

US 20050091940A1

(19) **United States**

(12) **Patent Application Publication**

Whitson

(10) **Pub. No.: US 2005/0091940 A1**

(43) **Pub. Date:**

May 5, 2005

(54) INTERLOCKING MASONRY WALL BLOCK

(75) Inventor: **Robert L. Whitson**, West Bend, WI
(US)

Correspondence Address:
RYAN KROMHOLZ & MANION, S.C.
POST OFFICE BOX 26618
MILWAUKEE, WI 53226 (US)

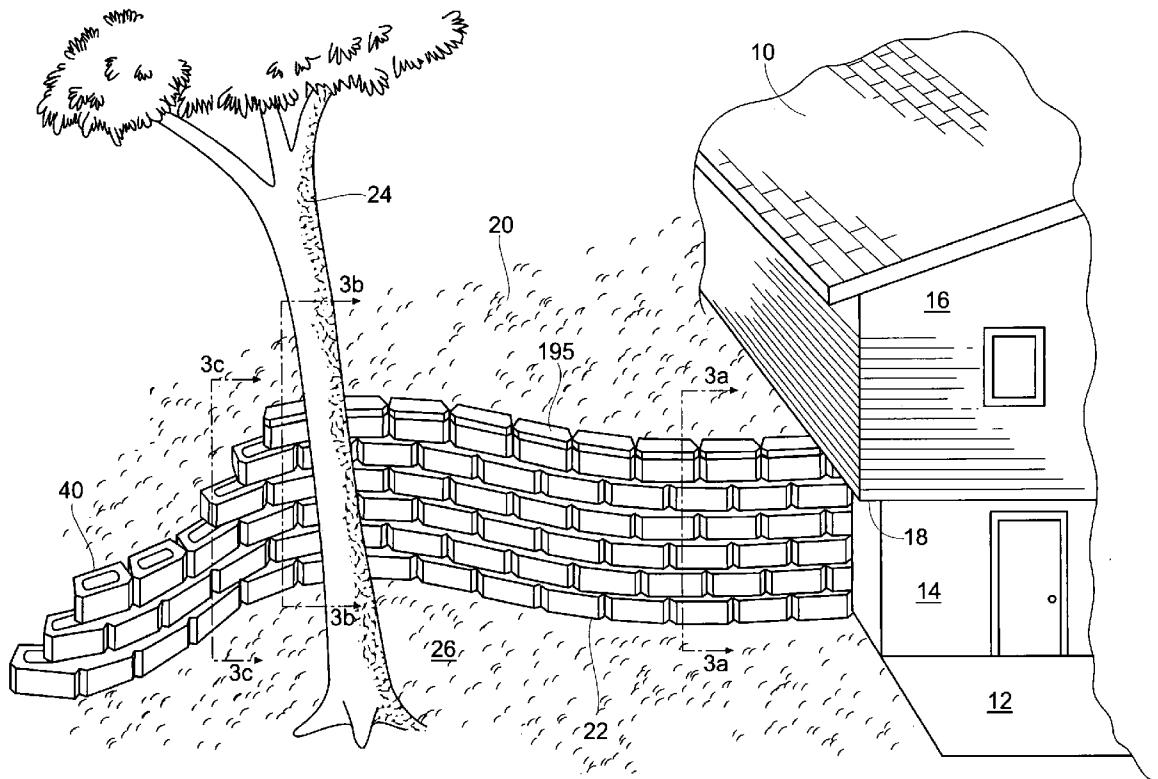
(73) Assignee: **Bend Industries, Inc.**

(21) Appl. No.: **10/945,846**

(22) Filed: **Sep. 21, 2004**

Related U.S. Application Data

(60) Division of application No. 09/940,562, filed on Aug. 28, 2001, and which is a continuation-in-part of application No. 09/928,125, filed on Aug. 10, 2001, now abandoned.


(60) Provisional application No. 60/228,517, filed on Aug. 28, 2000. Provisional application No. 60/224,471, filed on Aug. 10, 2000.

Publication Classification

(51) **Int. Cl.⁷** **E04C 3/30**
(52) **U.S. Cl.** **52/574**

(57) ABSTRACT

The present invention relates to an interlocking masonry wall block having two spaced lugs or projections and a cooperating recess or channel that enable like-shaped blocks to be stacked in a staggered relation to form straight and serpentine walls that are particularly suited for landscaping applications. In one embodiment, the lugs are located proximal the sides of the block and extend from an upper surface of the block. The channel is formed in a lower surface of the block. In another embodiment, the lugs are located at the rear corners of the block and extend below the lower surface of the block. The recess is formed in the rear end of the block between the lugs. Like-shaped blocks are stacked in a staggered relation so that each block is stacked atop two immediately lower blocks. In each embodiment, the lugs and their cooperating channel or recess define a setback dimension.

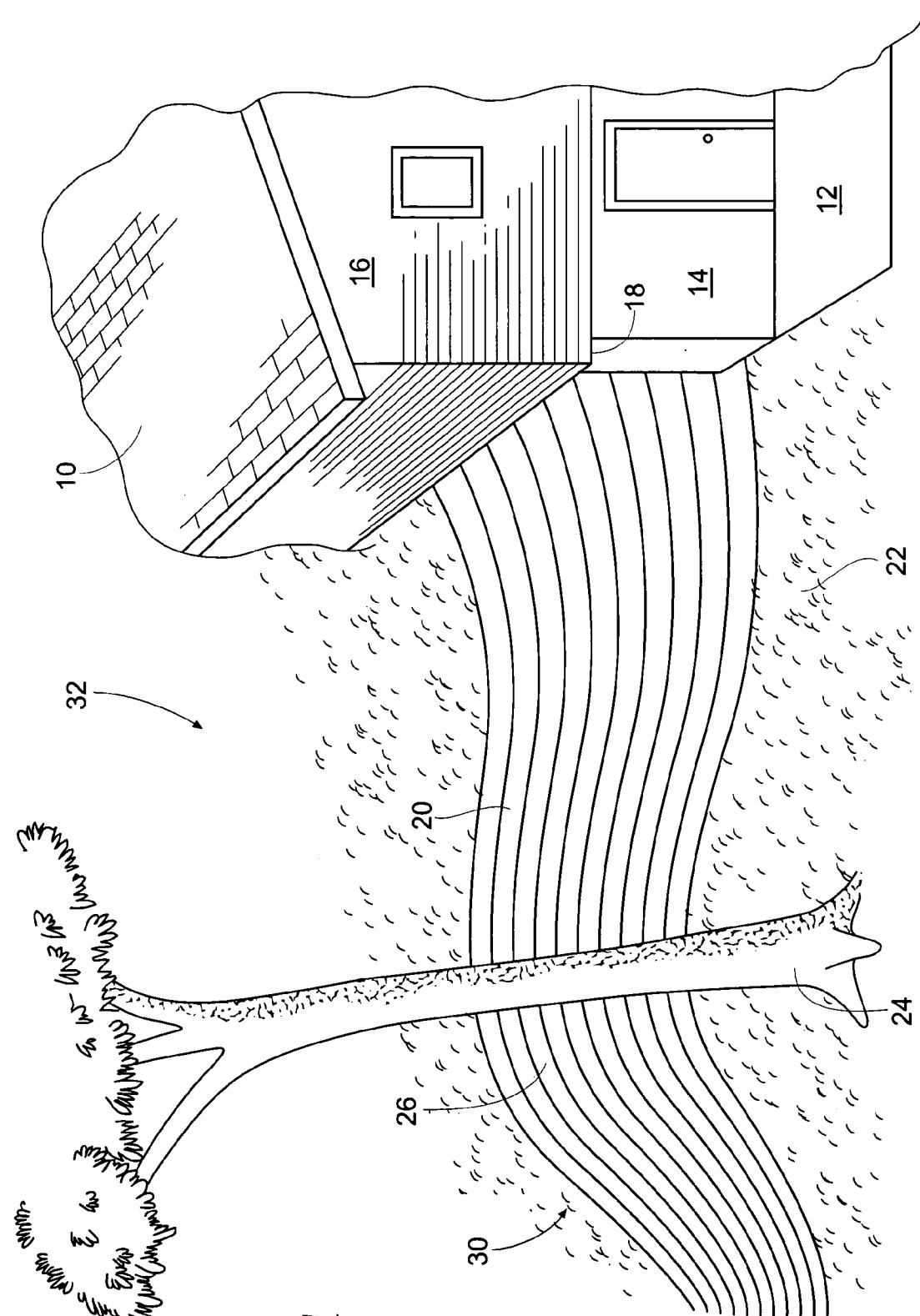
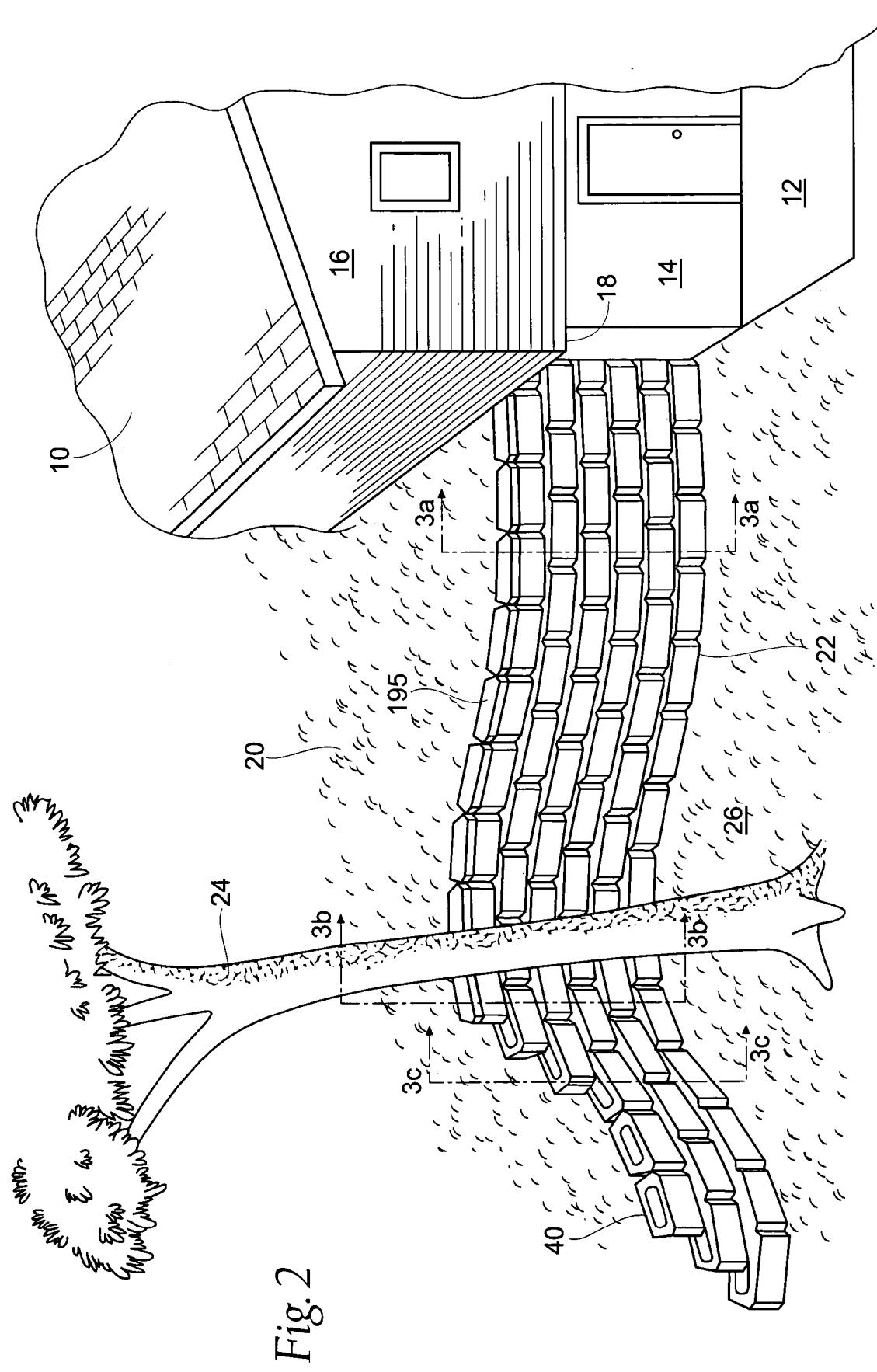
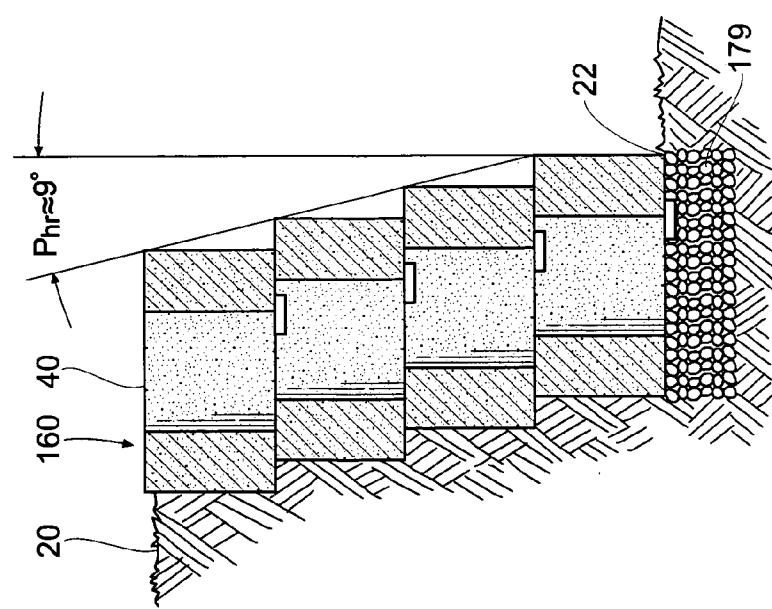
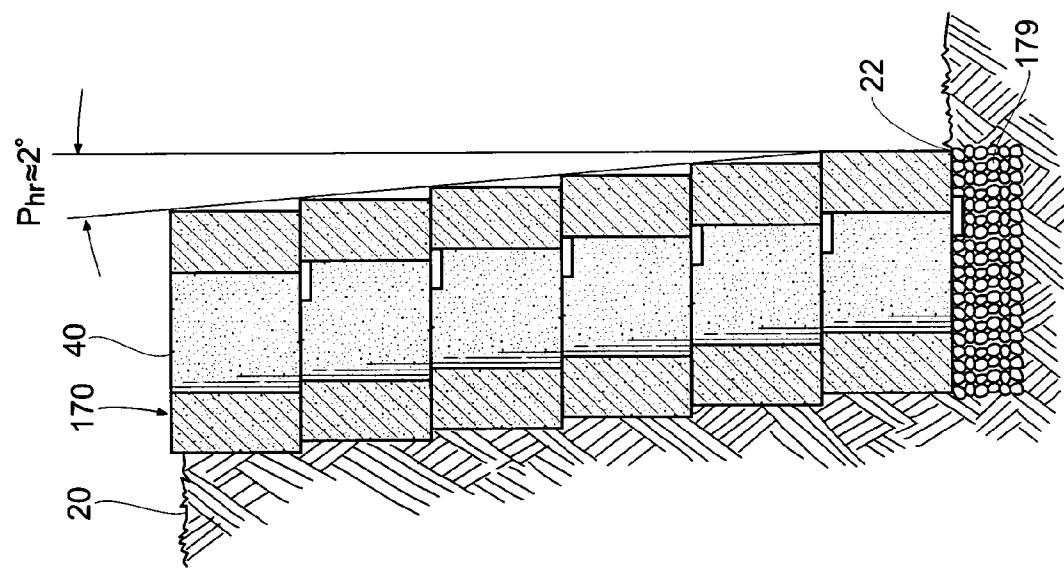
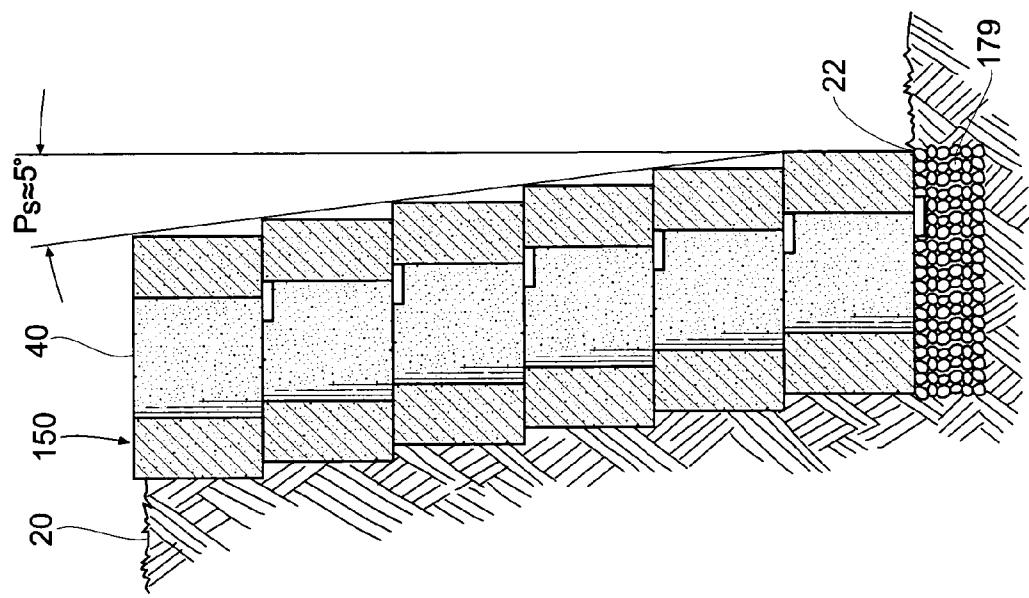






Fig. 1

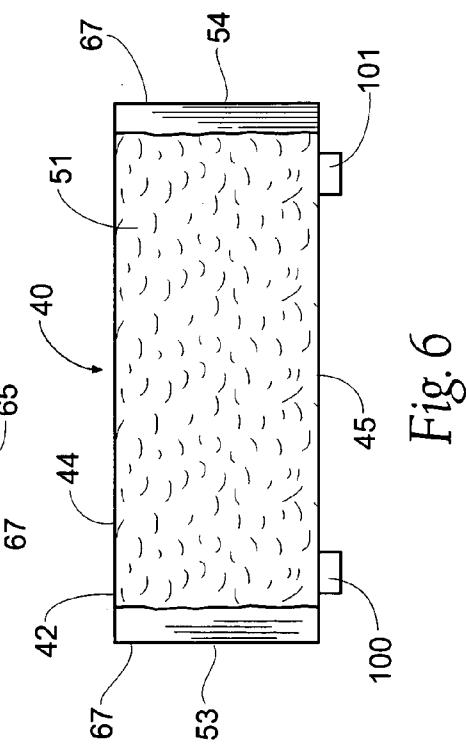
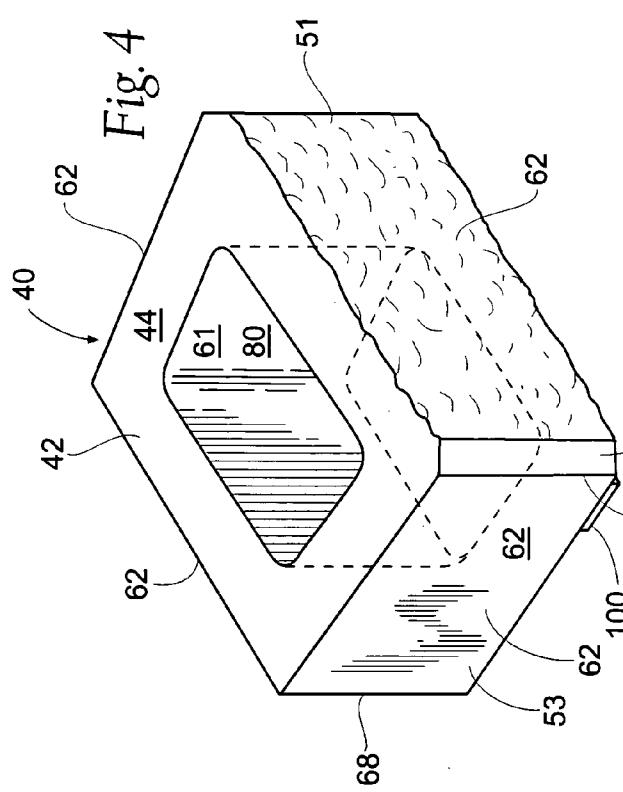
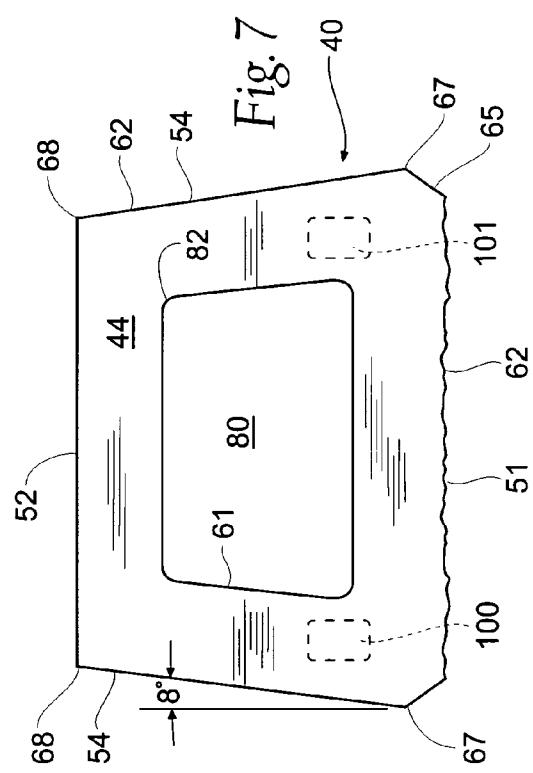
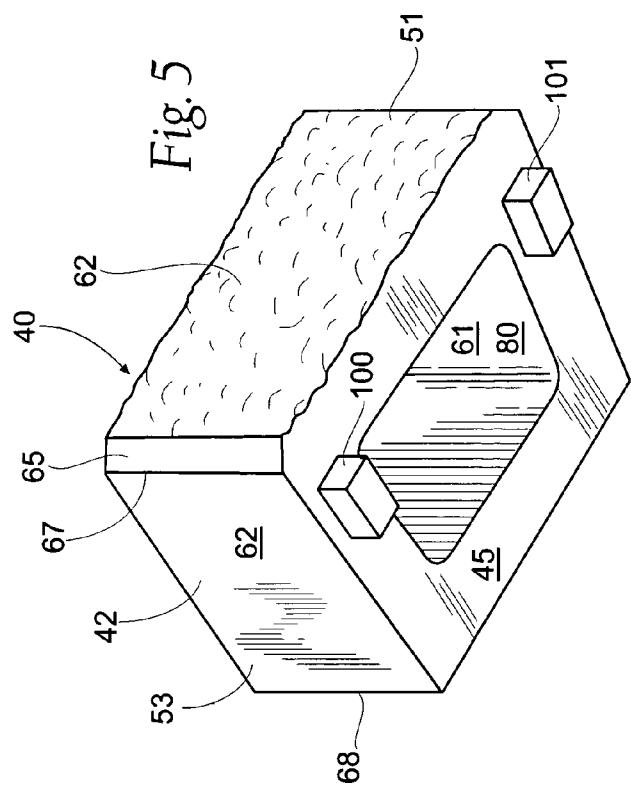





Fig. 8

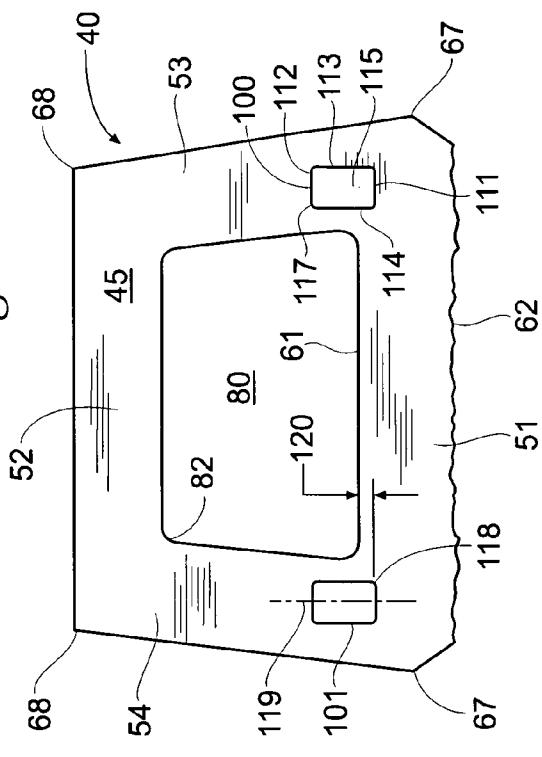
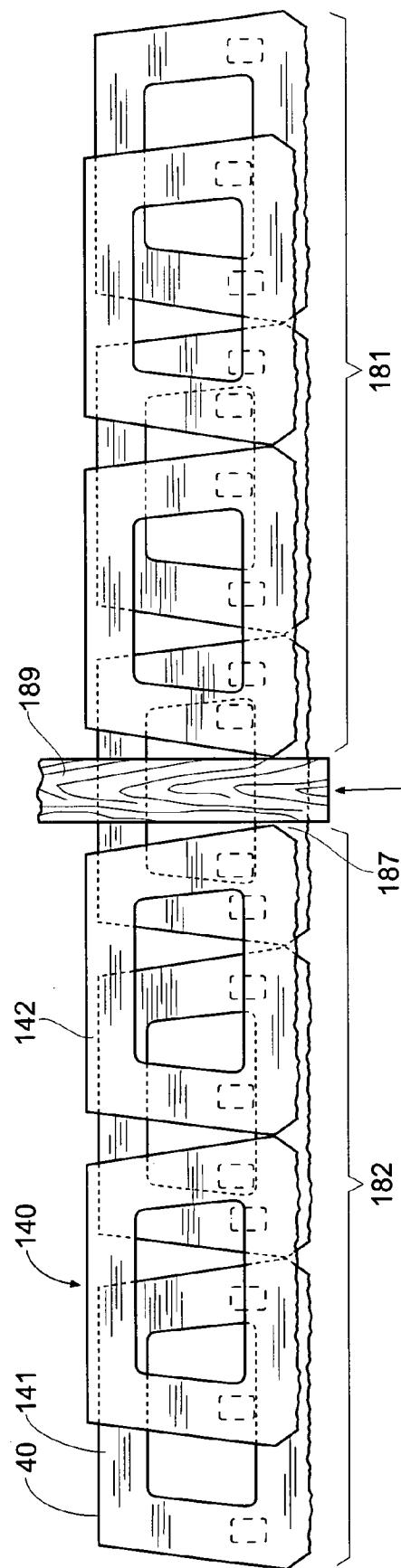



Fig. 10

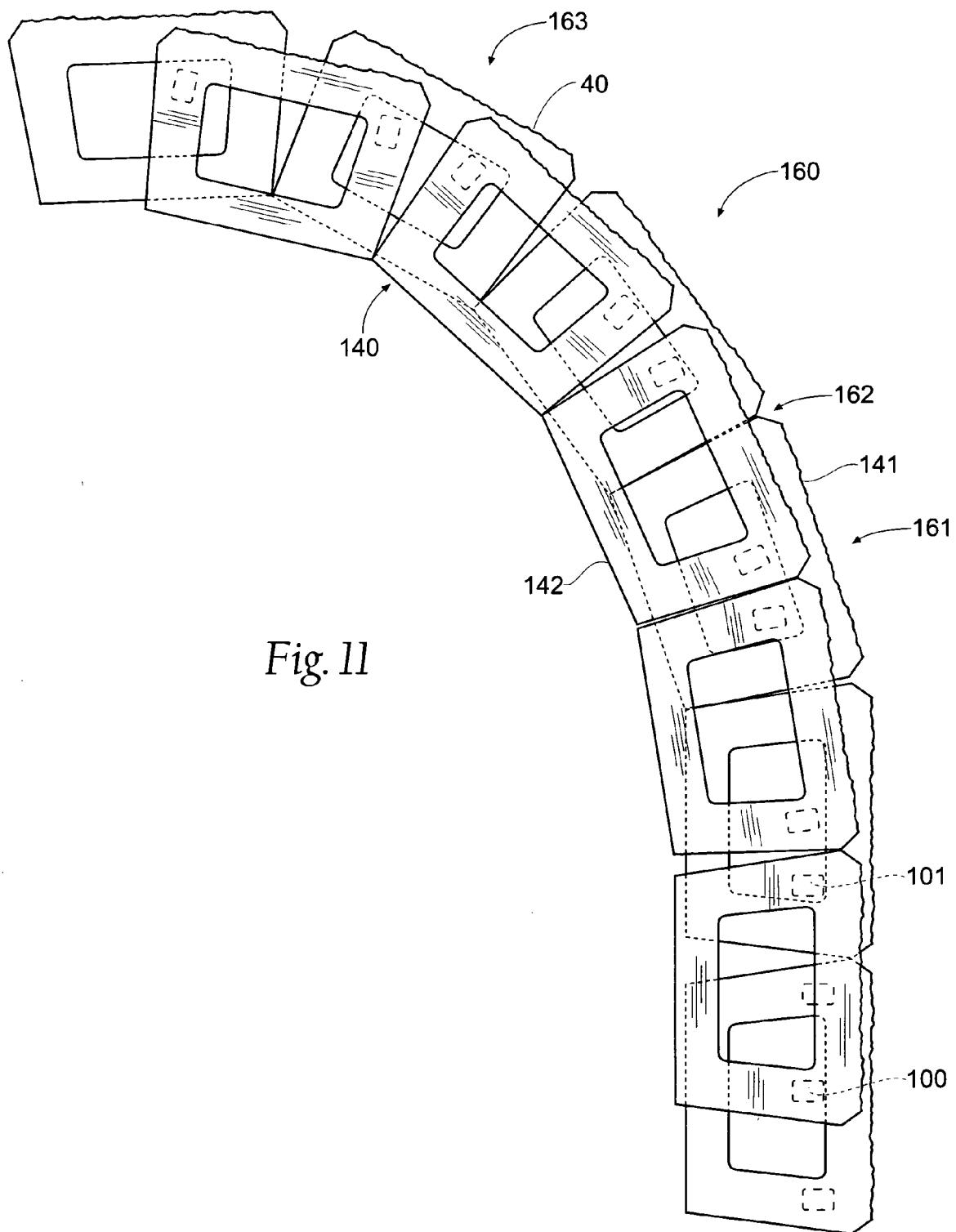
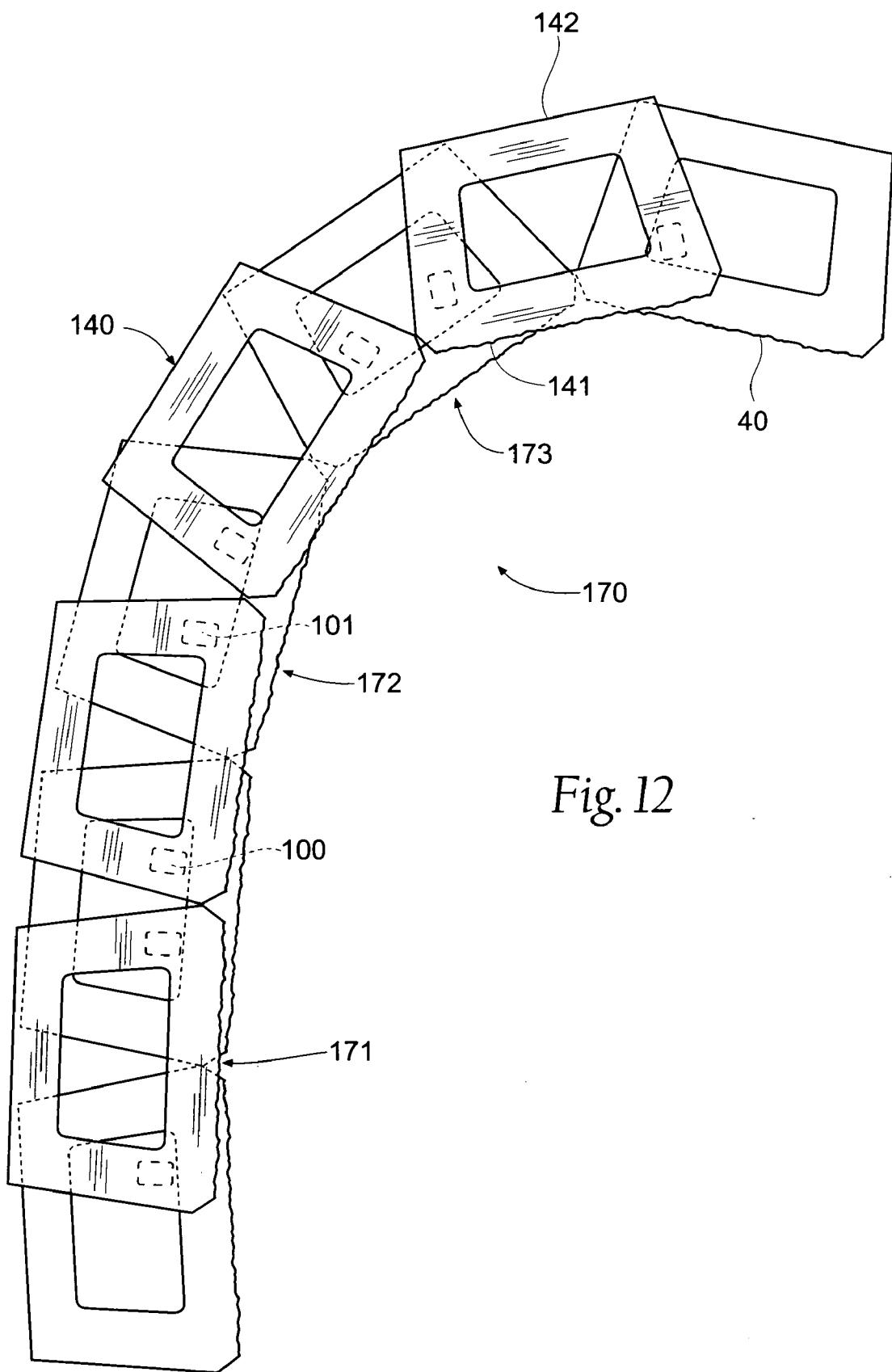
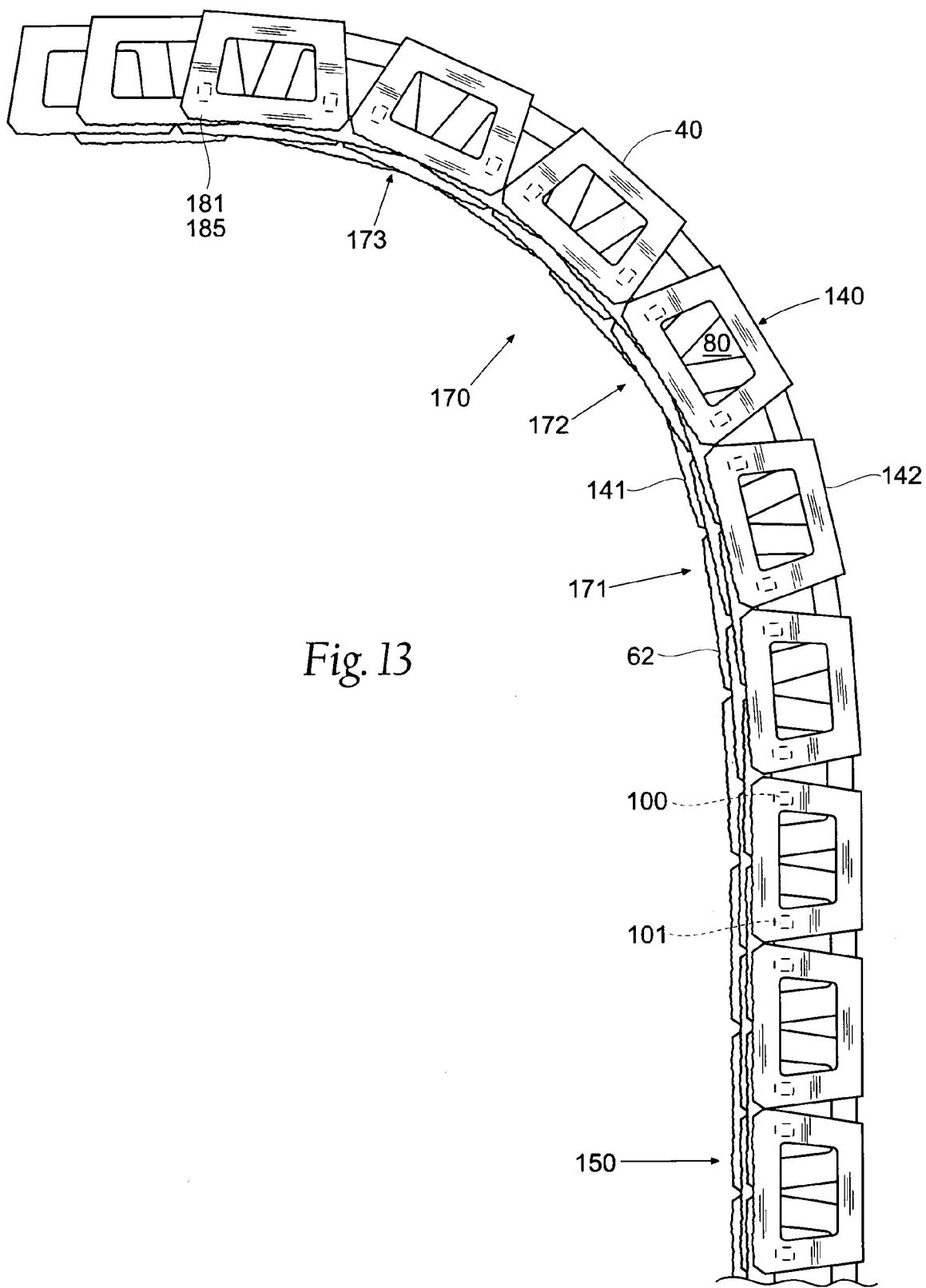
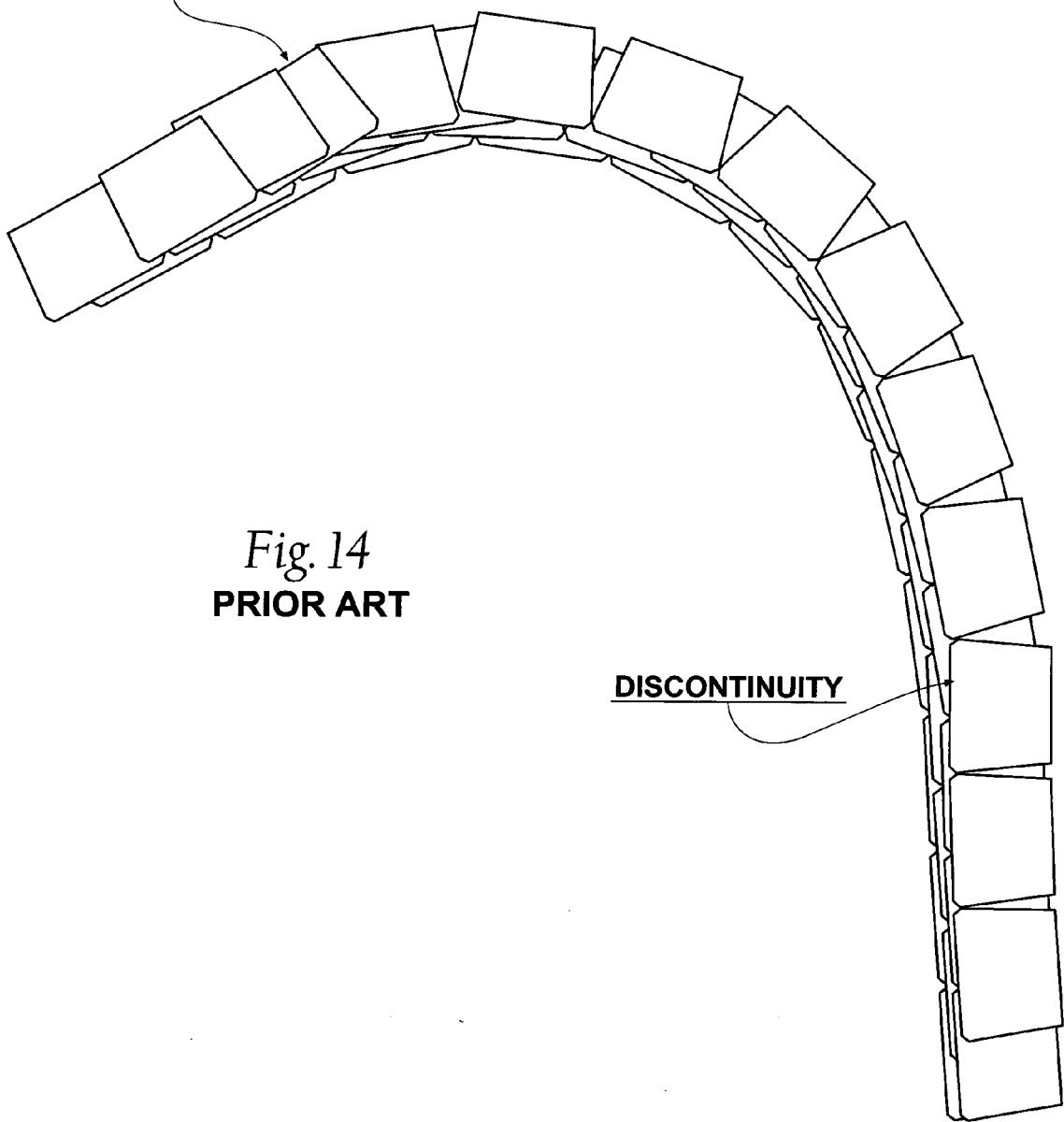





Fig. 11

DISCONTINUITY

Fig. 14
PRIOR ART

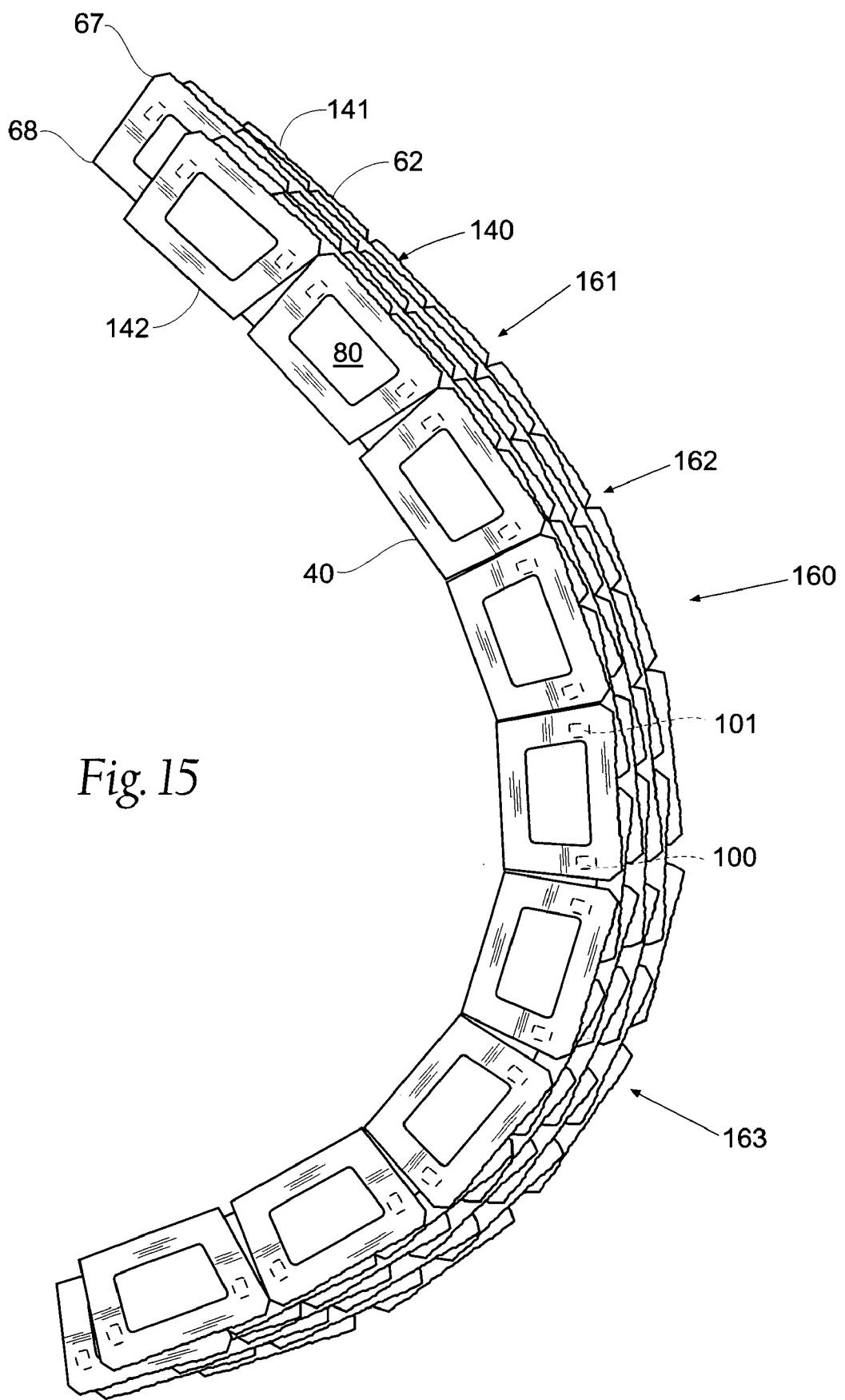
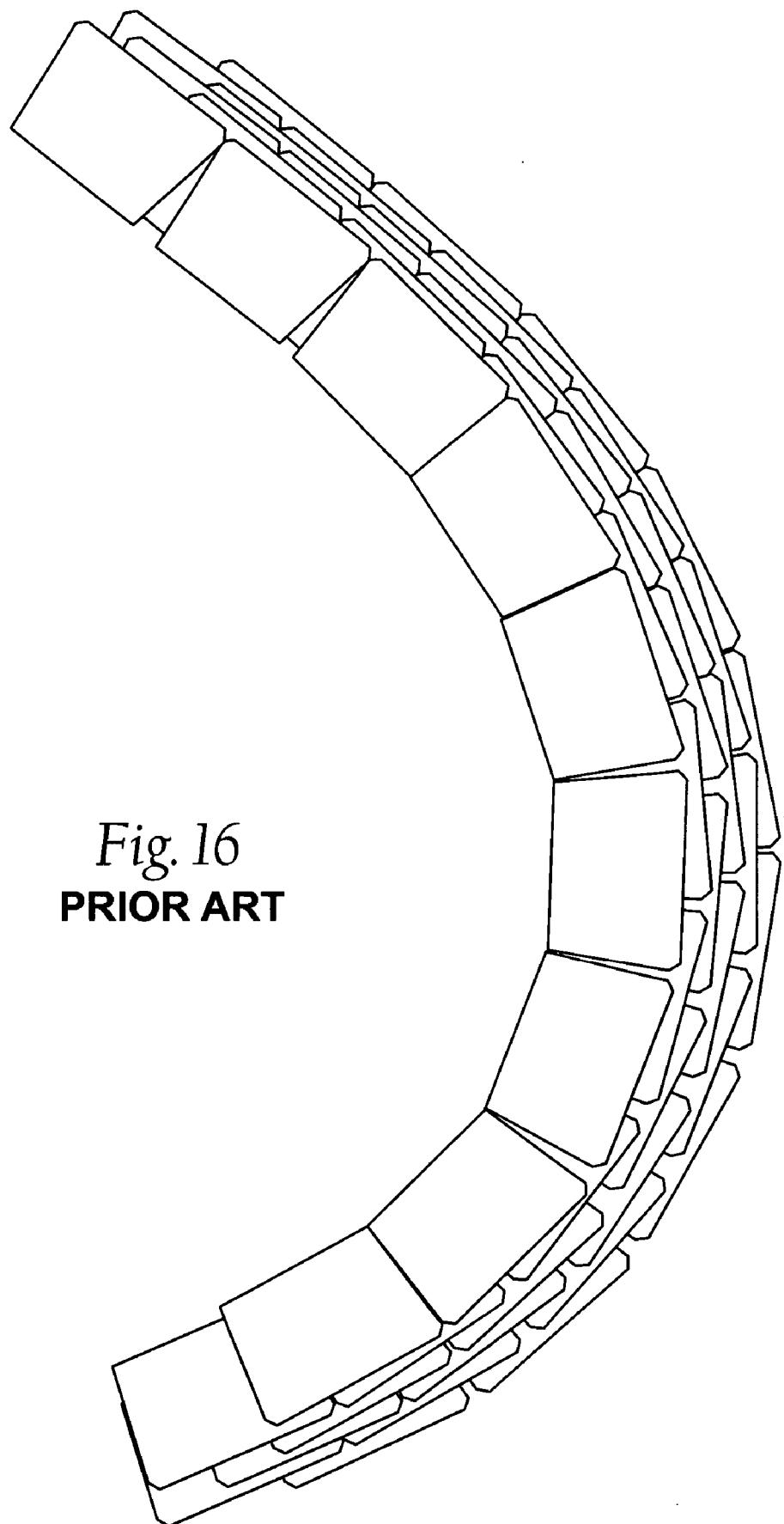



Fig. 15

Fig. 16
PRIOR ART

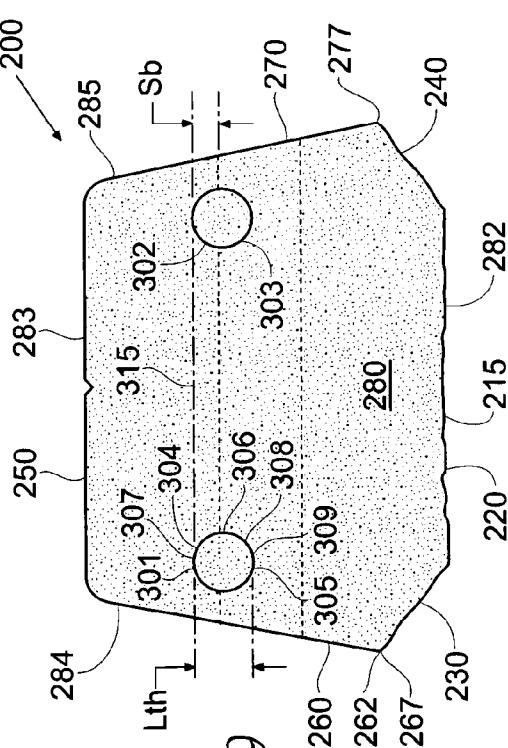
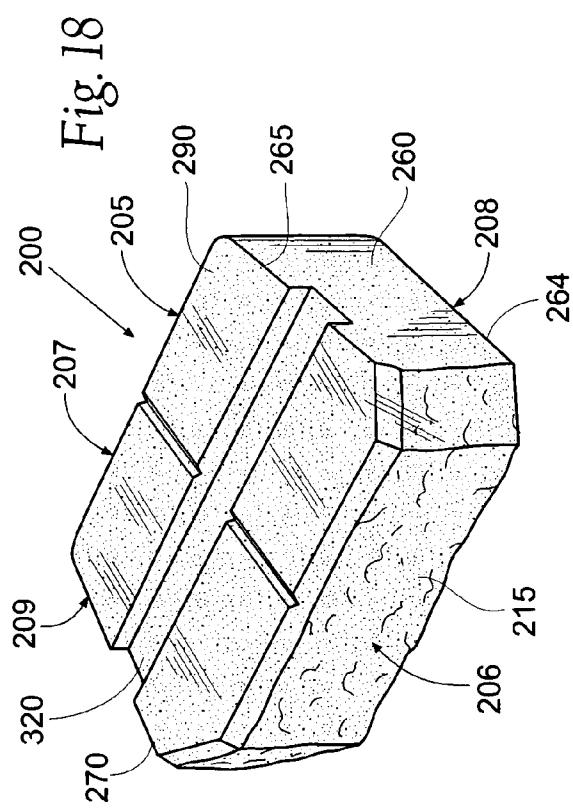



Fig. 19

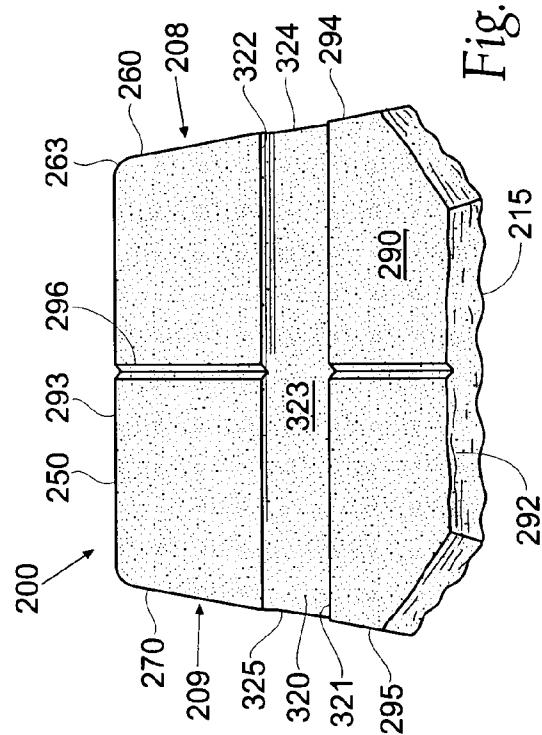


Fig. 21

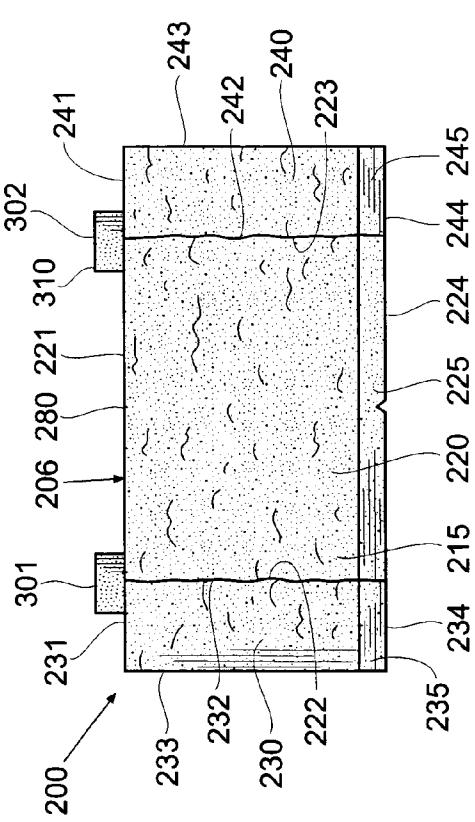


Fig. 22

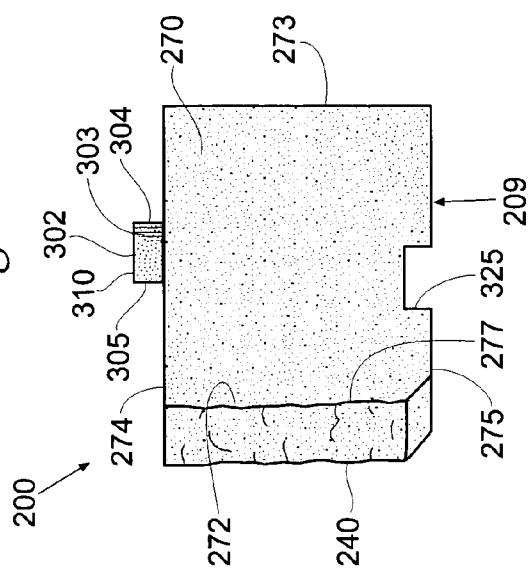
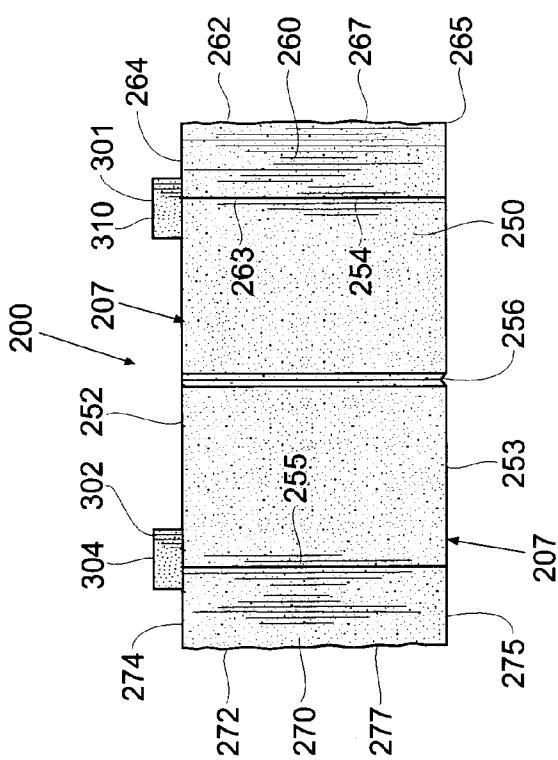



Fig. 23

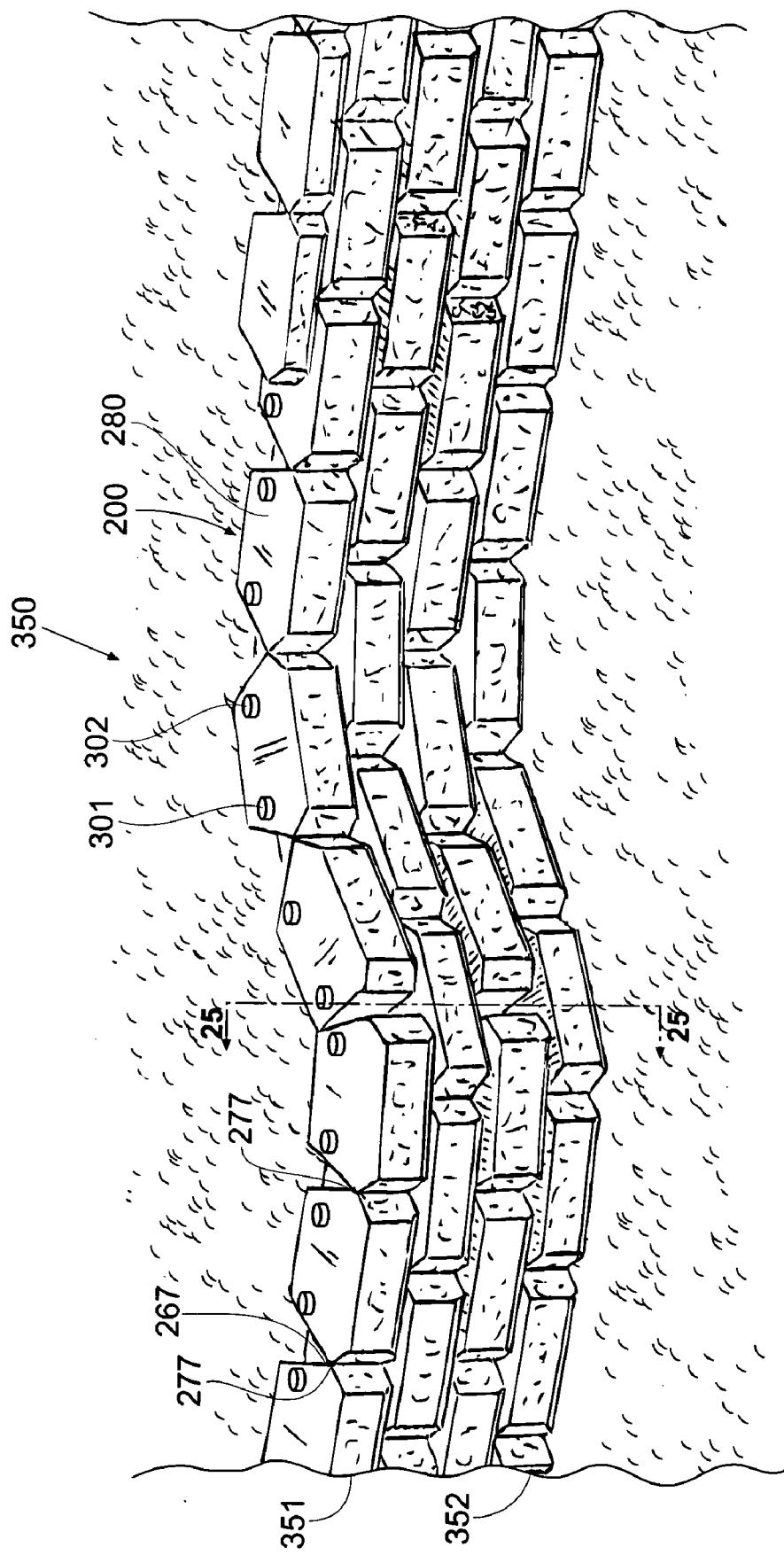


Fig. 24

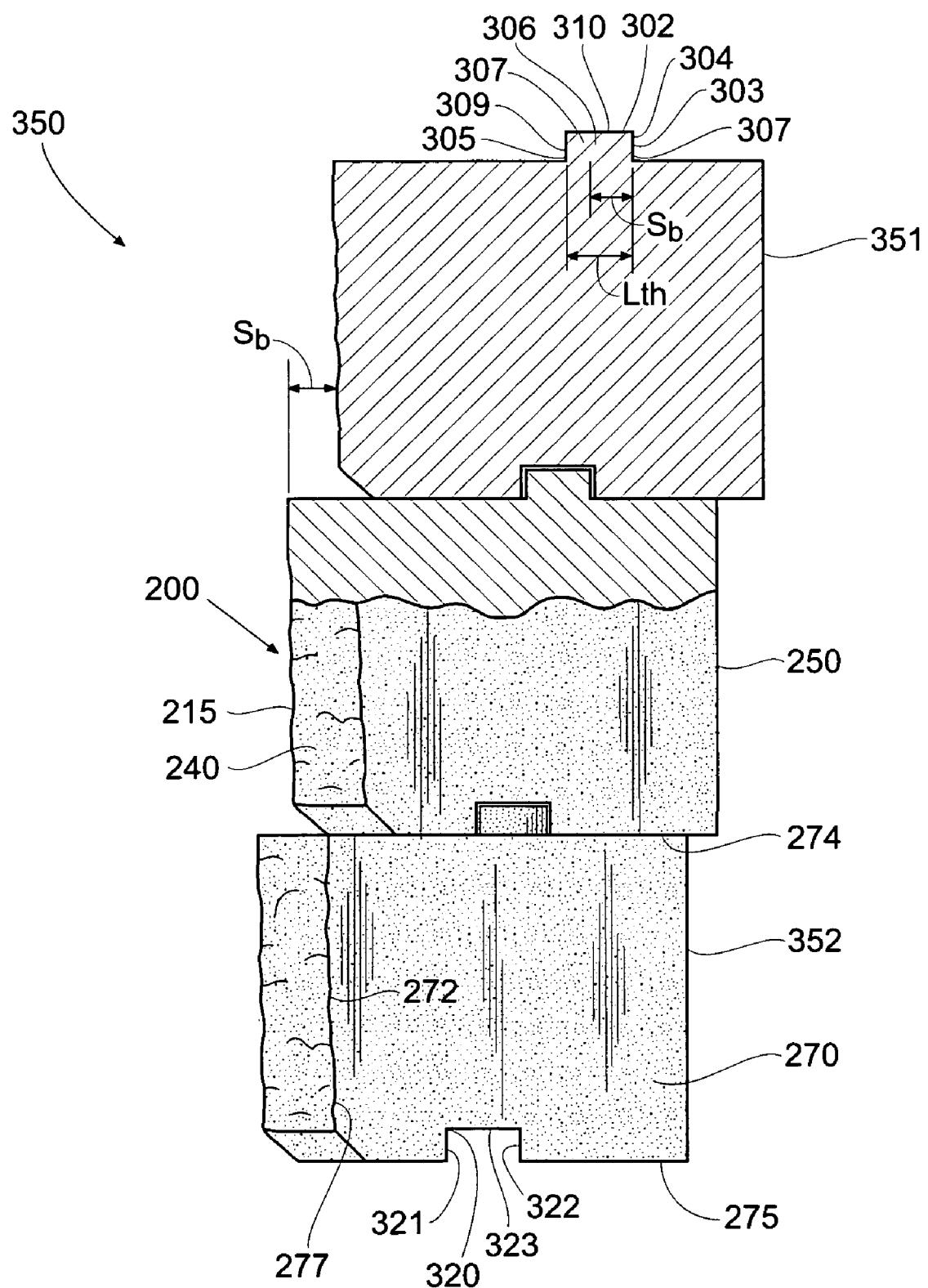


Fig. 25

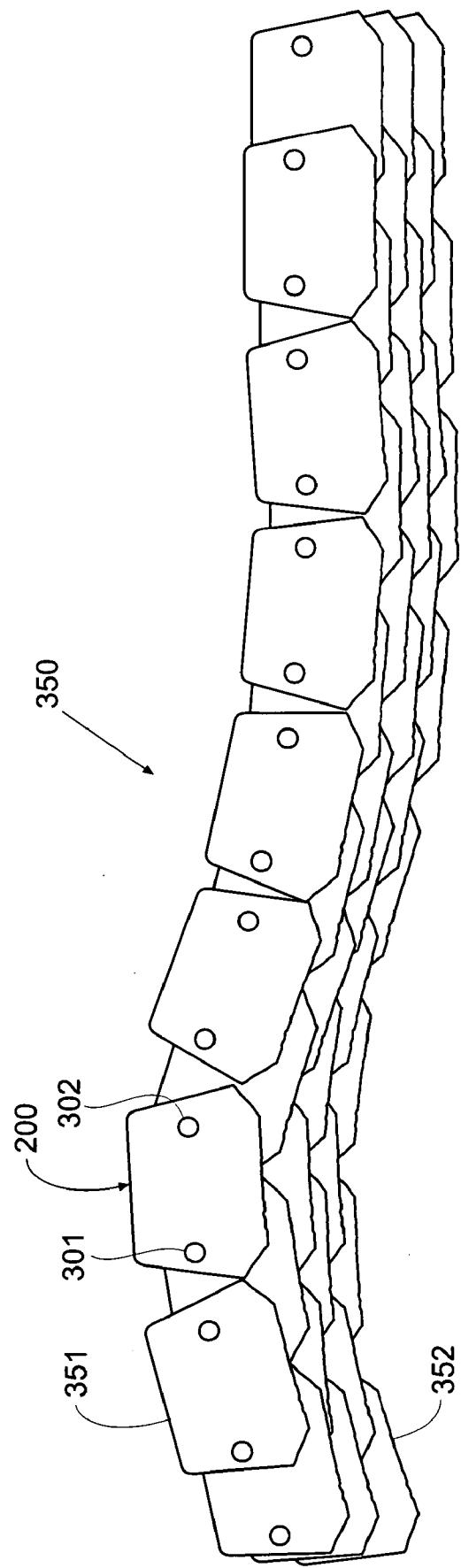


Fig. 26

Fig. 27

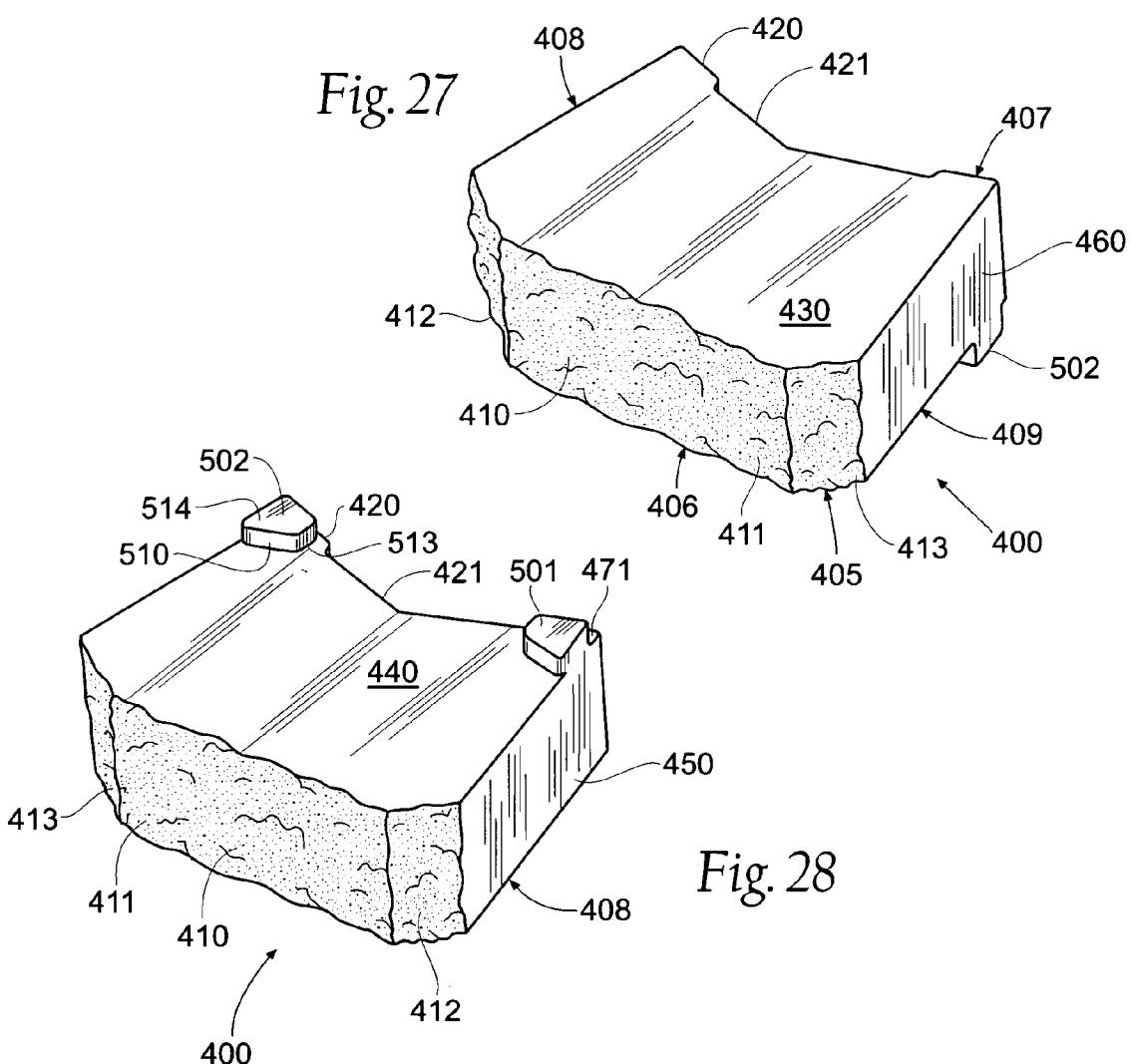
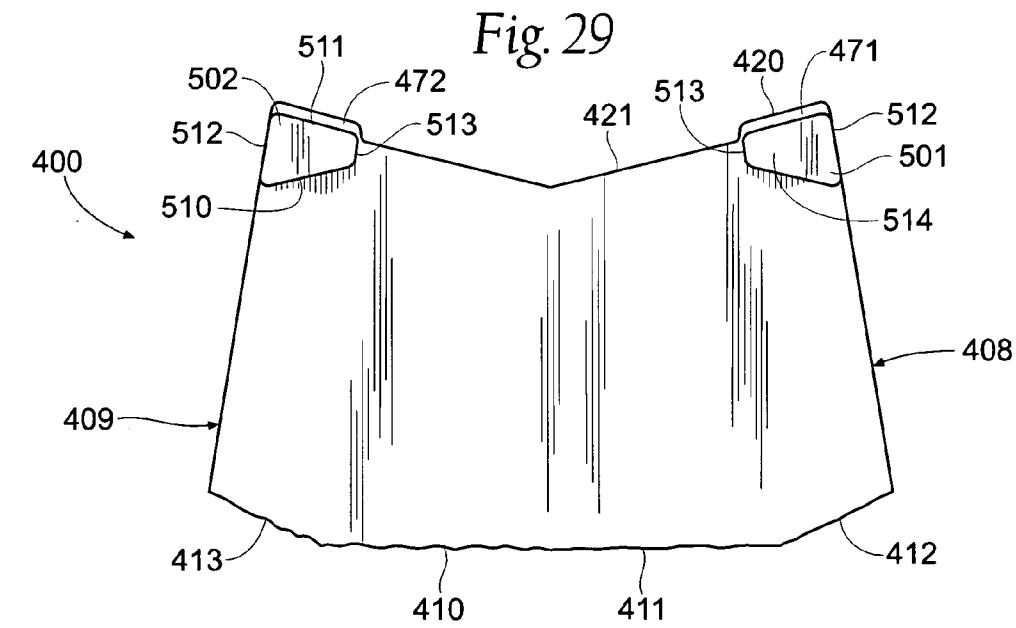
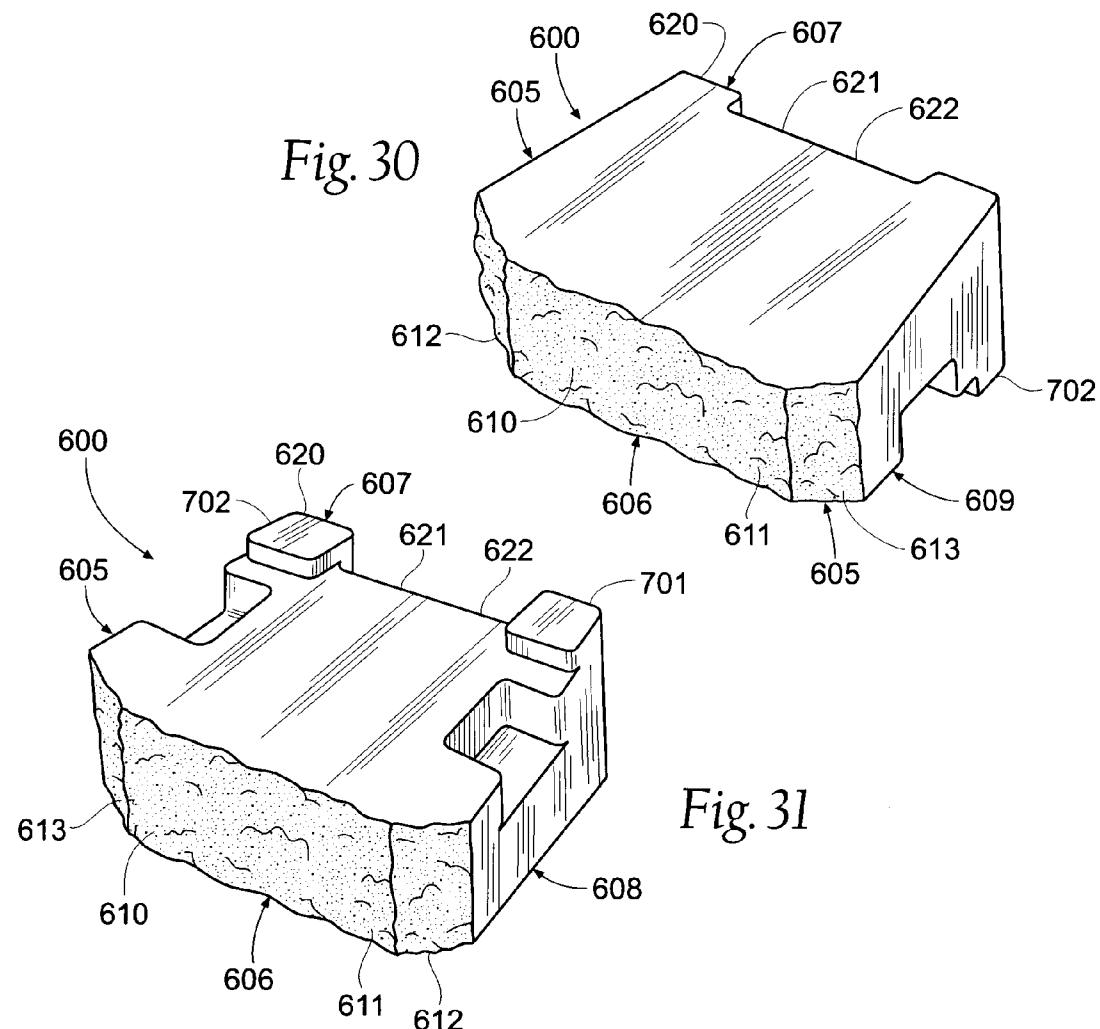




Fig. 28

Fig. 32

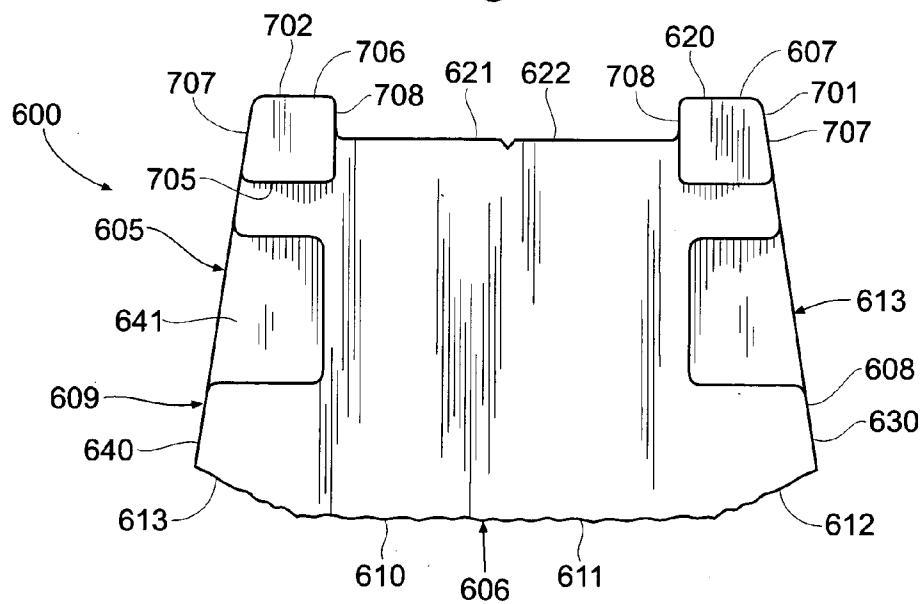


Fig. 33

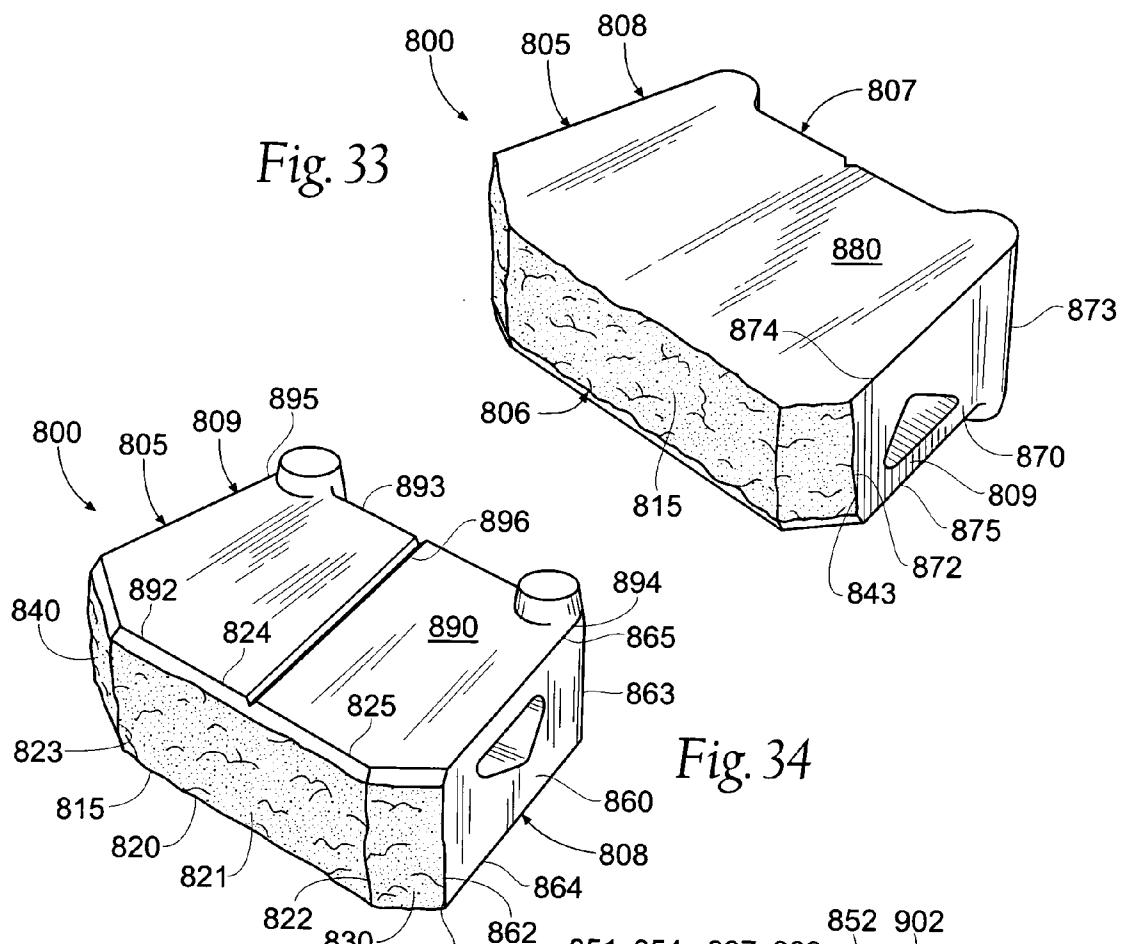


Fig. 34

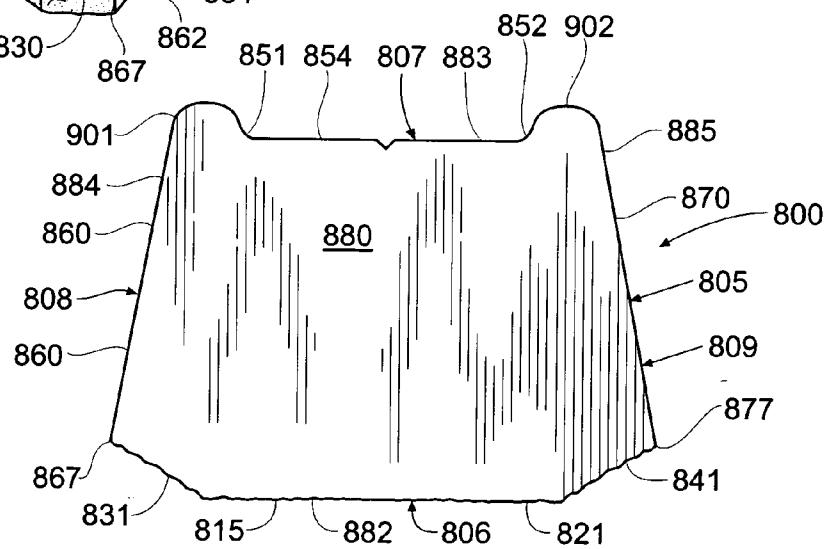


Fig. 35

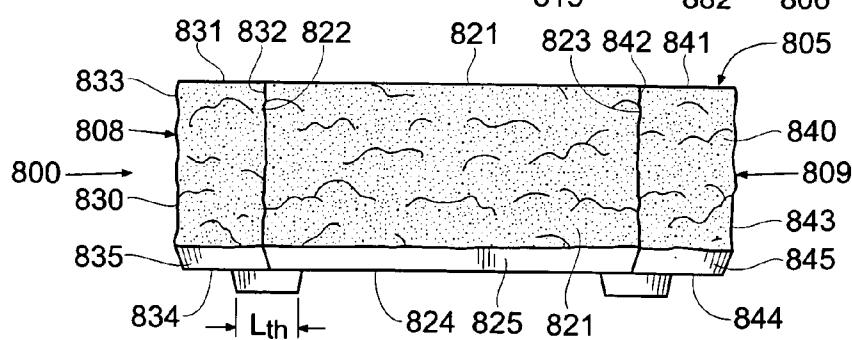


Fig. 36

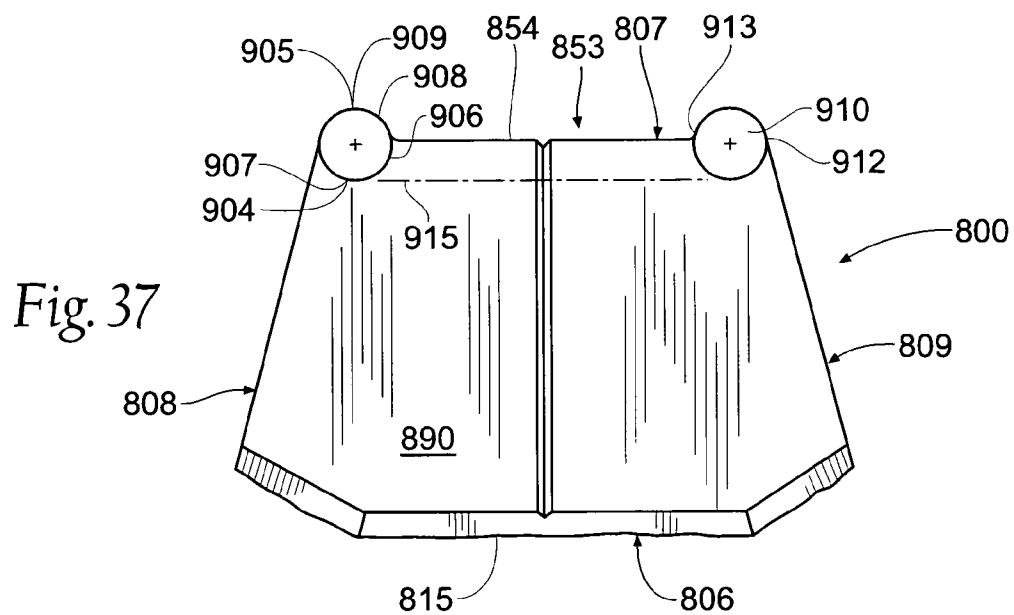


Fig. 37

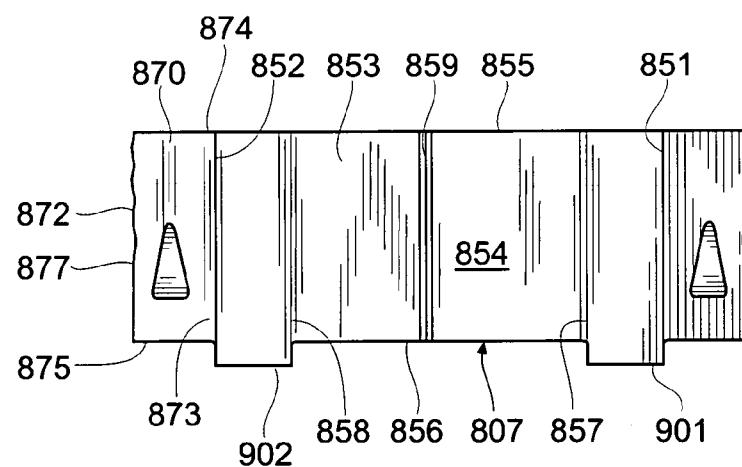


Fig. 38

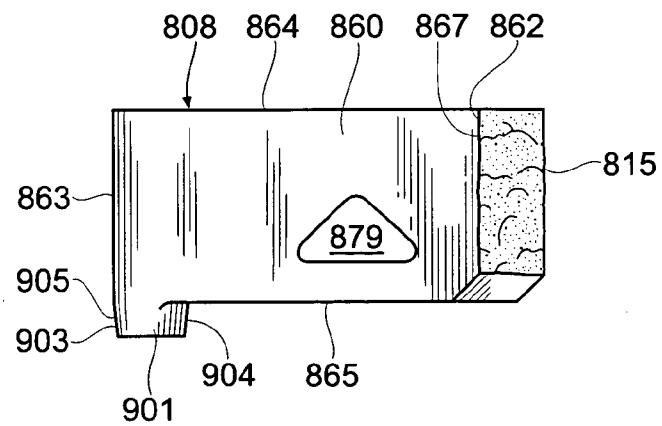
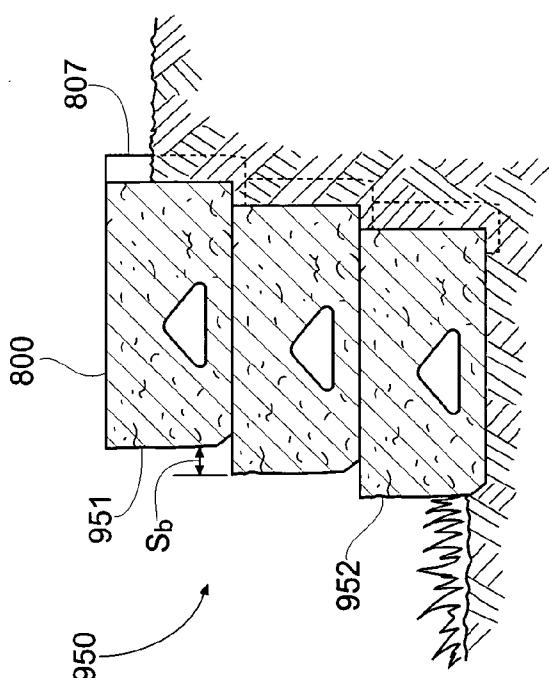
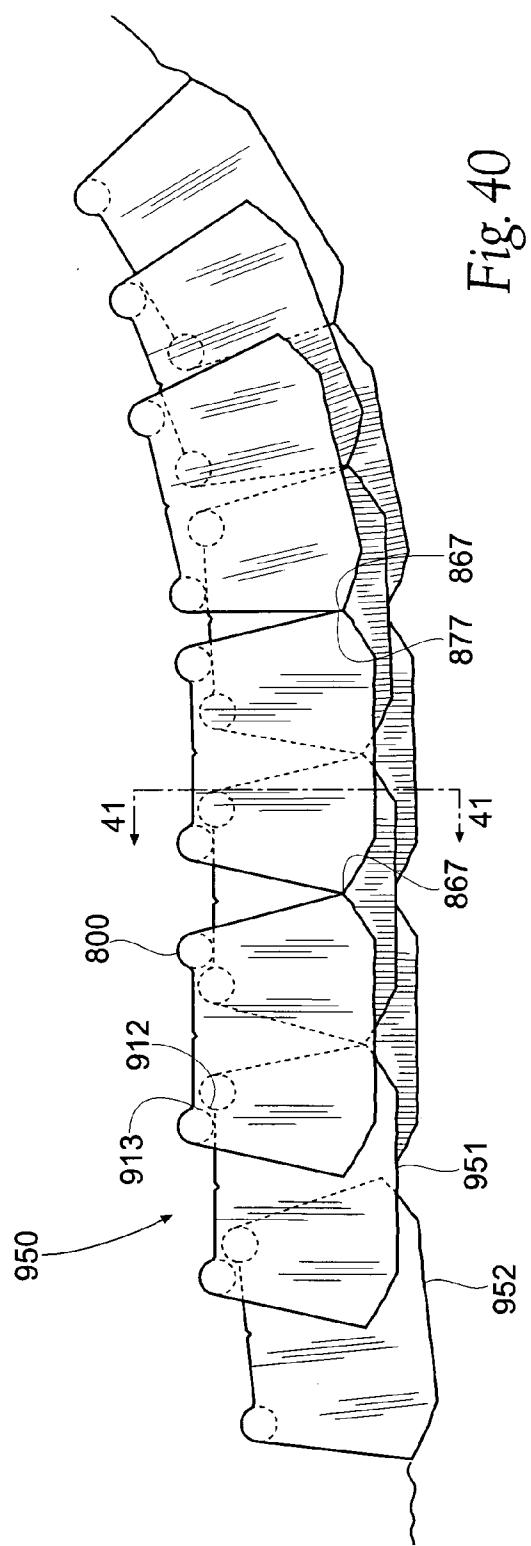




Fig. 39

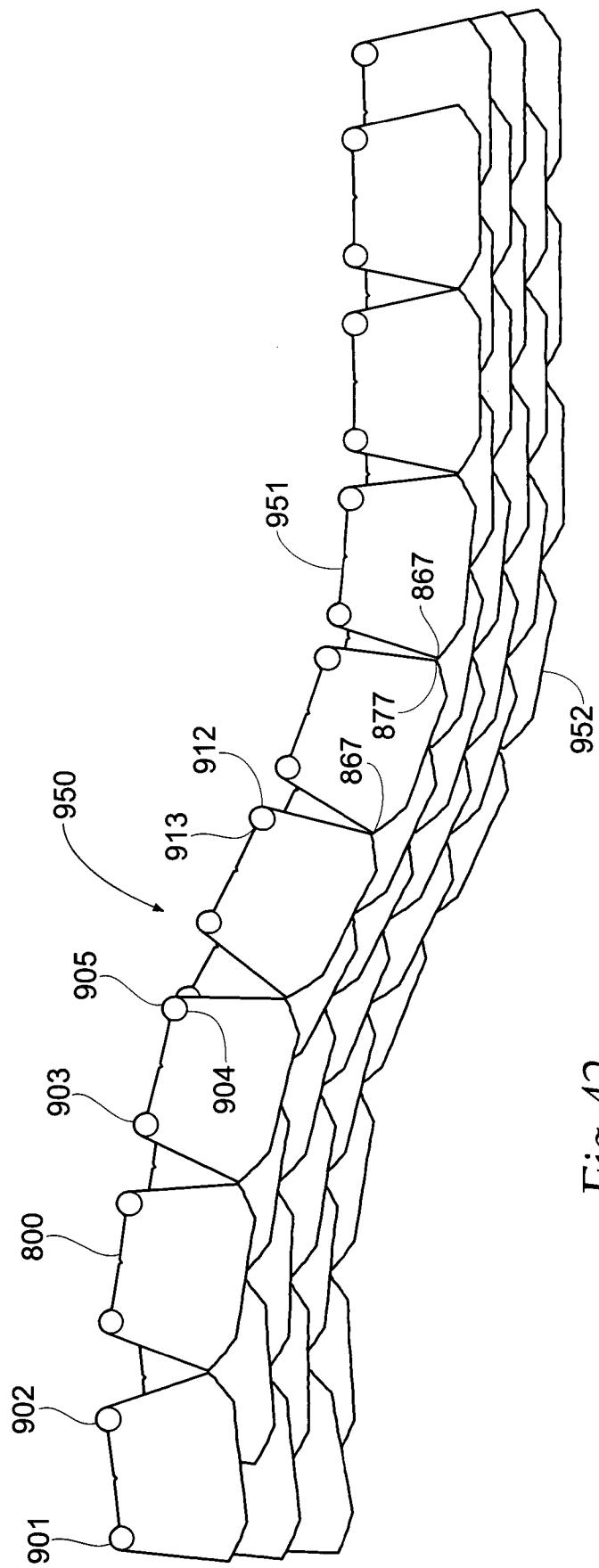


Fig. 42

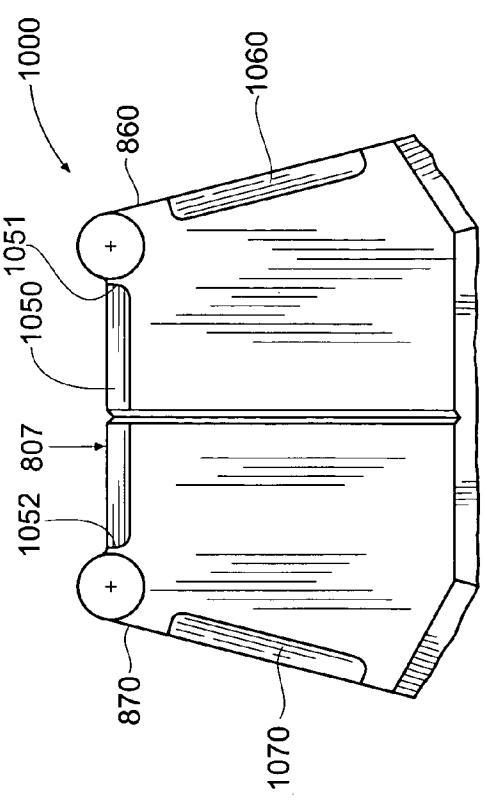
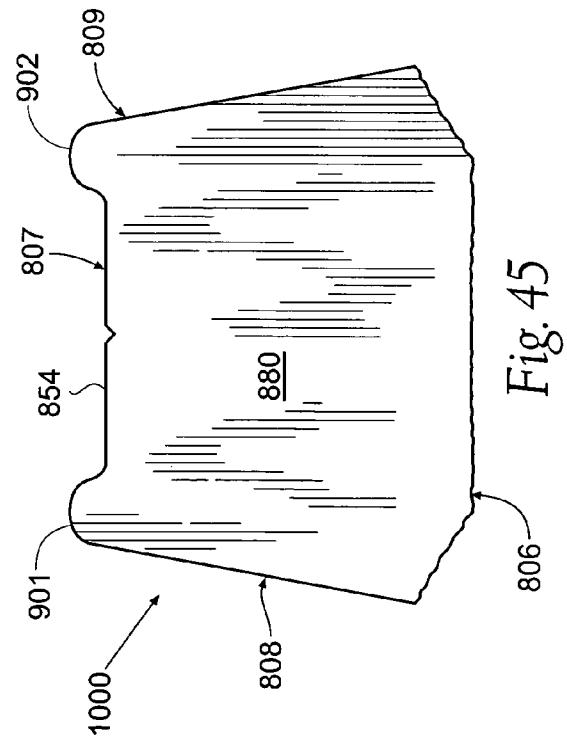
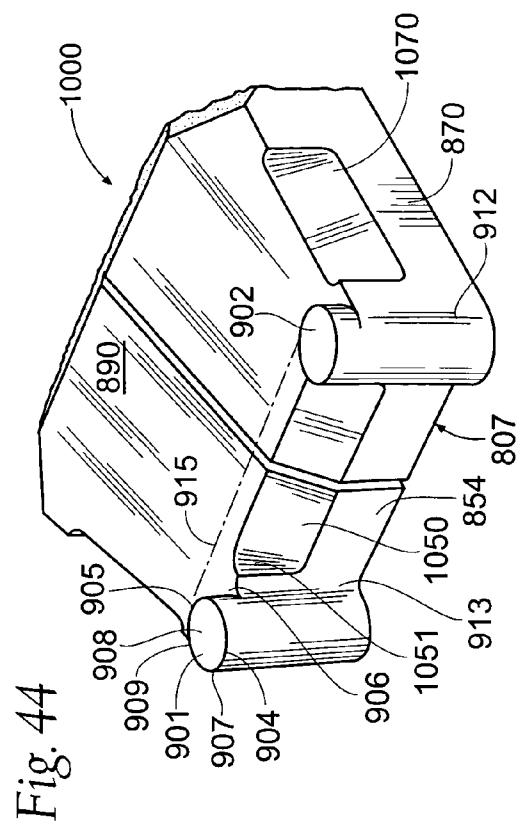
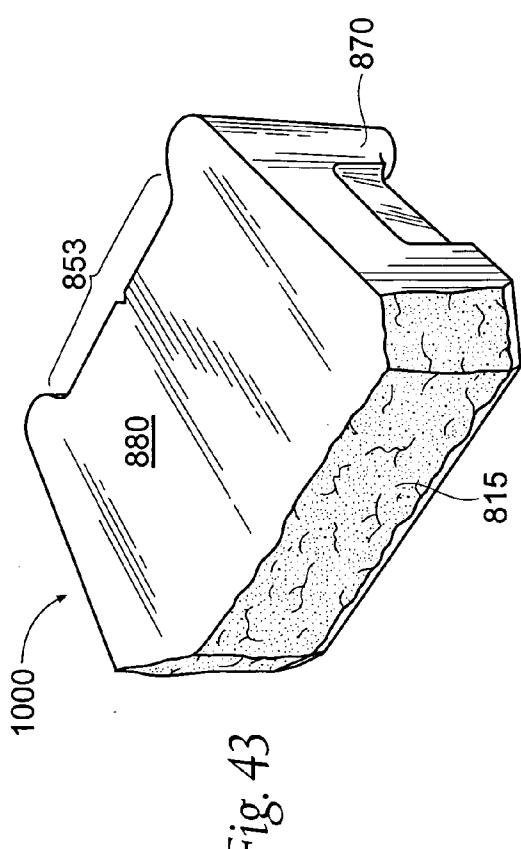





Fig. 48

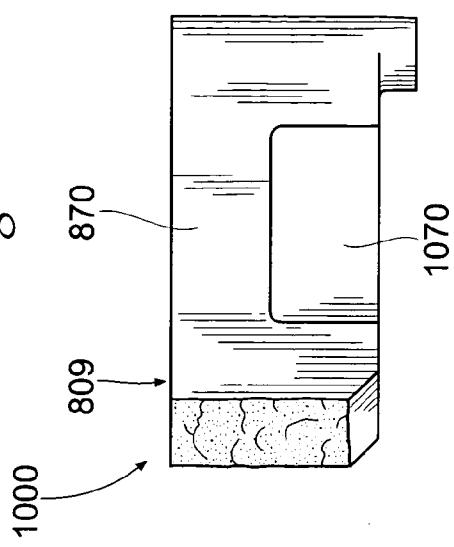


Fig. 47

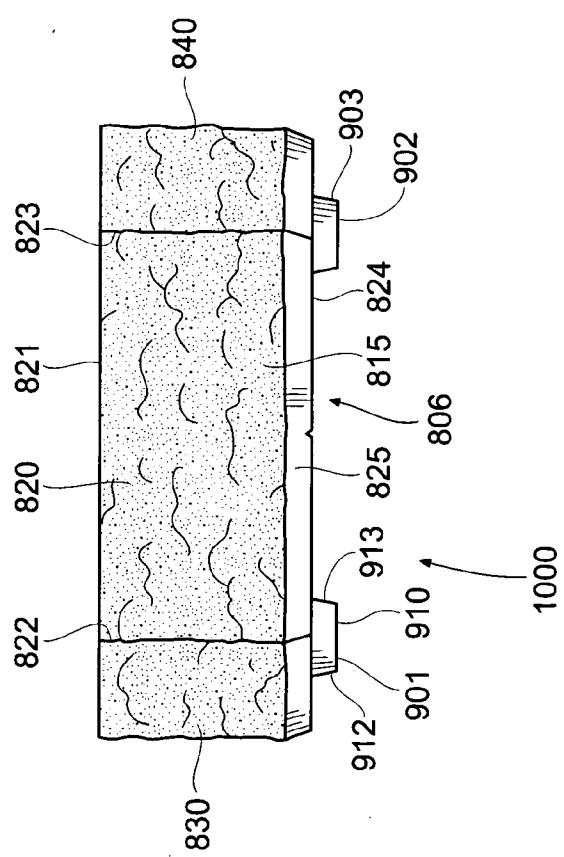
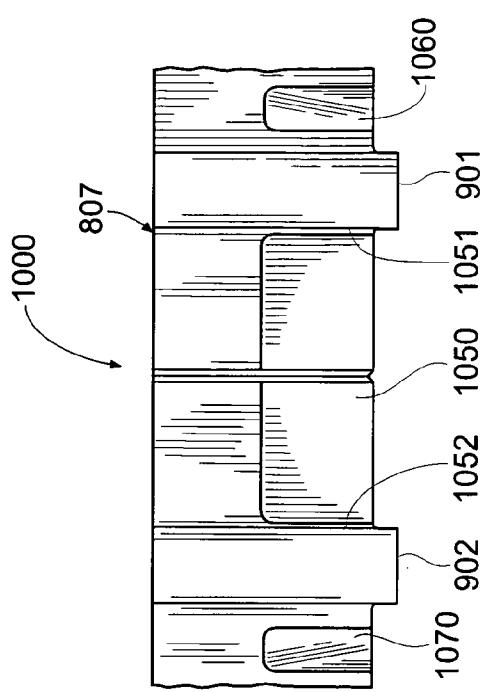



Fig. 49

INTERLOCKING MASONRY WALL BLOCK

RELATED APPLICATIONS

[0001] This application is a divisional of co-pending U.S. application Ser. No. 09/940,562, filed Aug. 28, 2001, entitled "Interlocking Masonry Wall Block" which claims the benefit of provisional U.S. Application Ser. No. 60,228,517, filed Aug. 28, 2000, and which is a continuation-in-part of U.S. application Ser. No. 09/928,125, filed Aug. 10, 2001, entitled "Interlocking Masonry Wall Block," now abandoned, which claims the benefit of provisional U.S. Application No. 60/224,471, filed Aug. 10, 2000.

TECHNICAL FIELD OF THE INVENTION

[0002] This invention relates to a masonry block for stacking on other like-shaped blocks in a staggered, interlocking and offset manner to form a gravity-type retaining wall that is particularly suited for integrating into a variety of landscape settings.

BACKGROUND OF THE INVENTION

[0003] A variety of masonry block designs have been developed for building gravity-type retaining walls that depend on the weight of the blocks for their stability. Versatile block designs should take several factors into consideration. For walls three feet in height or less, the blocks should form a wall structure that can withstand the pressure of the earth behind the wall. The footprint of the block should be large enough to accommodate soils with relatively low bearing pressures so that the wall will not tilt or sink during use. The setback and height of the block should be such that the combined pressure of the earth and the weight of the wall fall within the footprint of the lowest course of blocks. The block design should also take into account the shape of the blocks, as well as the strength, density and durability of the material forming the block.

[0004] Retaining wall block designs require a mechanism for securing the blocks together to produce a stable wall structure. While the friction between the relatively rough surfaces of stacked blocks can help keep the wall together, this friction is not sufficient in many retaining wall applications. To increase stability, some blocks are designed to be mortared or otherwise adhered together to produce a rigid wall structure. Unfortunately, such retaining walls are prone to cracking due to settling, frost, water buildup behind the wall and earthquakes, as well as the normal use of the wall by people and animals that walk, stand, lean or sit on the wall.

[0005] Other retaining wall block designs incorporate fasteners such as rods, pins or keys to hold and clamp the blocks together. Examples of such block designs are shown in U.S. Pat. No. 4,914,876 to Forsberg, U.S. Pat. No. 3,390,502 to Carroll, and U.S. Pat. No. 4,909,010 to Gravier, the disclosures of which are incorporated by reference herein. A significant problem with these block designs is the expense of the extra components and increased installation costs. These designs can also suffer from unsightly cracks that tend to form in these types of walls.

[0006] Interlocking wall block designs have been developed to overcome the problems associated with the blocks that form rigid retaining wall structures. Interlocking block

designs typically have one or more integral projections extending from the upper or lower surface of the block. When stacked, the projection of one block abuts against a surface of another block to help hold the blocks together. The projections also provide a mechanism for offsetting stacked blocks. This offset or setback helps produce a more stable retaining wall that leans into the earth or hill behind the wall to resist the pressure exerted by the earth or hill on the wall. Individual blocks do not need to be rigidly secured by mortar, adhesive, rods, pins or keys, so that the wall is free to flex and accommodate movements in the wall caused by settling, frost, water buildup, earthquakes and normal use. Blocks for retaining walls of this type are described in U.S. Pat. No. 5,827,015 to Woolford, U.S. Pat. No. 2,313,363 to Schmitt, and U.S. Pat. No. 4,565,043 to Mazzarese, the disclosures of which are incorporated by reference herein.

[0007] One problem with conventional interlocking masonry wall blocks is that the thickness of the integral projection is directly related to the amount of setback desired for each course of blocks. A retaining wall application requiring a half-inch setback per course requires blocks with half-inch thick projections. Yet, thin projections are structurally weak and prone to chipping and cracking. While the height of the block can be increased to increase the thickness of its setback, this results in a heavier block that is more difficult to handle. In addition, tall blocks also do not lend themselves to landscaping gradually sloping terrain. Large portions of the block stick out above ground level before a step down at the end of a row or course of blocks can occur. This produces an unsightly wall and results in a waste of material.

[0008] Another problem with conventional interlocking masonry wall blocks is that the integral projection is located along the rear or front edge of the block. As noted above, the setback projection is frequently only a half-inch thick when the blocks are sized for easy handling. Yet, these relatively thin and weak projections are located where they are easily damaged if dropped, improperly stacked or otherwise mishandled. In addition, rear projections are in direct contact with the wetness and acidity of the earth during use, which can cause the projection to deteriorate, weaken and fail over time. Front projections extend upwardly and can collect water between them and the upper course of blocks, which can freeze and crack the projection.

[0009] A further problem with conventional interlocking masonry wall blocks is that the integral projections are relatively short in height to reduce the possibility of chipping and cracking. Although the short projections may be less likely to crack, they do not provide a sufficiently tall abutment to easily and consistently align the block over a lower course of blocks. During construction of a wall, workers have a tendency to leave a gap between the projection and the lower course of blocks or allow the projection to ride-up onto the upper surface of the lower block. These misalignments are not easily detected given the thinness of the projection and its relatively small height. This is especially so for blocks with rear projections that extend down from the lower surface of the block, because the workers are not able to easily see that the blocks are properly aligned. Misalignments can be even more difficult to notice in construction settings where dirt, gravel and other

debris are present, and may compact against the setback projection or get on the upper or lower surfaces of the blocks.

[0010] A still further problem with conventional interlocking masonry wall blocks is that they have limited ability to produce serpentine walls with straight, concave and convex portions. The integral projections are sized and shaped to fit into grooves of lower blocks so that the stacked blocks must be oriented a particular way. If a curve is possible, the radius of the curve is constant, so that a true serpentine wall with curves that gradually increase or decrease in radius are not possible. These limitations of conventional block designs prevent the wall from being integrated into the natural contours of the landscape and thus impede the aesthetic value of the wall.

[0011] A still further problem with conventional interlocking masonry wall blocks is that the integral projections do not ensure an even amount of setback for straight and curved portions of the wall. For example, a block with a flange along its front or rear edge produces a wall with discontinuities in the amount of setback between adjacent block as shown in **FIG. 14**. In addition, the pitch of the wall is also greater in both the concave and convex curved portions of the wall than in the straight portions as shown in **FIGS. 14 and 16**. This increasing setback and pitch occurs even though a retaining wall may need to be stronger and require more setback in straight portions of the wall than in curved portions.

[0012] A still further problem with conventional interlocking masonry wall blocks is that the blocks require a fixed amount of lateral offset to the right or left of the lower blocks on which they rest. Yet, obstructions at the location where the wall is to be built or the addition of drain pipes in the wall do not always permit each block to be offset a constant amount throughout the entire wall. A block in one course may need to be laterally offset two or three inches to the right or left from the blocks beneath it, and another block in the same or a different course may need to be laterally offset four or five inches from the blocks beneath it. Yet, many interlocking block designs do not allow sufficient flexibility to offset the blocks as needed to accommodate various obstacles or drain pipes. This inflexibility can complicate construction or renders the block unusable for some retaining wall applications.

[0013] A still further problem with conventional interlocking masonry wall blocks is that the integral projection does not provide sufficient resistance to lateral side-to-side movement of the block. Side-to-side movement is only resisted by adjacent blocks in the same course or tier. The side walls of these adjacent blocks abut each other to prevent, side-to-side movement. However, should one block in a given course shift or move out of abutting alignment with one of its adjacent blocks, then each of the blocks in that row would be susceptible to shifting as well. Moreover, the blocks that form an end of the wall are not restrained from lateral movement away from its sole adjacent block and could be knocked off the wall altogether.

[0014] A still further problem with conventional interlocking masonry wall blocks is that several different block shapes must be combined to form the straight and curved sections of a serpentine wall. The need for multiple block designs result in increased manufacturing, inventory, ship-

ping and construction costs. The multiple block designs also result in more complicated serpentine wall designs that are not easily integrated to the shape of a specific and unique landscape setting.

[0015] A still further problem with conventional interlocking masonry wall blocks is that they are heavy and difficult to handle. The blocks are typically solid throughout. The openings tend to be small and do not significantly reduce the weight of the block. The excessive weight is compounded by the fact that the block must be tall enough to provide a setback projection or flange that is sufficiently thick to withstand cracking and chipping during transport, construction and use.

[0016] The present invention is intended to solve these and other problems.

SUMMARY OF THE INVENTION

[0017] The present invention relates to an interlocking masonry wall block having two spaced lugs or projections and a cooperating recess or channel that enable like-shaped blocks to be stacked in a staggered relation to form straight and serpentine walls that are particularly suited for landscaping applications. In one embodiment, the lugs are located proximal the sides of the block and extend from an upper surface of the block. The channel is formed in a lower surface of the block. In another embodiment, the lugs are located at the rear corners of the block and extend below the lower surface of the block. The recess is formed in the rear end of the block between the lugs. Like-shaped blocks are stacked in a staggered relation so that each block is stacked atop two immediately lower blocks. In each embodiment, the lugs and their cooperating channel or recess define a setback dimension.

[0018] One advantage of the present interlocking masonry wall block is that the thickness of the integral projections is not related to the desired amount of setback for each course of blocks. A retaining wall application requiring a half-inch setback per course can have projections that are one or two inches thick. These thicker projections are more structurally sound and not prone to chipping and cracking. The block can be relatively short in height to produce a block that is light weight and easy to handle.

[0019] Another advantage of the present interlocking masonry wall block is that the block can be kept relatively short so that it can be more easily integrated into gradually sloping terrain. The smaller height allows more frequent steps to be incorporated into a particular wall design so the blocks do not rise up above ground level a great deal. This produces a more aesthetically pleasing wall that fits and blends into the natural terrain. The blocks also make more efficient use of material.

[0020] A further advantage of the present interlocking masonry wall block is that the integral projections are robustly designed or located away from the front and rear edges of the block. The rear lugs are robustly and smoothly designed to withstand normal abuse during shipping and construction of a wall. The projections located intermediate the front and rear ends of the block are less likely to be damaged if the block is dropped or bumped during transport. These intermediate projections are also protected by the lower blocks during use so that they are not exposed to the

earth and air. This keeps the projections dry and away from the acidity of the earth, which improves the life expectancy of the block and retaining wall formed by the blocks.

[0021] A still further advantage of the present interlocking masonry wall block is that the integral projections are relatively thick and relatively tall. As stated above, the projections can be relatively thick or long because they are not dependent on the desired setback. This increased thickness enables the projections to have an increased height without compromising their structural strength. The projections provide a sufficiently tall abutment to easily and consistently align the block over the lower course of blocks. This reduces the amount of misaligned blocks, and improves the strength and aesthetic uniformity of the retaining wall.

[0022] A still further advantage of the present interlocking masonry wall block is that they produce serpentine walls with varying convex and concave shaped portions. The size and shape of the open cores allow the smaller, spaced projections to fit into the open cores of the blocks of the lower course. Adjacent blocks can be oriented to form a continuous wall with curves and straight portions that gradually increase or decrease in radius.

[0023] A still further advantage of the present interlocking masonry wall block is that the integral projections produce a relatively uniform amount of setback for straight and curved portions of the wall. Even though the setback increases slightly in concave curved portions of the wall and decreases slightly in convex portions of the wall, this change in setback occurs evenly and gradually as the radius of the curve increases. Discontinuities between adjacent blocks are avoided. In addition, the pitch of the wall is relatively constant for straight and curved portions of the wall. The wall leans back a slightly increased amount in concave portion and less in convex portions so that a relatively constant pitch is achieved throughout the entire serpentine wall. This uniform setback and relatively constant pitch enables more courses of blocks to be used in many serpentine walls, and helps produce a more stable serpentine wall where the combined weight of the wall and earth pressure remain within the footprint of the block.

[0024] A still further advantage of the present interlocking masonry wall block is that the integral projections allow the blocks forming one course to have a varying amount of lateral offset with relation to the course of blocks upon which they are stacked. The retaining wall can more easily avoid obstructions, such as a sump pump discharge pipe. The block can also be arranged to allow drain pipes to pass through the middle of the wall. This flexibility also allows one course of blocks to be laterally offset to accommodate the ledge or sill of a building. Thus, the present block facilitates the construction process and the ability to use the block in a wide variety of locations.

[0025] A still further advantage of the present interlocking masonry wall block is that the integral projections provide additional resistance to lateral side-to-side movement of the block. The blocks can easily be stacked so that the outer wall of one of the lugs engages the inside wall of one of the lugs of a block upon which it lays. Accordingly, side-to-side movement is resisted not only by the adjacent blocks in the same course or tier, but by the blocks above and below it as well. Should one block in a given course shift or move out of abutting alignment with one of its adjacent blocks, then

the remaining blocks in that row would still be held in place by the blocks above or below it. The projections are particularly helpful in holding the end blocks of the wall in place where the block would otherwise be free to slide laterally and out of place, or off the wall altogether.

[0026] A still further advantage of the present interlocking masonry wall block is that an entire serpentine wall can be built from a plurality of like-shaped blocks. The need for only a single block design results in reduced manufacturing, inventory, shipping and construction costs. The single block design also makes it easier to design a serpentine wall that is integrated to the shape of a specific and unique landscape setting.

[0027] A still further advantage of the present interlocking masonry wall block is its reduced weight. The open core and hand hold designs reduce the weight of the block so that they are easier to handle during manufacture, shipping and construction. The open core and hand hold designs also reduces material costs, which can be passed on to the consumer.

[0028] Other aspects and advantages of the invention will become apparent upon making reference to the specification, claims and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] FIG. 1 is an elevated view of a house built to a unique landscape setting with a gradually sloping and contoured hill that feeds down to the level of the backyard patio of the house and a pre-existing tree.

[0030] FIG. 2 is an elevated view showing a three foot high serpentine retaining wall constructed from a plurality of the present like-shaped, interlocking masonry wall blocks, and integrated into the natural contours of the hill and unique landscape setting of the house.

[0031] FIG. 3a is a cross sectional view of FIG. 2 taken along line 3a-3a showing a straight wall section having a pitch of about $Ps=5^\circ$.

[0032] FIG. 3b is a cross sectional view of FIG. 2 taken along line 3b-3b showing a high radius, convex curved portion of the wall having a pitch of about $Phr=2^\circ$.

[0033] FIG. 3c is a cross sectional view of FIG. 2 taken along line 3c-3c showing a high radius, concave curved portion of the wall having a pitch of about $Phr=9^\circ$.

[0034] FIG. 4 is an elevated, front perspective view of the first embodiment of the interlocking masonry wall block showing the trapezoidal shape of the upper surface and open core of the block.

[0035] FIG. 5 is a lowered, front perspective view of the first embodiment of the interlocking masonry wall block showing the trapezoidal shape of the lower surface, the open core of the block, and its rectangular shaped integral projections.

[0036] FIG. 6 is a front view of the first embodiment of the interlocking masonry wall block.

[0037] FIG. 7 is a top view of the first embodiment of interlocking masonry wall block.

[0038] FIG. 8 is a bottom view of the first embodiment interlocking masonry wall block showing the orientation of the offset projections relative to the inside surface of the front wall of the block.

[0039] **FIG. 9** is a side view of the first embodiment of the interlocking masonry wall block.

[0040] **FIG. 10** is a top view of two courses of the first embodiment of the present like-shaped interlocking blocks arranged in a straight configuration with the blocks in the upper course having an offset alignment to create an opening for a drain pipe, the block on the right being in about a full right alignment and the blocks on the left being in about a full left alignment.

[0041] **FIG. 11** is a top view of two courses of the first embodiment of the present like-shaped interlocking blocks arranged in a concave curve configuration that gradually increases from a low radius curve, through a medium radius curve, to a high radius curve.

[0042] **FIG. 12** is a top view of two courses of the first embodiment of the present like-shaped interlocking blocks arranged in a convex curve configuration that gradually increases from a low radius curve, through a medium radius curve, to a high radius curve.

[0043] **FIG. 13** is a top view of a convex shaped retaining wall formed by the first embodiment of the present like-shaped, interlocking masonry wall blocks, with a pitch of $Ps=1$ in the straight section, and about $Pmr=0.7$ in the medium radius section, and about $Phr=0.4$ in the high radius section.

[0044] **FIG. 14** is a top view of a convex shaped retaining wall formed by a conventional rear flange, interlocking masonry wall blocks, with a pitch of $Ps=1$ in the straight section, and about $Pmr=1.2$ in the medium radius section, and about $Phr=1.3$ in the high radius section.

[0045] **FIG. 15** is a top view of a concave shaped retaining wall formed by the first embodiment of the present interlocking masonry wall blocks with a pitch of $Ps=1$ in the straight section, and about $Pmr=1.4$ in the medium radius section, and about $Phr=1.8$ in the high radius section.

[0046] **FIG. 16** is a top view of a concave shaped retaining wall formed by a conventional, rear flange, interlocking masonry wall blocks with a pitch of $Ps=1$ in the straight section, and about $Pmr=1.4$ in the medium radius section, and about $Phr=2.0$ in high radius section.

[0047] **FIG. 17** is an elevated, front perspective view of the second embodiment of the interlocking masonry wall block showing the trapezoidal shape of the upper surface and the circular shape of the lugs.

[0048] **FIG. 18** is a lowered, front perspective view of the second embodiment of the interlocking masonry wall block showing the trapezoidal shape of the lower surface, the channel extending parallel to the front wall, and the splitting groove.

[0049] **FIG. 19** is a top view of the second embodiment of the interlocking masonry wall block showing the locking lugs in offset relation to the channel.

[0050] **FIG. 20** is a bottom view of the second embodiment of the interlocking masonry wall block showing the channel in offset relation to the lugs.

[0051] **FIG. 21** is a front view of the second embodiment of the interlocking masonry wall block,

[0052] **FIG. 22** is an end view of the second embodiment of the interlocking masonry wall block showing the lug and channel in offset relation.

[0053] **FIG. 23** is a rear view of the second embodiment of the interlocking masonry wall block.

[0054] **FIG. 24** is a perspective view showing a serpentine wall formed from the second embodiment of the interlocking masonry wall blocks.

[0055] **FIG. 25** is a sectional view of **FIG. 24** taken along line 25-25 showing the setback relation of the second embodiment of interlocking masonry wall blocks.

[0056] **FIG. 26** is a top view of a wall formed from the second embodiment of interlocking masonry wall blocks.

[0057] **FIG. 27** is a raised, front perspective view of the third embodiment of the interlocking masonry wall block.

[0058] **FIG. 28** is a lowered, front perspective view of the third embodiment of the interlocking masonry wall block showing its feet.

[0059] **FIG. 29** is a bottom view of the third embodiment of the interlocking masonry wall block.

[0060] **FIG. 30** is an elevated, front perspective view of the fourth embodiment of the interlocking masonry wall block.

[0061] **FIG. 31** is a lowered, front perspective view of the fourth embodiment of the interlocking masonry wall block showing its feet.

[0062] **FIG. 32** is a bottom view of the fourth embodiment of the interlocking masonry wall block showing its feet and recess.

[0063] **FIG. 33** is a raised, front perspective view of the fifth embodiment of the interlocking masonry wall block showing the trapezoidal shape of the upper surface.

[0064] **FIG. 34** is a lowered, front perspective view of the fifth embodiment of the interlocking masonry wall block showing the lugs.

[0065] **FIG. 35** is a top view of the fifth embodiment of the interlocking masonry wall block showing the trapezoidal shape of the upper surface.

[0066] **FIG. 36** is a front view of the fifth embodiment of the interlocking masonry wall block showing the multi-faceted front surface, and showing the lugs in spaced relation with each other.

[0067] **FIG. 37** is a bottom view of the fifth embodiment of masonry wall block showing its generally trapezoidal shape and the ends of the lugs.

[0068] **FIG. 38** is a rear view of the fifth embodiment of masonry wall block showing the well wall and lug's arcuate shaped side walls.

[0069] **FIG. 39** is an end view of the fifth embodiment of masonry wall block showing the hollow core parallel with the front end.

[0070] **FIG. 40** is a top view of the fifth embodiment of masonry wall block showing the setback of blocks in various rows of a serpentine structure.

[0071] **FIG. 41** is a sectional view of Figure. **40** taken along line **41-41** showing the hollow core and setback of each block relative to the row below.

[0072] **FIG. 42** is a top view of a wall constructed from the fifth embodiment of masonry wall block.

[0073] **FIG. 43** is an elevated, front perspective view of the sixth embodiment of interlocking masonry wall block showing the generally trapezoidal shape of the upper surface.

[0074] **FIG. 44** is a lowered, rear perspective view of the sixth embodiment of interlocking masonry wall block showing the generally trapezoidal shape of the lower surface, and the rear having a well comprising a well wall and lug walls.

[0075] **FIG. 45** is a top view of the sixth embodiment of the interlocking masonry wall block showing the groove dividing the block into symmetrical pieces.

[0076] **FIG. 46** is a bottom view of the sixth embodiment of the interlocking masonry wall block showing the trapezoidal shape of the lower surface and the lugs separated by the length of the well.

[0077] **FIG. 47** is a front view of the sixth embodiment of the interlocking masonry wall blocks.

[0078] **FIG. 48** is an end view of the sixth embodiment of the interlocking masonry wall block showing a lug with an arcuate wall.

[0079] **FIG. 49** is a rear view of the sixth embodiment of the interlocking masonry wall block showing the lugs and the splitting groove.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0080] While this invention is susceptible of embodiments in many different forms, the drawings show and the specification describes in detail several preferred embodiments of the invention. It should be understood that the drawings and specification are to be considered an exemplification of the principles of these inventions. They are not intended to limit the broad aspects of the inventive block designs to the embodiments illustrated.

[0081] **FIG. 1** shows a house **10** with a walkout basement leading to a patio **12** constructed in the backyard of the house. The house **10** has a concrete foundation **14** which transitions to brick **16** along a sill **18** at the top of the foundation. The house is constructed into a hill **20** that levels off to a particular ground level **22** in the backyard of the house. The hill **20** and its terrain **30** and natural plant life **24** form a unique landscape setting **32** around the house **10**.

[0082] **FIGS. 2-16** pertain to a first interlocking masonry block design that is generally referred to by reference number **40**. As with each of the block designs discussed below, the block **40** can be used for constructing serpentine retaining walls with straight and curved portions, such as the landscape retaining wall **140** shown in **FIG. 2**. The serpentine wall **140** is easily integrated into a variety of landscape settings **32**. The like-shaped blocks **40** have a setback, as discussed below. A degree of setback is maintained throughout the entire serpentine wall **140**. As discussed below, the setback impacts the degree the wall is pitched or leans into the hill **20**. As shown in **FIG. 3a**, **3b** and **3c**, the amount of

pitch (P) in the wall **140** is somewhat less in convex curved portions of the wall and somewhat greater in concave portions of the wall relative to the pitch in straight portions of the wall.

[0083] An individual block **40** in accordance with the first embodiment of the present invention is shown in **FIGS. 4-9**. The block **40** has a main body **42** with upper **44** and lower **45** surfaces. The upper **44** and lower **45** surfaces are generally parallel to each other. When laid in place on a horizontal supporting surface, the upper **44** and lower **45** surfaces are horizontal as well. The main body **42** includes a front wall **51**, a rear wall **52**, and opposed side walls **53** and **54**. Each wall **51-54** is integrally formed to its two adjacent walls during the molding process. Each wall **51-54** has an inside **61** and an outside **62** surface. Each wall has a wall width of roughly two (2) inches between its inside **61** and outside **62** surfaces. The upper **44** and lower **45** surfaces of each wall **51-54** have a relatively smooth masonry finish. The walls **51-54** are solid and form continuous surfaces **44**, **45**, **61** and **62**. The outer surface **62** of the front wall **51** is roughened to give it a natural cut or chipped stone finish. A conventional masonry material for landscape retaining wall blocks is used to form the block **40**. A single block **40** weighs about twelve pounds.

[0084] The block **40** has a generally trapezoidal shape as best shown in **FIGS. 7 and 8**. The inside **61** and outside **62** surfaces of the front **51** and rear **52** walls are parallel, and perpendicular to the upper **44** and lower **45** surfaces. The inside **61** and outside **62** surfaces of the side walls **53** and **54** are also perpendicular or vertical to the upper **44** and lower **45** surfaces. The block **40** has a height of about four (4) inches and a depth of about eight (8) inches. The width of the block at its front wall **51** is roughly twelve (12) inches from the outer surface **62** of each side wall **53** and **54**. The width of the block at its rear wall **52** is roughly ten (10) inches from the outer surface of each side wall **53** and **54**. Each side wall **53** and **54**, and its respective inside and outside surfaces **61** and **62**, converge toward the other at an angle of about seven degrees (7°) as it extends toward the back wall **52**. The outside surface **62** of the front wall **51** has beveled ends **65**. The surface of these ends **65** angle back toward the rear of the block. The outside surface **62** of the angled ends **65** meet the outside surface of the side walls **53** or **54** along edges **67**. The outside surface **62** of the rear wall **52** meets the outside surface of the side walls **53** or **54** along edges **68**.

[0085] The block **40** has an open core or interior **80** that extends completely through the block from its upper surface **44** to its lower surface **45**. The open core **80** is defined by the inside surfaces **61** of the front, rear and side walls **51-54**. The open core **80** has a generally trapezoidal shape that is smaller in size and similar to the trapezoidal shape formed by the outer surface **62** or perimeter of the block **40**. The open core **80** has a width at its front of about seven and a half (7½) inches, and a width at its rear of about six and a half (6½) inches. The open core **80** is about four (4) inches deep taken along a line perpendicular to the inside surfaces **61** of the front and rear walls **51** and **52**. The corners **82** of the open core **80** are rounded to a radius of roughly three-quarters (¾) of an inch. One of ordinary skill in the art should readily appreciate that the volume of the core can vary, but is preferably maximized to decrease the weight and material cost of the block without impairing the strength, integrity and manufacturability of the block. Similarly, the actual

shape and dimensions of the core **80** can vary, provided the core maintains its ability to receive the lug-shaped projections of another block **40**, as discussed below. The open core **80** should not contain any obstruction that would interfere with the desired ability to receive these lugs.

[0086] Two integral lug-shaped projections **100** and **101** extend from the lower surface **45** of the block **40**. The projections **100** and **101** have front **111**, rear **112** and opposed side **113** and **114** surfaces. These surfaces are generally flat and perpendicular to the lower surface **45** of the block and parallel to the inside and outside surfaces **61** and **62** of the walls **51-54**, respectively. Each lug **100** and **101** has a bottom surface **115** that is generally parallel to the lower surface **45** of the block **40**. Each lug **100** and **101** has a width of about one (1) inch from side **113** to side **114**, and a length or thickness of about one and a half (1½) inches from front **111** to rear **112**. Each lug **100** and **101** has a height of about five-eighths (5/8) of an inch, and its corners and vertical edges **117** are rounded to a radius of about seven-sixteenths (7/16) of an inch. One of ordinary skill in the art should readily appreciate that the size and shape of the lugs **100** and **101** can vary provided they maintain their strength, integrity and manufacturability.

[0087] Each projection **100** and **101** is generally centered between the inside **61** and outside **62** surfaces of its respective side wall **53** or **54**. Each projection **100** and **101** has a portion **118** positioned forward or in front of the inside surface **62** of the front wall **51**. This portion **118** provides an amount of setback **120** for the block **40**. The perpendicular distance between the front surface **111** of each projection **100** and **101** and the inside surface **62** of front wall **51** is the setback dimension **120**. In this embodiment, the setback dimension **120** is shown to be about one-quarter (¼) of an inch. The setback **120** is the same for both projections **100** and **101**. However, it should be understood that the setback dimension **120** could be larger or smaller without departing from the broad aspect of this present wall block invention. Each projection **100** and **101** has a centerline **119**. This centerline **119** is shown perpendicular to the inside and outside surfaces **61** and **62** of the front wall **51**, but could be parallel to the inside and outside surfaces of its respective side wall **53** or **54**.

[0088] The like-shaped blocks **40** are structured to be laterally aligned in an abutting side-by-side engagement, and vertically aligned in a staggered, stacked manner so that one block rests atop two other blocks. When arranged in this manner, the blocks **40** form a multi-tiered wall **140**, such as the wall shown in FIG. 2. The wall **140** is typically constructed one course at a time. Once a lower course **141** is set in place, an upper course **142** is placed on top of it. The blocks **40** can be arranged to form walls **140** having straight wall portions **150** as in FIG. 10, concave curved wall portions **160** as in FIG. 11, and convex curved wall portions **170** as in FIG. 12. The concave portions **160** have a degree of curvature that ranges from a low radius curve **161**, to a medium radius curve **162**, to a high radius curve **163**. Similarly, the convex portions **170** range from low **171**, to medium **172**, to high **173** radius curves. The blocks **40** can be arranged to gradually or rapidly increase or decrease the radius of the curvature of the concave or convex curves **160** or **170**, which enables the wall **140** to conform to the unique landscape setting **30**.

[0089] When erecting a wall **140**, a gravel or sand bed **179** is preferably formed to level the terrain **32** where the first course **141** of blocks **40** is to be laid. In each course **141** or **142**, the front and rear side edges **67** and **68** of laterally adjacent blocks **40** are aligned. The front edges **67** are aligned in abutting engagement in straight wall portions **150** as shown in FIGS. 2 and 13, low radius concave wall portions **161** as shown in FIGS. 11 and 15, and all convex wall portions **170-173** as shown in FIGS. 12 and 13. The front and rear edges **67** and **68**, as well as the entire outside surfaces **62** of side walls **53** or **54** of adjacent blocks **40** are flushly aligned in abutting engagement for a medium radius concave wall portions **162** as shown in FIG. 11. High radius concave wall portions **163** are formed by aligning the rear edges **68** of adjacent blocks **40** as shown in FIG. 11. The lower surface **45** of each block **40** in the first or lowest course **141** is placed at the same horizontal level, which is deemed the ground level **22**. In the first course **141**, the projections **100** and **101** can extend into the gravel or sand bed **179**. The upper surfaces **44** of the blocks **40** forming the lower course **141** form a generally horizontal platform upon which the upper course **142** can be stacked. The lower surface **45** of each block **40** in each stacked, upper course **142** is placed on and rests on the upper surfaces **44** of the blocks in the lower course **141** upon which it is placed.

[0090] An interlocking fit is achieved between the like-shaped blocks **40** in adjacent upper **142** and lower **141** courses. Each block **40** in the upper course **142** is laid in a staggered manner relative to the lower course **141** so that the upper block is placed atop two lower blocks. Each block **40** in the upper course **142** is placed so that one of its lug-shaped projections **100** or (or?) **101** extends into and is received by the open core **80** of one of the lower blocks. The other projection **100** or **101** extends into and is received by the open core **80** of an adjacent lower block. The front surface **111** of each lug **100** and **101** of the upper block **40** abuts the inside surface **61** of the front wall **51** of its respective lower block. This abutting engagement between the upper and lower blocks **40** in adjacent courses **141** and **142** forms the interlock that prevents the block in the upper course **142** from moving forward. This interlock enables the blocks **40** in the upper courses **142** to resist the pressure of the earth and hill **20** behind the wall **140**.

[0091] A further aspect of the interlocking fit is achieved by aligning the block **40** in the upper course **142** so that one of its projections **100** or **101** abuts the rounded corner **82** or inside surface **61** of the side wall **53** or **54** of the block in the lower course **141**. When in a full right **181** or frill left **182** alignment as shown in FIG. 10, the blocks **40** in the upper course **142** are prevented from sliding sideways or laterally relative to the blocks in the lower course **141**. The block **40** in the lower course **141** experiences a similar resistance to movement in the opposite lateral direction. A block in a middle course may experience a resistance to both right and left movement.

[0092] Adjacent blocks **40** in a particular course **141** or **142** can also be arranged in an offset alignment **185**. One block **40** can be positioned in a full right alignment **181** and its adjacent block can be positioned in a full left alignment **182** to form a gap or opening **187** between the two blocks shown as in FIGS. 2 and 10. The maximum amount of offset of the preferred embodiment of the block **40** is about six (6) inches. The ability to laterally offset adjacent blocks **40** to create

openings 187 in the otherwise solid wall 140 enables the wall to accommodate drainage pipes, gutter down spouts, sump pump piping or other obstacles, and helps prevent excessive water building up behind the retaining wall.

[0093] As discussed above, the projections 100 and 101 produce an amount of setback 120 between the upper and lower courses of blocks 141 and 142. When the wall 140 is properly constructed, the blocks 40 in the upper course 142 are set back a predetermined amount 120 from the blocks on which they are placed. In the preferred embodiment, the outer surface 62 of the front wall 51 of the upper block 40 is set back about one quarter ($\frac{1}{4}$) inch from the outer surface of the lower blocks on which it is placed. The setback dimension 120 directly affects the amount or degree of pitch P in the wall 140. The setback 120 of each block 40 in the upper course 172 is substantially the same when measured along the centerline 119 of each projection 100 or 101. When the blocks 40 form a straight wall segment 150, the height of the blocks 40 and the setback amount 120 determine the pitch of the wall. The amount of pitch can vary slightly in an actual construction setting due to the present of dirt or other debris, which can come between the lugs 100 and 101 of the upper block and the inside surface 61 of the front wall 51 of the lower block. When the blocks 40 form a curved wall segment 160 or 170, the pitch of the wall varies. For example, as shown in FIG. 13, a wall 140 having a pitch in straight wall section of $P_s=1.0$, should have a reduced pitch in a medium radius convex section 172 of about $P_{mr}=0.7$ times P_s , and a high radius convex section 173 of about $P_{hr}=0.4$ times P_s . As shown in FIG. 15, the wall 140 should have an increased pitch in a medium radius concave section 162 of about $P_{mr}=1.4$ times P_s , and a high radius concave section 163 of about $P_{hr}=1.8$ times P_s . A more consistent pitch is believed to occur with this wall 140 than in other conventional walls, such as the wall shown in FIGS. 14 and 16, because the lug-shaped projections 100 and 101 do not span the entire width of the block 40, and are located toward the front wall 51 and inwardly from the outside surfaces 62 of the side walls 53 and 54.

[0094] The top course of blocks 40 in the landscape retaining wall 140 is preferably capped by cap stones 195 to cover the open cores 80 of the blocks 40 that form the top course or portion of a course. These cap stones 195 provide a finished look to the wall. These cap stones 195 can be glued or otherwise adhered to the upper surface 44 of the blocks 40.

[0095] FIGS. 17-26 show a second interlocking masonry wall block design that is generally indicated by reference number 200. In the preferred embodiment, the block 200 has a main body 205 with a generally trapezoidal shape when viewed from above. The main body 205 with a height dimension of about six (6) inches, a depth dimension of about eight (8) inches and a width dimension of about twelve (12) inches at its widest point. However, it should be understood that these dimensions can vary without departing from the broad aspects of this inventive block design. Similarly, it should be understood that the broad aspects of the design are not limited to a block with a trapezoidal shape, but would apply to other block shapes such as a square or rectangular shaped block. While the preferred block material is a masonry product, it should be understood that other

weather resistant materials such as hardened plastic could be substituted without departing from the broad aspects of the invention.

[0096] As shown in FIGS. 17 and 19, the main body 205 of the block 200 has a front end 206, a rear end 207 and sides 208 and 209. The front end 206 has a multi-faceted front wall 215. The front wall 215 has a central wall 220 and two outer walls 230 and 240. Each wall 220, 230 and 240 has a relatively planar shape with a roughened or otherwise textured surface. The center wall 220 has a top 221, two opposed sides 222 and 223, and a bottom 224. The center wall 220 is about eight (8) inches wide. The bottom half inch of the center wall 220 has a chamfer 225. The chamfer 225 has an angle of about 45 degree from the surface of the central wall. Each outer wall 230 and 240 has a top 231 or 241, an inner side 232 or 242, an outer side 233 or 243, and a bottom 234 or 244. The inner side 232 of outer wall 230 joins the first side 222 of center wall 220 to form a first facet. The inner side 242 of outer wall 240 joins the second side 223 of center wall 220 to form a second facet. The outer walls 230 and 240 angle back toward the rear end 207 of the block 200. The outer walls 230 and 240 have relatively planar surfaces. If the planar surfaces of outer walls 230 and 240 were extended, they would intersect at an angle of about 110 degrees. The width of the front end 206 of the block 200 between the outer ends 233 and 243 of the front wall 215 is about twelve (12) inches. Similar to the central wall 220, the bottom half inch of each outer wall 230 and 240 has a chamfer 235 or 245. These chamfers 235 and 245 also have an angle of about 45 degrees.

[0097] The rear end 207 of the block 200 is shown in FIG. 23. The rear end 207 is formed by a rear wall 250 that is substantially parallel to the center wall portion 220 of the front wall 215. The rear wall 250 has a top end 252, bottom end 253, and opposed sides ends 254 and 255. The rear wall 250 has a width dimension of about nine (9) inches. A V-shaped groove 256 is formed into the rear wall 250. This groove 256 extends from the top 252 to the bottom 253 of the wall 250. The groove helps split the block into two symmetrical halves. The vertical groove 256 is parallel to side ends 254 and 255 and is perpendicular to top and bottom ends 252 and 253. The rear wall 250 is symmetrical about both sides of the groove 256.

[0098] The first side end 208 of the block 200 has a first side wall 260 as shown in FIG. 18. The side wall 260 has a front end 262, a rear end 263, and top and bottom ends 264 and 265 that form the perimeter of the side wall. The front end 262 joins with the outer end 233 of outer wall 230 of the front wall 215 to form a first pivot joint 267. The rear end 263 joins with the side end 254 of rear wall 250 to form a first rear corner. This first rear corner is rounded to form a three-quarter ($\frac{3}{4}$) inch radius curve.

[0099] The second side end 209 of the block 200 has a second side wall 270 as shown in FIG. 17 and 22. This side wall 270 has a front end 272, a rear end 273, and top and bottom ends 274 and 275 that form the perimeter of the side wall. The front end 272 joins with the outer side 243 of outer wall 240 of front wall 215 to form a second pivot joint 277. The rear 273 joins with the side end 255 of rear wall 250 to form a second rear corner. This second rear corner is also rounded to form a three-quarter ($\frac{3}{4}$) inch radius curve.

[0100] In the preferred embodiment, the side walls 260 and 270 converge as they extend from the front end 206

towards the rear end **207** of the block **200**. As noted above, the side walls **260** and **270** are spaced twelve (12) inches apart where they joint with the first and second outer walls **230** and **240** of the front wall **215**, respectively. The side walls **260** and **270** are spaced nine (9) inches apart where they join with the side ends **254** and **255** of the rear wall **250** of the block **200**, respectively. However, it should be understood that the broad aspects of the invention are not limited to a block with converging side walls **260** and **270**. The broad aspect of the inventive block design are also applicable to a block with parallel side walls.

[0101] The block **200** has an upper surface **280** shown in FIGS. 17, 19 and 24. The upper surface **280** has a generally trapezoidal shape. The upper surface **280** is perpendicular to the front wall **215**, rear wall **250**, and side walls **260** and **270**. The upper surface **280** has a front end **282**, rear end **283**, first and second side ends **284** and **285**. The front **282** joins the top ends **221**, **231** and **241** of the multi-faceted front wall **215**. The rear end **283** joins the top **252** of the rear wall **250**. The first side end **284** joins the top end **264** of the first side wall **260**. The second side **285** joins the top end **274** of the second side wall **270**.

[0102] The block **200** has a bottom surface **290** shown in FIGS. 18 and 20. The bottom surface **290** is substantially parallel to the upper surface **281**, and is perpendicular to the front wall **215**, rear wall **250**, and side walls **260** and **270**. The lower surface **290** has a front end **292**, rear end **293**, and first and second side ends **294** and **295**. The front end **292** joins the chamfers **225**, **235** and **245** located on the front multi-faceted wall **215**. The rear end **293** joins the bottom end **253** of the rear wall **250**. The first side end **294** joins with the bottom end **265** of the first side wall **260**. The second side end **295** joins with the second side wall **270**. A V-shaped groove **296** is formed in the lower surface **290** of the block **200**. The groove **296** is similar to groove **256**, and combines with this groove to help split the block into two symmetrical halves.

[0103] Two lugs or protrusions **301** and **302** extend from the upper surface **280** of the block **200**. The lugs **301** and **302** are spaced apart and generally extend perpendicularly from the upper surface **280**. Although the protrusions **301** and **302** are discussed and shown as lugs, it should be understood that these protrusions could take on a variety of shapes, such as a foot, nub, fin, tab, or stump. Each lug **301** and **302** is integrally formed with the main body **205** of the block **200**. Each lug **301** and **302** has a lug wall **303** that is circular in shape with a rearmost point **304** and a front most point **305**. The distance between the rearmost and front most points **304** and **305** of each lug **301** or **302** define a thickness or diameter dimension L_{th} of that lug, which is preferably $1\frac{3}{8}$ inches. Each lug **901** and **902** has a center point or axis. Although the lug walls are shown as having a circular shape, it should be understood that they could have an other arcuate shape or a square, triangular or rectangular shape in which the front most and rearmost points are formed by a flat surface. The lug walls **303** are preferably inwardly drafted or angled about 1 degree to facilitate manufacture. Each lug **301** or **302** has a rearward setback portion **306** with a corresponding rearward facing setback wall **307**, and a forward reinforcement portion **308** with a corresponding forward facing reinforcement wall **309**. Each lug **301** and **302** has a top surface **310** that extends about a half ($\frac{1}{2}$) inch from the upper surface **280** of the block **200**. Each lug **301**

and **302** is about $\frac{5}{8}$ inch from its corresponding side wall **260** or **270**, and $1\frac{1}{8}$ inches from the rear wall **250** as shown in FIG. 19. Although the lugs **301** and **302** are shown specific distance from their respective side walls **260** and **270** and a specific distance from the rear wall **250**, it should be understood that the lugs could be located farther from or closer to the rear wall **250** or side walls **260** and **270** without departing from the broad aspects of the invention. The rearmost portions **313** of each lug **301** and **302** define a setback line **315** that is substantially parallel to the center wall **220** of the front wall **215** and the rear end **250** of the block **200**.

[0104] The bottom or lower surface **290** of the block **200** has an abutment forming mechanism such as channel **320** shown in FIGS. 18 and 20. The channel **320** extends the width of the block **200** or from one side **260** of the block to the other **270**. The channel **320** has forward **321** and rearward **322** channel walls. The forward wall **321** faces rearwardly toward the rear end **207** of the block. The rearward wall **322** faces forwardly toward the front end **206** of the block. The channel **320** and its walls **321** and **322** are substantially perpendicular to the lower surface **290** and substantially parallel to the setback line **315** and the central wall **220** of the block. Each wall **321** and **322** is outwardly drafted 1 degree to facilitate manufacture. The channel walls **321** and **322** are have a continuous planar shape. The walls **321** and **322** are parallel and are spaced apart a constant predetermined dimension to define the width of the channel **320**. The channel width is preferably about $1\frac{1}{2}$ inches, or just slightly larger than the thickness or diameter L_{th} of the lugs **301** and **302**. The channel **320** has a base surface **323** that is spaced from the lower surface **290** of the block **200** to define the depth dimension of the channel **320**, which is preferably about a half ($\frac{1}{2}$) inch. The channel **320** has a depth dimension that is sufficiently large to allow the channel to completely receive the lugs **301** and **302**. The length of the channel **320** is defined by its ends **324** and **325**. Each end **324** and **325** forms a slot in its respective side wall **260** and **270**. Although the abutment forming mechanism **320** is discussed and shown as a channel, it should be understood that the recess could take a variety of forms, such as a wedge shaped groove or recess, or the like that forms a forward-facing abutment mechanism and can completely receive the projections such as the lugs **301** and **302**.

[0105] The rearward wall **322** of the channel **320** is located about $3\frac{1}{4}$ inch from the back of the block **200**. The setback line **315** and the rearmost points **304** of the lugs **300** and **301** are spaced about $\frac{5}{8}$ inch from the forward facing rearward wall **322** of the channel **320** to define a setback dimension S_b of the block **200**. In other words the setback line **315** is located about $\frac{5}{8}$ inch further from the central portion **220** of the front wall **210** than the rearward wall **322** of the channel **320**. In the preferred embodiment, the centerline or axis of each lug **301** and **302** lies in the same plane as the rearward wall **322**. Because the distance between the rearmost point **304** of the lugs **301** and **302** and the rearward wall **322** of the channel **320** controls the setback, the overall thickness or diameter dimension L_{th} of the lugs **301** and **302** does not necessarily affect the setback dimension S_b . Instead, the setback dimension S_b is determined by the location of the rearward wall **322** of the channel **320** relative to the setback line **315** formed by the lugs **301** and **302**.

[0106] Like-shaped blocks 200 are used to form a straight or serpentine wall 350 as shown in FIGS. 24-26. The wall 350 has a number of tiers or courses of blocks 200. The blocks 200 in each course are placed in horizontal alignment. An end block in each course has only one horizontally adjacent block. The middle blocks in each course have two horizontally adjacent blocks. The left pivot joint 267 of each middle block 200 abuttingly engage the right pivot joint 277 of its left adjacent block. The right pivot joint 277 of each middle block 200 abuttingly engages the left pivot joint 267 of its right adjacent block.

[0107] An upper course 351 of blocks 200 is placed on top of its immediately lower course 352. The lugs 301 and 302 of the blocks 200 in the lower course 352 are received by the channel 320 of blocks in the immediately upper course 351. The lugs 301 and 302 are completely received by the channels 320 so that the lower surface 290 of the blocks 200 in the upper course 351 lay flushly against and in parallel alignment with the upper surface 280 of the blocks in the lower course 352. As best shown in FIG. 25, each block 200 in the upper course 351 is rearwardly offset $\frac{5}{8}$ inch in relative to the blocks 200 upon which it lays in the immediately lower course 352. The channel 320 has a constant cross-sectional size and shape from one side 280 of the block to the other 270 so that it can receive the lugs 300 and 301 anywhere within its tract.

[0108] The blocks 200 forming the upper course 351 are preferably horizontally staggered relative to the blocks forming the immediate lower course 352. Each block 200 in the upper course 351 is preferably laterally staggered about half the width of the block relative to the two blocks upon which it lays in the lower course 352. When placed in this staggered relationship, the channel 320 of the upper block in the upper course 351 receives the right lug of a first lower block in the lower course 352 and the left lug of a second lower block in the lower course. The forward facing rear-most wall 322 of the channel 320 abuttingly engages the rearmost point 304 of each of the lugs 301 and 302 it receives from its first and second lower blocks. The block 200 in the upper course 351 is rearwardly set back from its two lower blocks a distance substantially equal to the setback dimension Sb of the block. This distance is equal to the setback dimension Sb for straight wall sections as shown in FIG. 25. This process of laying or arranging the blocks in this staggered relationship is repeated for each block 200 in each upper course 351 until the desired wall height is achieved. Once construction is complete, a cap stone (not shown) can be placed on the upper most course 351, or the lugs 301 and 302 on that course can be removed for aesthetic purposes.

[0109] When building a serpentine wall, one of the lugs 301 or 302 of some of the block 200 can be removed to avoid discontinuities in the wall pattern and create a smooth serpentine wall 350. The ability to periodically remove one of the lugs can be particularly advantageous when building a wall with a tight radius curve. The structural integrity of the wall 350 should not be significantly affected by occasionally removing one of the lugs 301 or 302. As should be evident, this single type of like-shaped block 200 is used to construct a variety of retaining wall layouts or patterns. The end block 200 of a course can be split along grooves 256 and 296. One half of the block is positioned at an end of the

lower course 352. The second half of the split block 200 is placed on the opposite end of the row to complete a staggered upper course 351.

[0110] Although the block 200 has been shown and described to have a preferred geometric shape, it should be understood that certain aspects of this geometry can change without departing from the broad aspects of this embodiment. For example, in warmer climates where freezing and thawing are not a significant concern, the channel 320 can be located on the top surface 280 and the lugs 301 and 302 can be located on the bottom surface 290. In this configuration, the setback portion 306 of each lugs 301 and 302 would be forward of the rearward facing front most wall 322 of the channel 320. In addition, the angles of the outer walls 230 and 240 of the multi-faceted front wall 215 can vary, or the facets can be eliminated so that the front wall 215 has a single planar surface from one outer end 233 to the other 243. Additionally, several grooves can be formed in the block 200 to allow smaller or larger portions of the block to be split off to form the end blocks of each course 351 and 352 to accommodate different amounts of stagger.

[0111] FIGS. 27-29 show a third interlocking masonry wall block design that is generally indicated by reference number 400. The block 400 has a main body 405 with a trapezoidal shape. The block 400 has a front end 406, a rear end 407 and sides 408 and 409. The front end 406 has a roughened, multi-faceted front wall 410. The rear end 407 has a V-shaped configuration with an angled rear wall or surface 420. This angled wall 420 forms a recess 421. The block 400 has upper and lower surfaces 430 and 440 that are substantially flat, solid and parallel to each other. The sides 408 and 409 have opposed side walls or surfaces 450 and 460 that are substantially solid and flat. The rear end 407 has two opposed columns or shelves 471 and 472 that span the height of the block 400. Each column 471 and 472 forms a lug 501 or 502 that extend from the lower surface 440 of the main body 405. Each lug 501 and 502 is offset from its respective column 471 or 472.

[0112] The front wall 410 has a central face 411 and two outer faces 412 and 413. The central face 411 is generally planar. The outer faces 412 and 413 angle away from the plane formed by the central face 411, and extend toward the rear end 407 of the block 400. The faces 411, 412, and 413 of the front wall 410 are solid, have a roughened texture, and extend the height of the block 400. The outer faces 412 and 413 of the front wall 410 are shorter in width than the central face 411. The outer faces 412 and 413 are located on opposite ends of the central face and join with the side walls 450 and 460. The side walls 450 and 460 join the outer front walls 412 and 413 at the front end 406 of the block 400 and angle back toward the rear end 407. The side walls 450 and 460 converge as they extend from the front end 406 to the rear end 407 so that the main body 405 of the block 400 decreases in width toward the rear end 407.

[0113] The columns 471 and 472 are spaced apart and located at the rear corners of the block 400. The columns 471 and 472 extend from their respective side wall 450 or 460 towards the middle of the block 400. Each column 471 and 472 has a width dimension of about one and a half (1 $\frac{1}{2}$) inches. The ends or lugs 501 and 502 of the columns 470 and 471 extend beyond the lower surface 440 of the main body 405. The lugs 501 and 502 are offset from the angled wall

420. The lugs **501** and **502** have a front surface **510**, a rear surface **511**, an outer side surface **512**, an inner side surface **513**, and a bottom surface **514**. The lugs **501** and **502** are mirror images of each other and are substantially equal in corresponding dimensions. The outer side surface **512** is longer than the inner side surface **513**. The front and rear surfaces **510** and **511** are angled. The angle of the front surface **510** of each of the lugs **501** and **502** relative to the central wall **411** correspond to the angle of the opposite side of the V-shaped wall **420** relative to the central wall. Thus, when the block **400** is stacked in a staggered relationship atop two lower like-shaped blocks **400** to construct a straight wall, the front surface **510** of each lug **501** or **502** of the upper block flushly engages the V-shaped rear wall **420** of one of the lower blocks.

[0114] FIGS. 30-32 show a fourth interlocking masonry wall block design that is generally designated by reference number **600**. The block **600** has a main body **605** with a similar trapezoidal shape as block **400**. The block **600** has a front end **606**, a rear end **607** and sides **608** and **609**. The front end **606** has a roughened, multi-faceted front wall **610**. The front wall **610** is formed by a central wall **611** and two angled outer walls **612** and **613**. The rear end **607** has a recess **621** formed by a recess wall **622** that is flat and substantially parallel to the central wall **611**. The block **600** has two indentations or hand holds **631** and **641** formed in the respective side surfaces **630** and **640** of the block **600**.

[0115] The blocks **600** have two spaced apart lugs **701** and **702** at the rear end **607** of the block **400**. The lugs **701** and **702** span the height of the main body **605** and are located in the rear corners of the block **600**. The lugs **701** and **702** have a square shape when viewed from above. Each lug **701** and **702** has a front wall **705**, back wall **706**, and first and second side walls **707** and **708**. The inside walls **708** of lugs **701** and **702** form the side walls of the recess **621**.

[0116] Like-shaped blocks **600** can be stacked in a staggered relationship where an upper block resting on two lower blocks. When stacked in this manner, the front wall **705** of lugs **701** and **702** of the upper block abuttingly engages the recess wall **622** of the lower block. The front wall **610** of the upper block is set back relative to the front wall of the lower block. The setback dimension between two blocks **600** is the distance between the front wall **705** of the lugs **701** and **702** and the recess wall **622** of the rear end **607** of the same block **600**.

[0117] FIGS. 33-42 show a fifth interlocking masonry wall block design that is generally designated by reference number **800**. In its preferred embodiment, the block **800** has a main body **805** with a generally trapezoidal shape when viewed from above. The main body **805** has a height dimension of about four (4) inches, a depth dimension of about nine (9) inches and a width dimension of about twelve (12) inches. However, it should be understood that these dimensions can vary without departing from the broad aspects of this inventive block design. Similarly, it should be understood that the broad aspects of the block are not limited to a block with a trapezoidal shape, but would apply to other block shapes such as a square or rectangular shaped block.

[0118] The block **800** has a front end **806**, a rear end **807** and sides **808** and **809**, as shown in FIGS. 33-35. The front end **806** is substantially the same as the front end **206** of block **200**. The front end **806** has a multi-faceted front wall

815. The front wall **815** has a central wall **820** and two outer walls **830** and **840**. Each wall **820**, **830** and **840** has a relatively planar shape with a roughened or otherwise textured surface. The center wall **820** has a top **821**, two opposed sides **822** and **823**, and a bottom **824**. The center wall **820** is about eight (8) inches wide. The bottom half inch of the center wall **820** has a chamfer **825**. The chamfer **825** has an angle of about 45 degree from the surface of the central wall. Each outer wall **830** and **840** has a top **831** or **841**, an inner side **832** or **842**, an outer side **833** or **843**, and a bottom **834** or **844**. The inner side **832** of outer wall **830** joins the first side **822** of the center wall **820** to form a first facet. The inner side **842** of outer wall **840** joins the second side **823** of the central wall **820** to form a second facet. The outer walls **830** and **840** angle back toward the rear end **807** of the block **800**. The outer walls **830** and **840** have relatively planar surfaces. If the planar surfaces of outer walls **830** and **840** were extended, they would intersect at an angle of angle of about 110 degrees. The width of the front end **806** of the block **800** between the outer ends **833** and **843** of the front wall **815** is about twelve (12) inches. Similar to the central wall **820**, the bottom half inch of each outer wall **830** and **840** has a chamfer **835** or **845**. These chamfers **835** and **845** also have an angle of about 45 degrees.

[0119] The rear end **807** of the block **800** is shown in FIG. 38. The rear end **807** is about nine (9) inches wide and has a recess **853**. The recess **853** is centrally located on the rear end **807** and is six (6) inches wide. The recess **853** is formed by a recess wall **854** that is generally parallel to the central wall **820** of the front end **806**. The recess wall **854** has top end **855** and bottom ends **856**, and opposed side ends **857** and **858**. Similar to block **200**, a V-shaped groove **859** divides the recess **853** and the rear end **807** into two symmetrical halves.

[0120] The first side end **808** of the block **800** has a first side wall **860** as shown in FIG. 34 and 39. The side wall **860** has a front end **862**, a rear end **863**, and top and bottom ends **864** and **865** that form the perimeter of the side wall. The front end **862** of the side wall **860** joins with the outer end **833** of outer wall **830** to form a first pivot joint **867**. The rear end **863** of side wall **860** joins with the side end **851** of the rear end **807** of the block **800**.

[0121] The second side end **809** of the block **800** has a second side wall **870** as shown in FIG. 33. This side wall **870** has a front end **872**, a rear end **873**, and top and bottom ends **874** and **875** that form the perimeter of the side wall. The front end **872** of the side wall **870** joins with the outer side **843** of outer wall **840** of the front wall **815** to form a second pivot joint **877**. The rear **873** of the side wall **870** joins with the side end **852** of the rear end **807** of the block **800**.

[0122] In the preferred embodiment, the side walls **860** and **870** converge as they extend from the front end **806** towards the rear end **807** of the block **800**. As noted above, the side walls **860** and **870** are spaced twelve (12) inches apart where they joint with the first and second outer walls **830** and **840** of the front wall **815** to form the pivot joints **867** and **877**. The side walls **860** and **870** are spaced nine (9) inches apart where they join with the side ends **851** and **852** of the rear end **807** of the block **800**, respectively. However, it should be understood that the broad aspects of the invention are not limited to a block with converging side walls

860 and **870**. The broad aspect of the inventive block design are also applicable to a block with parallel side walls.

[0123] The block **800** has a triangular shaped core **879** spanning horizontally through the body **805** of the block. The core **879** extends from one side **860** of the block **800** to the other **870**, and forms triangular shaped openings in the side walls. The core **879** reduces the weight of the block **800** and forms handholds in the sides **860** and **870** of the block. The core **879** is formed by a bottom wall and two angled side walls. The length of the core **879** and its respective walls are substantially parallel to the central wall **820** of the front end **806** of the block **800**.

[0124] The block **800** has an upper surface **880** shown in FIGS. 35. The upper surface **880** has a generally trapezoidal shape. The upper surface **880** is perpendicular to the front wall **815**, recess wall **854**, and first and second side walls **860** and **870**. The upper surface **880** has a front end **882**, rear end **883**, first and second side ends **884** and **885**. The front end **882** joins the top ends **821**, **831** and **841** of the multi-faceted front wall **815**. The rear end **883** joins the top **855** of the recess wall **854**. The first side end **884** joins the top end **864** of the first side wall **860**. The second side **885** joins the top end **874** of the second side wall **870**.

[0125] The block **800** has a lower or bottom surface **890** shown in FIG. 37. The lower surface **890** is substantially parallel to the upper surface **881**, and is perpendicular to the front wall **815**, recess wall **854**, first and second side walls **860** and **870**. The lower surface **890** has a front end **892**, rear end **893**, and first and second side ends **894** and **895**. The front end **892** joins the chamfers **825**, **835** and **845** located on the front multi-faceted wall **815**. The rear end **893** joins the bottom end **856** of the recess wall **854**. The first side end **894** joins with the bottom end **865** of the first side all **860**. The second side end **895** joins with the second side wall **870**. A V-shaped groove **896** is formed in the lower surface **890** of the block **800**. The groove **896** is similar to groove **859**, and combines with this groove to help split the block into two symmetrical halves.

[0126] Two lugs **901** and **902** are integrally formed at the rear end **807** of the block **800**. The lugs **901** and **902** are spaced apart so that each lug is located at one of the ends or corner **851** and **852** of the rear end **807** of the block **800**. A portion of the lugs **901** and **902** extend down from the lower surface **890** of the block **800**. The lugs **901** and **902** are generally parallel to each other, and perpendicular to the upper and lower surfaces **880** and **890**. Although these lugs or abutment mechanisms **901** and **902** are shown and described as lugs, it should be understood that they can take on a number of shapes or structures such as a column, shaft or post. Although the lugs **901** and **902** are shown at the rear corners **851** and **852** of the block **800**, it should be understood that the lugs could be located away from the rear corners without departing from the broad aspects of the invention.

[0127] The lugs **901** and **902** are separated by or straddle the recess **853**. Each lug **901** and **902** has a lug wall **903** that has a circular shape with a rearmost point **904** and a front most point **905**. The distance between the rearmost and front most points **904** and **905** of the lug **901** or **902** define a thickness or diameter dimension L_{th} of each lug, which is preferably about 1½ inches. In the preferred embodiment, each lug **901** and **902** has a center point or axis that lies in

the same plane as the recess wall **854**. Although the lug walls are shown as having a circular shape, it should be understood that they could have an other arcuate shape or a square, triangular or rectangular shape in which the front most and rearmost points **905** and **904** are formed by a flat surface. Each lug **901** or **902** has a forward setback portion **906** with a corresponding forward facing setback wall **907**, and a rearward reinforcement portion **908** with a corresponding rearward facing reinforcement wall **909**. The setback portion **906** is the portion of each lug **901** or **902** forward of the recess wall **854**. The reinforcement portion **908** is the portion of each lug **901** or **902** rearward of the recess wall **854**. Each lug **901** and **902** has a bottom surface **910** that is parallel to and is spaced about a half (½) inch below the lower surface **880** of the block **800**. The wall **903** of each lug **901** and **902** includes an outside wall portion **912** that faces away from the recess **853**, and an inside wall portion **913** that faces toward and helps form the recess. The outer walls **912** of each lug wall **903** flushly joins the back end **863** and **873** of its respective side wall **860** and **870**. The inside portion **913** or the lug wall **903** joins with its respective end **857** and **858** of the recess wall **854**. These recess joints are rounded to form a ⅜ inch radius curve. The front most points **905** of the two lugs **901** and **902** define a setback line **915** that is substantially parallel to the center wall **820** at the front end **806** and the recess wall **854** at the rear end **807** of the block. The forward-most point **904** is about ¾ inch in front of the recess wall **854**.

[0128] Like-shaped blocks **200** are used to form a straight or serpentine wall **950** as shown in FIGS. 4042. The walls **950** using like-shaped blocks **800** are formed in a manner similar to walls **350** using like-shaped blocks **200**. The wall **950** has a number of tiers or courses of blocks **200**. The blocks **200** in each course are placed in horizontal alignment. The end blocks in each course have one horizontally adjacent block. The middle blocks in each course have two horizontally adjacent blocks. The left pivot joint **867** of each middle block **800** abuttingly engage the right pivot joint **877** of its left adjacent block. The right pivot joint **877** of each middle block **800** abuttingly engages the left pivot joint **867** of its right adjacent block.

[0129] An upper course **951** of blocks **800** is placed on top of its immediately lower course **952**. The lugs **901** and **902** of the blocks **800** in the upper course **951** are received by the recesses **853** of blocks in the immediately lower course **952**. The lugs **901** and **902** are placed in abutting engagement with the recess wall **854**. The lower surface **890** of the blocks **800** in the upper course **951** lay flushly against and in parallel alignment with the upper surface **880** of the blocks in the lower course **952**. As best shown in FIG. 41, each block **800** in the upper course **951** is rearwardly offset ⅛ inch in relative to the blocks **800** upon which it lays in the immediately lower course **952**.

[0130] The blocks **800** forming the upper course **951** are preferably horizontally staggered relative to the blocks forming its immediate lower course **952**. Each block **800** in the upper course **951** is preferably laterally staggered about half the width of the block relative to the two blocks upon which it lays in the lower course **952**. When placed in this staggered relationship, the recess **853** of a first lower block **800** in the lower course **952** receives the right lug **902** of an upper block in the upper course **951** and the left lug **901** of a second upper block in the upper course. The front most

point **904** of the lugs of the upper blocks in the upper course **951** abuttingly engages the recess wall **854** of the first and second adjacent blocks in the lower course **852** upon which the upper block lays or rests. The block **800** in the upper course **951** is rearwardly set back from its two lower blocks a distance substantially equal to the setback dimension S_b of the block. This distance is equal to the setback dimension S_b for straight wall sections as shown in **FIG. 41**. This process is repeated for each block **800** in each upper course **951** until the desired wall height is achieved.

[0131] When building a serpentine wall, one of the lugs **901** or **902** of some of the block **800** can be removed to avoid discontinuities in the wall pattern and create a smooth serpentine wall **950**. The ability to periodically remove one of the lugs can be particularly advantageous when building a wall with a tight radius curve. The structural integrity of the wall **950** should not be significantly affected by occasionally removing one of the lugs **901** or **902**. As should be evident, this single type of like-shaped block **800** is used to construct a variety of retaining wall layouts or patterns. The end block **800** of a course can be split along grooves **856** and **896**. One half of the block is positioned at an end of the lower course **952**. The second half of the split block **800** is placed on the opposite end of the row to complete a staggered upper course **951**.

[0132] As noted above, the distance between the foremost point **904** of the lugs **901** and **902** and the recess wall **854** defines the setback dimension S_b . In this regard, the distance between the forward most point **904** and the rearmost point **905** of the lug **901** and **902** does not control the setback.

[0133] The recess wall **854** has a continuous linear shape from one side **880** of the block to the other **870**, particularly along its top end **855**. The continuous linear shape of the recess wall **854** allows the block to receive one of the lugs **901** or **902** of a mating upper block **800** at any point along the recess wall between its ends **857** and **858**. This linear shape of the recess wall **854** creates a degree of flexibility in lug alignment. This flexibility in lug alignment allows adjacent blocks of one course to pivot about their abutting pivot joints while allowing each of those blocks to abuttingly receive the lugs of two upper blocks to form a free flowing serpentine wall that fits into a natural landscape setting.

[0134] The effective thickness L_{th} of a circular shaped lugs **901** and **902** remains constant even when the blocks are angularly aligned to form a curved wall. Although a point of the lug wall **903** other than the front most point **904** abuttingly engages the recess wall **854** of the lower block, the full diameter or thickness L_{th} of the lug is available to absorb the load placed on the lug.

[0135] Although the block **800** has been shown and described to have a preferred geometric shape, it should be understood that certain aspects of this geometry can change without departing from the broad aspects of this embodiment. For example, the angles of the outer walls **830** and **840** of the multi-faceted front wall **815** can vary, or the facets can be eliminated so that the front wall **815** has a single planar surface from one outer end **833** to the other **843**. Additionally, several grooves can be formed in the block **800** to allow smaller or larger portions of the block to be split off to form the end blocks of each course **951** and **952** to accommodate different amounts of stagger.

[0136] **FIGS. 43-49** show a variation of the fifth interlocking masonry wall block **800**, which is generally referred to by reference number **1000**. The block **1000** is similar in shape, size and structure to block **800**, except that block **1000** does not have a core **879** spanning from one side wall **860** to the other **870**. The recess wall **854** of block **1000** has a beveled portion **1050** and each of the side walls **860** and **870** have a beveled portion **1060** and **1070**. The bevel **1050** in the recess wall **854** spans most of the recess **853**, and is about six (6) inches wide. The rear bevel **1050** forms a wedge shaped void that starts about halfway down the recess wall **854** and tapers into the block **1000** to a depth of about a half ($\frac{1}{2}$) inch at its bottom end where it joins with the lower surface **890** of the block. The bevel **1050** has ends **1051** and **1052** that are rounded to a radius of about three-quarter ($\frac{3}{4}$) inch. Bevels **1060** and **1070** are formed into the side surfaces **860** and **870**. Bevels **1060** and **1070** are about four (4) inches long and two (2) inches tall. Each side bevel **1060** and **1070** forms a wedge shaped void in the side wall of the block that starts about halfway down the side **860** or **870** and tapers into the block **1000** to a depth of about a half ($\frac{1}{2}$) inch at its bottom end where it joins with the lower surface **890** of the block.

[0137] While the invention has been described with reference to several preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the broader aspects of the inventive block designs.

I claim:

1. An interlocking masonry wall block for use with other like-shaped blocks to form a multi-tiered wall having at least one lower tier with first and second lower blocks, said interlocking masonry wall block comprising:

a block having upper and lower surfaces, front and rear ends and first and second sides, said upper and lower surfaces being substantially parallel, and said front end having a front wall;

first and second spaced apart projections extending from said upper surface of said block, said first projection being formed integrally with said block and proximal to said first side, said second projection being formed integrally with said block and proximal to said second side, each of said projections having a rearward facing setback wall, and each of said setback walls being spaced a predetermined distance from said front wall;

a recess formed in said lower surface of said block, said recess forming a forward facing recess wall, said recess wall being substantially parallel to said front wall, said recess wall being forward of and spaced apart from said setback walls of said projection a predetermined setback dimension; and

wherein said block is adapted to stack atop the first and second lower blocks in a staggered relation, said recess of said block being adapted to receive the first projection of the first lower block and the second projection of the second lower block, the setback walls of the lower blocks abuttingly engaging said recess wall of said block, said front wall of said block being set back from the front wall of each of the lower blocks a distance substantially equal to said setback dimension.

2. The interlocking masonry wall block of claim 1, wherein said projections are lugs and said recess is a channel, and said channel is formed by said forward facing recess wall and a rearward facing wall.
3. The interlocking masonry wall block of claim 2, wherein each of said lugs has a setback portion and a reinforcement portion, each of said setback portions forming said rearward facing setback wall, and said rearward facing setback walls defining a setback line substantially parallel to said recess wall.
4. The interlocking masonry wall block of claim 2, wherein each of said lugs has a forward facing wall, each of said forward facing walls being spaced apart from its said rearward facing wall a predetermined lug thickness dimension, and said rearward facing recess wall being spaced apart from said forward facing recess wall a predetermined channel width dimension, said predetermined lug thickness dimension being substantially equal to said predetermined channel width dimension, and wherein said channel is adapted to completely receive the lugs of the lower blocks upon which said block is stacked.
5. The interlocking masonry wall block of claim 4, wherein each of said setback wall and forward wall of each lug has an arcuate shape, and said setback wall has a rearward point located most rearward said recess wall, and said setback dimension is a distance between said rearward point and said recess wall.
6. The interlocking masonry wall block of claim 5, wherein said rearward points of said lugs define said setback line.
7. The interlocking masonry wall block of claim 6, wherein said setback wall and forward wall of each lug combine to form a lug wall having a circular shape.
8. The interlocking masonry wall block of claim 1, wherein said channel extends from said first side to said second side of said block.
9. The interlocking masonry wall block of claim 1, wherein said front wall is a faceted front wall formed by a central wall and first and second outer walls, said central wall having opposed ends and each of said outer walls having inner and outer ends, each of said inner ends joining with one of said opposed ends to form a separate facet in said front wall, each of said outer walls being angling toward said rear end, and said recess wall being substantially parallel to said central wall.
10. The interlocking masonry wall block of claim 9, wherein said first side has a first side wall and said second side has a second side wall, each of said side walls having forward and rearward ends, said forward end of said first side wall joining with said outer end of said front wall to form a first pivot joint, and said forward end of said second side wall joining with said outer end of said front wall to form a second pivot joint, said pivot joints forming a line that is substantially parallel to said front and recess walls, and wherein horizontally adjacent blocks in the wall abuttingly engage at said pivot joints.
11. The interlocking masonry wall block of claim 1, wherein said front wall, side walls, lug walls and recess wall are substantially perpendicular to said upper and lower surfaces.

* * * * *