
(19) United States
US 2005O187983A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0187983 A1
Narang et al. (43) Pub. Date: Aug. 25, 2005

(54) METHOD OF MAINTAINING DATA
CONSISTENCY IN A LOOSE TRANSACTION
MODEL

(75) Inventors: Inderpal Singh Narang, Saratoga, CA
(US); Karen Wolfe Brannon, Palo
Alto, CA (US); Suparna Bhattacharya,
Bangalore (IN); Hui-I Hsiao, Saratoga,
CA (US)

Correspondence Address:
OJANEN LAW OFFICES
Suite 212
1530 Greenview Drive, SE
Rochester, MN 55902-1080 (US)

(73) Assignee: International Business Machines Cor
poration, Armonk, NY

(21) Appl. No.: 10/982,475

(22) Filed: Nov. 5, 2004

Related U.S. Application Data

(63) Continuation of application No. 09/971,755, filed on
Oct. 5, 2001, now Pat. No. 6,874,001.

Publication Classification

(51) Int. Cl. ... G06F 12/00
(52) U.S. Cl. .. 707/200

(57) ABSTRACT

A System and a computer program product are disclosed for
maintaining consistency of object content (252) and meta
data (204) related to the object (252) in a loose transaction
model, preferably using SQL Mediated Object Manipulation
(SMOM), for object and meta-data updates. The related
meta-data (204) and a reference to the object (252) are stored
in a table of a database. The object is stored externally to the
database in an object Store. The reference is used to obtain
a handle for directly accessing or manipulating the external
object. A version number embedded in the handle is then
obtained. The embedded version number is then compared
with a version number of a latest committed version of the
externally stored object to determine if the handle refers to
a current version of the externally stored object. Next, the
last modification timestamp of the file is compared with the
last modification timestamp of the latest committed version,
in order to detect uncommitted updates. A mismatch indi
cates that Stale data is being referenced, and in that situation
an appropriate error is returned.

DAALINK datalink-Options-clause - nogen
datalink-Options-Clause:

file-link-options-Clause:
-o-NTEGRITY ALL-o-READ PERMISSION L DB RECOVERY IN

NO LINK CONTROL

FE LINK CONTROL His
MODE DB2OPTIONS

FS YES

-O-WRITE PERMISSION FS -on UNLINK-T-RESTORE - I -
allocked DELETE

US 2005/0187983 A1 Patent Application Publication Aug. 25, 2005 Sheet 1 of 11

— ELETEC – CIEXOOT8 |–|—).XNIIN, NO--[(S-ºl -SBÅ – S4 ----?--ºos:80
| 613

l-NOISSIWYJEd QWE8–º–TTWALIH0H1N1-e- TOHINOO XINIT ET||-|| TOHINOOXNIT ON

Patent Application Publication Aug. 25, 2005 Sheet 2 of 11 US 2005/0187983 A1

200

FILE SYSTEM

Fig. 2A

Patent Application Publication Aug. 25, 2005 Sheet 3 of 11 US 2005/0187983 A1

290

1000 URL
1019 NULL

210

-1E
252

FILE SYSTEM

Fig. 2B

Patent Application Publication Aug. 25, 2005 Sheet 4 of 11 US 2005/0187983 A1

300
Request a Write access
token via SQL Select 260
COmmand with a new

datalink Scalar function.

Check user's write access 262
authority to file.

264
Return a Write
access token.

Open the file for write 266
with Write access token.

DLFF forwards token to
DLFM for token

validation. DLFM marks
file to update-in
progress state.

268

270
File system returns
the file descriptor.

Patent Application Publication Aug. 25, 2005 Sheet 5 of 11 US 2005/0187983 A1

272

Once file update is completed, 274
issue SQL update with new
scaler function to DB2 and
import other meta-data.

Invoke DB2-DLFM update -276
API and update DLFM

meta-data.

278 DLFM triggers an
asynchronous archiving

of the file.

280

Patent Application Publication Aug. 25, 2005 Sheet 6 of 11 US 2005/0187983 A1

DLFM hardens the DLFM 294
meta-data and reply

OK to DB2

Send final commit (phase 2) 296
to DLFM. DLFM changes the

file from the "update-in
progress" state back to

"normal".

Patent Application Publication Aug. 25, 2005 Sheet 7 of 11 US 2005/0187983 A1

Lookup W(Commit) &
Tm(commit) from the

repository Repository

Extract V(token) 614
from the token

616 ls
V(commit)
=V(token)?

Obtain the Current
value of the Tm(access)

from the file

ls
Tm(commit)
Tm(access)?

Consistent
(Allow access)

InCOnsistent -?. 624
(Return error)

Fig. 5A

Patent Application Publication Aug. 25, 2005 Sheet 8 of 11 US 2005/0187983 A1

3: .

Lookup V(commit) &
F. Tm(commit) from the

repository
Set REFRESHED to O Remote

TRUE Repository

ls
V(commit)
=V(token)?

Obtain the Current value of the
Tm(access) from the file Refresh

V(commit),
Tm(commit)

ls

ASE Tm(access)

Used
Cached V(commit),

Tm(commit)?
(REFRESHED

=FALSE)
622 Consistent

(Set REFRESHED
to FALSE)

(Allow access) NO

InConsistent
(Return error)

624

Fig. 5B

I ‘613

US 2005/0187983 A1

018 098

Patent Application Publication Aug. 25, 2005 Sheet 10 of 11

US 2005/0187983 A1

02

Patent Application Publication Aug. 25, 2005 Sheet 11 of 11

09

JeffeueA. el Syu eyed

09

US 2005/0187983 A1

METHOD OF MANTAINING DATA
CONSISTENCY IN A LOOSE TRANSACTION

MODEL

CROSS REFERENCE TO RELATED
APPLICATION

0001. This is a continuation of pending U.S. patent
application Ser. No. 09/971,755 filed 5 Oct. 2001 entitled A
METHOD OF MAINTAINING DATA CONSISTENCY IN
A LOOSE TRANSACTION MODEL, which is herein
incorporated by reference.

FIELD OF THE INVENTION

0002 The present invention relates generally to elec
tronic information technology and more particularly to elec
tronic data management Systems.

BACKGROUND

0003 Content management Systems store, access, and
manage digital information or content in networked envi
ronments, including Such information generated in e-busi
neSS applications. Well integrated content has many appli
cations, and for example, can accelerate busineSS proceSS
automation across an enterprise for various sized e-busi
nesses. Relevant content can include electronic documents,
text files, XML and HTML files, digital audio and video
files, Scanned images, facsimiles, and the like.
0004 Content management systems, especially those
designed for managing distributed content, may also store
meta-data describing an object or related information in a
Store that is separate from a file containing the object's
content. DB2 Universal Database (UDB) is an example of a
Scalable database that can be used in content management
systems as a database management system (DBMS). The
DBMS is an essential part of the system for storing digital
information or content. Meta-data can be Stored in a reposi
tory of the DBMS. Examples of meta-data include informa
tion about data Sources, access authorization, archive and
backup histories, data accesses and content identification
labels (e.g., video, audio, text).
0005. A particular challenge arising in content manage
ment Systems is maintaining consistency between file con
tent and the associated meta-data from the point of View of
an application accessing the content and meta-data (simply
referred to hereinafter as a reader). If file and meta-data
updates are tightly coupled (i.e. both updates happen within
a single unified transaction), a transaction coordinator typi
cally ensures a consistent view by locking out readers of
meta-data as well as file data until the transaction is com
mitted. Intermediate/uncommitted updates to either are not
Visible. However, this approach has a number of disadvan
tages including the circumstance that content edits can
require considerable amounts of time. This approach also
does not allow the convenience of directly accessing and
updating the file content on the native filesystem, using
native filesystem operations.
0006. On the other hand, in systems where a loose
transaction model is provided, and direct content edits are
allowed, consistency between file-data and meta-data may
not be guaranteed at all times.
0007. A need therefore clearly exists for an improved
technique for providing a consistent view of file data and
meta-data in the presence of a loose-transaction model.

Aug. 25, 2005

0008. Management of External Data Using DATALINKS
0009 Content can be referenced within a database using
the DATALINK data type, which is part of the ANSI ISO
standard described in document ISO/IEC 9075-9:2000(E),
“Information Technology-Database Languages SQL-Part
9: Management of External Data (SQL/MED)”.
0010 Datalinks (DL) is a mechanism that can be used
with DB2 UDB, facilitating management of files residing
outside of a database as though the files are logically within
the database. Datalinks ensures referential integrity of the
external files, provides access control for the files, and
Supports automatic and coordinated backup and restore
capabilities. In this manner, a coordinated administration
point is provided for file and database data. In the following
description, a DATALINK type is referred to for SQL
management of external data.

0011 Datalinks maintains a reference to a file residing in
a file system in a column of a DB2 table. The reference is
stored as DATALINK data type, which uses a Uniform
Resource Locator (URL). A table in the database may have
one or more DATALINK columns. The database may also
store meta-data about the files with DATALINK references
in the same table or other tables. Thus, a row may contain
a DATALINK reference and meta-data related to the exter
nal file. An SOL query or Statement issued by an application
or reader may be applied against the table on the meta-data,
for example, to locate the (external) file of interest. The URL
retrieved from the DATALINK column of the row is then
used to access the external file via the native API of the file
System or browser.

0012 FIG. 1 illustrates the syntax of the DATALINK
data type, including options with respect to write permis
Sion, namely FS and Blocked. A DATALINK value refer
ences a file that is not part of the SQL environment. The file
is assumed to be managed by an external file manager. A
DATALINK value is represented by a file reference, which
is a character String referencing an external file, and is input
and retrieved by invoking a built-in Scalar function. A file is
linked to the SOL environment when a SQL insert statement
causes a value that references the file to appear in a datalink
column whose descriptor includes the link control FILE
LINK CONTROL. If the read permission option is DB,
access to the referenced data Source is SQL mediated. If the
read permission option is not DB, access to the referenced
file is determined by the file system and file manager. NO
LINK CONTROL does not cause any file to be linked to the
SQL environment.

0013 Further information regarding the datalink struc
ture shown in FIG. 1 can be found in Section 4.8
“Datalinks' at pages 31-35 in the ANSI ISO standard of
ISO/IEC9075-9:2000(E), “Information Technology-Data
base Languages SQL-Part 9: Management of External
Data (SQL/MED)".
0014) DataLinks supports two modes of “WRITE PER
MISSION”: FS (File System) or BLOCKED. In the FS case,
users are allowed to update a file while the file is linked to
the database (i.e. the database has a DATALINK value
which is currently pointing to the file). However, this mode
does not provide file data recovery, which means if the disk
crashes or a user needs to restore the database, there is no file
backup data to recover from. This could cause inconsistency

US 2005/0187983 A1

between the file data and the database data after RESTORE/
ROLLFORWORD to a point in time other than the time of
the crash. Moreover, WRITE PERMISSION FS does not
Support the SQL mediated acceSS model like the one pro
vided in READ PERMISSION DB.

0015. On the other hand, WRITE PERMISSION
BLOCKED provides data recovery for a file with a reference
in a DATALINK column. However, a user cannot update the
file while the file is currently linked. In order to modify the
file, the user has to unlink the file in one transaction, modify
the content and link the file in another transaction. So
between the two transactions, the file is not linked, which
means it is not under the control of the database (DataLinks)
and the file reference is not visible in the database.

0016 FIG. 4 is a block diagram of a system 100 for
managing links between a database 80 and external data files
20 referenced in the database 80. The example chosen for
illustrative purposes is an employee records database, Such
as might be utilized by a corporation. The database 80
records reside within a DBMS 50. The external data files 20
are located in a native file system 75 and not in the database
80. An example of the file system 75 is JFS on AIXTM, or
NTFS on Windows NTM products.
0017. The database 80 stores an employee table 82
including a name column 83, a department column 84, and
a picture column 81. The name column 83 typically contains
a String, the department column an integer, while the picture
column would contain a reference to an image stored in one
of a number of external data files 20. The external data file
20 may also contain other forms of data, including docu
ments, presentations, engineering drawings, Spreadsheets, or
Video clips.
0.018. It would be undesirable for any one of the external
data files 20 to get deleted, modified, or renamed while that
external data file 20 continues to be referenced by the
database 80, and in particular the picture column 81. A
Datalinks File Manager (DLFM) 60 is therefore provided for
maintaining a table (not illustrated) of linked file references.
The DLFM 60 may also be responsible for controlling
access permission and ownership of the external data files
20. The table maintained by the DLFM 60 contains
attributes and Subsets of the data Stored in the external data
files 20, along with logical references to the location of the
external data files 20.

0019. In operation, an application program 30 searches
the database 80 via a SQL Application Programming Inter
face (API) request 40 to identify database entries 80 of
interest. In the example illustrated in FIG. 4, this typically
occurs when an employee record is viewed and there is a
requirement for the image of the employee to be displayed
with his/her other information.
0020. The DBMS 50 is responsible for managing the
links between the database 80 and the data files 20 and
provides to the application 30 references to the selected
external data files 20 via a handle. An example of the DBMS
50 is the DB2TM Universal Database product of International
Business Machines Corporation. The application 30 can
now access the external data file 20 directly using Standard
file-system API calls 70. Typical file-system API calls 70 are
“file-open”, “file-read” and “file-delete'.
0021 A Datalinks File System Filter DLFF 10 is a thin,
database control layer or filter on the file system 75. The

Aug. 25, 2005

DLFF 10 intercepts certain of the file-system API calls 70
issued by the application 30. The file-system API calls 70
that are intercepted include file-open, file-rename, and file
delete calls. If the external data file 20 is referenced in the
database 80, the DLFF 10 is responsible for enforcing
referential-integrity constraints and acceSS-control require
ments defined for the data file 20. The referential integrity
constraints ensure that the reference to data files 20 remains
valid as long as it is “linked” to the database 80. DLFF 10
also ensures that any access call 70 meets Database Man
agement System (DBMS) 50 access control requirements.
An example of SQL mediated access is in the use of an
authorization token, which is generated by the DBMS as part
of the handle and verified by DLFF.
0022. The DLFF 10 validates any authorization token
(not illustrated) embedded in the file pathname for a file
open operation. For example, when a user of application 30
submits a SQL API Request 40 to retrieve the employee
picture (image) from the database 80, the DBMS 50 checks
to see if the user has permission to access the employee table
82 containing the picture column 81. The permission may
include Select and View privileges on the employee table 82.
The DBMS 50 returns the file name of the external file 20
to the application 30 only if the user has the required
permission. An authorization token is embedded in the file
name as part of the value returned for the picture column 81
by the DBMS 50. The application 30 then uses the file API
call 70 to retrieve the image from the external file 20. When
the DLFF 10 intercepts the file-open request, the DLFF 10
validates the authorization token to determine whether or not
to pass the file-open request through to the native file System
75. If the validation fails, the file-open request is rejected.
Once acceSS has been authorized by a valid token, the
application 30 interacts directly with the file system 75 for
delivery of the external file 20 without the need for the
DLFF 10 to further control the file access. This allows the
application 30 the same Speed of acceSS as to a native file
System.

SUMMARY

0023. In accordance with aspects of the invention, there
is provided a System and a computer program product of
maintaining consistency of content of an object and meta
data related to the object in a loose transaction model for
object and meta-data updates that Stores the related meta
data and a reference to the object in a table of a database, the
object being Stored externally to the database in an object
Store, the reference used to obtain a handle for directly
accessing or manipulating the external object, obtaining a
version number embedded in the handle and comparing the
embedded version number with a version number of a latest
committed version of the externally stored object to deter
mine if the handle refers to a current version of the exter
nally Stored object.
0024 Preferably the system and computer program prod
uct further compare a last modification time Stamp of the
object with a last modification time Stamp for the latest
committed version of the object if the encoded version
number and the version number of the latest committed
version match, and if the last modification time Stamp of the
object matches with the last modification time Stamp for the
latest committed version of the object, permit access to the
externally Stored object. The System and computer program

US 2005/0187983 A1

product may further generate an error to indicate that the
handle refers to stale content in the object if the last
modification time Stamp of the object does not match with
the last modification time Stamp for the latest committed
version of the object.
0.025 Preferably the system and computer program prod
uct further update the Steps of updating the object in-place
under either DBMS control or file system control and
linking the metadata and the object under DBMS control.
0.026 Preferably the system and computer program prod
uct further use SQL Mediated Object Manipulation
(SMOM) for an object that resides external to the database
wherein the loose-transaction update model.
0.027 Preferably the system and computer program prod
uct further intercept a native access to the externally Stored
object or a file System and validate the caller's access rights
based on a combination of the version number and a last
modification time stamp for a version of the object. The
interception by the System and computer program product
may be carried out using a filter layer of the object Store for
the stored object.
0028 Optionally, the object store is a local file system, or
a distributed file System, the object being accessed from a
remote file System client. A file acceSS which occurs in the
presence of authoritative caching and the comparing Steps
may be performed at the file System client. The computer
program product and the System may cache the last known
version number and the corresponding last modification time
Stamp at the file System client after an access and refresh the
last known version number and the corresponding last
modification time Stamp with latest values from a file Server
the next time one or both of the comparisons fail with the
previously cached values, in which case the comparisons are
retried with refreshed values.

0029 Preferably the system and computer program prod
uct encompasses file objects. Preferably the System and
computer program product further include the version num
ber associated with the object is embedded in an acceSS
token. Preferably the version number is temporally unique.
Preferably the last-modification-time stamp attribute asso
ciated with the object is maintained by the object Store.

BRIEF DESCRIPTION OF THE DRAWINGS

0030) A small number of embodiments of the invention
are described hereinafter with reference to the drawings, in
which:

0031 FIG. 1 illustrates the syntax for a DATALINK data
type when defining an SQL table;
0.032 FIGS. 2A and 2B are block diagrams illustrating a
content management System in accordance with an embodi
ment of the invention;
0033 FIGS. 3A, 3B, and 3C are flow diagrams illustrat
ing control processing of the content management System of
FIG. 2;
0034 FIG. 4 is a block diagram of the Datalinks archi
tecture showing where a Datalinks file-system filter (DLFF)
fits in;
0035 FIGS. 5A and 5B are flow charts for checking
consistency in a local file System and a distributed file
System, respectively;

Aug. 25, 2005

0036 FIG. 6 is a block diagram of the system architec
ture for a local file System in accordance with one embodi
ment of the invention; and

0037 FIG. 7 is a block diagram of the system architec
ture for a distributed file System in accordance with a Second
embodiment of the invention.

DETAILED DESCRIPTION

0038 A method, an apparatus, a computer program, a
computer program product and a system for maintaining (or
ensuring) meta-data and object-data consistency in a loose
transaction model of object and meta-data updates, from the
perspective of a reader application, are described hereinafter.
Preferably, the object may be a file and an object store may
be a file System. In the following description, numerous
details are set forth. It will be apparent to one skilled in the
art, however, that the present invention may be practised
without these specific details. In other instances, well-known
features are not described in detail So as not to obscure the
present invention.

0039. With the embodiments of the invention, allowing
file content to be accessed and updated in-place by directly
accessing the file System natively is more convenient.
Besides, Since content edits can be relatively long running,
a loose transaction model for file and meta-data updates is
useful where the file can be edited independently of the
meta-data. A user can update a file while it is currently
linked. In addition, the meta-data for that file can be
accessed by other users while the file is in the process of
being updated. The meta-data is alwayS Visible, even while
the file is being update. However, access to the file may be
denied. SQL mediated acceSS can be extended to allow
update-in-place. Specifically, the WRITE PERMISSION
clause in FIG. 1 can be extended to achieve this.

0040. The embodiments of the invention address the
noted problem in the context of meta-data maintained in a
database table associated with an external file reference to
content that is Stored in a file System or an object Store
external to the database.

0041 Generally, a file update takes longer than meta-data
updates or typical database transactions. In a typical update,
access to the file is requested and the file is locked. The
content of the file is modified as well as corresponding
meta-data generated. The file is then unlocked (i.e., the file
update is declared to be completed) and the meta-data is
imported into the database. Changes to the content of the file
happen outside a regular DB2 transaction.

0042. In particular, the problem addressed by the embodi
ments of the invention is ensuring that a reader application
always gets a consistent view of the content of a file and the
meta-data related to the file, given a loose transaction model
for file and meta-data updates. An error can acceptably be
returned in Situations where the file data being accessed is
not consistent with the corresponding meta-data Seen by the
reader.

0043 Solutions are provided by the embodiments of the
invention, firstly for files accessed from a local file System
700. This is then extended to a distributed file system
environment 800 for files accessed from remote file system
clients in the presence of authoritative caching.

US 2005/0187983 A1

0044 FIG. 6 is a block diagram of a system 700 for use
with a local file System in accordance with a first embodi
ment of the invention. An application 710 has a SQL path
722 for meta-data access to a meta-data server 720 and a file
system API 732 for direct file access to a file server 730. The
meta-data Server 720 has a database management System
(DBMS) 724, which directly interfaces with the SQL path
722. The DBMS 724 also has meta-tables 726 with external
file references. The DBMS 724 and Meta-data tables are
coupled to a store 728 for storing meta-data. The file server
730 has two modes: user 760 and kernel 770. The user mode
760 includes a local repository 734 and a file manager
daemon 736. A control path 740 extends between the DBMS
724 of the meta-data server 720 and the file manager daemon
736 of the file server 730. The control path 740 is indicated
by a double headed dashed arrow. The kernel mode 770
includes a virtual file system interface 750, which is bi
directionally coupled to the application 710 via the file
system API 732. In turn, the virtual file system interface 750
is bi-directionally coupled with an interceptor/filter module
752. An upcall path 738 also bi-directionally extends
between the file manager daemon 736 and the interceptor/
filter module 752. The interceptor/filter module is bi-direc
tionally coupled to the native file system 754 (e.g. UFS, JFS,
NTS). The native file system 754 is in turn coupled to a store
756 of the file server 760 for storing one or more relevant
objects or files.
004.5 FIG. 7 is a block diagram of a system 800 for
maintaining the consistency of meta and file data in accor
dance with a Second embodiment of the invention. An
application 810 has a SQL path 822 for meta-data access to
the meta-data server 820 and a file system API 832 for direct
file access to a client 830. The system 800 also includes a file
server 880 coupled between the meta-data server 820 and
the client 830. The meta-data server 820 is the same as the
meta-data server 720 of FIG. 6, with corresponding ele
ments retaining similar numbers (e.g. DBMS 724 is referred
to as DBMS 824 in FIG. 7). The user mode 860 of the client
830 has a proxy daemon 890. The file system API 832 is
coupled between the application 810 and the virtual file
system interface 850 of the kernel mode 870 of the client
830. The virtual file system interface 850 is bi-directionally
coupled with the interceptor/filter module 852. An upcall
path 838 is bi-directionally coupled (indicated by a dashed
line) between the proxy daemon 890 of the user mode 860
and the interceptor/filter module 852. The interceptor/filter
module is bi-directionally coupled with a distributed file
system client 854 of the client 830. In turn, the distributed
file system client 854 is coupled to the client store 856.
0046) The file server 880 includes a local repository 882
and a file manager daemon 884. A control path 840 bi
directionally extends between the DBMS 824 of the meta
data server 820 and the file manager daemon 884 of the file
server 880. Likewise, the file manager daemon 884 of the
file server 880 is bi-directionally coupled with the proxy
daemon 890 of the client 830. The file server 886 also
includes a distributed file system server 886. The distributed
file system server 886 is coupled to a file server store 888.
The distributed file system server 886 of the file server 880
is bi-directionally coupled (indicated by dashed line) to the
distributed file system client 854 of the client 830.
0047 The file is updated using normal file system appli
cation program interfaces (API's) 732, 832. The file can be

Aug. 25, 2005

updated via SQL Mediated Object Manipulation (SMOM)
where a handle is obtained from the mediator 724, 824, that
is preferably a filename with an encrypted access token
String embedded as part of the filename, and is Supplied as
the filename to the filesystem API. The file may be updated
Several times before the file's meta-data is updated in the
database 728, 828. To effect the corresponding meta-data
updates and relate those updates to the file updates, the user
issues an SQL update through the mediator DBMS 724, 824,
optionally passing in the object handle, and commits both
file and meta-data updates together. Another possibility is
that the file may be updated based on the filesystem per
missions. To effect the corresponding meta-data updates and
relate those updates to the file updates, the user issues an
SQL update through the mediator DBMS 724, 824, and
commits both file and meta-data updates together.

0048 Preferably, a filter layer 752, 852 transparently
intercepts native access to the external object Store or file
system 756, 856 and 888, making use of the embodiments of
the invention, to allow or deny access to the object based on
a combination of an implicit version number and the last
modification timestamp for a given version. This is done to
validate the consistency of the meta-data retrieved by the
reader and the content of the file.

0049) 1. The Update Model

0050. The file edits happen outside of the DB transaction.
The file updates get committed to the database (DB) via the
DBMS 724, 824 once the update is done. DBMS 724,824
communicates with the file management mediator daemon
(also referred to as DLFM in the Datalinks product) 736,884
passing a version number or generation number associated
with the file, which is temporally unique on every committed
update to the file. The file management mediator daemon
736,884 utilizes a local repository (i.e. local to the fileserver
node) 734, 882 to store the version number attribute of the
file. (The repository 734, 882 could be a local database, as
is the case of the embodiment implemented as part of the
DB2 Datalinks product). The file management mediator
daemon 736, 884 also saves a last modification timestamp
attribute of the file maintained natively by the file system (or
external store) as the last modified time of the latest com
mitted version of the file.

0051) This file management mediator daemon 736, 884
utilizes the local repository 734, 882 (i.e. local to the
fileserver node) to store the attributes of these objects at the
time of their association with the DB, and at the time of
committed updates. (Again, the repository could be a local
database, as is the case of the embodiment implemented as
part of the DB2 Datalinks product)

0052 The solution provided by the embodiments of the
invention extends the functionality of this filter layer 752,
852 and the associated file management mediator daemon
736, 840 to ensure file-data meta-data consistency. The
Solution returns an error for file accesses where the file
content are no longer consistent with the meta-data associ
ated with the handle being used to reference the object.
Preferably, the error code is ESTALE in the Unix operating
System.

US 2005/0187983 A1

0053 2. Solution
0054) 2.1. Observation
0055) It may be observed that the token (embedded in the
handle used to reference the object) becomes obsolete in the
following Situations: First if uncommitted updates are made
to the file any time before the token is used OR get
committed any time after the token was generated. Second
if a token is issued and the database is restored to a prior time
before the token is used.

0056. These uncommitted file updates may have hap
pened after the token is generated, or may have been
pending from before the token generation. In this case, the
meta-data in the table at the time the token was generated
corresponds to the last committed file data and does not
reflect uncommitted file updates that happened before the
token was generated.

0057 Such uncommitted file updates can happen via a
re-linking of the same file (after an unlink and a change in
content via a rename or a write to the file), or through an
SQL Update commit for an update-in-place. There are two
cases here:

0058 1. Updates committed before the token is
used; and

0059 2. Updates not yet committed before the token
is used (update-in-progress state).

0060. This leads us to the solution provided by the
embodiments of the invention.

0061 2.2 Basic Solution for the Local File System Case
0062) The solution provided by the embodiments of the
invention is based on the following constituents:

0.063 1. A version number or generation number associ
ated with the file, which is temporally unique on every
committed update to the file:

0064. Since updates are committed with the knowledge
of the mediator DBMS in communication with its file/object
management daemon component on the file Server, the latest
version number for the object reference associated with the
meta-data store can be maintained both in the DBMS and in
the local repository on the file server. Note, that such a
generation number is also required for point in time recovery
purposes. In the embodiments under consideration for
DATALINKS, the recovery id associated with the file, which
is derived from the LSN (Log Sequence Number) of the
transaction in which the update was committed, may be used
as version number.

0065 2. Alast modification timestamp attribute of the file
maintained natively by the file System (or external store):
Whenever updates are completed, the last modification
timestamp of the file at the time of update completion is
noted in the local repository as the last modified time of the
latest committed version of the object.

0.066. It is more efficient if the last modification times
tamp is recorded when an SQL UPDATE is issued for the
file, rather than at the time when the transaction is finally
commits. This is possible because in this model, no further
updates to the file are allowed until the transaction commits.

Aug. 25, 2005

0067. The approach works as follows:
0068 1. The DBMS mediator 724, encodes the latest
version number (or generation number) as part of the
embedded token in the handle provided for referencing the
file.

0069 2. When the user supplies the above handle directly
to the file system to open the file, the filter layer 752 which
intercepts these file System operations makes an upcall 738
to the file management daemon 736 to perform the process
600 shown in FIG. 5A of checking to ensure consistency at
the point of open.

0070). In step 610 of FIG. 5A, the latest committed
version number V(commit) of the file and the cor
responding modification timestamp Tm(commit)
recorded in the local repository 612 are looked up. In
step 614, the version number encoded in the embed
ded token in the handle, V(token), is extracted. In
decision block 616, a check is made to determine if
V(commit) is equal to V(token). If decision block
616 returns false (NO), the token is inconsistent with
the current file content and an error is returned
indicating Stale data. This covers the case where the
reader obtained the access token/handle any time
prior to the Start of the update that was last commit
ted. It also covers the situation where the reader had
obtained the token and the metadata, and then in the
meantime the database and the file got rolled back to
an earlier State.

0.071) If decision block 616 returns true (YES), in
step 618, the current value of the last modification
timestamp of the file Tm(access) is obtained. Pro
cessing continues in decision block 620. In decision
block 620, a check is made to determine if the
modification timestamp Tm(commit) equals the
timestamp Tm(access). If decision bock 620 returns
true (YES), the file and meta-data are consistent and
access is allowed in Step 622. Otherwise, if decision
block 620 returns false (NO), there are uncommitted
updates to the file's content, indicating an inconsis
tency and an error is returned in Step 624. This covers
the case where an updater has modified and then
closed the file after releasing any file locks, but has
not updated the corresponding meta-data. Then,
optionally, if the Supplied handle has write-access,
the repository State is checked to rule out the case
where the updates have been made using the same
access token. (This is to address Scenario 6b in Sec
3.1 hereinafter).

0072 3. Application level file locking must be used by
readers and updaters to cover concurrent file read and
updates and, in particular, to ensure that there is no open file
descriptor when an updater Starts updating the file.
0073 2.2.1 Encoding the Version Number in the Token
0074 The access token preferably contains a one-way
hash value, h which is computed as follows:

h=hash(K, Tx, file name, servername, token length,
flags),

0075 where K is a secret symmetric key and Tx is the
expiration time and the flags contain information about the
token including which type of access is granted. TX, token
length and flags are also passed as part of the token. For
cases where consistency is to be maintained between the

US 2005/0187983 A1

DBMS meta-data and the object, the token can be setup to
contain a version number and a different one-way hash
value, H., computed as:

H=hash(K, Tx, file name, server name, token length,
flags, Vc),

0.076 where Vc is the latest committed version at which
the token is created and flags can contain information
indicating that consistency is requested.

0077 On the file manager side 736 for token validation,
the file system filter 752 passes the token up to the file
manager daemon 736. If the flags indicate that consistency
is requested, the daemon 736 validates the token by calcu
lating H where Vc is obtained from the last committed
version number Stored in the daemon's repository tables.
The daemon 736 checks that the token has not expired and
compares H with the one way hash contained within the
access token.

0078 Steps 614 and 616 in the previous section may be
modified to just use the one-way hash value as the basis for
checking for a version number match, instead of requiring
that the version number be extracted from the token/handle.
Step 614 could insteadjust retrieve the hash function portion
of the token, H(token) and compute the one-way hash value
H(commit) corresponding to V(commit), while the compari
Son for detecting StaleneSS in Step 616 may be replaced by
“if H(token) g H(commit)”.
0079 A content management system is described with
reference to FIGS. 2A and 2B. In particular, FIGS. 2A and
2B are block diagrams illustrating the content management
System 200. The content management System includes a
database 202, preferably a DB2 UDB, and a file system 250.
The database 202 contains one or more tables 204 (only one
is shown to simplify the drawing). Again to simplify the
drawing, the table is shown with only two rows and two
columns. However, these numbers are for purposes of illus
tration only and differing numbers of columns and rows may
be practiced. Column 1 (“COL1') contains meta-data that is
searchable, and column 2 (“DL1”) is the DATALINK type
column enabled with options to provide in-place updating of
a DATALINKed file, token-based access control on a write
operation, and file data recovery.

0080. The table 204 may contain more than one
DATALINK column. The entry for the first row has “1000”
in column 1 and URL in the DATALINK column DL1. The
Second row has “1019 in column 1 and NULL in column
DL1. As indicated by a dotted line, URL in row 1 of the
table 204 refers to file 252 in the file system 250. The file 252
is stored externally to the database 202, and the content of
the file 252 may include electronic documents, text, XML
and HTML, digital audio and Video, Scanned images, fac
Similes. The foregoing are merely examples of the type of
the file 252. Other file types may be practiced without
departing from the Scope and Spirit of the invention.
0081. The content management system 200 also includes
a DB2 agent 220 coupled to the database 202, a Data Link
File Manager (DLFM) 230, and a Data Link File System
Filter (DLFF) 240. An application 210 is a reader in the
system 200 of FIG. 2.
0082 The operation of the content management system
200 is described with reference to the flow diagrams of
FIGS. 3A, 3B and 3C illustrating the control process 300.

Aug. 25, 2005

The numbered arrows of FIG. 2 extending between ele
ments shown in that drawing have counterpart Steps shown
in FIG. 3 to describe the operation of the system 200. The
control process includes steps 260-278 and 290-296.
0083. With reference to FIG. 2A, arrow 260 extends
between application 210 and DB2 agent 220. In step 260 of
FIG. 3A, the application 210 requests a write access token
from the DB2 agent 220 via a SQL SELECT statement.
0084 Arrow 264 extends from DB2 agent 220 to appli
cation 210. In step 264, a write access token is returned. The
write access token includes a hash value that encodes the
latest version number. Arrow 266 extends between the
application 210 and DLFF 240. The application 210 opens
the file for a write operation using a write access token via
the DLFF 240. Arrow 268 extends from the DLFF 240 to the
DLFM 230. The DLFF 240 forwards the write access token
to the DLFM 230 for token validation. If the token is valid,
then DLFM also checks if the file-data is consistent with the
meta-data corresponding to the token. Arrow 270 extends
from the DLFF module 240 to the application 210. In step
270 of FIG. 3A, the file system returns the file descriptor to
the application 210.
0085. Arrow 272 extends from the application 210 to the
file 252 in the file system 250. In step 272, the application
210 modifies the file 252 using the file descriptor. Arrow 274
extends from the application 210 to the DB2 agent module
220. In step 274, once the file update is completed, the
application 210 issues a SQL UPDATE to the database DB2
202 via the DB2 agent 220 and imports other meta-data into
the database. Arrow 276 extends from the DB2 agent 220 to
the DLFM 230 in FIG. 2A. In step 276, the DB2 agent 220
invokes a DB2-DLFM update API and update the DLFM
meta-data. At this stage, the DLFM determines the last
modification timestamp of the file (same as the Tmccom
mit)) and records that timestamp in its local repository along
with the updated version number (same as the link recovery
id).
0086) With reference to FIG. 2B, an arrow 290 extends
from the application 210 to the DB2 agent 220. In step 290,
a SQL COMMIT is issued by the application 210 to the DB2
agent 220. An arrow 292 extends between the DB2 agent
220 and the DLFM 230. In step 292 of FIG. 3C, a PRE
PARE statement is sent to the DLFM 230 by the DB2 agent
220. An arrow 294 extends from the DLFM 230 to the DB2
agent 220. In step 294, the DLFM 230 hardens the DLFM
meta-data and replies OK to the DB2 agent 220. Harden
means guaranteeing that local repository modifications
made by the DLFM for the file are remembered persistently
(i.e., locally committing/hardening the information). An
arrow 296 extends between the DB2 agent 220 and the
DLFM 230. In step 296, a final COMMIT statement (phase
2) is sent to the DLFM 230 by the DB2 agent 220. This
completes the control process.
0087. In the case of a read operation, the flow is as
follows. The application 210 requests a read access token
from the DB2 agent 220 via a SQL SELECT statement. A
read access token is returned. The read access token includes
a hash value that encodes the latest version number. The
application 210 opens the file for a read operation using a
read access token via the DLFF 240. The DLFF 240
forwards the read access token to the DLFM 230 for token
validation. If the token is valid, then DLFM also checks if

US 2005/0187983 A1

the file-data is consistent with the meta-data corresponding
to the token. This is how the DLFM performs the check. The
DLFM looks up the latest committed version number
V(commit) and the corresponding modification timestamp
Tm(commit) in its local repository (R). Then the DLFM
determines if the version number embedded in the token, i.e.
V(token) matches V(commit) (preferably by computing the
one-way hash value corresponding to V(commit) and com
paring it with the hash value embedded in the token). In case
of a mismatch, the DLFM returns an error to DLFF. Oth
erwise, the DLFM obtains the last modification timestamp
of the file Tm(access) from the filesystem, and determines if
Tm(access) is later than Tm(commit). If so, then the DLFM
has detected an inconsistency and returns an error to DLFF,
which reports ESTALE to the application. If not, then the
DLFM returns OK and DLFF returns Success. The file
system returns the file descriptor to the application 210 for
a successful open. The application 210 reads the file 252
using the file descriptor.
0088 2.3 Extension to a Distributed File System Envi
rOnment

0089. A further embodiment of the invention extends the
above Solution to a distributed environment 800 of FIG. 7
for accesses to the file from distributed file system clients
while minimizing performance overheads in communication
with the central file server 880 where the file manager
daemon's repository 882 is located, especially in Situations
where the file system client 830 is likely to service accesses
from the client's cache without connecting to the server 880.
The distributed file system 800 is assumed to implement its
own cache coherency mechanisms.
0090. A proxy daemon 890 may be set up at each client
830 to service upcalls 838 from the filter module 852, which
intercepts file accesses on the client 830. This proxy daemon
890 contacts the central server 880/repository 882 when
required. AS described hereinbefore, the requirement is to
minimize these contacts, especially for read performance in
the most typical cases (i.e. repeated accesses to the same file
should be Servicable from the cache without contacting the
Server as far as possible).
0091 First Time Access
0092. The first time a file is accessed with a token at the
client, the client proxy daemon 890 contacts the remote
central repository 882 and makes an entry in a local (pos
sibly in-memory) table with:

0093 the latest committed version number, V(com
mit) of the file,

0094 the value of the corresponding file identifier,
Fid(commit) of the latest version of the file, and

0095 the modification timestamp of the file when
updates to it were last committed, Tm(commit).

0096) The check for stale data is:
0097) is stale=(V(token) g V(commit)) OR (Tm(ac
cess) g Tm(commit).

0.098 Cached Case (Repeated Accesses):
0099] The next time the same file is accessed (either with
the same or a different token), the proxy daemon 890 can
Simply look up the proxy daemon's local table entry and if

Aug. 25, 2005

Fid(access)=Fid(commit), then the proxy daemon 890 can
use the in-memory entry to perform the above check.

0100 If is stale is FALSE, access can continue
without a need to contact the server 880.

0101. Otherwise, the proxy daemon 890 needs to
refresh the entry from remote central repository 882
and perform the check again.

0102 Fid(commit) and Fid(access) refer to the file-id
value at the time of commit and time of access respectively,
i.e. Fid(commit)=value of Fid (Filename, Tm(commit))
where Fid(f, t)=value of unique file id of the file named “f”
at time “t.

0103) The reason for explicitly introducing these in the
distributed case, is to correctly handle cases where the file
may have been unlinked, renamed and relinked under the
same name (as in Scenario 2). By indexing V(commit) and
Tmccommit) against Fid(commit) in the local in-memory
table, and looking up the cached entry against Fid(access).
This ensures that the version number and Tm values refer to
the same file, so that a comparison with Tm(access) makes
Sense. This is important in the distributed case, because the
cached value of V may be Stale, making Tm(access) the real
determinant of whether the entry should be considered stale
Or not.

0104. The unique file id maintained by a distributed
filesystem usually includes Some kind of per inode genera
tion number of its own to account for reuse of inode numbers
after files are deleted. This inode generation number is
typically incremented every time an inode number is reas
signed to a newly created file. This ensures the temporal
uniqueness of a file identifier.
01.05) Just S in the local CaSC, if
Tmcaccess)>Tm(commit) and the token is a write token, an
optional Step of checking the file if an update-in-progreSS
with the same token/user may be involved (e.g. by checking
State information in the repository).
0106 This approach causes the client to contact the
central repository on the Server only if the file changed or got
relinked since the last time the entry was looked up. The
in-memory table entries can be flushed/reused based on the
expiration time and resource limits.
0107 FIG. 5B is a flow diagram illustrating the process
of checking consistency of meta-data and file data in a
distributed file System in accordance with the Second
embodiment. In step 656, a check is made to determine if the
present case represents a “first time' access of the file. If a
first time acceSS is being made, processing Starts at Step 660.
Otherwise, Step 660 is skipped and processing Starts at Step
664. In step 660, the last committed version number, V(com
mit) and the timestamp Tm(commit) are looked up from the
repository (i.e., remote repository 662 corresponding to
repository 882 in FIG. 7) and the variable REFRESHED is
set to true. When step 660 is skipped, cached values of
V(commit) and Tmccommit) for the file are used instead in
the Subsequent Steps. Processing continues at Step 664, in
which the version number V(token) is extracted from the
token. In step 666, a check is made to determine if V(com
mit) is equal to V(token). If decision block 666 returns false
(NO), processing continues at decision block 672. Other
wise, if decision block 666 returns true (YES), processing
continues at step 668.

US 2005/0187983 A1

0108. In step 668, the current value of the timestamp
Tm(access) is obtained from the file. In decision block 670,
a check is made to determine if the timestamp Tm(commit)
is equal to Tm(access). If decision block 670 returns false
(NO), processing continues at decision block 672. If deci
sion block 670 returns true (YES), the file and meta-data are
consistent, the variable refreshed is set to false, and acceSS
is allowed to the object in step 622.
0109. In decision block 672, a check is made to determine
if the cache was accessed (i.e. REFRESHED equals false).
If decision block 672 returns true (YES), processing con
tinues at block 660. Finally, if decision block 672 returns
false (NO), the meta-data and file data are inconsistent and
an error is returned in Step 624.
0110) 3. Scenarios Analyzed
0111. This section discusses various key scenarios and
how the embodiments handle each of these situations to
prevent potential inconsistencies from arising.
0112
0113. It is sufficient to guarantee the consistency at the
point of the file/object open. The user is expected to use
Some form of file/application-level locking as in a normal
file System to ensure Serialization between concurrent read
erS and updaters. Specifically, an updater must not start its
updates if there is any reader that has opened the file.
Otherwise, the reader could see inconsistent data. Table 1 is
a legend of terminology used hereinafter.

Initial ASSumption:

TABLE 1.

Term Meaning

Qr(f, t) user does a SQL query and an access token for a file f is
assigned at time t.

Qw(f, t) user does the SQL query for a write token and the write token
or the file f is assigned at time t.

C(f, t) Content of the file f at time t.
Rs(f, t) time when the reader opens the file f with access token for

generated at t.
Re(f, t) time when the reader closes the file f (finished reading the file)

corresponding to Rs(f, t).
Us(f, t) time when the writer opens the file f for update using the write

oken generated at t.
Ue(f, t) time when the writer closes the file f (i.e. finishes writing the

file) corresponding to Us(f, t), but not yet committed to the
database (DB) using SQL update.

Uc(f, t) time when meta-data in DB is updated and committed together
with the file-data updates for the file f.

I(f) ime when the file f is linked (inserted into) to the database.
D(f) ime when the file f is unlinked (deleted) from the database

(restore on unlink).
Us(f) ime when the writer opens the file for an update without a

oken.
Ue(f) ime when the writer closes the file (finishes writing the file)

corresponding to Us(f).
M(f, f) time when the file f is moved to f (could be rm f, mv ff)

results in f getting replaced by f - both data + attributes
(including timestamp) C(f, ta) <= C(f, th), where ta <
M(f, f) < th.

0114 3.1 Addressing Potential Inconsistency Scenarios
0115 The application is responsible for ensuring serial
ization, So that RS-Re essentially happens under a shared file
lock and US-Ue happens under an exclusive file lock.
However, multiple US-Ue iterations can happen before Uc to
finally commit the update, and an RS-Re can happen
between two Such US-Ue Sequences.

Aug. 25, 2005

0116 1. Query-Unlink-Update-Relink-Access
0117. A file is unlinked and linked back again after
modifying the content of the file (not in-place update). The
file is then accessed using a token generated prior to the
unlink.

0118. I1(f); Qr(f, t); D1(f); U (f); U (f); I2(f); Rs(f,t)
0119) File data consistent with Qr(f, t) is C(f, I1(f)) or
C(f, t). C(f, Rs(f,t)) differs from C(f, t) since the file has been
written to in between.

0120). With the embodiments of the invention, Rs (f,t)
fails since V(token)<V(commit), i.e., the version-id embed
ded in the read-token is earlier than the one in I2(f). If I2(f)
had not happened, Rs(f,t) fails since the file owner is not DB
and the read token is embedded in the file pathname.
0121 2. Query-Unlink-MoveTo-Relink-Access
0.122 The file is unlinked and linked back again after
renaming another file to this file name. The file is then
accessed using a token generated prior to the unlink (that
token was meant to represent the original file, not the just
renamed one).

0124 File data consistent with Qr(f, t) is C(f, I1(f)) or
C(f, t). C(f, Rs(f,t))=C(f,t-M(f, f), which differs from C(f,
t). The file has changed to a different one in between.
0125 AS in scenario (1) above, with the embodiments of
the invention, Rs (ft) fails since V(token)<V(commit), i.e.,
the version-id embedded in the read-token is earlier than the
one in I2(f). In the distributed file system case, where the
client’s in memory table has a stale value of V(commit) and
Tm(commit), the condition Tm(access) for f>Tm(commit)
for f may not suffice to detect stale information. However,
the check Fid(access)=Fid(commit) fails, and a refresh of the
values of V(commit) and Tmccommit) from the server is
triggered.
0.126 3. Query-Get write token-Update file
in-place-SQL update commit-Access
0127. File is updated in place (the complete SMOM
Sequence) and committed. The file is then accessed using a
token generated prior to Starting the update.

0129. The file data consistent with Qr(f, t1) is C(f, I(f)) or
C(f, t1). C(f, Rs(f,t1)) differs from C(f, t1) as the file content
has been updated.
0130. With the embodiments of the invention, Rs (f,t1)
fails since V(token)<V(commit).
0131 4. Update-file in place-Query-SQL Update
commit-Access

0132) The file is updated in place and committed. The file
is then accessed using a token generated after the file
modifications were completed, but before the SQL Update
was issued to complete the corresponding meta-data
updates.

US 2005/0187983 A1

0134) The file data consistent with Qr(f, t2) is C(f, I(f)) or
C(f, t1), but not C(f, t2) since the meta-data has not changed
yet at t2 but only after that. C(f, Rs(f,t2)) differs from C(f,
t1) as the file content has been updated between t1 and t2.
0135). With the embodiments of the invention, Rs (f,t2)
fails since V(token)<V(commit).
0.136 Another case that can be considered equivalent to
the above for current purposes is:

0138. With the embodiments of the invention, Rs (f,t2)
fails since V(token)<V(commit).
0139 5. Get Write tokens 1 and 2-Update-file in place
with token 1-SQL Update Commit-Access with token 2
0140. The file is updated in place and committed using
one write token. The file is then accessed with another write
token, which is generated prior to the update.

0142 File data consistent with Qw(f, t2) is C(f, I(f)) or
C(f, t2) C(f, Rs(f,t2)) differs from C(f, t2) since the file
content has been updated. This is similar to above Scenario
3, but that this happens with a write token instead of a read
token.

0143 With the embodiments of the invention, Rs (f,t2)
fails since V(token)<V(commit).
0144) 6. (a) Get Write tokens 1 and read/write token
2-Update-file in place with token 1
0145 Access with Token 2-SQL Update Commit
0146 The file is updated in place using one write token,
but not yet committed. The file is then accessed with another
write token, which is generated prior to the update.
0147 I(f); Qw(f, t1); Qr(f, t2)/Qw(f, t2); Us(f, t1); Ue(f,
t1); Rs(f, t2)/Us(f, t2), Uc(f, t1); File data consistent with
Qr(f, t2)/Qw(f, t2) is C(f, I(f)) or C(f, t2). C(f, Rs(f t2))
differs from C(f, t2) since the file content has been updated
(by the same user, though).
0148 With the embodiments of the invention, Rs (f,t2)
fails since Tm(access)>Tm(commit). However, for the same
user-id, it may make Sense for the read to be allowed and the
updates to be visible to the reader. This is accomplished by
changing the ownership of the file to the updater's uSerid for
the duration of the file update until commit. This makes it
possible to perform the above timestamp check only if the
reader is not the same uSerid as the current updater.
0149. A need exists to be able to differentiate the above
from the following situation, which is not considered as an
inconsistency:
0150 (b) Get Write token-Update-file in place with
token-Access again with token-SQL Update Commit
0151. The file is updated in place using a write token and
then accessed again with the same write token without
committing.

Aug. 25, 2005

0153. As the same token that is used for the first update
is used again, more appropriately the token returns the latest
State of the file data as written using earlier with this token.
0154) Two options are available to handle the case of a
Second write-token for the same user. Firstly, write access
can be denied to even the same user with different token
(than what is already tracked). Secondly liberally allow
update based on the same user-id. If uncommitted updates
are decided to be made and alternatively, visible and modi
fiable on accesses by the same user, this situation is taken
care of using a similar logic as described under the previous
point. If the other option is decided upon, Since the write
token is tracked until the update is committed, when a
different token is used can be detected. In the distributed file
System extension, this check happens at the end after all
other conditions are covered, as interaction with the file
Server is required.
O155 There is an implicit assumption here that other
users are not allowed to use the write-token as long as an
update is in progreSS.
0156 7. Get write token 1-Update file in place-Get
read token 2-DB rollback to earlier version-Access with
read token 2

O157. A database rollback to an earlier version happens,
and the file is accessed with a token that was generated prior
to the rollback (and hence corresponding to a later version,
which is no longer valid after the rollback)

0159 File data consistent with Qr(f, t2) is C(f, t2) i.e. C(f,
Uc(f, t1)), while after the rollback, file content is C(f, t1)
which is the same as C(f, I(f))
0160 With the solution proposed, Rs(f, t2) fails since in
this case V(token)>V(commit), i.e. the version-idembedded
in the read-token is different from the one in I(f).
0.161 In the distributed filesystem case, where the cli
ent's in memory table has a stale value of V(commit) and
Tm(commit), the condition V(token)=V(commit) could suc
ceed and thus may not Suffice to detect Stale information
(since the client may have cached the versionid correspond
ing to t2, i.e. Uc(f t1) and not yet be aware of the rollback
to t1). However in that situation, the check Tm(access)=
Tm(commit) would fail (because the cached value of
Tm(commit) is still t2 so far, while the rollback would have
reverted the file’s actual modification timestamp back to t1),
and trigger a refresh of the values of V(commit) and
Tm(commit) from the server.
0162. As the foregoing embodiments of the invention
illustrate, a loose transaction model for updates to a file and
its corresponding meta-data through a mediator is useful for
directly performing in-place edits of content data residing on
Stores external to the indexed meta-data store (the latter
could be a DBMS). This is subject to the requirement of
ensuring consistency between the file content and the asso
ciated meta-data from a reader's perspective. The embodi
ments of the invention encode a version number in the
handle for referencing the object associated with a given
meta-data State. A thin interceptor layer on the native Store,
where the objects content are Stored, decodes this version
number and compares the decoded version number with the

US 2005/0187983 A1

version number of the latest committed version of the file.
This is done to determine if the handle refers to the current
version. If the version matches, the thin interceptor layer
checks for uncommitted updates by comparing the last
modification time stamp of the file with the last modification
timestamp for the latest committed version. If these match,
the thin interceptor layer allows access to proceed as usual
for the file. Otherwise, the thin interceptor layer reports an
error indicating that the handle refers to Stale data.
0163 The embodiments of the invention are advanta
geous in a number of ways. The embodiments enable
in-place updates of file content to be made directly on the file
System, which is separate from the meta-data Store. This is
done while ensuring that a reader application does not See an
inconsistency between the meta-data and the file data.
Another advantage is that the consistency check on file
access can be performed without contacting the meta-data
Server, which is separate from the meta-data Store. This
results in fast content access times even when the file and
meta-data Servers are distributed.

0164. Advantageously, this approach is suitable for a
distributed model for file and meta-data Storage, Since the
file content acceSS path checks do not require any direct
communication with the meta-data Server. This approach
extends easily to a configuration where the external Store is
a distributed file System and the content is accessed directly
from distributed file system clients. This works even in the
presence of authoritative caching (as in DCE-DFS) with
minimal communication overheads and does So using an
entirely client initiated approach, without any client specific
State being required to be maintained on the Servers. The
approach may be enhanced to work correctly (in terms of
preventing accesses to potentially inconsistent data) with
mobile file Systems (e.g., Coda or IntermeZZO) that operate
in disconnected mode. The consistency check makes effi
cient use of caching for improved performance without
losing correctness.
0.165. Further, the method described does not require
clock Synchronization between the database Server and the
filesystem server, and even with the filesystem client in the
distributed filesystem case. Note that even in the scenario
where the clocks are Synchronized, it is not efficient for the
DB server to save the time when the latest update was
committed, T1 (Commit) (instead of V(commit)), and pro
vide it to the mediator daemon at transaction commit to Save
the same (T1(commit) value) for the corresponding files in
the local repository on the file server. The reason is that this
would require the database Server to track all the rows
involved in the linkfile operation for a particular transaction,
update them prior to doing its commit processing with the
T(Commit) value, and the same would have to be done at the
file management daemon's end.
0166 The solution is capable of covering cases where the
database has been rolled back to an earlier State, as might
happen in the case of a point-in-time restore, and should also
work with database replication, as long as the legitimacy of
the last modified timestamp of the file is maintained during
a restore and acroSS replicas.
0167 The embodiments of the invention are preferably
implemented using one or more general-purpose computers.
In particular, the processing or functionality of FIGS. 2-3
and 5-7 can be implemented as Software, or a computer

Aug. 25, 2005

program, executing on the computer(s). The method or
process steps for maintaining (or ensuring) meta-data and
file-data consistency in a loose transaction model of file and
meta-data updates, especially for use with an application or
reader, are effected by instructions in the software. The
Software may be implemented as one or more modules for
implementing the proceSS Steps. A module is a part of a
computer program that usually performs a particular func
tion or related functions. Also, a module can also be a
packaged functional hardware unit for use with other com
ponents or modules.
0.168. In particular, the software may be stored in a
computer readable medium, including the Storage devices
described below. The software is preferably loaded into the
computer from the computer readable medium and then
carried out by the computer. A computer program product
includes a computer readable medium having Such Software
or a computer program recorded on it that can be carried out
by a computer. The use of the computer program product in
the computer preferably effects advantageous apparatuses
for maintaining (or ensuring) meta-data and file-data con
Sistency in a loose transaction model of file and meta-data
updates.
0169 Preferably, a computer system includes a computer,
a Video display, and input devices. In addition, the computer
System can have any of a number of other output devices
including line printers, laser printers, plotters, and other
reproduction devices connected to the computer. The com
puter System can be connected to one or more other com
puters via a communication interface using an appropriate
communication channel Such as a modem communications
path, a computer network, or the like. The computer network
820 may include a local area network (LAN), a wide area
network (WAN), an Intranet, and/or the Internet.
0170 The computer itself consists of a central processing
unit(s) (simply referred to as a processor hereinafter), a
memory which may include random access memory (RAM)
and read-only memory (ROM), input/output (IO) interfaces,
a video interface, and one or more Storage devices. The
Storage device(s) can consist of one or more of the follow
ing: a floppy disc, a hard disc drive, a magneto-optical disc
drive, CD-ROM, magnetic tape or any other of a number of
non-volatile Storage devices well known to those skilled in
the art. Each of the components is typically connected to one
or more of the other devices via a bus that in turn can consist
of data, address, and control buses.
0171 The foregoing system is simply provided for illus
trative purposes and other configurations can be employed
without departing from the Scope and Spirit of the invention.
Computers with which the embodiment can be practiced
include IBM-PC/ATS or compatibles, one of the Macintosh
(TM) family of PCs, Sun Sparcstation (TM), a workstation or
the like. The foregoing are merely examples of the types of
computers with which the embodiments of the invention
may be practiced. Typically, the processes of the embodi
ments are resident as Software or a program recorded on a
hard disk drive as the computer readable medium, and read
and controlled using the processor. Intermediate Storage of
the program and intermediate data and any data fetched from
the network may be accomplished using the Semiconductor
memory, possibly in concert with the hard disk drive.
0172 In Some instances, the program may be Supplied to
the user encoded on a CD-ROM or a floppy disk, or

US 2005/0187983 A1

alternatively could be read by the user from the network via
a modem device connected to the computer, for example.
Still further, the Software can also be loaded into the
computer System from other computer readable medium
including magnetic tape, a ROM or integrated circuit, a
magneto-optical disk, a radio or infra-red transmission chan
nel between the computer and another device, a computer
readable card Such as a PCMCIA card, and the Internet and
Intranets including email transmissions and information
recorded on websites and the like. The foregoing are merely
examples of relevant computer readable mediums. Other
computer readable mediums may be practiced without
departing from the Scope and Spirit of the invention.
0173 In the foregoing manner, a method, an apparatus, a
computer program, a computer program product, and a
System for maintaining (or ensuring) meta-data and file-data
consistency in a loose transaction model of file and meta
data updates are disclosed. While only a small number of
embodiments are described, it will be apparent to those
skilled in the art in view of this disclosure that numerous
changes and/or modifications can be made without departing
from the Scope and Spirit of the invention.
What is claimed is:

1. A computer program product having a computer read
able medium having a computer program recorded therein
for maintaining consistency of content of an object and
metadata related to Said object in a loose transaction model
for object and meta-data updates, Said computer program
product including: computer program code means for Stor
ing Said related meta-data and a reference to Said object in
a table of a database, Said object being Stored externally to
Said database in an object Store, Said reference used to obtain
a handle for directly accessing or manipulating Said external
object;

Aug. 25, 2005

(a) computer program code means for obtaining a version
number embedded in said handle; and

(b) computer program code means for comparing said
embedded version number with a version number of a
latest committed version of Said externally Stored
object to determine if Said handle refers to a current
Version of Said externally Stored object.

2. A System for maintaining consistency of content of an
object and metadata related to Said object in a loose trans
action model for object and meta-data updates, Said System
including:

(a) a database storing said related meta-data and a refer
ence to Said object in a table of a database, Said
reference used to obtain a handle for directly accessing
or manipulating Said object;

(b) a native object Store for Storing said object externally
to Said database;

(c) a database mediator for obtaining said handle using
Said reference to directly access or manipulate Said
external object;

(d) means for obtaining a version number embedded in
Said handle; and

(e) means for comparing said embedded version number
with a version number of a latest committed version of
Said externally Stored object to determine if Said handle
refers to a current version of Said externally Stored
object.

