large number of cells, obtained by scraping the cervical
epithelium, are smeared onto a slide, which is then fixed and stained for cytologic
examination. The Pap smear 1s unable to achieve a concurrently high sensitivity and high

specificity due to both sampling and reading errors. For example, estimates of the
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sensitivity and specificity of Pap smears screening have ranged from 11-99% and 14-97%,
respectively. (As used herein, sensitivity is defined as the correct classification percentage
on pre-cancerous tissue samples, and specificity is defined as the correct classification

percentage on normal tissue samples.)

Furthermore, reading Pap smears is extremely labor intensive and requires highly trained
protessionals. A patient with an abnormal Pap smear indicating the presence of SIL is
followed up by a diagnostic procedure called colposcopy, which involves colposcopic
examination, biopsy and histologic confirmation of the clinical diagnosis. Colposcopy
requires extensive training and its accuracy for diagnosis is variable and limited, even in
expert hands. Moreover, diagnosis is not immediate. Thus, it would be desirable to
provide a way to reduce cervical cancer rates by improving the methods for early
detection. It also would be desirable to provide a diagnostic method that could improve
the level of specificity and sensitivity, reduce the required skill level of the practitioner

Interpreting the results, and shorten the time that it takes to arrive at a diagnosis.

In vivo fluorescence spectroscopy is a technique which has the capability to quickly, non-
mvasively and quantitatively probe the biochemical and morphological changes that occur
as tissue becomes neoplastic. The measured spectral information can be correlated to
tissue histo-pathology to develop clinically effective screening and diagnostic techniques.
By using automated data analysis techniques, there is the potential for an automated, fast,
non-invasive and accurate pre-cancer screening and diagnosis system that can be used by

non-experts.

Screening and diagnostic techniques for human cervical pre-cancer based on laser induced
fluorescence spectroscopy have been developed recently; see, for example, U.S. Patent
Application Serial No. 08/403,446, which is incorporated by reference. In the '446 patent
application, screening and diagnosis was achieved using a technique based on a
multivariate statistical algorithm (MSA). This technique used principal component

analysis and logistic discrimination of tissue spectra acquired in vivo. A variation of the
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MSA technique is also disclosed in N. Ramanujam er al. . “Development of a Multivariate
Statistical Algorithm to Analyze Human Cervical Tissue Fluorescence Spectra Acquired
In vivo, Lasers in Surgery and Medicine 19:46-62 (1996), which is iIncorporated by

reference.

5 The approach based on MSA consists of the following steps: (1) pre-processing to reduce
Inter-patient and intra-patient variation of spectra from a tissue type; (2) partitioning of

the pre-processed spectral data from all patients into calibration and prediction sets; (3)
dimension reduction of the pre-processed tissue spectra using principal component
analysis (PCA); (4) selection of diagnostically relevant principal components: (5)

10 development of a probability-based classification algorithm based on logistic discrimina-
tion; and (6) a retrospective evaluation of the algorithm’s performance on a calibration

set and a prospective evaluation of the algorithm’s performance on the prediction set,

respectively.

In the MSA approach, discrimination between SILs and the two norma] tissue types
15 requires two stages. Such discrimination is difficult because the two normal fluorescence
Intensity spectra lie above and below the SIL spectra, as shown in FIGURE 1. Therefore,
the MSA technique used two constituent processes: (1) a first stage to discriminate
between SILs and normal squamous (NS) tissues, and (2) a second stage to discriminate
between SILs and normal columnar (NC) tissues. However, this two-stage approach

20 complicates the data collection and the decision-making processes.

Another technique for the diagnosis of cervical pre-cancer is disclosed in U S, Patent No.
5,421,339, which is incorporated by reference. That method relies on an analysis of slopes

of the fluorescence spectra to diagnose diseased tissue.
The inventors have determined that it would be desirable to provide a technique for the

25 spectroscopic detection of cervical pre-cancer that provides greater sensitivity and

selectivity than prior techniques. Further, it would be desirable to provide such a
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technique which is quantitative and has little variation in accuracy. The present invention

provides such a technique.
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SUMMARY OF THE INVENTION

The invention 1s directed to an apparatus and methods for spectroscopic detection of
tissue abnormality, particularly precancerous cervical tissue, using neural networks to
analyze in vivo measurements of fluorescence spectra. The invention excites fluorescence
Intensity spectra in both normal and abnormal tissue. This fluorescence spectroscopy data
1S used to train a group (ensemble) of neural networks, preferably radial basis function
(RBF) neural networks. Once trained, fluorescence spectroscopy data from unknown
tissue samples 1s classified by the trained neural networks. This process is used to
differentiate pre-cancers from normal tissues, and can also be used to differentiate high
grade pre-cancers from low grade pre-cancers. One embodiment of the invention is able
to distinguish pre-cancerous tissue from both normal squamous tissue (NS) and normal

columnar (NC) tissue 1n a single-stage of analysis.

The 1nvention demonstrates significantly smaller variability in classification accuracy,
resulting in more reliable classification, with superior sensitivity. Moreover, the single-
stage embodiment of the invention simplifies the decision-making process as compared

to a two-stage embodiment.

The apparatus of the invention includes a controllable illumination device for emitting a
plurality of electromagnetic radiation wavelengths selected to cause a tissue sample to
produce a fluorescence intensity spectra indicative of tissue abnormality; an optical
system for applying the plurality of radiation wavelengths to a tissue sample; a detecting
device for detecting fluorescence intensity spectra emitted by the tissue sample as a result
of 1llumination by the plurality of electromagnetic radiation wavelengths; and a neural
network-based data processor connected to the detecting device for analyzing detected

fluorescence spectra to calculate a probability that the tissue sample is abnormal.

The details of the preferred embodiment of the invention are set forth in the accompany-

ing drawings and the description below. Once the details of the invention are known,

. . S a—
et b ey el o JAAY IR | A3 MDA P TIR LA T Y I nl LL M M s ST L -



Sy e in e SRR HNNAT ¢ APV TN A S EE A At~ | - 27 71 4 7 ph s Bgt I G TN T P A PR Byt (i ALY S LN g IR == ifmpanas s ele 8 S0 te Lt . . . . - e . el e e el AR g T Sk (A g T - AR AR Ly e s e

CA 02274233 1999-06-02

WO 98/24369 . PCT/US97/21251

-6-

numerous additional innovations and changes will become obvious to one skilled in the
art.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a fluorescence intensity spectra from a typical patient at 337 nm excitation.

FIGURE 2 is a block diagram of an exemplary fluorescence spectroscopy diagnostic

apparatus in accordance with the invention.

FIGURES 3 is a graph depicting a radial basis function.

FIGURES 4 is a graph depicting multiquadratic radial basis function.
FIGURE 5 is a diagram of a radial basis function neural network.

FIGURE 6 is a flowchart of a two-stage fluorescence spectroscopy diagnostic method in

accordance with the invention.

FIGURES 7 and 8 are flowcharts of a radial basis function neural network probability

determination in accordance with the invention.

FIGURE 9 is a flowchart of a one-stage fluorescence spectroscopy diagnostic method in

accordance with the invention.

FIGURE 10 is a block diagram of a multi-layer perceptron neural network trained by

back-propagation of error.

FIGURE 11 is a graph of sensitivity versus specificity for various diagnostic procedures,

including the embodiments of the invention.

FIGURE 12 is a graph depicting the performance of fluorescence diagnostic system

versus the cost of misclassification in the training and classification process.
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DETAILED DESCRIPTION OF THE INVENTION

Throughout this description, the preferred embodiment in the examples shown should be

considered as exemplars, rather than as limitations on the invention.

Basic Diagnostic Setup

To illustrate the advantages of the invention, fluorescence spectra were collected in vivo
at colposcopy from patients. A portable fiber-optic laser tluonimeter was utilized to
measure fluorescence spectra from the cervix in vivo. The excitation wavelengths for one
study were 337 nm, 380 nm, and 460 nm. Rhodamine 6G (2 mg/l) was used as a standard
to calibrate for day-to-day variations in the detector throughput. The spectra were
background subtracted and normalized to the peak intensity of rhodamine. The spectra

were also calibrated for the wavelength dependence of the system.

Tissue biopsies were obtained only from abnormal sites identified by colposcopy and
subsequently analyzed by the inventive system in order to comply with routine patient
care procedure. Hematoxylin and eosin stained sections of each biopsy specimen were
evaluated by a panel of four board certified pathologists and a consensus diagnosis was
established using the Bethesda classification system. In cervical tissue, nonacetowhite
epithelium is considered normal, whereas acetowhite epithelium and the presence of
vascular atypias (such as punctuation, mosaicism, and atypical vessels) are considered
abnormal. Samples were classified as normal squamous (NS), normal columnar (NC), low
grade (LG) SIL, and high grade (HG) SIL, and divided into training (calibration) and test
sets, as shown in Table 1. To be useful, a clinical method must discriminate SILs from the

normal tissue types.
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Table 1

Training Set Test Set

107 (NS: 94, NC: 13) 108 (NS: 94; NC: 14)
08 (LG: 23; HG: 35) 59 (LG: 24; HG: 35)

Histo-pathology

Normal
SIL

5 FIGURE 1 illustrates average fluorescence spectra per site acquired from cervical sites
at 337 nm excitation from a typical patient. Evaluation of the spectra at 337 nm excitation
highlights one of the classification difficulties: the fluorescence intensity of SILs (LG and
HG) 1s less than that of the corresponding normal squamous tissue but greater than that

of the corresponding normal columnar tissue over the entire emission spectrum.

10 Details of Diagnostic Apparatus
FIGURE 2 shows more details of an exemplary spectroscopic system for collecting and
analyzing fluorescence spectra from cervical tissue, in accordance with the invention. This
system includes a pulsed nitrogen pumped dye laser 100, an optical fiber probe 101, and
an optical multi-channel analyzer 103 utilized to record fluorescence spectra from the

15 Intact cervix at colposcopy. The in vivo fiber-optic probe 101 comprises a central fiber
104 surrounded by a circular array of six fibers. All seven fibers have the same
characteristics (0.22 NA, 200 micron core diameter). Two of the peripheral fibers, 106
and 107, deliver excitation light to the tissue surface. Fiber 106 delivers excitation light
from the nitrogen laser. Fiber 107 delivers light from the laser dye module 113. Overiap

20 of the illumination area viewed by both optical fibers 106, 107 is greater than 85%. The
purpose of the remaining five fibers (104 and 108-111) is to collect emitted fluorescence
from the tissue surface illuminated by the excitation fibers 106, 107. A quartz shield 112
1s placed at the tip of the probe 101 to provide a substantially fixed distance between the

fibers and the tissue surface, so fluorescence intensity can be reported in calibrated units.

25 Excitation light at 337 nm excitation was focused into the proximal end of excitation fiber

106 to produce a small (about | mm diameter) spot at the outer face of the shield 112.
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Excitation light from the laser dye module 113, coupled into excitation fiber 107, was
produced by using appropriate fluorescence dyes. In this embodiment, BBQ (IE-05M in
7 parts toluene and 3 parts ethanol) was used to generate light at 380 nm excitation, and
Coumarin 460 (1IE-02 M in ethanol) was used to generate light at 460 nm excitation. The
average transmitted pulse energies at 337 nm, 380 nm, and 460 nm excitation were 20 mJ,
12 mJ, and 25 mlJ, respectively. The laser characteristics for this embodiment are: a 5 ns
pulse duration and a repetition rate of 30 Hz; however, other parameter values would also
be acceptable. Excitation fluences should remain low enough so that cervical tissue 1s not
vaporized and so that significant photo-bleaching does not occur. In arterial tissue, for
example, significant photo-bleaching occurs above excitation fluences of about 80

mJ/mm?.

The proximal ends of the collection fibers 104, 108-111 are preferably arranged 1n a
circular array and imaged at the entrance slit of a polychromator 114 (Jarrell Ash,
Monospec 18) coupled to an intensified 1024-diode array 116 controlled by a multi-
channel analyzer 117 (Princeton Instruments, OMA). Long pass filters for 370 nm, 400
nm, and 470 nm wavelengths were used to block scattered excitation light at 337 nm, 380
nm, and 460 nm excitation, respectively. A 205 ns collection gate, synchronized 10 the
leading edge of the laser pulse using a Pulser 118 (Princeton Instruments, PGZ00),
effectively eliminated the effects of the colposcope’s white light illumination during
fluorescence measurements. Data acquisition and analysis were controlled by computer

119 in accordance with the fluorescence diagnostic method described below.

The system of FIGURE 2 is an exemplary embodiment and should not be considered to
limit the invention as claimed. It will be understood that spectroscopic apparatus other
than that depicted in FIGURE 2 may be used without departing from the scope of the

invention.
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Data Sets

The present invention can be implemented in several embodiments. All of the embodi-
ments use a classification method based on neural networks, particularly radial basis
function (RBF) and multi-layer perception (MLP) neural networks. The invention can be
used on the following data sets:

(1)  pre-processed full spectra intensity values:

(2)  pre-processed reduced-parameter intensity values;

(3)  principal component scores derived from pre-processed full spectra intensity

values or from pre-processed reduced-parameter intensity values.

While the full excitation-emission spectra intensity values can be used as input to the
neural networks of the present invention, the preferred embodiments use pre-processed
reduced-parameter intensity values or principal component scores as input. In a first

embodiment, a two-stage analysis is used. In a second embodiment, a single-stage analysis

1S used.

.

Derivation of Principal Component Scores

Principal component scores can be determined using a four-step method: (1) preprocess-
Ing of spectral data from each patient to account for Inter-patient variation and intra-
patient variation of spectra from a diagnostic category: (2) partitioning of the pre-
processed spectral data from all patients into calibration and prediction sets: (3)
dimension reduction of the pre-processed spectra in the calibration set using principal
component analysis; (4) selection of the diagnostically most useful principal components

using a two-sided unpaired Student’s t-test. The steps for deﬁving principal component

values are presented below in more detail.

(1) Preprocessing: The objective of preprocessing is to calibrate tissue spectra for inter-
patient and intra-patient variation which might obscure differences in the spectra of
different tissue types. In the preferred embodiment, four alternative methods of

preprocessing can be used with the spectral data: 1) normalization; 2) mean scaling; 3)
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a combination of normalization and mean scaling; and 4) median scaling. However, other

methods of calibrating tissue spectra can be applied.

Spectra were normalized by dividing the fluorescence intensity at each emission
wavelength by the maximum fluorescence intensity of that sample. Normalizing a
fluorescence spectrum removes absolute intensity information; methods developed from
normalized fluorescence spectra rely on differences in spectral line shape information for
diagnosis. If the contribution of the absolute intensity information is not significant, two
advantages are realized by utilizing normalized spectra: 1) it is no longer necessary to
calibrate .for inter-patient variation of normal tissue fluorescence intensity; and 2)

identification of a colposcopically normal reference site in each patient before spectro-

scopic analysis 1s no longer needed.

Mean scaling was performed by calculating the mean spectrum for a patient (using all
spectra obtained from cervical sites in that patient) and subtracting the mean spectrum
from each spectrum in that patient. Mean-scaling can be performed on both unnormalized
(original) and normalized spectra. Mean-scaling does not require colposcopy to identify
a reference normal site in each patient prior to spectroscopic analysis. However, unlike
normalization, mean-scaling displays the differences in the fluorescence spectrum from
a particular site with respect to the average spectrum from that patient. Therefore, this
method can enhance differences in fluorescence spectra between tissue categories most
effectively when spectra are acquired from approximately equal numbers of non-diseased

and diseased sites from each patient.

Median scaling is performed by calculating the median spectrum for a patient (using all
spectra obtained from cervical sites in that patient) and subtracting the median spectrum
from each spectrum in that patient. Like mean scaling, median scaling can be performed
on both unnormalized (original) and normalized spectra, and median scaling does not
require colposcopy to identify a reference normal site in each patient prior to spectro-

scopic analysis. However, unlike mean scaling, median scaling does not require the
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acquisition of spectra from equal numbers of non-diseased and diseased sites from each

patient.

(2) Calibration and Prediction Data Sets: The pre-processed spectral data were randomly
assigned into either a calibration or prediction set. Neural networks were developed and
optimized using the calibration set. The neural networks were then tested prospectively

on the prediction data set.

(3) Principal Component Analysis: Dimension reduction is useful because fluorescence
spectra at all three excitation wavelengths comprise a total of 160 excitation-emission
wavelengths pairs at a 5 nm resolution for emission wavelengths. However, there is a
significant cost penalty for using all 160 values. To alleviate this concern, a more cost-
effective fluorescence imaging system is used, using component loadings calculated from
principal component analysis (PCA). Accordingly, the number of required fluorescence
excitation-emission wavelength pairs was reduced from 160 to 13 with a minimal drop

in classification accuracy (however, more than 13 pairs can be used).

PCA 1s a linear model which transforms the original variables of a fluorescence emission
spectrum into a smaller set of linear combinations of the original variables, called
principal components, that account for most of the variance of the original data set.
Principal component analysis is described in detail in W.R. Dillon, et al., Multivariate
Analysis: Methods and Applications, John Wiley & Sons, 1984. pp. 23-52, which is
Incorporated by reference. While PCA may not provide direct insight to the morphologic
and biochemical basis of tissue spectra, it provides a novel way of condensing all the
spectral information into a few manageable components, with minimal information loss.
Furthermore, each principal component can be easily related back to the original emission

spectrum, thus providing insight into diagnostically useful emission variables.

Prior to PCA, a data matrix is created where each row of the matrix contains the pre-

processed fluorescence spectrum of a sample and each column contains the pre-processed
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fluorescence intensity at each emisston wavelength. A data matrix D (r x ¢), consisting
of r rows (corresponding to r total samples from all patients in the training set) and ¢

columns (corresponding to intensity at ¢ emission wavelengths), can be written as:

D, D, ... D,
D, Dy, .. D,

D = Eq. (1)
D, D, .. D,

The first step in PCA is to calculate the covariance matrix, Z. First, each column of the
pre-processed data matrix D is mean-scaled. The mean-scaled pre-processed data matrix,
D_ is then multiplied by its transpose and each element of the resulting square matrix is
divided by (r-1), where r is the total number of samples. The equation for calculating Z

1s defined as:

-1 o
£ = —(Dp" Dp) Eg. (2)

The square covariance matnx, Z (¢ x ¢) is decomposed 1nto 1its respective eigenvalues and
eigenvectors. Because of experimental error, the total number of eigenvalues will always
equal the total number of columns ¢ in the data matrix D, assuming that ¢ < r. The goal
1s to select n < ¢ eigenvalues that can describe most of the variance of the original data
matrix to within experimental error. The variance, V, acéounted for by the first n

eigenvalues, can be calculated as follows:
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V=100 £ Eq. (3)

The criterion used in this analysis was to retain the first » eigenvalues and corresponding

eigenvectors that account for 99% of the variance in the original data set.

Next, the principal component score matrix can be calculated according to the following

equation:

R=DC Eq. (4)

where D (r x c) is the pre-processed data matrix and C (c x n) is a matrix whose columns
contain the n eigenvectors which correspond to the first n eigenvalues. Each row of the
score matrix R (r % ¢) corresponds to the principal component scores of a sample and each

column corresponds to a principal component. The principal components are mutually

orthogonal.

Finally, the component loading is calculated for each principal component. The
component loading represents the correlation between the principal component and the
vanables of the original fluorescence emission spectrum. The component loading can be

calculated as shown below:

CL; = —= /4 Eq. (5)
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where CL; represents the correlation between the i variable (pre-processed intensity at
i emission wavelength) and the j* principal component, C; 1s the i"* component of the

eigenvector, A, is the j* eigenvalue, and S; is the variance of the ™ variable.

In the preferred embodiment, principal component analysis was performed on each type
of pre-processed data matrix, described above. Eigenvalues accounting for 99% of the
variance in the original pre-processed data set were retained. The corresponding
eigenvectors were then multiphied by the original data matrix to obtain the principal
component score matrix R. Finally, the component loading of each principal component

was calculated.

(4) Student s t-test: Average values of principal component scores were calculated for
each principal component obtained from the pre-processed data matrix. A one-sided
unpaired Student’s t-test was employed to determine the diagnostic contribution of each
principal component. Such a test 1s disclosed in J.L. Devore, Probability and Statistics
for Engineering and the Sciences, Brooks/Cole, 1992, and in R.E. Walpole et al,
Probability and Statistics for Engineers and Scientists, Macmillan Publishing Co., 1978,
Chapter 7, both of which are incorporated by reference. The hypothesis that the means of
the principal component scores of two tissue categories are different were tested for 1)
normal squamous epithelia and SILs, 2) columnar normal epithelia and SILs, and 3)
inflammation and SILs. The t-test was extended a step further to determine if there were
any statistically significant differences between the means of the principal component
scores of high grade SILs and low grade SILs. Principal components for which the
hypothesis stated above were true below about the 0.1 level of significance, and preferably

below about the 0.05 level of significance, were retained for classification.

Pre-processed Full Spectra Intensity Values
As noted above, fluorescence spectra at all three excitation wavelengths comprise a total
of 160 excitation-emission wavelengths pairs at a 5 nm resolution for emission

wavelengths. While costlier to implement, the invention can use pre-processed full spectra
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intensity values as input to the neural network classifiers. In this case, steps (1) and (2)

of the principal component scores derivation above are performed on the full spectra

Intensity values.

Pre-processed Reduced-Parameter Intensity Values
5 The component loadings at all three excitation wavelengths were evaluated to select

fluorescence intensities at a minimum number of excitation-emission wavelength pairs
to provide essentially the same classification accuracy as the full spectra and PCA scores.
Use of these excitation-emission wavelength pairs greatly simplifies the data analysis.
Table 2 sets forth the 15 preferred excitation-emission wavelength pairs (only two of the
10 parrs in the second column differ from the first column). Some variance (e.g., £10 nm)

from these values should give essentially the same results.
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Table 2

Feature for 2™ Stage Analysis

(normalized & mean-scaled)
Aees Ao (M)

357,410
337, 430
337,510
337, 580

380,410
380, 430

Feature for 1* Stage Analysis
(normalized)

Aexs Aem (UM)

380,410
380, 430

380,510 380, 510
380, 580 380, 580
380, 640 380, 600

460, 580
460, 600
460, 620
460, 640

Theoretical Basis for Radial Functions
Neural networks are a class of computational techniques that are loosely based on models
of biological brain functioning. They are generally characterized by their adaptation of

internal weights to an external input to “learn” the solution of a computational problem.

In accordance with the preferred embodiment of the invention, RBF neural networks are
employed in the cervical pre-cancer diagnosis procedure. RBF neural networks employ
“supervised learning.” The goal of supervised learning is to estimate a function from
example input-output pairs with little or no prior knowledge of the form of the function.
The function is learned from the examples which a “teacher” supplies. The set of
examples, or training set, contains elements which consist of paired values of the
independent (input) variable and the dependent (output) variable. For example, in the

functional relation:

y =f(x) Eq. (6)
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the independent (input) variable is x (a vector), and the dependent (output) variable is y
(a scalar). (Bold lower-case letters represent vectors and non-bold lower-case letters
represent scalars, including scalar valued functions like f). The value of the variable y

depends, through the function /, on each of the components of the vector variable:

R=DC Eq. (7)

The training set, in which there are p pairs (indexed by i running from | up to p), is

represented by:

r-{o, 50} Eq. (8)

1

The $ symbol indicates an estimate or uncertain value. That is, the output values of the
training set are usually assumed to be corrupted by noise. In other words, the correct value
to parr with x;, namely y,, is unknown. The training set only specifies 9, , which is equal

to y; plus a small amount of unknown noise.

A limear model for a function f{x) takes the form:

fx) =), w;h(x) Eq. (9)

J=1

The model f'is expressed as a linear combination of a set of m fixed functions (often
called “basis” functions, by analogy with the concept of a vector being composed of a
linear combination of basis vectors). The variable w is the coefficient of the linear

combtinations, and 4 is used for the basis functions; in neural network parlance, w and 4

represent weights and hidden units, respectively.
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The flexibility of £ (i.e., its ability to fit many different functions) derives only from the
freedom to choose different values for the weights. The basis functions and any
parameters which they might contain are fixed. If this is not the case, if the basis functions
can change during the learning process, then the model is nonlinear. Linear models are
relatively simple to analyze mathematically. In particular, if supervised learning problems
are solved by least squares, then it is possible to derive and solve a set of equations for the

optimal weight values implied by the training set.

Any set of functions can be used as a basis set. Radial functions are a special class of
functions. Their characteristic feature 1s that their response decreases (or increases)
monotonically with distance from a central point. The center, the distance scale, and the
precise shape of the radial function, are parameters of the model, which are all fixed if the

model 1s linear.

A typical radial function is the Gaussian function, which, in the case of a scalar input, 1s:

B (x=c)

r2

h(x) = exp Eq. (10)

The parameters of this function are its center ¢ and its radius . FIGURE 3 illustrates a
Gaussian radial function with center ¢c=0 and radius =1. A Gaussian radial function
monotonically decreases with distance from the center. In contrast, a multiquadratic radial

function monotonically increases with distance from the center, as shown in FIGURE 4.

Radial Basis Function Neural Networks

FIGURE 5 is a diagram of a radial basis function neural network. Radial basis function
neural networks have basis functions which are radial functions. In FIGURE 35, each of
n components of the input vector x feeds forward to m basis functions whose outputs are

linearly combined into the network output f(x) with weights:
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(w 1™ Eq. (1)

When applied to supervised learning with linear models, the least-mean-squares principle
leads to a particularly easy optimization problem. If the model for RBF output fx) is Eq.
9 and the training set is {(x,., j')i)}‘f= . » the least-mean-squares approach to reaching an

optimal solution is to minimize the sum-squared-error:

Sfr G, -fx)) Eq. (12)

with respect to the weights of the model. If a weight penalty term is added to the sum-

squared-error, as is the case with ridge regression, then the following cost function is

minimized:

C=), U~f(x)) + 121‘ Aw/ Eq. (13)

i=1

where the { A ,};:-.1 values are regularization parameters.

Minimization of the cost function leads to a set of m simultaneous linear equations in the

m unknown weights. The linear equations can be written more conveniently as the matrix

equation:

Aw=H"Yy | Eq. (14)

where H, the design matrix, is:
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h(x,) h(x,) - h (x,)
h(x,) hy(x,) ... h_(x,)

H= 7 T 2 Eq. (15)
;hl(xp) hz(xp) hm(xp)
L

and A, the variance matrix, is:

Al=H"H + A Eq. (16)

The elements of the matrix A are all zero except for the regularization parameters along

its diagonal, and y;=[y; Poers) p]T is the vector of training set outputs. The solution 1s the so-

called normal equation:

w=A"THTy, Eq. (17)

where wz[,;,lwznwm]ﬁs the vector of weights which minimizes the cost function.

An alternative embodiment uses a gradient-descent procedure that represents a
generalization of the least-mean-square algorithm. See, for example, Haykin, S., “Neural
Networks: A Comprehensive Foundation”, IEEE Press (1994). In thus approach, the
centers of the radial basis functions and all other free parameters of the network undergo
a supervised learning process; in other words, the RBF network takes on its most
generalized form. The first step in the development of a gradient-descent based learning

procedure is to define the instantaneous value of the cost function:
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N
.E ej.2 Eq. (18)

where /V is the number of training examples used to undertake the learning process, and

¢; 1s the error signal, defined by:

e, = 4 = Fr(X)
Eq. (19)

-

M
= C{, - l§l W{g(”x( - t/”CI)

The requirement is to find the free parameters w,, t, and X, ' (the latter being related to
the norm-weighting matrix C)) so as to minimize &. The results of this minimization are
5 summarized by the equations below. The term e () is the error signal of output unit j at

time n. The term G’(*) is the first derivative of the Green’s function G(*) with respect to

1ts argument.

Linear weights (output layer):

o0& i
awi’;)) = T ¢ (MG, - 1) Eq. (20)
w(n+l) = w(n)-n, :f((’;)), 1=1,2,..,.M Eq. (21)
Positions of centers (hidden layer):
N
W < 2w T emG (e, - tmlc) = x, 1,0 Eq. 22)

ot (n) j=1
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t‘.(rz+l) = ti(n) -1, Y E:;, [ = 1,2,...,Aff Eq. (23)
Spreads of centers (hidden layer):
) - (n) g e (MG (lx, - t(n)ic) QLn)

- - j | ‘ ' /X, . (24
5% l(n) Pl Jo ) = Eq. (24)
Q.(n) = [x;~t(m}[x;-t(m] ~ Eq.(25)

- - 0&(n)

%' (n+1) = B (n) - 1

{ 3 az;l(n) Eq. (26)

Two-Stage Network Process

FIGURES 6-9 are flowcharts of the above-described fluorescence spectroscopy diagnostic
methods of the invention. In practice, the flowcharts of FIGURES 6-10 are coded into
appropriate form and are loaded into the program memory of a computer 119 (FIGURE
2), which then controls the apparatus of FIGURE 2 to cause the performance of the

diagnostic method of the invention.

Referring first to FIGURE 6, where a two-stage RBF method is shown, control begins 1n
block 600 where fluorescence spectra are obtained from the patient at several excitation
wavelengths (in this example, 337 nm, 380 nm, and 460 nm), and a data set 1s defined.
For full spectra analysis, pre-processing is performed; for PCA data sets, the steps
described above are performed; for reduced-parameter intensity values, pre-processing 1s

performed on selected excitation-emission wavelength pairs.
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Control then passes to block 602 where the probability of the tissue sample under
consideration being SIL is calculated from the spectra obtained from the patient at either

of two excitation wavelengths (in this example, 337 nm and 460 nm) using RBF

classifiers.

Control then passes to decision block 604 where the probability of SIL calculated in block
602 1s compared against a threshold of 0.5. If the probability is not greater than 0.5,
control passes to block 606 where the tissue sample is diagnosed as normal squamous,
and the routine ends. Otherwise, control passes to block 608 where the probability of the
tissue contaiming SIL is calculated based upon the emission spectra obtained from another
excitation wavelength (for example, at 380 nm). This second stage calculation is

essentially the same as the method used in block 602.

Control then passes to decision block 610 where the probability of SIL calculated in block
608 1s compared against a threshold of 0.5. If the probability calculated in block 608 is
not greater than 0.5, control passes to block 612 where the tissue sample is diagnosed as
normal\columnar, and the routine ends. Otherwise, control passes to block 614 where the

probability of SIL (high grade versus low grade) is calculated from the fluorescence

€musSs1on spectra.

Control then passes to decision block 616 where the probability of high grade SIL
calculated 1n block 614 1s compared with a threshold of 0.5. If the probability calculated
in block 614 is not greater than 0.5, low grade SIL is diagnosed (block 618), otherwise-
high grade SIL is diagnosed (block 626). In some applications, a simple diagnosis of SIL
(whether low grade or high grade) is sufficient, and the steps represented by blocks 614-

620 can be omitted.

Referring now to FIGURE 7, the data conditioning and classification probability
determunation of PCA-based fluorescence spectra (blocks 600, 602 and 608 in FIGURE
6) 1s presented in more detail. It should be noted that while the processing of blocks 602
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and 608 is identical, in the preferred embodiment, block 602 operates on normalized data,
whereas block 608 operates on normalized, mean-scaled data. In either case, control
begins in block 700, where the fluorescence spectra data matrix, D, 1s constructed, each
row of which corresponds to a sample fluorescence spectrum taken from the patient. In
the preferred embodiment, the spectra data comprises 160 excitation-emission pairs.
Control then passes to block 702 where the mean intensity at each emission wavelength
of the detected fluorescence spectra is calculated. In block 704, each spectrum of the data

matrix is normalized relative to a maximum of each spectrum.

The data matrix D is then processed in two versions, one corresponding to the first stage
of analysis (block 602), and the other corresponding to the second stage of analysis (block
608). In the first stage, control passes to block 708, where principal component analysis
is conducted. as discussed above. During principal component analysis, the covariance
matrix Z (Eq. 2), is calculated using a pre-processed data matrix, the rows of which
comprise normalized spectra obtained from all patients in the training set. During training
only, the result of block 708 is applied to block 710, where a Student’s t-test is conducted
which results in selection of only diagnostic principal components. Control then passes
to block 712 where the results of block 710 are processed by an ensembie of RBF
networks, as shown in FIGURE 8, and combined.

During the second stage of processing, control passes from block 704 to block 706, 1n
which each spectrum of the data matrix is mean-scaled relative to the mean calculated in
block 702. When block 706 is being performed for the second stage of the two-stage
process (as part of block 608), half of the kemels are fixed to patterns from the columnar
normal (NC) class while the other half are initialized using a k-means clustering
algorithm. Control then passes to block 708, where principal component analysis is
conducted, as discussed above. During principal component analysis, the covariance
matrix Z (Eq. 2), is calculated using a pre-processed data matrix, the rows of which
comprise normalized, mean-scaled spectra obtained from all patients in the training set.

Control then passes to block 712 (block 710 being performed only during training), where



10

15

20

25

CA 02274233 1999-06-02

WO 98/24369 - PCT/US97/21251

228.-

the results of block 708 are processed by an ensemble of RBF networks, as shown in

FIGURE 8, and combined.

For an embodiment using pre-processed reduced-parameter intensity values, the procedure
in FIGURE 7 1s greatly simplified: after block 700, the desired excitation-emission

wavelength pairs are selected and input to block 714.

For an embodiment using pre-processed full spectra intensity values, the procedure in

FIGURE 7 would omit blocks 708 and 710.

FIGURE 8 i1s a flowchart of the above-described radial basis function probability
determination, as performed in block 712 in FIGURE 7. Control begins in decision block
800, where a determination 1s made whether the input data is training data or test data. If
the 1nput is training data, the RBF networks (such as those shown in FIGURE 5) are
trained in block 802, in conventional fashion. Each RBF network is trained with different
initial points (weights) and a different sequence of the training examples. As a result, each

RBF will generate a different result.

The number of training iterations for each RBF network will generally be a relatively
large number, such as about 10,000. The optimum number of iterations can be determined
experimentally by the number of iterations that it takes for an RBF network to reach an

acceptable output, or a local or global minima.

The discrete class labels of the training set outputs are given numerical values by
interpreting the & class label as a probability of 1 that the example belongs to the class,
and a probability of 0 that the example belongs to any other class. In general, the training
output values are vectors of length equal to the number of classes containing a single 1
(and otherwise 0). For example, an RBF network will be trained to generate an output of

1 when the data 1s from a tissue sample that 1s abnormal and a 0 when the data represents

normal tissue.

i A w o b g Ayl B A Ay 1 4 e A e G Pt e



10

15

20

25

WO 98/24369

CA 02274233 1999-06-02
PCT/US97/21251

220.

Once trained, control returns to block 800 until additional data is received. If the data
received is not training data, control proceeds to blocks 804-806, representing an
ensemble of RBF networks, each having a different RBF. For each RBF network, a design
matrix H is set up in accordance with Equation 135 and the output of the RBF network 1s
computed as shown in Equation 11, where 4, corresponds to the design matrix H, and w,

corresponds to the optimum weight matrix derived in Equation 17.

Control then passes to block 808 where the results of all of the RBF networks in the
ensemble are combined in accordance with either the median combiner or averaging

combiner. Block 810 then outputs the resultant probability of the input data being normal

or abnormal.

An ensemble of RBF networks and a combiner were used because experimentation found
that there were significant variations among different runs of individual RBF networks
for both stages. Therefore, selecting the “best” classifier was not an ideal choice. First, the
definition of “best” depends on the selection of the validation set, making it difficult to
ascertain whether one network will outperform all others given a different test set, as the
validation sets are small. Second, selecting only one classifier discards a large amount of
potentiaily relevant information. In order to use all the available data, and to increase both
the performance and the reliability of the methods, the outputs of the RBF networks were

pooled before a classification decision was made.

The concept of combining classifier outputs has been widely reported. See, for example,
the Hansen, et al. and Wolpert articles discussed below. In the preferred embodiment,
either or both of two combiners were used: (1) the median combiner, which belongs to
the class order statistics combiners discussed in Tumer, K. and Ghosh, J. (1995b), “Order
statistics combiners for neural classifiers”, Proceedings of the World Congress on Neural
Networks, pp. I;31:34, Washington, D.C., INNS Press, and in Tumer, K. and Ghosh, J.
(1995¢), “Theoretical foundations of linear and order statistics combiners for neural

pattern classifiers”, Technical Report 95-02-98, The Computer and Vision Research
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Center, University of Texas, Austin; and (2) the well-known averaging combiner, which

simply performs an arithmetic average of the corresponding outputs.

The performance of the RBF networks of the invention is preferably analyzed using a
technique known as cross-validation. The basic idea is to use only a portion of the
database 1n training the neural network and to use the rest of the database in assessing the
capacity of the network to generalize. Once the performance of the network is assessed,
the network can then be optimized by varying network characteristics and architecture.
A residual error will typically remain even after optimizing all available network
characteristics. Using an ensemble of networks, each of which have been trained on the
same database, further reduces this error. Thus, a given input pattern is classified by
obtaining a classification from each copy of the network and then using a consensus
scheme to decide the collective classification result. A series of trial tunings of network
parameters are preferably used to find an acceptable architecture in tuning. Instead of
using just the best RBF network in the ensemble, the complete set of networks (or at least
a screened subset) is used with an appropriate collective decision strategy.

Using the ensemble is desirable due to the basic fact that selection of the weights w is an
optimization problem with many local minima. All global optimization methods in the
face of many local minima yield “optimal” parameters (w) which differ greatly from one
run of the algorithm to the next, i.e., which show a great deal of randomness stemming
from different initial points (w’) and sequencing of the training examples. This
randomness tends to differentiate the errors of networks so that the networks will all make
errors on different subsets of the input space. For additional discussion of the use of
neural network ensembles, see L. Hansen, et al., “Neural Network Ensembles”, JEEE
Iransactions on Pattern Analysis and Machine Intelligence, Vol.12, No. 10, Oct. 1990,
pages 993-1001, and D. Wolpert, “Stacked Generalization”, Neural Networks, Vol. 5,
1992, pages 241-259, both of which are incorporated by reference.
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In one implementation of the invention using two-stage RBF network classification, the
Kernels were 1nitialized using a k-means clustering algorithm on the training set
containing normal squamous (NS) tissue samples and SILs for the first stage. The RBF
networks had 10 kernels, whose locations and spreads were adjusted during training. For
the second stage, 10 kernels were selected, half of which were fixed to patterns from the
columnar normal (NC) class, while the other half were initialized using a k-means
algorithm. Neither the kernel locations nor their spreads were adjusted during training.
This process was adopted to rectify the large discrepancy between the samples from each
category (13 for columnar normal vs. 58 for SILs). For each stage, the training time was
estimated by maximizing the performance on one validation set. Once the stopping time

was established, 20 cases were run for each stage.

The ensemble results were based on pooling 20 different runs of RBF networks,
initialized and trained as described above. This procedure was repeated 10 times to
ascertain the reliability of the results and to obtain the standard deviations. For an
application such as pre-cancer detection, the cost of a misclassification varies greatly from
one class to another, as shown in FIGURE 6. Erroneously labeling a healthy tissue as pre-
cancerous can be corrected when further tests are performed. Labeling a pre-cancerous
tissue as healthy, however, can lead to disastrous consequences. Therefore, for the first
stage in the two-stage process, the cost of a misclassified SIL was increased until the
sensitivity reached a satisfactory level. Results of using the two-stage RBF network

process are discussed below.

Single-Stage Network Process

One drawback of the two-stage analysis is that it cannot concurrently distinguish SIL
tissue from both normal squamous (NS) tissue and normal columnar (N C)' tissue. Since
the ultimate goal of these two stages is to separate SILs from normal tissue samples, any
particular pattern has to be processed through both stages. For this reason, the two-stage

process complicates the data gathering and decision-making processes. In order to
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simplify this decision process, a preferred embodiment of the invention uses a single-stage

neural network analysis to classify the input data.

Essentially, the input for each of the stages of the two-stage process describe above are

concurrently applied to an RBF network ensemble. Because the pre-processing for the

~ first and second stages is different (i.e., normalization only vs. normalization plus mean-

scaling), the input space in the preferred embodiment is 26-dimensional (i.e., two sets of
13 data pairs). In one implementation, 10 kernels were initialized using a k-means
algonithm on a trimmed version of the training set. The kernel locations and spreads were
not adjusted during training to avoid kernel “migration” to a more heavily represented
class. The cost of a misclassified SIL was set at 2.5 times the cost of a misclassified
normal tissue sample, in order to provide a good sensitivity/specificity combination. The

average and median combiner results were obtained by pooling 20 RBF networks.

FIGURE 9 1s a block diagram for the single-stage fluorescence spectroscopy technique
of the invention. In this process, in block 1000, the fluorescence spectrum at three
excitation wavelengths are obtained. Control then proceeds to block 1002, where the
probability of SIL is determined by an RBF ensemble. It should be noted that this
procedure 1s similar to that shown in FIGURES 7 and 8, except that the input space is

now larger because of the differences in the two combined steps discussed above.

Next, in decision block 1004, the probability is compared to a predetermined threshold,
Th (e.g., 0.5). If the probability is less than the threshold, the process proceeds to decision
block 1006 to determine whether the tissue is normal and, if so, the process determines
In block 1008 that the tissue belongs to the SIL class. It will be appreciated that
discrimination between high and low grade SIL can be added to the single-stage
embodiment shown in FIGURE 9 by simply adding steps corresponding to steps 614-620
shown in FIGURE 6.
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Results of using the single-stage RBF network process are discussed below.

MLP Network
Although the preferred embodiments of the invention uses an RBF network, the invention
can be implemented using a multi-layer perceptron (MLP) neural network 1000, such as
5 s shown 1n block diagram form in FIGURE 10. The MLP network 1000 includes an input
layer comprising a plurality of input units 1002, a hidden layer comprising a plurality of
hidden units 1004, and an output layer comprising a plurality of output units 1006 Each
unit 1s a processing element or “neuron”, coupled by connections having adjustable
numeric weights or connection strengths by which earlier layers influence later ones to
10 determine the network output. For further information on the architecture and training of

MLP adaptive neural networks, see “Progress in Supervised Neural Networks” by Don
Hush and Bill Home, published in IEEE Signal Processing (January 1993).

Prior to using an MLP network to classify actual input data, a trainer is used to adjust the
parameters of the neural network system 1000 using pre-characterized training data. The
15 trainer monitors the neural network system’s output and adjusts the parameters of the
neural network system 1000 until a desired level of performance is achieved, in known
fashion. Once an acceptable level of performance is achieved, the neural network system
parameters are accepted and training stops. In the preferred embodiment of the present
Invention, training is done in accordance with the well-known back-propagation
20 algorithm. This algorithm is described in an article entitled “Back-Propagation, weight
elimination and time series prediction” by A.S. Weigend, D.E. Rumelhart, and B.A.
Huberman, published in Proceedings Of The 1990 Connectionist Models Summer School,
pp. 65-80 (1990), and in the Hush, et al. article referenced above. If desired, a cross-

vahdation system may be included, in known fashion.
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In the preferred embodiment, an ensemble of MLP networks is used. The ensemble may
be use with erther a two-stage process or a single-stage process. Results of using an MLP

network classifier are discussed below.

Results

Table 3 shows the sensitivity and specificity values for stage one of a two-stage
classification process, based on MSA, MLP, and RBF ensembles. Table 4 presents
sensitivity and specificity values for stage two for the same ensembles. For both stage one
and stage two, the RBF-based ensembles provide higher specificity than the MSA
method. For stage one, the MLP-based ensembles provide higher specificity than the
MSA method. The median combiner provides results similar to those of the average

combiner, except for stage two, where it provides better specificity.

- The final results of both the two-stage and single-stage RBF process, and the results of

the two-stage MSA process, are compared to the accuracy of Pap smear screening and
colposcopy in expert hands in Table 5. A comparison of single-stage RBF process to the
two-stzfge RBF process indicates that the single-stage process has similar specificities, but
a moderate improvement in sensitivity relative to the two-stage process. Compared to the
MSA, the single-stage RBF process has a similar specificity, but a substantially improved
sensitivity. In addition to improved sensitivity, the single-stage RBF process simplifies

the decision-making process compared to the two-stage process.

A comparison between the single-stage RBF process and Pap smear screening indicates
that the RBF algorithms have a nearly 30% improvement in sensitivity with no
compromise in specificity. When compared to colposcopy in expert hands, the RBF
ensemble processes maintain the sensitivity of expert colposcopists, while improving the
specificity by almost 20%. FIGURE 11 shows the trade-off between specificity and
sensitivity for clinical methods, MSA, and RBF ensembles, obtained by changing the
musclassification cost. The RBF ensembles provide better sensitivity and higher reliability

than any other method for a given specificity value.
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FIGURE 12 shows the percentage of normal squamous tissues and SILs correctly
classified versus cost of misclassification of SILs for the data from the calibration set in
an MSA process. An increase in the SIL misclassification cost results in an increase in the
proportion of correctly classified SILs and a decrease in the proportion of correctly
5 classified normal squamous tissues. Varying the cost from 0.4 to 0.6 alters the
classification accuracy of both SILs and normal tissues by less than 15%, indicating that
a small change in the cost does not significantly alter the performance of the method. An
optimal cost of misclassification would be about 0.6-0.7, as this correctly classifies almost

95% of SILs and 80% of normal squamous.

10 Table 3 - Stage 1 of 2

Specificity Sensitivity

63% 90%
61%+1% 91%+0%
61%+1% 91%£0%
66%+1%  91.5%+0.5%
66%+1%  91.5%+0.5%

15
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Table 4 —- Stage 2 of 2

Algorithm | Specificity  Sensitivity

MSA 36% 97%
MLP-ave 50%+0%  88%+0.7%
MLP-med | 50%=%0%  89%3+2.5%
RBF-ave 37%+5% 97%+0%
RBF-med | 44%+7% 97%+0%

Table 5 - Method Comparison

Algorithm Specificity Sensitivity

63% 83%
65%+2% 87%+1%
67%£2% 87%+1%
67%+£0.75%  91%+1.5%
65.5%+0.5%  91%+1%
68%+£21% 62%+23%
48%+23% 94%+6%

2-stage MSA

2-stage RBF-ave

2-stage RBF-med

1-stage RBF-ave

1-stage RBF-med

Pap smear (human expert)

Colposcopy (human expert)

Summary

Accordingly, the invention provides an apparatus and methods for spectroscopic detection
of tissue abnormality, particularly precancerous cervical tissue, using neural networks to
analyze in vivo fluorescence measurements. One embodiment of the invention is able to
distinguish pre-cancerous tissue from both normal squamous tissue (NS) and normal
columnar (NC) tissue using a single-stage analysis. Using the inventive fluorescence
diagnostic method, improved sensitivity and specificity were observed for differentiating

squamous intraepithelial lestons (SILs) from all other tissues.
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Computerized Implementation

The invention may be implemented in hardware or software, or a combination of both.
However, preferably, the invention is implemented in computer programs executing on
programmable computers each comprising at least one processor, at least one data storage
system (including volatile and non-volatile memory and/or storage elements), at least one
input device, and at least one output device. Program code is applied to input data to
perform the functions described herein and generate output information. The output

information is applied to one or more output devices, in known fashion.

Each program is preferably implemented in a high level procedural or object oriented
programming language to communicate with a computer system. However, the programs
can be implemented in assembly or machine language, if desired. In any case, the

language may be a compiled or interpreted language.

Each such computer program is preferably stored on a storage media or device (e. g2., ROM
or magnetic diskette) readable by a general or special purpose programmable computer,
tor coriﬁguring and operating the computer when the storage media or device is read by
the computer to perform the procedures described herein. The inventive system may also
be considered to be implemented as a computer-readable storage medium, configured
with a computer program, where the storage medium so configured causes a computer to

operate 1n a specific and predefined manner to perform the functions described herein.

A number of embodiments of the invention have been described. Nevertheless, it will be
understood that various modifications may be made without departing from the spirit and
scope of the invention. For example, the teachings of the invention may be applied to
other types of spectroscopic data generation modalities besides fluorescence spectroscopy,
such as Raman spectroscopy, or to the diagnosis of conditions other than cervical pre-
cancer. Accordingly, it is to be understood that the invention is not to be limited by the

specitic illustrated embodiment, but only by the scope of the appended claims.
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CLAIMS
What 1s claimed 1s:
. An apparatus for detecting and classifying tissue abnormality at a tissue site,
comprising:
(a) at least one source of electromagnetic radiation of selected wavelengths

that excite different fluorescence intensity spectra in normal and abnormal
5 tissue;
(b) a recerver sensitive to the fluorescence intensity spectra;
(¢) a tissue site probe coupled to each source and to the receiver; and
(d) at least one neural network, coupled to the receiver, for calculating from
the fluorescence intensity spectra a probability that the tissue site is

10 normal or abnormal.

2. An apparatus as in claim 1, wherein the neural networks comprise an ensemble
of radial basis function (RBF) networks, each generating a different probability,

and a means for combining the different probabilities into a single probability.

3. An apparatus as in claim 2, wherein the means for combining utilizes a median

class order statistical combiner.

e e M s A by e £ A AT NG N T (4 40 4 o T ] b S S T G DA P el M i - T e red TR vt e T e mivden e Mo v BN ORGSR ARt L

o et A G b N YA e e ldds L



CA 02274233 1999-06-02

WO 98/24369 PCT/US97/21251
-39.
4, An apparatus as in claim 1, wherein each neural network comprises:
(a) a layer of Input processing units receiving an input vector and producing

an output;
(b)  alayer of hidden processing units each receiving one of the outputs from
each of the input processing units and producing an output; and
(c)  an output unit recerving each hidden unit output multiplied by a weight,

the output unit generating an output that is a function of its inputs.

5. An apparatus as 1n claim 1, wherein the neural networks comprise an ensemble

of multilayer perceptron networks.

6. The apparatus as in claim 1, further including means for training the neural
network using fluorescence intensity spectra from known normal and abnormal

tissue.

7. An apparatus as in claim 6, wherein the training means adjusts the weight in an
iterative process to produce a desired output in response to a given input, wherein

the desired output comprises the probability.

8. An apparatus as in claim 1, wheremn the fluorescence intensity spectra derives
from abnormal cervical tissue, normal squamous cervical tissue, and normal
columnar cervical tissue, wherein the probability is a single probability distin-
guishing abnormal tissue from both normal squamous and normal columnar

tissue.
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An apparatus as in claim 1, further including means for conducting a principle

component analysis of the fluorescence intensity spectra.

An apparatus as in claim 9, further including means for normalizing the first
fluorescence intensity spectra relative to respective maximum intensities thereof;

prior to conducting the principle component analysis.

An apparatus as in claim 10, further including means for mean-scaling the first
fluorescence intensity spectra as a function of a mean intensity thereof, prior to

conducting the principle component analysis.

An apparatus as in claim 1, wherein at least one source of electromagnetic
radiation comprises a laser operated to generate pulses at each wavelength having
a power level, pulse duration, and repetition rate that excites the fluorescence

intensity spectra in normal and abnormal tissue.

An apparatus as in claim 1, wherein the tissue is cervical tissue, and a probability

of abnormal tissue indicates a cancerous or pre-cancerous condition.
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4. A method for detecting and classifying tissue abnormality at a tissue site,
comprising the steps of:
(a) exciting different tluorescence intensity spectra in normal and abnormal
tissue;
5 (b)  receiving the fluorescence intensity spectra; and
(¢) calculating from the fluorescence intensity spectra, using at least one

neural network, a probability that the tissue site is normal or abnormal.

15. A method as in claim 14, wherein the neural networks comprise an ensemble of
radial basis function (RBF) networks, each generating a different probability,
further including the step of combining the different probabilities into a single

probability.

16. A method as in claim 14, wherein the step of combining utilizes a median class

order statistical combiner.

17. A method as in claim 14, wherein each neural network comprises:
(a) a layer of input processing units receiving an input vector and producing
an output;
(b)  alayer of hidden processing units each receiving one of the outputs from
5 each of the input processing units and producing an output; and
(¢) an output unit recerving each hidden unit output multiplied by a weight,

the output unit generating an output that is a function of its inputs.
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18. A method as in claim 14, wherein the neural networks comprise an ensemble of

multilayer perceptron networks.

19. The apparatus as in claim 14, further including the step of training the neural
network using fluorescence intensity spectra from known normal and abnormal

tissue.

20. A method as in claim 19, further including the step of adjusting weights in each
neural network in an iterative process to produce a desired output in response to

a given input, wherein the desired output comprises the probability.

21. A method as in claim 14, wherein the fluorescence intensity spectra derives from
abnormal cervical tissue, normal squamous cervical tissue, and normal columnar
cervical tissue, wherein the probability is a single probability distinguishing

abnormal tissue from both normal squamous and normal columnar tissue.
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A method as in claim 14, further including the step of conducting a principle

component analysis of the fluorescence intensity spectra.

A method as in claim 22, further including the step of normalizing the first
fluorescence intensity spectra relative to respective maximum intensities thereof,

prior to conducting the principle component analysis.

A method as in claim 23 further including the step of mean-scaling the first
fluorescence intensity spectra as a function of a mean intensity thereof, prior to

conducting the principle component analysis.

A method as in claim 14, wherein the different fluorescence intensity spectra are
excited by a laser operated to generate electromagnetic radiation at selected

wavelengths.

A method as in claim 14, wherein the tissue is cervical tissue, and a probability

of abnormal tissue indicates a cancerous or pre-cancerous condition.
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A method for in vivo analysis of cervical tissue, comprising the steps of:

(a)

(b)

(€)

(d)

(€)

Inserting an optical probe within a cervix, the probe having a li ght source
and a light receptor;

illuminating a selected area of the cervix with selected wavelengths of
light from the light source;

exciting ﬂuorescence Intensity spectra in both normal and abnormal tissue
In the cervix with the light;

receiving the fluorescence intensity spectra from the selected area through
the light receptor;

analyzing the received fluorescence intensity spectra, using at least one
neural network, to determine a probability that the cervical tissue in the

selected area 1s normal or abnormal.

A method as in claim 27, wherein the neural networks comprise an ensemble of

radial basis function networks, each generating a different probability, and a

means for combining the different probabilities into a single probability.

A method as in claim 27, wherein the neural networks comprise an ensemble of

multilayer perceptron networks.
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30. A method for analyzing fluorescence intensity spectra from a tissue site in order
to detect and classify tissue abnormality at the tissue site, comprising the step of:
(a) calculating from the fluorescence intensity spectra, using at least one

neural network, a probability that the tissue site is normal or abnormal.

51. A method as in claim 30, wherein the neural networks comprise an ensemble of
radial basis function (RBF) networks, each generating a different probability,
turther including the step of combining the different probabilities into a single

probability.

32. A method as in claim 31, wherein the step of combining utilizes a median class

order statistical combiner.

33. A method as in claim 30, wherein each neural network comprises:
(a) a layer of input processing units receiving an input vector and producing
an output;
\ (b) a layer of hidden processing units each receiving one of the outputs from
each of the input processing units and producing an output; and
(¢) an output unit recerving each hidden unit output multiplied by a weight,

the output unit generating an output that is a function of its inputs.
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34, A method as in claim 30, wherein the neural networks comprise an ensemble of

multilayer perceptron networks.

The apparatus as in claim 30, further including the step of training the neural

)
n

network using fluorescence intensity spectra from known normal and abnormal

tissue.

56. A method as in claim 35, further including the step of adjusting weights in each
neural network in an iterative process to produce a desired output in response to

a given input, wherein the desired output comprises the probability.

57. A method as in claim 30, wherein the fluorescence intensity spectra derives from
abnormal cervical tissue, normal squamous cervical tissue, and normal columnar
cervical tissue, wherein the probability is a single probability distinguishing

abnormal tissue from both normal squamous and normal columnar tissue.
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A method as in claim 30, further including the step of conducting a principle

component analysis of the fluorescence intensity spectra.

A method as in claim 38, further including the step of normalizing the first
fluorescence intensity spectra relative to respective maximum intensities thereof,

prior to conducting the principle component analysis.

A method as in claim 38, further including the step of mean-scaling the first
fluorescence intensity spectra as a function of a mean intensity thereof, prior to

conducting the principle component analysis.

A method as in claim 30, wherein the fluorescence intensity spectra are excited

by a laser operated to generate electromagnetic radiation at selected wavelengths.

A method as in claim 30, wherein the tissue is cervical tissue, and a probability

of abnormal tissue indicates a cancerous or pre-cancerous condition.
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A computer program, residing on a computer-readable medium, for detecting and
classifying tissue abnormality at a tissue site using data in a computer derived
from fluorescence intensity spectra of normal and abnormal tissue, the computer
program comprising instructions for causing a computer to:

(a) pre-process the fluorescence intensity spectra data; and

(b) calculate a probability that the tissue site is normal or abnormal from the

fluorescence intensity spectra data using at least one neural network.

A computer program as in claim 43, wherein the computer program further
comprises instructions for causing the computer to calculate the probability using
an ensemble of radial basis function (RBF) networks, each generating a different

probability, and to combine the different probabilities into a single probability.

A computer program as in claim 44, wherein the computer program further
comprises instructions for causing the computer to train each RBF network using

fluorescence intensity spectra from known normal and abnormal tissue.

A computer program as in claim 43, wherein the computer program further

comprises instructions for causing the computer to conduct a principle component

analysis of the fluorescence intensity spectra.

A computer program as in claim 43, wherein the computer program further

comprises instructions for causing the computer to calculate the probability using

a multilayer perceptron network.
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