(54) 发明名称
一种 2- 嘧啶乙酸的合成方法

(57) 摘要
本发明公开了一种 2- 嘧啶乙酸的合成方法，往反应釜中加入浓盐酸，嘧啶，多聚甲醛，丙酮，在低温下反应，并滴加三氯化磷维持反应液中酸的饱和浓度，得到 2- 氯甲基嘧啶，在丙酮的催化下与氯化钠水溶液反应得到 2- 嘧啶乙酸，经过碱性水解得到目标产物 2- 嘧啶乙酸。本发明合成方法具有操作简单，生产成本低，原料利用率高并可回收利用，环境友好等优点。
1. 2-噻吩乙酸的合成方法，其特征在于，所述方法包括以下步骤：

（一）2-氯甲基噻吩的合成：
往反应釜中一次性加入浓盐酸和噻吩，在0～8℃搅拌下加入多聚甲醛和丙酮，在0～10℃下滴加三氯化磷，保温反应，得到2-氯甲基噻吩；

（二）2-噻吩乙腈的合成：
往反应釜中一次性加入水和固氮，待全溶后加入丙酮，加热升温至50～60℃，滴加上述步骤（一）得到的2-氯甲基噻吩，保温反应，得到2-噻吩乙腈；

（三）2-噻吩乙酸的合成：
往反应釜中一次性加入水，缓慢加入氢氧化钠固体，回流下，滴加步骤（二）制得的2-噻吩乙腈，保温反应，甲苯萃取除杂质后，加浓盐酸，调pH至1～2，冷却析晶，得到2-噻吩乙酸。

2. 如权利要求1所述的合成方法，其特征在于，步骤（一）中，在温度5～8℃下滴加三氯化磷。

3. 如权利要求1所述的合成方法，其特征在于，步骤（一）中，三氯化磷滴加时间为3～6h。

4. 如权利要求1所述的合成方法，其特征在于，步骤（一）中，浓盐酸：噻吩：多聚甲醛=1:1.2:1:1。

5. 如权利要求1所述的合成方法，其特征在于，步骤（二）中，加热升温至50～60℃。

6. 如权利要求1所述的合成方法，其特征在于，步骤（二）中，所述保温反应的温度为55～70℃，保温时间为4～5h。

7. 如权利要求1所述的合成方法，其特征在于，步骤（二）中，所述2-氯甲基噻吩：氢氧化钠：丙酮=1:0.73～0.8:0.31～0.55。

8. 如权利要求1所述的合成方法，其特征在于，步骤（三）中，保温时间为4～5h。

9. 如权利要求1所述的合成方法，其特征在于，步骤（三）中，所述2-噻吩乙腈：氢氧化钠=1:1～1.5。

10. 按权利要求1方法合成的2-噻吩乙酸。
一种2-噻吩乙酸的合成方法

技术领域
[0001] 本发明涉及一种精细化学品的合成方法，具体涉及一种2-噻吩乙酸的合成方法。

背景技术
[0002] 2-噻吩衍生物广泛应用于合成医药、农药、染料、化学试剂和高分子助剂等，其中，2-噻吩乙酸是目前用量最大的2-噻吩衍生物，全球用量在1000t/a左右。2-噻吩乙酸的分子式为C₆H₅O₇S；分子量为142，其结构式如下所示：

![结构式](image)

[0005] 上述方法中存在共同的问题包括：第一步需要在反应过程中不断通入氯化氢气体，操作麻烦，过量的氯化氢气体会带走原料，降低收率；而且甲基溶液容易聚合，使得样品失效；第二步中反应温度较高，会使氯化钠分解而失效，另外该步反应为非均相反应，转移催化剂的使用可促进反应的进行；第三步反应采用一锅法，反应过程有氨气生成，若没有及时排走会与氧基发生加成反应，使收率降低。

发明内容
[0006] 为了克服现有技术的不足，本发明提供了一种新的制备2-噻吩乙酸的合成方法。本发明方法有效降低了原料成本，简化了反应操作，提高了反应的安全系数，提高了反应收率。
发明 2- 噻吩乙酸的合成方法，往反应釜中加入浓盐酸、噻吩、多聚甲醛、丙酮，在低温下反应，滴加三氯化磷维持反应液中酸的饱和浓度，得到 2- 氯甲基噻吩，在丙酮的催化下与氯化钠水溶液反应得到 2- 噻吩乙腈，经过碱性水解得到目标产物 2- 噻吩乙酸。

发明 2- 噻吩乙酸的合成方法，其反应路线如下：

![反应路线图]

发明 2- 噻吩乙酸的合成方法，包括如下步骤：

（一）2- 氯甲基噻吩的合成：
往反应釜中一次性加入浓盐酸和噻吩，在 8℃以下，搅拌下加入多聚甲醛和丙酮，5～8℃下滴加三氯化磷，保温反应，得到 2- 氯甲基噻吩；

（二）2- 噻吩乙腈的合成：
往反应釜中一次性加入水和氯化钠，搅拌下加入丙酮，加热至 50～60℃，滴加上述步骤（一）得到的 2- 氯甲基噻吩和丙酮，得到 2- 噻吩乙腈；

（三）2- 噻吩乙酸的合成
往反应釜中一次性加入水，慢速加入氢氧化钠固体，升温至回流后，在敞口下慢慢滴加上述步骤（二）得到的 2- 噻吩乙腈，保温反应，加浓盐酸，调 pH 至 1～2，冷却析晶，得到 2- 噻吩乙酸，其结构如下所示：

![结构示意图]

发明合成方法中，
所述步骤（一）中，加入多聚甲醛和丙酮的过程需调控在 0～8℃，优选地，调控在 0～6℃。

滴加三氯化磷的过程需调控在温度 0～10℃条件下，优选地，调控在 5～8℃。

所述保温反应过程需调控在 0～10℃，优选地，保温度为 5～8℃。

所述步骤（一）中，浓盐酸与噻吩和多聚甲醛的摩尔比为：浓盐酸：噻吩：多聚甲醛 = 1 : 1.2 : 1 : 1。

所述步骤（一）中，所加溶剂丙酮作为稀释剂，降低副反应发生的几率，延缓噻吩与 2- 氯甲基噻吩发生氯化反应。其中，噻吩：丙酮 = 1 : 0.22～0.68，优选地，噻吩：丙酮 = 1 : 0.43～0.5。

所述步骤（一）中，氯化磷的滴加时间为 3～6h，优选地，滴加时间为 3～3.5h。

所述步骤（一）中，氯化磷与水反应生成氯化氢，所述氯化磷的用量为刚好能补给消耗的氯化氢。

所述步骤（一）中，保温时间为 1～3h，优选地，1～1.5h。

所述步骤（二）中，所加溶剂丙酮作为相转移催化剂，2- 氯甲基噻吩与氯化钠和
丙酮的摩尔比为：2-氯甲基喹啉：氯化钠：丙酮= 1 : 0.73 ~ 0.8 : 0.31 ~ 0.55，优选地，2-氯甲基喹啉：氯化钠：丙酮= 1 : 0.8 : 0.4。

[0028] 所述步骤（二）中，升温至50~60℃，优选地，升温至50~55℃。

[0029] 所述步骤（二）中，所述保温反应的温度为55~70℃，优选地，保温反应的温度为58~60℃。所述保温时间为4~5h。

[0030] 所述步骤（二）中，所得产物2-喹酚乙腈的含量≥80%。

[0031] 所述步骤（二）中，反应结束后，滤液中的氯化钠可以回收套用；滤饼用水漂洗，将包夹在其中未反应的少量氯化钠用NaClO氧化法处理后再排放。

[0032] 所述步骤（三）中，加入氢氧化钠固体所配成的氢氧化钠溶液的质量分数为10%~30%，优选地，氢氧化钠溶液的质量分数为20%。

[0033] 所述步骤（三）中，敞开的瓶口处加一个蒸馏头，敞口反应有利于生成的氢气及时排出，降低氢气与氨基加成的几率。

[0034] 所述步骤（三）中，2-喹酚乙腈与氢氧化钠的摩尔比为：2-喹酚乙腈：氢氧化钠= 1 : 1 ~ 1.5。优选地，摩尔比为：2-喹酚乙腈：氢氧化钠= 1 : 1.2 ~ 1.5。优选地，摩尔比为：2-喹酚乙腈：氢氧化钠= 1 : 1.3 ~ 1.5。

[0035] 所述步骤（三）中，保温反应的反应时间为4~5h。

[0036] 本发明还提出了按本发明上述方法合成的2-喹酚乙酸。

[0037] 与背景技术相比，本发明优点包括：在第一步反应中，通过缓慢滴加三氯化磷，使其与水反应生成氯化氢，使得反应液中的氯化氢始终保持较高的浓度，反应向正方向移动。该方法操作简单，对设备的破坏程度减小；另外，第一步反应为放热反应。通过控制三氯化磷的滴速，选择5~8℃更能适应工业化生产；在第二步反应中选择用丙酮作为相转移催化剂，以此步骤回收丙酮和未反应的喹啉；在第三步中，采用敞口装置，有利于氨气及时排出，促进产物的生成和收率的提高。本发明合成方法具有操作简单，生产成本低，原料利用率高，可回收利用，环境友好等优点。

具体实施方式

[0038] 结合以下具体实施例，对本发明作进一步的详细说明，本发明的保护内容不限于以下实施例。在不背离发明构思的精神和范围下，本领域技术人员能够想到的变化和优点都被包括在本发明中，并且以所附的权利要求书为保护范围。实施本发明的过程，条件，试剂，实验方法等，除以下专门提及的内容之外，均为本领域的普遍知识和公知常识，本发明没有特别限制内容。

[0039] 实施例1：

[0040] （一）2-氯甲基喹啉的合成：

[0041] 往500毫升反应瓶中一次性加入140克30%盐酸和84克喹啉，冷至8℃以下时，加入50毫升丙酮和30克多聚甲醛。加完后，立刻滴加三氯化磷，控制内温5~8℃，约3.5h滴完，尔后6~7℃保温反应1h。

[0042] 后处理：反应结束后，静置分层，分出下层有机相，用30~40ml冰水洗一次，得到下层粗品2-氯甲基喹啉110g，收率83%。直接用于下一步的反应。

[0043] （二）2-喹酚乙腈的合成：
往 500 毫升反应瓶中一次性加入 40g 固体氯化钠和 70 毫升水，搅拌待全溶后加入 40 毫升丙酮。然后升温至 50 ～ 55℃时，滴加上一步的粗品 2- 氯甲基噻吩，约半小时滴完。然后在 58 ～ 60℃保温反应 4h。

后处理：反应结束后，冷却、过滤，静置分层。上层有机相回收低沸物后，得粗品约 110 克。高真空 (78～83℃/0.5mmHg) 得产品 2- 噻吩乙腈 56g，收率大于 75%，HPLC :86.4 %。

IR (液膜) ν (cm⁻¹) 2254(CN), 1536, 1437, 1239 (噻吩环)。

'H NMR (CDCl₃)：(噻吩基上的氢)，3.83 (2H, CH₂)。

'¹³C NMR (CDCl₃)：d :131.04, 127.26, 127.15, 125.84 (噻吩环上的 4 个碳)，117.18 (CN), 18.34 (CH₃)。

(三) 2- 噻吩乙腈的合成：

在 500 毫升反应瓶中，一次性加入 95 毫升水，搅拌下慢慢加入 23 克片碱。加完后升温至 95 度左右时，开始在敞口下慢慢滴加 56 克 2- 噻吩乙腈，约 1h 滴完。尔后在该温度下保温反应 4-5 小时。

反应结束后，冷至室温，加入 40 毫升甲苯萃取除杂质；分出下层水相，用空气鼓泡除氨，然后 30% 盐酸调 PH 至 1～2，冷却至 5℃以下，保持 1h 以上。过滤，滤饼 90℃真空干燥，得到产物 2- 噻吩乙腈，收率大于 85%。熔点 64-65℃，IR (KBr) (cm⁻¹) :3300～2500, 1705 (COOH), 1539, 1439, 1242 (噻吩环)。

'H NMR (CDCl₃)：11.55 (1H, COOH), 6.95～7.23 (3H, 噻吩基上的氢)，3.87 (2H, CH₂)。

'¹³C NMR (CDCl₃)：177.32 (COOH), 134.21, 127.50, 127.15, 125.57 (噻吩环上的 4 个碳)，35.27 (CH₃)。

实施例 2：

(一) 2- 氯甲基噻吩的合成：

往 250 毫升反应瓶中一次性加入 70 克 30% 盐酸和 42 克噻吩，冷至 8℃以下时，加入 25 毫升丙酮和 15 克多聚甲醛。加完后，立刻滴加三氯化磷，控制内温 5 ～ 8℃，约 3.5h 滴完，尔后 6 ～ 7℃保温反应 1h。

后处理：反应结束后，静置分层，分出下层有机相，用 15 ～ 20ml 冰水洗一次，得到下层粗品 2- 氯甲基噻吩 58g，收率大于 85%。直接用于下步的反应。

(二) 2- 噻吩乙腈的合成：

往 250 毫升反应瓶中一次性加入 20g 固体氯化钠和 35 毫升水，搅拌待全溶后加入 20 毫升丙酮。然后升温至 50 ～ 55℃时，滴加上一步的粗品 2- 氯甲基噻吩，约半小时滴完。然后在 58 ～ 60℃保温反应 4h。

后处理：反应结束后，冷却、过滤，静置分层。上层有机相回收低沸物（先常压后减压）后，得粗品 2- 噻吩乙腈约 55 克。高真空 (78～83℃/0.5mmHg) 得产品 28g，收率大于 75%，HPLC :86.4 %。

IR (液膜) ν (cm⁻¹) 2254(CN), 1536, 1437, 1239 (噻吩环)。

'H NMR (CDCl₃)：(噻吩基上的氢)，3.83 (2H, CH₂)。

'¹³C NMR (CDCl₃)：d :131.04, 127.26, 127.15, 125.84 (噻吩环上的 4 个碳)，117.18 (CN), 18.34 (CH₃)。

(三) 2- 噻吩乙腈的合成：

在 250 毫升反应瓶中，一次性加入 47 毫升水，搅拌下慢慢加入 11.8 克片碱。加完后升温至 95 度左右时，开始在敞口下慢慢滴加 28 克 2- 噻吩乙腈，约 1h 滴完。尔后在该温度下保温反应 4 ～ 5 小时。

反应结束后，冷至室温，加入 20 毫升甲苯萃取除杂质；分出下层水相，用空气鼓泡
除氨，然后 30% 盐酸调 PH 至 1 ~ 2，冷却至 5℃以下，保持 1h 以上。过滤，滤饼 30℃真空干燥，得到产物 2- 噻吩乙酸，收率大于 85%。熔点 64-65℃，IR(KBr) (cm⁻¹) : 3300 ~ 2500, 1705 (COOH), 1539, 1439, 1242（噻吩环）。¹HNMR (CDCl₃) : 11.55 (1H, COOH), 6.95 ~ 7.23 (3H, 噻吩基上的氢), 3.87 (2H, CH₂)。¹³CNMR (CDCl₃) : 177.32 (COOH), 134.21, 127.50, 127.15, 125.57（噻吩环上的 4 个碳）, 35.27 (CH₂)。