

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2015/038400 A1

(43) International Publication Date

19 March 2015 (19.03.2015)

(51) International Patent Classification:

A61Q 11/00 (2006.01) A61K 8/81 (2006.01)

(21) International Application Number:

PCT/US2014/054074

(22) International Filing Date:

4 September 2014 (04.09.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/876,441 11 September 2013 (11.09.2013) US

(71) Applicant: 3M INNOVATIVE PROPERTIES COMPANY [US/US]; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

(72) Inventors: WANG, Yizhong; 3M Center, Post Office Box 3327, Saint Paul, Minnesota 55133-3427 (US). OXMAN, Joel D.; 3M Center, Post Office Box 3327, Saint Paul, Minnesota 55133-3427 (US). TON, Tiffany T.; 3M Center, Post Office Box 3327, Saint Paul, Minnesota 55133-3427 (US).

(74) Agents: HAN, Qiang et al.; 3M Center Office of Intellectual Property Counsel, Post Office Box 33427, St. Paul, Minnesota 55133-3427 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

WO 2015/038400 A1

(54) Title: ORAL COMPOSITIONS

(57) Abstract: An oral composition is described. The oral composition can include a solvent having water and a cosolvent chosen from lower alkyl alcohols and acetone; a basic copolymer having basic acrylate monomeric units, basic methacrylate monomeric units, or a combination thereof; no less than 0.5 wt-% of an acid buffering or neutralizing agent; and optionally an active agent. The oral composition can include from about 6° to about 15° wt % of water, from about 30° to about 80° wt % of the cosolvent, and from about 25 to about 55° wt-% of the basic copolymer. The basic copolymer can be dissolved in the oral composition, the oral composition is capable of forming a film on a surface when contacted with an aqueous solution; and the wt-% of each component is based on the total weight of the composition.

ORAL COMPOSITIONS

FIELD

The present disclosure generally relates to oral compositions, e.g. oral compositions with acid buffering or neutralizing capacity.

BACKGROUND

The erosion of dental enamel can lead to pain, discoloration, mechanical failure, and greater susceptibility to dental carries. Chemical erosion of dental enamel may arise from the presence of acid in the oral cavity. One of the many purposes that oral compositions may serve is to help control pH in the oral cavity.

SUMMARY

One of big concerns in dentistry is acid erosion which is the irreversible loss of dental structure due to chemical dissolution by acids. Some existing strategies of controlling oral pH are to include an alkaline agent in the formulation of an oral care composition. However, these buffer systems do not have high enough buffer capacity to protect against acid based enamel erosion.

The present disclosure generally relates to oral compositions, e.g. oral compositions with acid buffering or neutralization capacity. Generally, the oral composition of the present disclosure has the capability to buffer or neutralizing acid in oral cavity. In addition, the oral composition of the present disclosure can form a film in less than about 30 seconds after the oral composition is contacted with water or dried with a stream of compressed air. As a result, the oral composition of the present disclosure can provide a barrier to protect dental tissues.

Some aspects of the present disclosure provide an oral composition. The oral composition can include a solvent comprising water and a cosolvent chosen from lower alkyl alcohols and acetone; a basic copolymer comprising basic acrylate monomeric units, basic methacrylate monomeric units, or a combination thereof; no less than 0.5 wt-% of an acid buffering or neutralizing agent; and optionally an active agent. The oral composition can include from about 6 to about 15 wt-% of water, from about 30 to about 80 wt-% of the cosolvent, and from about 25 to about 55 wt-% of the basic copolymer. The basic copolymer can be dissolved in the oral composition, the oral composition is capable of forming a film on

a surface when contacted with an aqueous solution; and the wt-% of each component is based on the total weight of the composition.

Other features and aspects of the present disclosure will become apparent by consideration of the detailed description and accompanying drawings.

5

DETAILED DESCRIPTION

Before any embodiments of the present disclosure are explained in detail, it is understood that the invention is not limited in its application to the details of use, construction, and the arrangement of components set forth in the following description or 10 illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways that will become apparent to a person of ordinary skill in the art upon reading the present disclosure. Also, it is understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including," "comprising," or "having" and variations 15 thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. It is understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure.

20 The present disclosure generally relates to oral compositions. Particularly, for example, the oral compositions of the present disclosure can be used to neutralize acids in the oral cavity.

As used herein, dental structures include, but are not limited to, dental tissues and dental articles.

25 As used herein, dental tissues include, but are not limited to hard and soft dental tissues. Hard and soft oral tissues include, but not limited to, teeth, dental arch, and the surrounding tissues and support structures including gingiva and hard palate.

30 As used herein, dental articles include, but are not limited to an article that can be attached (e.g., bonded) to an oral surface (e.g., a tooth structure). Examples of dental articles include, but are not limited to, replacements, inlays, onlays, veneers, full and partial crowns, bridges, implants, implant abutments, copings, dentures, posts, bridge frameworks and other bridge structures, abutments, orthodontic appliances and devices including, but not limited to archwires, buccal tubes, brackets and bands, and prostheses (e.g., partial or full dentures).

As used herein, an aqueous solution includes, but is not limited to water, saliva, artificial saliva or combinations thereof.

In some embodiments, an oral composition is provided. The oral composition can include a solvent, a basic copolymer, an acid buffering or neutralizing agent and optionally an active agent. The solvent can have water and a cosolvent. The cosolvent can be chosen from lower alkyl alcohols and acetone. The basic copolymer can have basic acrylate monomeric units, basic methacrylate monomeric units, or a combination thereof. In some embodiments, the oral composition can comprise no less than 0.5 wt-% of an acid buffering or neutralizing agent. In some embodiments, the oral composition can comprise from about 6 to about 15 wt-% of water, from about 30 to about 80 wt-% of the cosolvent, and from about 25 to about 55 wt-% of the basic copolymer;

The basic copolymer can be dissolved in the oral composition. The oral composition is capable of forming a film on a surface when contacted with an aqueous solution and the wt-% of each component is based on the total weight of the composition.

In some embodiments, the oral composition of the present disclosure can be used to provide coatings that seal open dentin tubules and/or enamel cracks to minimize tooth sensitivity. In some embodiments, the oral composition can comprise from about 8 to about 12 wt-% of the water.

As referred to herein, the lower alkyl alcohols can include low carbon number (e.g. C₁-C₅) alcohols. Examples of lower alkyl alcohols as used herein include, but are not limited to, ethanol, isopropanol, propylene glycol, glycerin and low molecular weight polyethylene glycol and ethylene glycol based ester alcohols.

In some embodiments, the cosolvent can be ethanol. In other embodiments, the oral composition can comprise from about 35 to 60 wt-% of the cosolvent.

In some embodiments, the solvent can further include at least one additional component chosen from isopropanol, propylene glycol, glycerin, low molecular weight polyethylene glycol, ethylene glycol based ester alcohols, and combinations thereof. In other embodiments, the solvent can include water, ethanol and glycerin.

The basic copolymer, for example, can be used as film formers. When the film is formed, it can, for example, provide a barrier to protect the dental tissues, provide an anchoring structure to the dental tissues, and promote such tissues to enhance uptake active

agents. The basic coating also worked as an acid buffer or acid neutralizing composition, since it can react with acid to prevent tooth acid erosion.

5 In some embodiments, the basic copolymer can include a copolymer containing dimethylaminoethyl methacrylate. In some other embodiments, the basic copolymer can include a copolymer based on dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate. In other embodiments, the basic copolymer can be chosen from Eudragit E100 and other copolymer containing dimethylaminoethyl methacrylate for ionic crosslinking.

10 In some embodiments, the molecular weight of the basic copolymer can be from about 10,000 to about 100,000.

In some embodiments, the oral composition of the present disclosure can further include a neutral copolymer having neutral acrylate monomeric units, neutral methacrylate monomeric units, or a combination thereof.

15 In some embodiments, the neutral copolymer can include copolymers of ethyl acrylate, methyl methacrylate and methacrylic acid ester with quaternary ammonium groups.

In some embodiments, the neutral copolymer can include Eudragit RS100 (marketed by Evonic Industries AG, Damstadt, Germany), Eudragit RL 100 (marketed by Evonic Industries AG, Damstadt, Germany), and combinations thereof.

20 In some embodiments, the oral composition can comprise from about 0 to about 40 wt-% of the neutral copolymer.

25 Neutral copolymers can be used as film formers with a flexible property and a low strength that maintain adhesion during scratching or toothbrushing. The flexible neutral copolymers can help to form a tougher film and thus provide a good adhesion to dental tissues. In some embodiments, the consistency of the oral composition of the present disclosure can be from about 45 to about 110. The viscosities of the oral composition are characterized with consistency. The higher the consistency of the composition represents the easier spreading of the composition when pressure is applied, which means lower viscosity. The oral composition has certain consistency range to be applied in an oral cavity. When the consistency of the oral composition is too high, the oral composition is too runny and produces a dropping problem. When the consistency of the oral composition is too low, the oral composition is too viscous and is difficult to spread.

When the oral composition of the present disclosure contacts water, the water miscible solvents can diffuse into water and water can also diffuse into the oral composition. As a result, the molecular interaction among the copolymer chains can increase dramatically and then form a durable, toothbrush abrasion resistant and slippery film. Alternatively, the 5 film can be formed by air drying. For example, air blowing can evaporate water and co-solvents to form the durable, brush abrasion resistant and slippery film.

In some embodiments, the oral composition of the present disclosure can form the film in less than about 30 seconds after the oral composition is contacted with water or dried with a stream of compressed air.

10 The oral composition of the present disclosure can provide prolonged coating/film. In some embodiments, the film remains on at least 90% of the surface after brushing the surface for at least 5 strokes. In some other embodiments, the film remains on at least 90% of the surface after brushing the surface for at least 10 strokes. In other embodiments, the film remains on at least 90% of the surface after brushing the surface for at least 20 strokes. In yet 15 other embodiments, the film remains on at least 90% of the surface after brushing the surface for at least 30 strokes. In some cases, the film remains on at least 90% of the surface after brushing the surface for at least 60 strokes. In other cases, the film remains on at least 90% of the surface after brushing the surface for at least 90 strokes. In yet other cases, the film remains on at least 90% of the surface after brushing the surface for at least 120 strokes.

20 In some embodiments, the film remains on at least 90% of the surface after brushing the surface for from 5 to 120 strokes. In some other embodiments, the film remains on at least 90% of the surface after brushing the surface for from 10 to 90 strokes. In other embodiments, the film remains on at least 90% of the surface after brushing the surface for from 20 to 60 strokes. In yet other embodiments, the film remains on at least 90% of the 25 surface after brushing the surface for from 5 to 120 strokes.

In some embodiments, the oral composition can be suitable for administration to the oral cavity of a patient.

30 Various methods can be employed to apply the oral composition on the dental structure. In some embodiments, the oral composition can be applied from the composition's container or dispenser such as a bottle, syringe, or tube. In some embodiments, a dental brush, microfiber, foam or sponge applicator or cotton Q tip is used to rub the surface of the dental structure and leave a thin layer of coating on the surface. In some other embodiments,

a tray applicator, a dental tray, or a dental strip filled with the oral composition can be used. The oral composition can cover the surface of the dental structure and leave a layer of coating on the surface. In other embodiments, the oral composition can be sprayed (e.g. air-brushing) with a spray device or aerosol applicator onto the surface of the dental structure. In other 5 embodiments, the oral composition can be directly painted onto the surface of the dental structure with a brush tip attached to a syringe. In yet other embodiments, the oral composition can be applied as a rinse. The oral composition can be set into a coating on the dental structure and its attachments within 30 seconds by water, saliva, or dried by air blowing.

10 The oral composition of the present disclosure has the capability to buffer or neutralize acid in oral cavity to reduce acid erosion.

15 The acid buffering or neutralizing agent of the present disclosure can include any anti-acid compounds suitable for use in the present disclosure. In some embodiments, the acid buffering agent can include any basic substance which dissociates in water (i.e., an aqueous base) to produce one or more hydroxyl ions, or any substance which has can accept a proton, or which has an unshared pair of electrons.

20 In some embodiments, the acid buffering or neutralizing agent can include carbonates, bicarbonates, chlorides, hydroxides, dibasic citrates phosphates, sulfates and the like, typically in the form of a salt. Exemplary salts include a complex with sodium, potassium, calcium, ammonium, aluminum, magnesium, and the like. In some other embodiments, the acid buffering agent can include sodium carbonate, potassium carbonate, calcium carbonate, ammonium bicarbonate, ammonium carbonate, ammonium chloride, ammonium hydroxide, dibasic ammonium citrate, ammonium phosphate (monobasic or dibasic), ammonium sulfate, aluminum carbonate, aluminum hydroxide, calcium citrate, calcium hydroxide, magnesium 25 carbonate, magnesium hydroxide, magnesium phosphate (dibasic), potassium hydroxide, potassium bicarbonate, and the like.

30 In some embodiments, the acid buffering or neutralizing agent can include phosphate based buffers which contain PO_4^{3-} anion (e.g., sodium phosphate, potassium phosphate, calcium phosphate and ammonium phosphate), hydrogen phosphate based buffers which contain HPO_4^{2-} anion (e.g., sodium hydrogen phosphate, potassium phosphate and calcium phosphate), dihydrogen phosphaste based buffers which contain H_2PO_4^- anion (e.g., sodium dihydrogen phosphate, potassium dihydrogen phosphate and calcium dihydrogen phosphate),

carboxylates based buffers which contain RCOO^- anion (e.g., sodium acetate, sodium citrate, potassium acetate, ammonium acetate and ammonium citrate), carbonate based buffers which contain CO_3^{2-} anion (e.g., sodium carbonate, calcium carbonate, magnesium carbonate, iron carbonate, potassium carbonate and ammonium carbonate), hydrogen carbonate buffers 5 which contain HCO_3^- anion (e.g., sodium hydrogen carbonate, calcium hydrogen carbonate, ammonium hydrogen carbonate and potassium hydrogen carbonate).

The oral composition of the present disclosure can release active agents to strengthen the dental tissues and reduce sensitivity. In some embodiments, the oral composition of the present disclosure can include active agents. In other embodiments, the active agents can 10 include, but are not limited to whitening agents, anticaries agents, fluoride-delivery agents, anti-gingivitis agents, tartar control agents, antiplaque agents, periodontal actives, breath freshening agents, malodor control agents, tooth desensitizers, salivary stimulants, flavors, biofilm disruptors, antimicrobials, anesthetic agent, pain killers, stain removal agents, coloring agents, remineralization agents, calculus-softening agents, and combinations thereof.

15 In various embodiments, the oral compositions of the present disclosure can include a whitening agent. As further discussed below, a "whitening agent" is a material which is effective to effect whitening of a tooth surface to which it is applied. In various embodiments, the oral compositions of the present disclosure can include a peroxide whitening agent, comprising a peroxide compound. As referred to herein, a "peroxide compound" is an 20 oxidizing compound comprising a bivalent oxygen-oxygen group. Peroxide compounds can include, but are not limited to, peroxides and hydroperoxides, such as hydrogen peroxide, peroxides of alkali and alkaline earth metals, organic peroxy compounds, peroxy acids, pharmaceutically-acceptable salts thereof, and mixtures thereof. Peroxides of alkali and, 25 alkaline earth metals can include, but are not limited to, lithium peroxide, potassium peroxide, sodium peroxide, magnesium peroxide, calcium peroxide, barium peroxide, and mixtures thereof. Organic peroxy compounds can include, but are not limited to, carbamide peroxide (also known as urea hydrogen peroxide), glycetyl hydrogen peroxide, alkyl hydrogen peroxides, dialkyl peroxides, alkyl peroxy acids, peroxy esters, diacyl peroxides, benzoyl peroxide, and monoperoxyphthalate, and mixtures thereof. Peroxy acids and their 30 salts can include, but are not limited to, organic peroxy acids such as alkyl peroxy acids, and monoperoxyphthalate and mixtures thereof, as well as inorganic peroxy acid salts such as persulfate, dipersulfate, percarbonate, perphosphate, perborate and persilicate salts of alkali

and alkaline earth metals such as lithium, potassium, sodium, magnesium, calcium and barium, and mixtures thereof. In various embodiments, the peroxide compound can include, but are not limited to, hydrogen peroxide, urea peroxide, sodium percarbonate and mixtures thereof. In one embodiment, the peroxide compounds can include hydrogen peroxide. In one embodiment, the peroxide compound can consist essentially of hydrogen peroxide.

5 The oral compositions of the present disclosure can include a non-peroxide whitening agent. Whitening agents among those useful herein can include non-peroxy compounds, such as chlorine dioxide, chlorites and hypochlorites. Chlorites and hypochlorites can include, but are not limited to, those of alkali and alkaline earth metals such as lithium, potassium, sodium, magnesium, calcium and barium. Non-peroxide whitening agents can also include, but are not limited to, colorants, such as titanium dioxide and hydroxyapatite.

10 The oral compositions of the present disclosure can include a tartar control (anticalculus) agent. Tartar control agents among those useful herein can include, but are not limited to, phosphates and polyphosphates (for example pyrophosphates), polyaminopropanesulfonic acid (AMPS), polyolefin sulfonates, polyolefin phosphates, diphosphonates such as azacycloalkane-2,2-diphosphonates (e.g., azacycloheptane-2,2-diphosphonic acid), N-methyl azacyclopentane-2,3-diphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid (EHDP) and ethane-1-amino-1,1-diphosphonate, phosphonoalkane carboxylic acids and salts of any of these agents, for example their alkali metal and ammonium salts. Useful inorganic phosphate and polyphosphate salts can include, but are not limited to, monobasic, dibasic and tribasic sodium phosphates, sodium tripolyphosphate, tetrapolyphosphate, mono-, di-, tri- and tetrasodium pyrophosphates, sodium trimetaphosphate, sodium hexametaphosphate and mixtures thereof, wherein sodium can optionally be replaced by potassium or ammonium. Other useful anticalculus agents can include, but are not limited to, polycarboxylate polymers and polyvinyl methyl ether/maleic anhydride (PVME/MA) copolymers, such as those available under the Gantrez® from ISP, 15 Wayne, N.J.

20

25

30 The oral compositions of the present disclosure can include a stannous ion source useful, for example, as a periodontal active, tartar control agent, anticaries agent or tooth desensitizer. Any orally acceptable stannous ion source can be used, including, but not limited to, stannous fluoride, other stannous halides such as stannous chloride dehydrate,

organic stannous carboxylate salts such as stannous formate, acetate, gluconate, lactate, tartrate, oxalate, malonate and citrate, stannous ethylene glyoxide and the like.

The oral compositions of the present disclosure can include an antimicrobial (e.g., antibacterial) agent. Any orally acceptable antimicrobial agent can be used, including, but not limited to, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol); 8-hydroxyquinoline and salts thereof; zinc and stannous ion sources such as zinc citrate, zinc sulphate, zinc glycinate, sodium zinc citrate and stannous pyrophosphate; copper (II) compounds such as copper (II) chloride, fluoride, sulfate and hydroxide; phthalic acid and salts thereof such as magnesium monopotassium phthalate; sanguinarine; quaternary ammonium compounds, such as alkylpyridinium chlorides (e.g., cetylpyridinium chloride (CPC), combinations of CPC with zinc and/or enzymes, tetradecylpyridinium chloride, and N-tetradecyl-4-ethylpyridinium chloride,); bisguanides, such as chlorhexidine digluconate, hexetidine, octenidine, alexidine; halogenated bisphenolic compounds, such as 2,2' methylenebis-(4-chloro-6-bromophenol); benzalkonium chloride; salicylanilide, domiphen bromide; iodine; sulfonamides; bisbiguanides; phenolics; piperidino derivatives such as delmopinol and octapinol; magnolia extract; grapeseed extract; thymol; eugenol; menthol; geraniol; carvacrol; citral; eucalyptol; catechol; 4-allylcatechol; hexyl resorcinol; methyl salicylate; antibiotics such as augmentin, amoxicillin, tetracycline, doxycycline, minocycline, metronidazole, neomycin, kanamycin and clindamycin; and mixtures thereof. A further illustrative list of useful antibacterial agents is described in detail in U.S. Pat. No. 5,776,435, which is incorporated herein by reference.

The oral compositions of the present disclosure can include an antioxidant. Any orally acceptable antioxidant can be used, including, but not limited to, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), vitamin A, carotenoids, vitamin E, flavonoids, polyphenols, ascorbic acid, herbal antioxidants, chlorophyll, melatonin, and mixtures thereof.

The oral compositions of the present disclosure can include a saliva stimulating agent, useful for example in amelioration of dry mouth. Any orally acceptable saliva stimulating agent can be used, including without limitation food acids such as citric, lactic, malic, succinic, ascorbic, adipic, fumaric, and tartaric acids, and mixtures thereof.

The oral compositions of the present disclosure can include a breath freshening agent. Any orally acceptable breath freshening agent can be used, including without limitation zinc salts such as zinc gluconate, zinc citrate and zinc chlorite, alpha-ionone and mixtures thereof.

The oral compositions of the present disclosure can include an antiplaque (e.g., plaque disrupting) agent. Any orally acceptable antiplaque agent can be used, including without limitation stannous, copper, magnesium and strontium salts, dimethicone copolyols such as cetyl dimethicone copolyol, papain, glucoamylase, glucose oxidase, urea, calcium 5 lactate, calcium glycerophosphate, strontium polyacrylates and mixtures thereof.

In some embodiments, the antiplaque agent can include a compound of general Formula I or a pharmaceutically acceptable salt thereof:

(I),

wherein R¹ and R² are independently selected from a hydrogen atom, an alkyl group, 10 C(O)R³, and SO₂R⁴; R³ and R⁴ are independently selected from an alkyl group, an aryl group, and an aralkyl group; and n is an integer from 2 to 5. In some embodiments, the pharmaceutically acceptable salt is free of unsubstituted or substituted tropolone. In some 15 embodiments, R¹ and R² each comprise a hydrogen atom, or are independently selected from a hydrogen atom and an alkyl group. In certain embodiments, R¹ or R² independently comprise an alkyl group of about one to about ten carbon atoms. In other embodiments, R¹ comprises a hydrogen atom and R² comprises C(O)R³ or SO₂R⁴. Typically, R³ comprises an alkyl group having from about one to about twenty-six carbon atoms, more typically from 20 about six to about sixteen carbon atoms. A further illustrative list of useful antiplaque agents is described in detail in U.S. Application & Publication No. US2013/0052146, which is incorporated herein by reference.

The oral compositions of the present disclosure can include an anti-inflammatory agent. Any orally acceptable anti-inflammatory agent can be used, including without limitation steroidal agents such as flucinolone and hydrocortisone, and nonsteroidal agents (NSAIDs) such as ketorolac, flurbiprofen, ibuprofen, naproxen, indomethacin, diclofenac, 25 etodolac, indomethacin, sulindac, tolmetin, ketoprofen, fenoprofen, piroxicam, nabumetone, aspirin, diflunisal, meclofenamate, mefenamic acid, oxyphenbutazone, phenylbutazone, and mixtures thereof.

The oral compositions of the present disclosure can include an H₂ antagonist. H₂ antagonist useful herein include, but not limited to, cimetidine, etintidine, ranitidine, ICIA- 30 5165, tiotidine, ORF-17578, lupiteridine, donetidine, famotidine, roxatidine, pifatidine, lamtidine, BL-6548, BMY-25271, zaltidine, nizatidine, mifentidine, BMY-52368, SKF-

94482, BL-6341A, ICI-162846, ramixotidine, Wy-45727, SR-58042, BMY-25405, loxtidine, DA-4634, bisfentidine, sufotidine, ebrotidine, HE-30-256, D-16637, FRG-8813, FRG-8701, impromidine, L-643728, HB-408.4, and mixtures thereof.

The oral compositions of the present disclosure can include a desensitizing agent.

5 Desensitizing agents useful herein include, but not limited to, potassium citrate, potassium chloride, potassium tartrate, potassium bicarbonate, potassium oxalate, potassium nitrate, strontium salts, arginine and mixtures thereof. Alternatively or in addition a local or systemic analgesic such as aspirin, codeine, acetaminophen, sodium salicylate or triethanolamine salicylate can be used.

10 The oral compositions of the present disclosure can include a nutrient. Suitable nutrients can include without limitation, vitamins, minerals, amino acids, and mixtures thereof. Vitamins include, but not limited to, Vitamins C and D, thiamine, riboflavin, calcium pantothenate, niacin, folic acid, nicotinamide, pyridoxine, cyanocobalamin, para-aminobenzoic acid, bioflavonoids, and mixtures thereof. Nutritional supplements include, but 15 not limited to, amino acids (such as L-tryptophane, L-lysine, methionine, threonine, levocarnitine and L-carnitine), lipotropics (such as choline, inositol, betaine, and linoleic acid), fish oil (including components thereof such as omega-3 (N-3) polyunsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid), coenzyme Q10, and mixtures thereof.

20 The oral compositions of the present disclosure can include proteins. Suitable proteins can include, but are not limited to, milk proteins and enzymes such as peroxide-producing enzymes, amylase, and plaque-disrupting agents such as papain, glucoamylase, glucose oxidase.

25 The oral compositions of the present disclosure can include an inorganic or organic fluoride ion source useful, for example, as an anti-caries agent. Any orally acceptable fluoride ion source can be used, including without limitation potassium, sodium and ammonium fluorides and monofluorophosphates, stannous fluoride, indium fluoride and mixtures thereof. Organic fluorides sources can include tetralkylammonium fluoride or tetralkylammonium tetrafluoroborate salts and the like. In various embodiments, water-soluble 30 fluoride ion sources are used. In some other embodiments, the active agent can include at least two different fluoride salts. In other embodiments, the active agent can include, but is not limited to, sodium fluoride, strontium fluoride, calcium fluoride, zinc fluoride, calcium

chloride, calcium nitrate, calcium phosphates, calcium hydrogen phosphate, calcium dihydrogen phosphate, and combinations thereof. In some embodiments, the active agent can provide a sustained fluoride release for at least 24 hours. As a result, the oral compositions of the present disclosure can, for example, provide a sustained fluoride release in an oral 5 composition.

The following embodiments are intended to be illustrative of the present disclosure and not limiting.

10

EMBODIMENTS

Embodiment 1 is an oral composition, comprising:

a solvent comprising water and a cosolvent chosen from lower alkyl alcohols and acetone;

15 a basic copolymer comprising basic acrylate monomeric units, basic methacrylate monomeric units, or a combination thereof;

no less than 0.5 wt-% of an acid buffering or neutralizing agent; and

optionally an active agent;

wherein the oral composition comprises from about 6 to about 15 wt-% of water,

20 from about 30 to about 80 wt-% of the cosolvent, and from about 25 to about 55 wt-% of the basic copolymer;

wherein the basic copolymer is dissolved in the oral composition;

wherein the oral composition is capable of forming a film on a surface when

contacted with an aqueous solution; and

25 wherein the wt-% of each component is based on the total weight of the composition.

Embodiment 2 is the oral composition of embodiment 1, wherein the oral composition further comprises a neutral copolymer comprising neutral acrylate monomeric units, neutral methacrylate monomeric units, or a combination thereof.

30

Embodiment 3 is the oral composition of any proceeding embodiment, wherein the oral composition from about 0 to about 40 wt-% of the neutral copolymer.

Embodiment 4 is the oral composition of any preceding embodiment, wherein the neutral copolymer is chosen from Eudragit RS100 and Eudragit RL 100.

5 Embodiment 5 is the oral composition of any preceding embodiment, wherein the basic copolymer is chosen from Eudragit E100 and other copolymer containing dimethylaminoethyl methacrylate for ionic crosslinking.

Embodiment 6 is the oral composition of any preceding embodiment, wherein the molecular weight of the basic copolymer is from about 10,000 to about 100,000.

10

Embodiment 7 is the oral composition of any preceding embodiment, wherein the oral composition is capable of forming the film in less than about 30 seconds after the oral composition is contacted with water.

15

Embodiment 8 is the oral composition of any preceding embodiment, wherein the consistency of the oral composition is from about 45 to about 110.

Embodiment 9 is the oral composition of any preceding embodiment, wherein the cosolvent is ethanol.

20

Embodiment 10 is the oral composition of any preceding embodiment, wherein the solvent further comprises at least one additional component chosen from isopropanol, propylene glycol, glycerin, low molecular weight polyethylene glycol, ethylene glycol based ester alcohols, and combinations thereof.

25

Embodiment 11 is the oral composition of any preceding embodiment, wherein the oral composition comprises from about 8 to about 12 wt-% of the water.

30

Embodiment 12 is the oral composition of any preceding embodiment, wherein the oral composition comprises from about 35 to 60 wt-% of the cosolvent.

Embodiment 13 is the oral composition of any preceding embodiment, wherein the acid buffering or neutralizing agent is selected from carbonates, bicarbonates, chlorides, hydroxides, dibasic citrates phosphates, sulfates, and combinations thereof.

5 Embodiment 14 is the oral composition of any preceding embodiment, wherein the acid buffering or neutralizing agent is selected from phosphate based buffers, hydrogen phosphate based buffers, dihydrogen phosphaste based buffers, carboxylates based buffers, carbonate based buffers, hydrogen carbonate buffers, and combinations thereof.

10 Embodiment 15 is the oral composition of any preceding embodiment, wherein the active agent is selected from whitening agents, anticaries agents, fluoride-delivery agents, anti-gingivitis agents, tartar control agents, antiplaque agents, periodontal actives, breath freshening agents, malodor control agents, tooth desensitizers, salivary stimulants, flavors, biofilm disruptors, antimicrobials, anesthetic agent, pain killers, stain removal agents, 15 coloring agents, remineralization agents, calculus-softening agents, and combinations thereof.

Embodiment 16 is the oral composition of any preceding embodiment, wherein the active agent is a fluoride composition.

20 Embodiment 17 is the oral composition of any preceding embodiment, wherein the active agent provides a sustained fluoride release for at least 24 hours.

Embodiment 18 is the oral composition of any preceding embodiment, wherein the active agent comprises at least two different fluoride salts.

25 Embodiment 19 is the oral composition of any preceding embodiment, wherein the active agent is chosen from sodium fluoride, strontium fluoride, calcium fluoride, zinc fluoride, calcium chloride, calcium nitrate, calcium phosphates, calcium hydrogen phosphate, calcium dihydrogen phosphate, and combinations thereof.

30 Embodiment 20 is the oral composition of any preceding embodiment, wherein the film remains on at least 90% of the surface after brushing the surface for at least 5 strokes.

Embodiment 21 is the oral composition of any preceding embodiment, wherein the film remains on at least 90% of the surface after brushing the surface for at least 10 strokes.

5 Embodiment 22 is the oral composition of any preceding embodiment, wherein the film remains on at least 90% of the surface after brushing the surface for at least 20 strokes.

Embodiment 23 is the oral composition of any preceding embodiment, wherein the film remains on at least 90% of the surface after brushing the surface for at least 30 strokes.

10 Embodiment 24 is the oral composition of any preceding embodiment, wherein the film remains on at least 90% of the surface after brushing the surface for at least 60 strokes.

15 Embodiment 25 is the oral composition of any preceding embodiment, wherein the film remains on at least 90% of the surface after brushing the surface for at least 90 strokes.

Embodiment 26 is the oral composition of any preceding embodiment, wherein the film remains on at least 90% of the surface after brushing the surface for at least 120 strokes.

20 Embodiment 27 is the oral composition of any preceding embodiment, wherein the film remains on at least 90% of the surface after brushing the surface for from 5 to 120 strokes.

Embodiment 28 is the oral composition of any preceding embodiment, wherein the film remains on at least 90% of the surface after brushing the surface for from 10 to 90 strokes.

25 Embodiment 29 is the oral composition of any preceding embodiment, wherein the film remains on at least 90% of the surface after brushing the surface for from 20 to 60 strokes.

30 Embodiment 30 is the oral composition of any preceding embodiment, wherein the film remains on at least 90% of the surface after brushing the surface for from 5 to 120 strokes.

The following working examples are intended to be illustrative of the present disclosure and not limiting.

EXAMPLES

Objects and advantages of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention.

The materials used to prepare examples of the invention (Ex) as well as comparative examples (CE) are outlined below.

10

Materials

Material	Description	Source
EUDRAGIT RS100	Neutral copolymer of ethyl acrylate, methyl methacrylate and a low content of methacrylic acid ester with quaternary ammonium groups.	Evonic Industries, Darmstadt, Germany
EUDRAGIT RL100	Neutral copolymer of ethyl acrylate, methyl methacrylate and a low content of methacrylic acid ester with quaternary ammonium groups	Evonic Industries, Darmstadt, Germany
EUDRAGIT E100	Basic cationic copolymer based on dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate	Evonic Industries, Darmstadt, Germany
EtOH	Ethanol, 200 proof, USP grade	Columbus Chemical Industries, Columbus, WI
PPG	Propylene glycol, USP grade	EMD Billerica, MA
Glycerol	USP grade	Sigma-Aldrich, St Louis, MO
NaF	milled sodium fluoride (passed through 30micro screen)	3M ESPE, St Paul, MN
K ₃ PO ₄	Potassium Phosphate Tribasic	JT Baker Phillipsburg, NJ
NaCl	Sodium chloride	EMD Billerica, MA
Ca ₂ Cl ₂ .2H ₂ O	Calcium chloride	EMD Billerica, MA
KCl	Potassium chloride	EMD Billerica, MA
Gastric Mucin	Sigma porcine stomach mucin type II	Sigma Aldrich
KH ₂ PO ₄	Potassium dihydrogen phosphate	JT Baker Phillipsburg, NJ

NaOH	Sodium hydroxide	Alfa Aesar
CaCO ₃	Calcium carbonate	EMD Billerica, MA
Na ₂ CO ₃	Sodium carbonate	VWR, Radnor, PA
K ₃ PO ₄	Potassium phospahte	Alfa Aesar, Ward Hill, MA
Arginine		Alfa Aesar, Ward Hill, MA
Hydrogenated rosin	Foral AX-E hydrogenated rosin	Eastman, Kingsport, TN
Lauric acid		TCI, Portland, OR
Stearic acid		TCI, Portland, OR
Octanic aicd		Alfa Aesar, Ward Hill, MA
pH paper	Color pHast pH 6.5-10.0	EM science, Gibbstown, NJ

Preparation of Coating Compositions

Polymer solutions were prepared by first weighing the designated amount of solvent into a 250ml jar that has a cap. The designated amount of polymer material was then added to the jar. The jar was sealed and then placed on a Wheaton Culture Roller for 2-3 days (~30rpm) until the polymer was completely dissolved in the solvent. Additional ingredients such as NaF, other salts, viscosity modifiers, flavorings, etc. were added to the polymer solution using two 2 minute cycles in a speed mixer (SpeedMixer DAC150.1 FVZ available from FlacTek, Inc., Landrum, SC) set at 3000rpm. The materials used in each coating composition as well as the amount (in grams) are shown in the examples and tables below.

Preparation of Artificial Saliva

Artificial saliva was prepared with following procedure: 3.52g of gastric mucin, 0.610g NaCl, 0.341g CaCl₂.2H₂O, 1.183g KH₂PO₄ and 1.179g KCL were weighed into a 2000ml flask. 1600ml of deionized (DI) water was slowly added using a magnetic stir bar to mix solution until all solids are dissolved. The pH was adjusted to 7.0 with 50% NaOH solution.

Test Methods

Coating Evaluation - Feel, Set, Adhesion and Abrasion Resistance Test

Compositions of the invention and comparative compositions were coated onto a glass (or plastic if noted) slide (available from VWR, Radnor PA) or bovine teeth using a cotton swab or small brush. The coated substrate what then dipped into a container of tap water for 30 seconds at room temperature (~25°C). The coating was then qualitatively evaluated to determine if a film had formed (“set”). Additionally the set films were evaluated

at to their adhesion to the substrate. Adhesion was deemed “good” when the set film could not be pushed away by finger pressure and “no” when the set film could be pushed away by finger pressure. Abrasion resistance was evaluated by brushing the set coating with a tooth brush and counting the number of brush strokes required to remove the coating.

5

Fluoride Release Test

Approximately 40-50mg of coating composition was evenly painted onto a 1 inch x 1 inch plastic slide (Rinzel plastic micro slide available from VRW, Radnor, PA). The coated slide was immersed in 25ml of deionized water in a plastic test tube for 1 hour. After 1 hour, the slide was removed, rinsed and immersed in a second 25ml aliquot of water in another test tube. After 3 more hours (4 hours total), the process was repeated and the slide was immersed in a third 25ml aliquot of water. After 2 more hours (6 hours total) the process was again repeated and the slide was placed in a fourth 25 ml aliquot of water where it remained for an additional 18 hours (24 hours total) before being removed. Each of 25ml aliquots of deionized water were then evaluated for fluoride concentration. 10ml of the samples solutions from above preparation were mixed with 10ml of TISAB II to make the solution for fluoride concentration measurements. The fluoride concentrations were measured using a Cole Parmer fluoride ion meter equipped with a fluoride combination electrode which had been standardized using standard concentrations of fluoride buffered with TISAB II. Five replicate samples were run to get an average. The fluoride concentration was measured in parts per million and the fluoride release was reported as $\mu\text{gF}/\text{cm}^2$ coating using the following equation.

$$\mu\text{gF}/\text{cm}^2 \text{ coating} = \frac{(\text{Concentration of F in ppm}) * (\text{sample volume in mL})}{(\text{coating area in cm}^2)}$$

Abrasion Resistance Tooth Brush Testing

Bovine teeth were potted in a poly(methyl)methacrylate (PMMA) resin and then polished with 320 grit sandpaper to expose the enamel surface. The exposed enamels were wiped with paper tower to remove excess of water, then coated with about 10mg materials to form a thin layer on enamel, and then stored in 37°C artificial saliva for varying amounts of time. A tooth brush machine (available from Foth Production Solution, LLC, Greenbay WI) was used to test coating wear durability on enamel. Tooth brush head was cut from tooth brush with brand name Acclean gentle care from Henry Schein and inserted into the fixture

on the tooth brush machine. The potted bovine teeth were inserted and fixed in a plastic port filled with brush media. The tooth brush head was rest on the coating surface. The machine can control the tooth brush head moving back and forth against the coating on enamel. The brushing stroke is defined as brushing the surface back and forth one time. 5ml of 1:1 water and tooth paste (CREST cavity protection tooth paste) mixture was used as brush media. After certain brushing strokes, the coating surfaces were checked and the amount of wear was estimated.

pH Measurement

10 The pH of the coating solutions was determined using pH paper.

Examples 1-5 and Comparative Examples 1-4: Compositions with additives and fluoride release

15 Oral (coating) compositions were prepared and coated as described above using the materials and amounts (in grams) as outlined in Table 1 below. Coated films were evaluated for set, adhesion and fluoride release as described above.

Table 1

	Ex 1	Ex 2	Ex 3	Ex 4	Ex 5	CE 1	CE 2	CE 3	CE 4
Lauric acid	10	0	0	8	8	0	0	17	10
Stearic acid	0	0	0	0	0	31	0	10	18
Octanic acid	0	0	0	0	0	0	22	0	0
Ethanol	40	40	40	40	40	35	35	35	35
DI water	10	10	10	10	10	4	4	4	4
Hydrogenated rosin	0	15	0	0	0	0	0	0	0
EUDRAGIT E100	40	35	50	42	42	30	39	34	34
Polymer solution	yes	yes	yes	yes	yes	no	yes	no	no
TCP	0.5	0.5	0.5	0.5	0.5	---	---	---	---
NaF	5.0	5.0	5.0	5.0	5.0	-	-	-	-
Set in water	yes	yes	yes	yes	yes	---	no	---	---
Film adhesion	good	good	good	good	good	---	no	---	---
Accumulative Fluoride Release 1hr	151.2	84.4	76.0	150.8	118.6	-	-	-	-
Accumulative Fluoride Release 4hr	153.2	139.5	130.2	152.1	119.8	---	---	---	---
Accumulative Fluoride Release 6hr	153.4	152.9	146.2	152.4	119.9	---	---	---	---

						-	-	-	-
Accumulative Fluoride Release 24hr	153.7	166.9	177.4	152.5	120.2	---	---	---	---

Examples 6-10: Coating compositions with various polymers and fluoride release

Coating compositions were prepared and coated as described above using the materials and amounts (in grams) as outlined in Table 2 below. Coated films were evaluated for set, adhesion and fluoride release as described above.

5
Table 2

	Ex 6	Ex 7	Ex 8	Ex 9	Ex 10
Lauric acid	6	0	0	0	0
Ethanol	40	45.2	45.2	45.2	45.2
DI water	10	11.3	11.3	11.3	11.3
EUDRAGIT RS100	0	0	0	5.2	5.2
EUDRAGIT RL100	6	5.2	5.2	0	0
EUDRAGIT E100	38	38.3	38.3	38.3	38.3
Polymer solution	yes	yes	yes	yes	yes
SrF ₂	0	0	1.5	0	1.5
TCP	0.5	0.5	0.5	0.5	0.5
NaF	5.0	5.0	4.0	5.0	4.0
Set in water	yes	yes	yes	yes	yes
Film adhesion	good	good	good	good	good
Accumulative Fluoride Release 1hr	153.1	114.7	96.1	105.8	78.7
Accumulative Fluoride Release 4hr	155.9	144.6	121.3	148.8	120.5
Accumulative Fluoride Release 6hr	156.1	147.3	125.6	156.4	127.6
Accumulative Fluoride Release 24hr	156.6	152.6	132.6	163.1	135.2

Examples 11-19 and Comparative Example 5: Compositions with various solvents

Coating compositions were prepared and coated as described above using the materials and amounts (in grams) as outlined in Table 3 below. The pH of the coating composition was determined as described above and the coated films were evaluated for set and adhesion.

10
Table 3

	Ex 11	Ex 12	Ex 13	Ex 14	Ex 15	Ex 16	Ex 17	CE 5	Ex 18	Ex 19
Ethanol	40	40	40	40	40	35	30	25	35	30
DI water	15	15	15	15	10	10	10	10	10	10
PPG	0	0	0	0	0	0	0	0	10	15
Glycerin	0	0	0	0	5	10	15	20	0	0
EUDRAGIT RL100	5	15	0	25	5	5	5	5	5	5
EUDRAGIT E100	40	30	45	20	40	40	40	40	40	40

Polymer solution	yes	no	yes	yes						
Set in water	yes	----	yes	yes						
Film adhesion	good	----	good	good						
pH	8.1	8.1	8.3	7.9	8.1	8.1	8.1	NA	8.1	8.1

Example 20-27: Coating compositions with alkaline additives

Coating compositions were prepared and coated as described above using the materials and amounts (in grams) as outlined in Table 4 below. The coated films were evaluated for set, adhesion and fluoride release as described above.

The pH of the coating compositions outlined in Table 4 was determined using pH paper as described above. Coatings were then prepared as described above by placing about 25mg of coating composition on a 2.5cm x 2.5 cm square glass slide and then dipping the coated slide into tap water for 30 seconds to form a hard film. The coated slides were removed from the tap water and then dipped into 100 ml of water that was adjusted to pH 4 with a trace amount of 37% phosphoric acid. After 10 seconds the coated slides were removed from the acid adjusted water and the pH of the acid adjusted water on the wet coated surface was determined using pH paper. The results of this buffering test are shown in Table 4 below.

Table 4

	Ex 20	Ex 21	Ex 22	Ex 23	Ex 24	Ex 25	Ex 26	Ex 27
Ethanol	40	40	40	40	40	40	40	40
DI water	15	15	15	15	15	15	15	15
EUDRAGIT RL100	5	5	5	5	5	5	5	5
EUDRAGIT E100	40	40	40	40	40	40	40	40
CaCO ₃	0	0	0	0	0	2	2	2
Na ₂ CO ₃	0	0	0	2	2	0	0	0
K ₃ PO ₄	2	2	0	2	0	0	2	2
Arginine	0	2	2	0	2	2	2	0
TCP	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
NaF	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
Set in water	yes							
Film adhesion	good							
Accumulative Fluoride Release 1hr	55.9	94.9	111.1	77.7	127.1	99.51	93.4	69.6
Accumulative Fluoride Release 4hr	130.7	158.7	156.2	140.0	172.7	120.4	140.9	115.7
Accumulative Fluoride Release 6hr	151.3	167.9	163.4	150.8	176.6	122.5	145.8	120.3
Accumulative Fluoride Release	176.2	175.3	174.7	159.6	179.4	125.2	151.4	128.

24hr								2
pH of coating composition	9	9	8.7	9.5	9.5	8.7	9.5	9.5
pH of acid treated water on coated substrate	8.1	8.1	7.1	8.1	8.1	7.1	8.1	8.1

Example 6 and 7: Abrasion Resistance

The abrasion resistance on bovine teeth of coating composition of Ex 6 and 7 was determined as described above. Three replicate samples of coated teeth were soaked in 37°C artificial saliva for either 3 hours or 24 hours and then subjected to brushing. The amount of coating removed after a specific number of brush strokes is reported in Table 5 below.

Table 5

Example	Tooth #	37C artificial saliva for 3hrs				37C artificial saliva for 24hrs			
Ex 6	strokes	10	30	60	90	10	30	60	90
	1	90%	----	----	----	90%	----	----	----
	2	90%	----	----	----	90%	----	----	----
	3	90%	----	----	----	90%	----	----	----
Ex 7	strokes	30	60	90	120	30	60	90	120
	1	0%	10%	30%	50%	0%	0%	10%	50%
	2	0%	30%	50%	90%	0%	10%	30%	90%
	3	0%	10%	30%	50%	0%	0%	10%	50%

What is claimed is:

1. An oral composition, comprising:
 - a solvent comprising water and a cosolvent chosen from lower alkyl alcohols and acetone;
 - 5 a basic copolymer comprising basic acrylate monomeric units, basic methacrylate monomeric units, or a combination thereof;
 - no less than 0.5 wt-% of an acid buffering or neutralizing agent; and
 - optionally an active agent;
 - wherein the oral composition comprises from about 6 to about 15 wt-% of water, from about 30 to about 80 wt-% of the cosolvent, and from about 25 to about 55 wt-% of the basic copolymer;
 - 10 wherein the basic copolymer is dissolved in the oral composition;
 - wherein the oral composition is capable of forming a film on a surface when contacted with an aqueous solution; and
 - 15 wherein the wt-% of each component is based on the total weight of the composition.
 2. The oral composition of claim 1, wherein the oral composition further comprises a neutral copolymer comprising neutral acrylate monomeric units, neutral methacrylate monomeric units, or a combination thereof.
 - 20 3. The oral composition of any proceeding claim, wherein the oral composition from about 0 to about 40 wt-% of the neutral copolymer.
 4. The oral composition of any preceding claim, wherein the neutral copolymer is chosen from Eudragit RS100 and Eudragit RL 100.
 - 25 5. The oral composition of any preceding claim, wherein the basic copolymer is chosen from Eudragit E100 and other copolymer containing dimethylaminoethyl methacrylate for ionic crosslinking.
 - 30 6. The oral composition of any preceding claim, wherein the molecular weight of the basic copolymer is from about 10,000 to about 100,000.

7. The oral composition of any preceding claim, wherein the oral composition is capable of forming the film in less than about 30 seconds after the oral composition is contacted with water.

5

8. The oral composition of any preceding claim, wherein the consistency of the oral composition is from about 45 to about 110.

9. The oral composition of any preceding claim, wherein the cosolvent is ethanol.

10

10. The oral composition of any preceding claim, wherein the solvent further comprises at least one additional component chosen from isopropanol, propylene glycol, glycerin, low molecular weight polyethylene glycol, ethylene glycol based ester alcohols, and combinations thereof.

15

11. The oral composition of any preceding claim, wherein the oral composition comprises from about 8 to about 12 wt-% of the water.

20

12. The oral composition of any preceding claim, wherein the oral composition comprises from about 35 to 60 wt-% of the cosolvent.

13. The oral composition of any preceding claim, wherein the acid buffering or neutralizing agent is selected from carbonates, bicarbonates, chlorides, hydroxides, dibasic citrates phosphates, sulfates, and combinations thereof.

25

14. The oral composition of any preceding claim, wherein the acid buffering or neutralizing agent is selected from phosphate based buffers, hydrogen phosphate based buffers, dihydrogen phosphaste based buffers, carboxylates based buffers, carbonate based buffers, hydrogen carbonate buffers, and combinations thereof.

30

15. The oral composition of any preceding claim, wherein the active agent is selected from whitening agents, anticaries agents, fluoride-delivery agents, anti-gingivitis agents,

tartar control agents, antiplaque agents, periodontal actives, breath freshening agents, malodor control agents, tooth desensitizers, salivary stimulants, flavors, biofilm disruptors, antimicrobials, anesthetic agent, pain killers, stain removal agents, coloring agents, remineralization agents, calculus-softening agents, and combinations thereof.

5

16. The oral composition of any preceding claim, wherein the active agent is a fluoride composition.

10 17. The oral composition of any preceding claim, wherein the active agent provides a

sustained fluoride release for at least 24 hours.

18. The oral composition of any preceding claim, wherein the active agent comprises at least two different fluoride salts.

15 19. The oral composition of any preceding claim, wherein the active agent is chosen from sodium fluoride, strontium fluoride, calcium fluoride, zinc fluoride, calcium chloride, calcium nitrate, calcium phosphates, calcium hydrogen phosphate, calcium dihydrogen phosphate, and combinations thereof.

20 20. The oral composition of any preceding claim, wherein the film remains on at least 90% of the surface after brushing the surface for at least 5 strokes.

21. The oral composition of any preceding claim, wherein the film remains on at least 90% of the surface after brushing the surface for at least 10 strokes.

25

22. The oral composition of any preceding claim, wherein the film remains on at least 90% of the surface after brushing the surface for at least 20 strokes.

30 23. The oral composition of any preceding claim, wherein the film remains on at least 90% of the surface after brushing the surface for at least 30 strokes.

24. The oral composition of any preceding claim, wherein the film remains on at least 90% of the surface after brushing the surface for at least 60 strokes.

5 25. The oral composition of any preceding claim, wherein the film remains on at least 90% of the surface after brushing the surface for at least 90 strokes.

26. The oral composition of any preceding claim, wherein the film remains on at least 90% of the surface after brushing the surface for at least 120 strokes.

10 27. The oral composition of any preceding claim, wherein the film remains on at least 90% of the surface after brushing the surface for from 5 to 120 strokes.

28. The oral composition of any preceding claim, wherein the film remains on at least 90% of the surface after brushing the surface for from 10 to 90 strokes.

15 29. The oral composition of any preceding claim, wherein the film remains on at least 90% of the surface after brushing the surface for from 20 to 60 strokes.

20 30. The oral composition of any preceding claim, wherein the film remains on at least 90% of the surface after brushing the surface for from 5 to 120 strokes.

25

30

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2014/054074

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61Q11/00 A61K8/81
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61Q A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 2011/084673 A2 (COLGATE PALMOLIVE CO [US]; PILCH SHIRA [US]; MASTERS JAMES [US]; SULLI) 14 July 2011 (2011-07-14) paragraphs [0002] - [0005]; claims -----	1-30
A	US 6 177 097 B1 (HANKE GUENTHER [DE]) 23 January 2001 (2001-01-23) the whole document -----	1-30
A	US 2006/024246 A1 (MAITRA PRITHWIRAJ [US] ET AL) 2 February 2006 (2006-02-02) paragraph [0034]; claims -----	1-30
A	WO 94/04126 A2 (UNILEVER PLC [GB]; UNILEVER NV [NL] UNILEVER PLC [GB]; UNILEVER NV [GB] 3 March 1994 (1994-03-03) claims; examples -----	1-30

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
21 November 2014	11/12/2014
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Donovan-Beermann, T

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/054074

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 2011084673	A2	14-07-2011	AR 079639 A1		08-02-2012
			AU 2010339872 A1		07-06-2012
			CA 2780349 A1		14-07-2011
			CN 102770115 A		07-11-2012
			CO 6460722 A2		15-06-2012
			EP 2512408 A2		24-10-2012
			JP 2013514987 A		02-05-2013
			RU 2012130090 A		27-01-2014
			TW 201129388 A		01-09-2011
			US 2012251466 A1		04-10-2012
			WO 2011084673 A2		14-07-2011
<hr/>					
US 6177097	B1	23-01-2001	AT 205700 T		15-10-2001
			AU 3261497 A		10-02-1998
			DE 19629167 A1		22-01-1998
			DK 0912162 T3		17-12-2001
			EP 0912162 A1		06-05-1999
			ES 2164349 T3		16-02-2002
			US 6177097 B1		23-01-2001
			WO 9803151 A1		29-01-1998
<hr/>					
US 2006024246	A1	02-02-2006	AR 050190 A1		04-10-2006
			AT 521387 T		15-09-2011
			AU 2005269670 A1		09-02-2006
			BR PI0513921 A		20-05-2008
			CA 2574222 A1		09-02-2006
			CN 101027101 A		29-08-2007
			CN 103720603 A		16-04-2014
			DK 1771227 T3		05-12-2011
			EP 1771227 A1		11-04-2007
			ES 2372400 T3		19-01-2012
			MY 148443 A		30-04-2013
			PL 1771227 T3		31-01-2012
			TW 1388342 B		11-03-2013
			US 2006024246 A1		02-02-2006
			US 2008233058 A1		25-09-2008
			WO 2006014775 A1		09-02-2006
			ZA 200700579 A		25-09-2008
<hr/>					
WO 9404126	A2	03-03-1994	AU 4706693 A		15-03-1994
			CN 1090750 A		17-08-1994
			WO 9404126 A2		03-03-1994