
USOO767645OB2

(12) United States Patent (10) Patent No.: US 7,676.450 B2
Ahmed et al. (45) Date of Patent: Mar. 9, 2010

(54) NULL AWARE ANTI-JOIN 6,289,334 B1 9/2001 Reiner et al.
6,298,342 B1 10/2001 Graefe et al.

(75) Inventors: Rafi Ahmed, Fremont, CA (US); Angela 6,339,768 B1 1/2002 Leung et al.
Amor, Menlo Park, CA (US) 6,370,524 B1 4/2002 Witkowski

s s 6,449,606 B1* 9/2002 Witkowski 707/3

(73) Assignee: Oracle International Corporation, 6,529,896 B1 3/2003 Leung et al.
Redwood Shores, CA (US) 6,529,901 B1 3, 2003 Chaudhuri et al.

s 6,694,306 B1 2/2004 Nishizawa et al.
6,834,279 B1 12/2004 Chiang 707/2

(*) Notice: Subject to any disclaimer, the term of this 6,934,699 B1 8, 2005 E. al.
patent is extended or adjusted under 35 7,072,896 B2 7/2006 Lee et al.
U.S.C. 154(b) by 328 days. 7,089,225 B2 8, 2006 Li et al.

7,246,108 B2 7/2007 Ahmed
(21) Appl. No.: 11/716,462 2001/004.7372 A1 11/2001 Gorelik et al.

(22) Filed: Mar. 8, 2007 (Continued)
(65) Prior Publication Data OTHER PUBLICATIONS

Deutsch, Alin et al., “Minimization and Group-By Detection for
US 2007/0219952 A1 Sep. 20, 2007 Nested XQueries'. University of California, San Diego, 2003, 15

Related U.S. Application Data pageS.

(60) Provisional application No. 60/782,785, filed on Mar. (Continued)
15, 2006. Primary Examiner Tim T. Vo

Assistant Examiner Shiow-Jy Fan
(51) Int. Cl. (74) Attorney, Agent, or Firm—Hickman Palermo Truong &

G06F 7/30 (2006.01) Becker LLP
(52) U.S. Cl. ... 707/2; 707/5
(58) Field of Classification Search 707/25 (57) ABSTRACT

See application file for complete search history. - - -
Techniques for performing a “null-aware' anti-join operation

(56) References Cited are described. Unnesting using anti-join of NOT IN/ALL
U.S. PATENT DOCUMENTS

5,732,258. A * 3/1998 Jakobsson et al. 707/4
5,761,654. A 6, 1998 Tow 707/2
5,832,477 A 11/1998 Bhargava et al.
5,857, 180 A 1/1999 Hallmarket al.
5,963,933 A * 10/1999 Cheng et al. 707/2
6,026,394 A 2/2000 TSuchida et al.
6,044,378 A 3/2000 Gladney
6,061,676 A 5, 2000 Srivastava et al.

SORT-MERGE JOINFOR
NULL-AWAREAN-JON OPERATION

210 SORT LEFT-SIDE ROWSFRON
LEFTABLE

SORTRIGHT-SIDE ROWSFROM
RIGHT TABLE

is empty

y 50
REMOWELEFT-SIDE ROWS THAT

CONANNULL

260
RETURN NON-MATCHING ROWS

Row containing
NULL found

-- Set of right-side rows

Subquery uses null-aware anti-join operation, resulting in a
rewritten query that, when computed, produces results con
sistent with the NULL semantics of NOT IN/ALL subquery.
The semantics of the “null-aware' anti-join operation allow
the query having the NOT IN/ALL subquery to be rewritten
even though a no-NULL restriction requirement, for the oper
ands of the anti-join condition in the query, may not be met.

32 Claims, 4 Drawing Sheets

230

ERMINATEAMDRETURN
NORONS

240

TERMINATEAMD RETURN
ALL LEFT-SIDE ROWS

US 7,676.450 B2
Page 2

U.S. PATENT DOCUMENTS

2004/O220911 A1
2004/O220923 A1
2005/0055382 A1
2005/0076O18 A1
2005. O149584 A1
2005/O187917 A1
2005, 01980 13 A1
2006.0167865 A1
2008/0010240 A1

OTHER PUBLICATIONS

11/2004 Zuzarte et al.
11/2004 Nica
3/2005 Ferrat et al.
4/2005 Neidecker-Lutz
7/2005 Bourbonnais et al.
8/2005 Lawande et al.
9/2005 Cunningham et al.
7/2006 Andrei
1/2008 Zait

DeHaan, David, “A Rewriting Algorithm for Multi-Block Aggrega
tion Queries and Views using Prerequisites and Compensations'.

University of Waterloo, Canada, Technical Report CS-2004-25, May
3, 2004, 39 pages.
Chaudhuri, Surajit, “An Overview of Query Optimization in Rela
tional Systems'. Microsoft Research, 1998, 10 pages.
Muralikrishna, M., “Improved Unnesting Algorithms for Join Aggre
gate SQL Queries'. VLDB Conference, Canada, 1992, 12 pages.
Hayu, John, "Analytic SQL Features in Oracle9i'. An Oracle Tech
nical White Paper, Dec. 2001, 32 pages.
Oracle, "Optimizer Modes, Plans Stability, and Hints'. Oracle8i
Tuning Release 8.1.5 A67775-01, Oracle Website, 1999, 54 pages.
Chen, et al., “View merging in the context of view selection chang
ing. Database Engineering and Applications Symposium 2002. Pro
ceedings, Jul. 2002, 10 pages.

* cited by examiner

U.S. Patent Mar. 9, 2010

SORT-MERGE JOINFOR
NULL-AWARE ANT-JON OPERATION

Sheet 2 of 4 US 7,676.450 B2

SORT LEFT-SIDE ROWS FROM
LEFT TABLE

SORTRIGHT-SIDE ROWS FROM
RIGHT TABLE

-O-

V
REMOVE LEFT-SIDE ROWS THAT

CONTAIN NULL

RETURN NON-MATCHING ROWS

-

10

230
220

TERMINATE AND RETURN
NO ROWS

ROW Containing
NULL found

240

TERMINATE AND RETURN
ALL LEFT-SIDE ROWS

Set of right-side rows
is empty

-250

60

FIG 2

U.S. Patent Mar. 9, 2010 Sheet 3 of 4 US 7,676.450 B2

HASH JOINFOR
NULL-AWARE ANT-JON OPERATION

y 31 O
ADD ROWS FROM LEFT TABLE TO HASH.TABLE

FROM LEFT-SIDE

For each rOW from
-

right-side table
320

No more
OWS to
process

DETERMINE WHETHERROW ROW Contains
CONTAINS NULL NULL

ROW does not ERMINATE AND RETURN 340
COntain NULL NOROWS

330

REMOVE MATCHED ROWS FROM
HASH TABLE

350

No right-side TERMINATE AND RETURNALL
rows in right table LEFT-SDE ROWS

360
REMOVE ROWS THAT

CONTAIN NULL FROM HASH
TABLE

RETURNROWS IN HASH 370 FIG. 3
TABLE AS ANT-JON RESULT

US 7,676.450 B2 U.S. Patent

US 7,676,450 B2
1.

NULLAWARE ANT-JON

RELATED APPLICATIONS

The present application claims priority to U.S. Provisional
Application No. 60/782,785 entitled Cost Based Query
Transformation Join Factorization And Group By Place
ment, filed on Mar. 15, 2006 by Hong Su, et al., the content of
which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to database systems, and in
particular, to optimization of queries executed by a database
system.

BACKGROUND

Relational and object-relational database management
systems store information in tables of rows in a database. To
retrieve data, queries that request data are Submitted to a
database server, which computes the queries and returns the
data requested.

Queries submitted to the database server must conform to
the syntactical rules of a particular query language. One
popular query language, known as the Structured Query Lan
guage (SQL), provides users a variety of ways to specify
information to be retrieved.
A query Submitted to a database server is evaluated by a

query optimizer. Based on the evaluation, the query optimizer
generates an execution plan that defines operations for
executing the query. Typically, the query optimizer generates
an execution plan optimized for efficient execution. The opti
mized execution plan may be based on a rewrite of the query.
A common type of query that is optimized is a query that

contains a subquery whose join condition involves the NOT
IN/ALL operator (NOT IN is equivalent to =ALL). In data
warehouses with reporting applications, such queries and
Subqueries are usually evaluated on very large sets of data.
Thus, it is critical to make Such queries scale in any SQL
execution engine. When Such queries are not optimized using
anti-join, the Subquery is executing an operation that is effec
tively a Cartesian product, which is quite inefficient.
One common technique for optimizing these kinds of que

ries is anti-join unnesting. In anti-join unnesting, a subquery
operand of an NOT IN/ALL operator is either merged with
the containing "outer query' or an inline view is created for
the subquery and the columns in the join condition of the NOT
IN/ALL operator are used to form a join condition of an
anti-join. To illustrate anti-join unnesting, the following
query Q1 is transformed into Q2. Note that in this example
both the columns T1.x and T2.y contain only non-null values.

Q1: SELECTT1...c
FROMT1
WHERET1.x. NOT IN (SELECT T2-y

FROM T2
WHERET2.z > 10);

Q2: SELECTT1...c
FROM T1, T2
WHERET1.x A= T2.y and T2.z > 10;

Query Q1 is rewritten by merging the Subquery operand of
the NOT IN operator of Q1 into Q1's outer query to produce
query Q2. Query Q2 contains the anti-join operator T1.X
A=T2.y, which is based on the join columns (i.e. T1.x, T2,y)

5

10

15

25

30

35

40

45

50

55

60

65

2
of the NOT IN operator in query Q1. The anti-join operator
specifies the join condition T1.x A=T2.y. A condition that
compares columns between tables, is hereafter referred to as
a join condition. A joining column is a column being com
pared, by an operator in a join condition, to a column of
another table. Query Q2 may be executed far more efficiently
than query Q1. Note that the anti-join operator A is non
standard SQL and is used here for the purpose of illustration
only.
The anti-join is an asymmetric join, where a row of the “left

table' is returned only if it does not match (i.e. does not satisfy
the connecting condition) with any row in the “right table'.
The term “left” is used to designate the table whose rows are
returned by an anti-join operation, and not to designate the
table's position within an expression. Similarly, the term
“right' is used to designate the table whose rows are to be
matched (or not) to a left table by an anti-join operation, and
not to designate the table's position within an expression.
Nevertheless, the notation T1.x A=T2.y is used to represent
an anti-join, where T1 is the table on the left of the anti-join
and T2 is the table on the right of the anti-join.
The term table refers generally to any set of rows or tuples

stored in a database table or computed for an expression, Such
as a query or subquery. For example, the rows returned by the
NOT IN/ALL subquery of Q1 can be referred to as a table.

In Q2, under the semantics of an anti-join, for each row of
T1, the join condition T1.x=T2.y is evaluated, and if no match
is found with any row of T2, then that row of T1 is returned.
The semantics of evaluating the NOT IN/ALL subquery in Q1
is identical to the semantics of the anti-join Summarized
below.

1. If T2 contains no rows after the application of the filter
predicate, then return all the rows of T1 and terminate.

2. For each row of T1, return the row, ifT1.x has no match
with any row of T2.

The anti-join unnesting transformation of Q1 to Q2 is an
example of one form anti-join unnesting in which a subquery
is merged into the outer query. In another form, a subquery is
converted into an inline view of the outer query. The trans
formation of Q3 to Q4 illustrates this latterform. Again in this
example, both the columns T1.X and T2.y contain only non
null values.

Q3: SELECTT1...c
FROMT1
WHERET1.x. NOT IN (SELECT T2-y

FROM T2, T3
WHERET2.Z = T3.w

and T2.k > 10);
Q4: SELECTT1...c

FROM T1,
(SELECT T2.y ASY
FROM T2, T3
WHERET2.Z = T3.w

and T2.k > 10) V
WHERET1.x A= Vy:

Query Q4 is rewritten by converting the subquery operand
of the NOT IN operator of Q3 into inline view V of Q4. Query
Q4 contains the anti-join operator T1.x A=T2.y, which is
based on the join columns (i.e. T1.x, T2.y) of the NOT IN
operator in query Q3. The anti-join operator specifies the join
condition T1.x A=T2.y.

Unfortunately, anti-join unnesting for NOT IN/ALL Sub
queries may only be performed when a certain restriction,
referred to herein as the no-NULL restriction, is met. The
no-NULL restriction requires that both operands of the anti

US 7,676,450 B2
3

join condition are free of NULL values for every row in the
left and right tables. For example, query Q1 satisfies the
no-NULL restriction only when column T1.x does not con
tain any NULL values, and no row in T2 that satisfies the
predicate filter condition T2.Z contains a NULL value in
column T2.y.
The no-NULL restriction bars anti-join unnesting for a

large proportion of NOT IN/ALL subqueries; therefore the
optimizer is forced to choose a Sub-optimal plan. Clearly,
there is a need for techniques and mechanisms for performing
anti-join unnesting when the no-NULL restriction is not sat
isfied.
The approaches described in this section are approaches

that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which like reference numerals refer to similar
elements and in which:

FIG. 1 is a diagram of a query optimizer according to an
embodiment of the present invention.

FIG. 2 depicts a procedure for performing a NULL aware
sort-merge join according to an embodiment of the present
invention.

FIG. 3 depicts a procedure for performing a hash join
according to an embodiment of the present invention.

FIG. 4 depicts a computer system which may be used to
implement an embodiment of the present invention.

DETAILED DESCRIPTION

In the following description, for the purposes of explana
tion, numerous specific details are set forthin order to provide
a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be prac
ticed without these specific details. In other instances, well
known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present
invention.

Described herein are techniques for performing a “null
aware' anti-join operation. Anti-join unnesting rewrite of
NOT IN/ALL subqueries that use a null-aware anti-join
operation results in a rewritten query that, when computed,
produces results consistent with the NOT IN/ALL subque
ries.

Illustrative Operational Environment
FIG. 1 is a diagram depicting a query optimizer and related

components within a database server (not shown) used to
implement an embodiment of the present invention. Gener
ally, a server, Such as a database server, is a combination of
integrated Software components and an allocation of compu
tational resources, such as memory, a node, and processes on
the node for executing the integrated Software components,
where the combination of the software and computational
resources are dedicated to providing a particular type of func
tion on behalf of clients of the server. A database server
governs and facilitates access to a particular database, pro
cessing requests by clients to access the database.
A database comprises data and metadata that is stored on a

persistent memory mechanism, such as a set of hard disks.
Such data and metadata may be stored in a database logically,

5

10

15

25

30

35

40

45

50

55

60

65

4
for example, according to relational and/or object-relational
database constructs. Database applications interact with a
database server by Submitting to the database server com
mands that cause the database server to perform operations on
data stored in a database. A database command may be in the
form of a database statement. For the database server to
process the database statements, the database statements
must conform to a database language Supported by the data
base server. One non-limiting database language Supported
by many database servers is SQL, including proprietary
forms of SQL supported by such database servers as Oracle,
(e.g. Oracle Database 10 g). SQL data definition language
(“DDL) instructions are issued to a database server to create
or configure database objects, such as tables, views, or com
plex types.
Query Optimizer and Execution Plans
Referring to FIG. 1, query parser 110 receives a query

statement and generates one or more different candidate
execution plans for a query, which are evaluated by query
optimizer 120 to determine which should be used to compute
the query. The one or more candidate execution plans that are
evaluated for this purpose are collectively referred to as the
plan search space or search space. For a given query, a search
space may include candidate execution plans P, P through
Py.
To evaluate the candidate execution plans in the search

space, query optimizer 120 estimates a cost of each candidate
execution plan and compares the estimated query costs to
select an execution plan for execution. In an embodiment, the
estimated query cost is generated by a query cost estimator
130, which may be a component of query optimizer 120. For
a plan P, supplied by query optimizer 120, cost estimator 130
computes and generates an estimated query cost E. In gen
eral, the estimated query cost represents an estimate of com
puter resources expended to execute an execution plan. To
determine which candidate execution plan in the search space
to execute, query optimizer 120 selects the candidate execu
tion plan with the lowest estimated cost.

Query optimizer 120 may optimize a query by transform
ing the query. In general, transforming a query involves
rewriting a query into another semantically equivalent query
that should produce the same result and that can potentially be
executed more efficiently, i.e. one for which a potentially
more efficient and less costly execution plan can be gener
ated. Examples of query transformation include view merg
ing, Subquery unnesting, predicate move-around and push
down, common Subexpression elimination, outer-to-inner
join conversion, materialized view rewrite, and Star transfor
mation.
The query that has undergone some type of transformation

is referred to herein as the transformed query. The query is
rewritten by manipulating a copy of the query representation
to form a transformed query representation.
One or more alternate transformations may be performed,

and for each alternate transformation, one or more candidate
execution plans are generated. Thus, a search space may
contain candidate execution plans for multiple transforma
tions, and multiple candidate execution plans for a single
query transformation.
The Bane of Nulls
The SQL-Standard has varied semantics for dealing with

NULL values, which may be used for various operators. For
NOT IN/ALL as well as other types of operators, any rela
tional comparison with NULL values always evaluates to
FALSE. For example, the predicates, 5=NULL, 5 =NULL,
NULL=NULL, NULL =NULL, all evaluate to FALSE.
However, for other operations, such as those performed for

US 7,676,450 B2
5

GROUP BY MINUS, INTERSECT, NULL values match
null values. These two semantics can be broadly categorized
as horizontal and vertical semantics. Operations for NOT
IN/ALL follow the horizontal semantics while the operations
for GROUP BY MINUS, INTERSECT follow vertical
semantics.

Furthermore, the NOT IN (i.e. =ALL) operator is a set
non-membership operator and can be expressed as a conjunc
tion of inequalities. The operators <ALL, C-ALL, >ALL
and > ALL, can be similarly expressed.

To illustrate, Suppose the subquery in query Q1 that is the
right operand of the NOT IN operator returns the following
set of values {7, 8, 11, NULL. The NOT IN operator can be
expressed as follows:

T1.x =7 and T1.x =8 and T1.x = 11 and T1.x =NULL
The above expression evaluates to FALSE, since T1.x

=NULL always evaluates to FALSE irrespective of the value
of T1.x. Thus, in any case, Q1 should return no rows.

Suppose T1.x has the following set of values: NULL, 5, 8,
11). Query Q2, the transformed query generated by regular
anti-join unnesting, incorrectly returns (NULL, 5}.

Suppose the subquery in Q1 returns the following set of
values {7, 8, 11 and T1.x has the same set of values NULL,
5, 8, 11. The correct result of Q1 is {5}. Regular anti-join
unnesting again incorrectly returns (NULL, 5}.
Now suppose the subquery returns an empty set { }. The

correct result is the entire set of values of T1.x: NULL, 5, 8,
11. In this case, regular anti-join unnesting produces the
correct result.
NULL-Aware Anti-join
A null-aware anti-join qualifies rows consistent with

NULL semantics of a NOT IN/ALL subquery. The following
non-standard notation T1.x NA=T2.y is used to represent a
null-aware anti-join, where T1 is the left table of the anti-join
and T2 is the right table of the anti-join. The join condition of
the NULL aware anti-join is T1.x=T2.y. A NULL aware
anti-join is not limited to connecting conditions based on
equality; the operators >, >, <, <- are also allowed in null
aware anti-join. An anti-join operation that does not follow
these semantics is referred to hereafter as a regular anti-join.

The subquery in Q1 can be rewritten under anti-join
unnesting using a null-aware anti-join as shown in query Q5.

Q5:
SELECT T1C
FROM T1, T2
WHERET1.x NA=T2.y and T2.z>10;
The semantics of null-aware anti-join can be described by

the example of the query Q1 and Q5. It should be noted that
the null-aware anti-join is performed after application of the
filter predicate T2.z>10.

1. If T2 contains no rows, then qualify all rows of T1 for the
null-aware anti-join and terminate. This is identical to a regu
lar anti-join. If there are NULL values in T1.x in the left rows,
these are returned in this case. The term “qualify” with respect
to an anti-join or null-aware anti-join means to be placed or
returned within the result of an anti-join or null-aware anti
join operation.

2. If after the application of the filter predicate T2.Z>10,
T2.y contains a NULL value, then qualify no rows for the
null-aware anti-join operation and terminate. This is an
important difference between a regular anti-join and a null
aware anti-join. If a NULL value is found in the table on the
right, then no rows are qualified for the null-aware anti-join.

3. For each row of T1 with a non-NULL value in T1.x, then
qualify the row for the null-aware anti-join, if T1.x has no
match with any row of T2. This is similar to that of a regular
anti-join, except that a row from the left table is not qualified

10

15

25

30

35

40

45

50

55

60

65

6
if it has a NULL value in the anti-join condition. The row is
disqualified without checking its matching condition.
Computing NULL-aware Anti-join
Like a regular anti-join, a null-aware anti-join may be

computed using three different types of join operations: a
sort-merge join, hash-join and a nested-loops join. When
query optimizer 120 receives a query that includes a NOT
IN/ALL Subquery, it may generate a candidate execution plan
for each of the join types, to compare the costs and select an
execution plan based on the costs. Because of the different
NULL semantics used, a sort-merge, hash and nested-loops
join are executed differently between a regular anti-join and
NULL-aware anti-join. Procedures for performing a sort
merge join, a hash-join and a nested-loops join for a NULL
aware anti-join are described below.

Terminology
Referring to a row from the left or right as matching a join

condition oras matching a row from the table on the other side
means that a join condition is satisfied by the rows and that
any filter condition that should be applied to a row from the
left table (“left-side filter condition') or a row from the right
table (“right-side filter condition') is satisfied. For example
for query Q5, when a row from T1 matches a row from T2,
then join condition T1.x=T2.y and the right side filter condi
tion T2.Z>10 are satisfied with respect to the rows.

Referring to a row as containing a NULL value means that
the row contains a NULL value in a joining column and
satisfies any left-side or right-side filter conditions that should
apply, if any. For example for query Q5, when a row from
right table T2 contains a NULL value, the row contains a
NULL value in column T2.y and satisfies the right side filter
condition T2.Z>10.

Referring to a right table as being empty or containing no
rows, means no row in the right table satisfies any right-side
filter conditions that apply. For example, in query Q5, refer
ring to right table T2 as containing no rows means that no
rows in T2 satisfy the right-side filter condition T2.Z-10.
Further, the right table may not contain any rows. The right
table may also be a view (rather thanabase table), which does
not return any rows after its joins and filters are evaluated.

Sort Merge Join
FIG. 2 is a flow chart showing a procedure for performing

a sort-mergejoin for a null-aware anti-join. Referring to FIG.
2, at 210 rows from the left table (“left-side rows') are sorted
and at 220 rows from the right table (“right-side rows') are
sorted. Filter conditions from the subquery on the right table
(“right table filter') are applied when forming the right-side
rows; the right-side rows thus exclude any rows not satisfying
the filter condition.

If, during the sort of the right side, a row is encountered that
contains a NULL value, then at 230 the sort merge join
operation is terminated and no rows are returned as the result
of the anti-join operation. If the set of right rows is empty, then
at 240 all left-side rows are qualified for the anti-join, includ
ing the ones containing NULL values.

Otherwise, at 250, the left-side rows that contain a NULL
value are removed from this set. At 260, any left-side row with
no matching row in the right-side is qualified for the anti-join.

Hash Join
FIG. 3 is a flow chart showing a procedure for performing

a hash join. Referring to FIG. 3, at 310, the rows from the left
table are added to a hash table that hashes the connecting
column of the left table. Next, a loop comprising operations
320 and 330 is performed iteratively for each row from the
right table. During each iteration, a row is examined. At 320
it is determined whether the row contains a NULL value. If so,
then at 340 the procedure is terminated and no rows are

US 7,676,450 B2
7

qualified for the null-aware anti-join. Otherwise, at 330 if the
row matches any left-side row, the left-side row is removed
from the hash table.

If the right table contained no rows (e.g. because no rows
satisfied a right side filter conditions), then at 350 the proce
dure terminates and all rows from the left table are qualified
for the null-aware anti-join. Otherwise, at 360 rows contain
ing NULL values are removed from the hash table. At 370,
rows in the hashtable are returned as a result of the null-aware
anti-join.

Index-Based Nested-loops Join
An index-based nested-loops regular anti-join is a join

operation that is performed iteratively, with an iteration for
each row in the left table. For each iteration, the right table is
scanned (i.e. using an indeX probe that reads and traverses
only a portion of the index and/or the table) to determine
whether there are any matching rows. If a matching row is
found, then the row from the left table is disqualified. If not,
then the row from the left table is qualified for the anti-join. In
an implementation of the nested-loops join, the determination
of whether a left-side row qualifies for the anti-join can only
be made during the iteration for that row.
A nested-loops join for anti-join unnesting is performed

using a regular anti-join, Subject to the following. The first
time the right table is scanned, when attempting to find a
match for the first row of the left table, a check will be made
for whether the right table has any rows satisfying the predi
cates or not. If this check finds that the right table is empty,
then all the rows from the left will be qualified for the anti
join, without any further scans of the right table. For null
aware anti-join, if this check finds that the right table is not
empty, then any row from the left table that has a NULL value
in the joining column will be disqualified.
A non-correlated NOT EXISTS subquery is added to the

predicate of the outer query in the rewritten query. The sub
query evaluates to a constant whose value indicates whether
the right table contains a NULL value in the joining column.
Query Q6 represents a rewritten query of Q1 rewritten in this
way.

SELECTT1...c
FROM T1, T2
WHERET1.x NA= T2.y and T2.z > 10 and
NOT EXISTS (SELECT 1

FROMT2
WHERET2.Z - 10 and
T2.y IS NULL);

In the execution plan for the rewritten query, the uncorre
lated Subquery is computed before the anti-join operation. If
the results of the subquery indicate that a right table row
contains a NULL value, all rows from the left table are dis
qualified from the anti-join and the anti-join is never com
puted. The cost of the uncorrelated NOT EXISTS subquery is
added to the cost of doing nested-loop null-aware anti-join,
which is then compared with sort-merge null-aware anti-join
and hash null-aware anti-join; the least expensive of three join
methods is then selected. When sort-merge or hash null
aware anti-join is selected, the uncorrelated NOT EXISTS
Subquery is removed.

Null Safe Indexes
To scan rows of the left and right tables, the sort merge,

hash and nested-loops join operations may use an index hav
ing a joining column as an index key. Since the procedures for
these depend on detecting rows that contain NULL values, it
is important that any index used to scan for rows in the tables

10

15

25

30

35

40

45

50

55

60

65

8
be “null safe', that is, contain entries for columns containing
NULL values in the joining column. If the index was not
NULL safe, the fact that a row contains a NULL value cannot
be detected by a scan using the index.

Typically, a bitmap index contains entries for a NULL key
column while a b-tree index does not, unless the key of the
b-tree index is a concatenated key and at least one of the key
columns is constrained to non-NULL values. If a NULL safe
index is not available to scan the table, then a full table scan
may be used.

Hardware Overview
FIG. 4 is a block diagram that illustrates a computer system

400 upon which an embodiment of the invention may be
implemented. Computer system 400 includes a bus 402 or
other communication mechanism for communicating infor
mation, and a processor 404 coupled with bus 402 for pro
cessing information. Computer system 400 also includes a
main memory 406. Such as a random access memory (RAM)
or other dynamic storage device, coupled to bus 402 for
storing information and instructions to be executed by pro
cessor 404. Main memory 406 also may be used for storing
temporary variables or other intermediate information during
execution of instructions to be executed by processor 404.
Computer system 400 further includes a read only memory
(ROM) 408 or other static storage device coupled to bus 402
for storing static information and instructions for processor
404. A storage device 410. Such as a magnetic disk or optical
disk, is provided and coupled to bus 402 for storing informa
tion and instructions.
Computer system 400 may be coupled via bus 402 to a

display 412, Such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 414, includ
ing alphanumeric and other keys, is coupled to bus 402 for
communicating information and command selections to pro
cessor 404. Another type of user input device is cursor control
416. Such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec
tions to processor 404 and for controlling cursor movement
on display 412. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g., y), that allows the device to specify positions in a plane.
The invention is related to the use of computer system 400

for implementing the techniques described herein. According
to one embodiment of the invention, those techniques are
performed by computer system 400 in response to processor
404 executing one or more sequences of one or more instruc
tions contained in main memory 406. Such instructions may
be read into main memory 406 from another machine-read
able medium, such as storage device 410. Execution of the
sequences of instructions contained in main memory 406
causes processor 404 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry may
be used in place of or in combination with software instruc
tions to implement the invention. Thus, embodiments of the
invention are not limited to any specific combination of hard
ware circuitry and software.
The term “machine-readable medium' as used herein

refers to any medium that participates in providing data that
causes a machine to operation in a specific fashion. In an
embodiment implemented using computer system 400, Vari
ous machine-readable media are involved, for example, in
providing instructions to processor 404 for execution. Such a
medium may take many forms, including but not limited to,
non-volatile media, Volatile media, and transmission media.
Non-volatile media includes, for example, optical or mag
netic disks, such as storage device 410. Volatile media
includes dynamic memory, Such as main memory 406. Trans

US 7,676,450 B2
9

mission media includes coaxial cables, copper wire and fiber
optics, including the wires that comprise bus 402. Transmis
sion media can also take the form of acoustic or light waves,
Such as those generated during radio-wave and infra-red data
communications. All Such media must be tangible to enable
the instructions carried by the media to be detected by a
physical mechanism that reads the instructions into a
machine.

Common forms of machine-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or car
tridge, a carrier wave as described hereinafter, or any other
medium from which a computer can read.

Various forms of machine-readable media may be involved
in carrying one or more sequences of one or more instructions
to processor 404 for execution. For example, the instructions
may initially be carried on a magnetic disk of a remote com
puter. The remote computer can load the instructions into its
dynamic memory and send the instructions over a telephone
line using a modem. A modem local to computer system 400
can receive the data on the telephone line and use an infra-red
transmitter to convert the data to an infra-red signal. An
infra-red detector can receive the data carried in the infra-red
signal and appropriate circuitry can place the data on bus 402.
Bus 402 carries the data to main memory 406, from which
processor 404 retrieves and executes the instructions. The
instructions received by main memory 406 may optionally be
stored on storage device 410 either before or after execution
by processor 404.

Computer system 400 also includes a communication
interface 418 coupled to bus 402. Communication interface
418 provides a two-way data communication coupling to a
network link 420 that is connected to a local network 422. For
example, communication interface 418 may be an integrated
services digital network (ISDN) card or a modem to provide
a data communication connection to a corresponding type of
telephone line. As another example, communication interface
418 may be a local area network (LAN) card to provide a data
communication connection to a compatible LAN. Wireless
links may also be implemented. In any Such implementation,
communication interface 418 sends and receives electrical,
electromagnetic or optical signals that carry digital data
streams representing various types of information.
Network link 420 typically provides data communication

through one or more networks to other data devices. For
example, network link 420 may provide a connection through
local network 422 to a host computer 424 or to data equip
ment operated by an Internet Service Provider (ISP)426. ISP
426 in turn provides data communication services through the
world wide packet data communication network now com
monly referred to as the “Internet” 428. Local network 422
and Internet 428 both use electrical, electromagnetic or opti
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 420 and
through communication interface 418, which carry the digital
data to and from computer system 400, are exemplary forms
of carrier waves transporting the information.

Computer system 400 can send messages and receive data,
including program code, through the network(s), network
link 420 and communication interface 418. In the Internet
example, a server 430 might transmit a requested code for an
application program through Internet 428, ISP 426, local
network 422 and communication interface 418.

10

15

25

30

35

40

45

50

55

60

65

10
The received code may be executed by processor 404 as it

is received, and/or stored in storage device 410, or other
non-volatile storage for later execution. In this manner, com
puter system 400 may obtain application code in the form of
a carrier wave.

In the foregoing specification, embodiments of the inven
tion have been described with reference to numerous specific
details that may vary from implementation to implementa
tion. Thus, the sole and exclusive indicator of what is the
invention, and is intended by the applicants to be the inven
tion, is the set of claims that issue from this application, in the
specific form in which Such claims issue, including any Sub
sequent correction. Any definitions expressly set forth herein
for terms contained in Such claims shall govern the meaning
of Such terms as used in the claims. Hence, no limitation,
element, property, feature, advantage or attribute that is not
expressly recited in a claim should limit the scope of Such
claim in any way. The specification and drawings are, accord
ingly, to be regarded in an illustrative rather than a restrictive
SS.

What is claimed is:
1. A computer-implemented method comprising steps of
based on a join condition of an anti-join operation, execut

ing the anti-join operation based on a left table and a
right table:

wherein said join condition is based on a joining column of
said right table and a joining column of said left table;

wherein executing the anti-join operation comprises quali
fying rows to be returned within a result of the anti-join
operation, wherein:
if said right table is empty, then qualifying all rows from

the left table to be returned in the result of the anti-join
operation;

if at least one row from the right table includes a NULL
value in the joining column of the right table, then
qualifying in no rows to be returned in the result of the
anti-join operation; and

if no row from the right table includes the NULL value in
the joining column of the right table, then qualifying
in those rows from the left table to be returned in the
result of the anti-join operation that, based on the join
condition, do not match rows from the right table and
do not include a NULL value in the joining column of
the left table; and

wherein the steps of the method are performed by one or
more computing devices.

2. The method of claim 1, wherein executing the anti-join
operation includes:

generating a sorted set of left-side rows from the left table:
generating a sorted set of right-side rows from the right

table;
during generation of the Sorted set of right-side rows,

detecting that a row from the right table includes a
NULL value in the joining column of the right table; and

in response to detecting that a row from the right table
includes a NULL value, qualifying no rows.

3. The method of claim 1, wherein executing the anti-join
operation includes:

generating a sorted set of left-side rows from the left table:
generating a sorted set of right-side rows from the right

table;
wherein the joining column of the right-side rows includes

no NULL value;
establishing as qualified rows of the anti-join operation,

rows from the set of left-side rows that:
do not include a NULL value in the respective joining

column; and

US 7,676,450 B2
11

based on the join condition, do not match a row in the set
of right-side rows.

4. The method of claim 1, the steps further including:
generating a sorted set of left-side rows from the left table:
attempting to generate a sorted set of right-side rows from

the right table:
determining that the set of right side rows from the right

table is an empty set; and
in response to determining that the set of right side rows

from the right table is an empty set, establishing as
qualified rows of the anti-join operation all rows from
the set of left-side rows.

5. The method of claim 1, the steps further including:
based on the joining column of the left table, generating a

hash table of left-side rows from the left table;
for each row of one or more rows from the right table,

examining said each row, wherein examining each row
includes:
determining whether said each row contains a NULL

value in the joining column of said each row; and
if said each row contains a NULL value in the joining
column of said each row, then establishing no rows
from the left table as qualified for said anti-join opera
tion.

6. The method of claim 5, wherein examining said each row
of the one or more rows from the right table includes exam
ining a particular row that does not have a NULL value in the
joining column of the right table, wherein examining said
particular row includes:

determining whether said particular row matches a row
from said left table based on the join condition; and

if said particular row matches a row from said left table,
removing said particular row from the hash table built
for the left table.

7. The method of claim 1, the steps further including:
based on the joining column of the left table, generating a

hash table of left-side rows from the left table;
wherein said joining column of said right table does not

include a NULL value;
for each row of one or more rows from the right table,

examining said each row, wherein examining each row
includes:
determining whether said each row matches a row from

said left table based on the join condition; and
if said each row matches a left-side row from said left

table, removing said left-side row from the hash table:
establishing as qualified rows of the anti-join operation,

left-side rows from the hash table that do not include a
NULL value in the joining column of the left table.

8. The method of claim 1, the steps further including:
for each left-side row from the left table:

determining whether said each joining column of the
left-side row contains a NULL value;

if said connecting column of said left-side row contains
a NULL value, then disqualifying said each left-side
row; and

if said connection column of said left-side row does not
contain a null value, then:
performing a table scan of the right table; and
qualifying a right side row scanned by said table scan

with a joining column matching the joining column
of the left table.

9. The method of claim 8, further including the step of
determining whether any row from the right table contains a
NULL value by executing a certain subquery that returns a
value that indicates whether a right side row from the right
table contains a NULL value in the connecting column.

10

15

25

30

35

40

45

50

55

60

65

12
10. The method of claim 1, wherein executing the anti-join

operation includes executing a nested-loops join operation,
said nested-loops join operation including:

for a left-side row from the left table:
performing an index probe of at least a portion of the

right table to determine whether a right-side row
matches the left-side row, and

based on the index probe, determining that the right table
is empty; and

in response to determining that the right table is empty,
qualifying all rows in the left table.

11. A computer-implemented method comprising steps of
rewriting a query that includes a NOT IN/ALL subquery

based on a right table, a left table, and a connecting
condition based on a connecting column of the right
table and a connecting column of the left table:

wherein rewriting said query comprises unnesting said
query to produce a transformed query that specifies an
anti-join operation based on the right table, the left table,
and the connecting condition;

wherein unnesting said query comprises one or more of
merging an operand of said subquery into an outer por

tion of said query; and
creating an inline view for said subquery;

wherein rows from said left table include a NULL value in
the connecting column of the left table; and

wherein the steps of the method are performed by one or
more computing devices.

12. The method of claim 11, wherein:
said NOT IN/ALL subquery includes a filter condition that

applies to the right table; and
said rows from said left-side that include a NULL value

also satisfy said filter condition.
13. The method of claim 11, wherein said anti-join opera

tion qualifies:
if said right table is empty, all rows from the left table;
if at least one row from the right table includes a NULL

value in the connecting column of the right table, no
roWS;

if no row from the right table includes a NULL value in the
connecting column of the right table, rows from the left
table that, based on the connecting condition, do not
match rows from the right table and do not include a
NULL value in the connecting column of the left table.

14. The method of claim 11, wherein:
rewriting said query includes generating a certain subquery

within said transformed query that returns a value that
indicates whether a row from the right table contains a
NULL value in the connecting column;

the steps further include generating a certain execution
plan that performs a nested-loops join for said anti-join
operation; and

wherein said certain execution plan does not execute said
nested-loops join if said certain subquery returns a value
that indicates that a row from the right table contains a
NULL value in the connecting column.

15. The method of claim 14, further including:
generating another execution plan that does not use a

nested-loops join for said anti-join operation; and
comparing a cost of said another execution plan to a cost of

said certain execution plan, wherein said cost of said
certain execution plan includes a cost based on said
Subquery.

16. The method of claim 14, wherein the steps of generat
ing said certain subquery and said execution plan are per
formed if said left table contains a NULL value in said con
necting column of the left table.

US 7,676,450 B2
13 14

17. A machine-readable volatile or non-volatile medium in response to determining that the set of right side rows
storing one or more sequences of instructions which, when from the right table is an empty set, establishing as
executed by one or more processors, cause performance of qualified rows of the anti-join operation all rows from
steps comprising: the set of left-side rows.

based on a join condition of an anti-join operation, execut- 5 21. The machine-readable volatile or non-volatile medium
ing the anti-join operation based on a left table and a of claim 17, wherein the one or more sequences of instruc
right table: tions further include instructions which, when executed by

wherein said join condition is based on a joining column of the one or more processors, cause performance of the steps of
said right table and a joining column of said left table; based on the joining column of the left table, generating a
and 10 hash table of left-side rows from the left table;

wherein executing the anti-join operation comprises quali- for each row of one or more rows from the right table,
fying rows to be returned within a result of the anti-join examining said each row, wherein examining each row
operation, wherein: includes:
if said right table is empty, then qualifying in all rows determining whether said each row contains a NULL

from the left table to be returned in the result of the 15 value in the joining column of said each row; and
anti-join operation; if said each row contains a NULL value in the joining

if at least one row from the right table includes a NULL column of said each row, then establishing no rows
value in the joining column of the right table, then from the left table as qualified for said anti-join opera
qualifying no rows to be returned in the result of the tion.
anti-join operation; and 20 22. The machine-readable volatile or non-volatile medium

if no row from the right table includes the NULL value in of claim 21, wherein the instructions that cause performance
the joining column of the right table, then qualifying of the step of examining said each row of the one or more rows
in those rows from the left table to be returned in the from the right table include instructions which, when
result of the anti-join operation that, based on the join executed by the one or more processors, cause performance of
condition, do not match rows from the right table and a step of examining a particular row that does not have a
do not include a NULL value in the joining column of NULL value in the joining column of the right table, wherein
the left table. the step of examining said particular row includes:

18. The machine-readable volatile or non-volatile medium determining whether said particular row matches a OW
of claim 17, wherein the instructions that cause performance 30 from said left table based on the join condition; and
of the step of executing the anti-join operation include if said particular row matches a row from said left table,
instructions which, when executed by the one or more pro- removing said particular row from the hash table built
cessors, cause performance of the steps of for the left table.

generating a sorted set of left-side rows from the left table: 23. The machine-readable volatile or non-volatile medium
generating a sorted set of right-side rows from the right is of claim 17, wherein the one or more sequences of instruc

table: tions further include instructions which, when executed by
the one or more processors, cause performance of the steps of

based on the joining column of the left table, generating a
hash table of left-side rows from the left table;

wherein said joining column of said right table does not
include a NULL value;

for each row of one or more rows from the right table,
examining said each row, wherein examining each row
includes:
determining whether said each row matches a row from

said left table based on the join condition; and
if said each row matches a left-side row from said left

table, removing said left-side row from the hash table:
establishing as qualified rows of the anti-join operation,

during generation of the Sorted set of right-side rows,
detecting that a row from the right table includes a
NULL value in the joining column of the right table; and

in response to detecting that a row from the right table 40
includes a NULL value, qualifying no rows.

19. The machine-readable volatile or non-volatile medium
of claim 17, wherein the instructions that cause performance
of the step of executing the anti-join operation include
instructions which, when executed by the one or more pro- 45
cessors, cause performance of the steps of

generating a sorted set of left-side rows from the left table:
generating a sorted set of right-side rows from the right

table; - - - 50 left-side rows from the hash table that do not include a
wherein the joining column of the right-side rows includes NULL value in the joining column of the left table.

no NULL value; 24. The machine-readable volatile or non-volatile medium
of claim 17, wherein the one or more sequences of instruc
tions further include instructions which, when executed by

ss the one or more processors, cause performance of the steps of:

establishing as qualified rows of the anti-join operation,
rows from the set of left-side rows that:
do not include a NULL value in the respective joining

column; and for each left-side row from the left table:
based on the join condition, do not match a row in the set determining whether said each joining column of the

of right-side rows. left-side row contains a NULL value;
20. The machine-readable volatile or non-volatile medium if said connecting column of said left-side row contains

of claim 17, wherein the one or more sequences of instruc- to a NULL value, then disqualifying said each left-side
tions further include instructions which, when executed by row; and
the one or more processors, cause performance of the steps of if said connection column of said left-side row does not

generating a sorted set of left-side rows from the left table: contain a null value, then:
attempting to generate a sorted set of right-side rows from performing a table scan of the right table; and

the right table: 65 qualifying a right side row scanned by said table scan
determining that the set of right side rows from the right with a joining column matching the joining column

table is an empty set; and of the left table.

US 7,676,450 B2
15

25. The machine-readable volatile or non-volatile medium
of claim 24, wherein the one or more sequences of instruc
tions further include instructions which, when executed by
the one or more processors, cause performance of a step of
determining whether any row from the right table contains a
NULL value by executing a certain subquery that returns a
value that indicates whether a right side row from the right
table contains a NULL value in the connecting column.

26. The machine-readable volatile or non-volatile medium
of claim 17, wherein the instructions that cause performance
of the step of executing the anti-join operation include
instructions which, when executed by the one or more pro
cessors, cause performance of a step of executing a nested
loops join operation, wherein executing said nested-loops
join operation includes:

for a left-side row from the left table:
performing an index probe of at least a portion of the

right table to determine whether a right-side row
matches the left-side row, and

based on the index probe, determining that the right table
is empty; and

in response to determining that the right table is empty,
qualifying all rows in the left table.

27. A machine-readable volatile or non-volatile medium
storing one or more sequences of instructions which, when
executed by one or more processers, cause performance of
steps comprising:

rewriting a query that includes a NOT IN/ALL subquery
based on a right table, a left table, and a connecting
condition based on a connecting column of the right
table and a connecting column of the left table:

wherein rewriting said query comprises unnesting said
query to produce a transformed query that specifies an
anti-join operation based on the right table, the left table,
and the connecting condition;

wherein unnesting said query comprises one or more of
merging an operand of said subquery into an outer por

tion of said query; and
creating an inline view for said subquery; and

wherein rows from said left table include a NULL value in
the connecting column of the left table.

28. The machine-readable volatile or non-volatile medium
of claim 27, wherein:

said NOT IN/ALL subquery includes a filter condition that
applies to the right table; and

said rows from said left-side that include a NULL value
also satisfy said filter condition.

5

10

15

25

30

35

40

45

16
29. The machine-readable volatile or non-volatile medium

of claim 27, wherein said anti-join operation qualifies:
if said right table is empty, all rows from the left table;
if at least one row from the right table includes a NULL

value in the connecting column of the right table, no
roWS;

if no row from the right table includes a NULL value in the
connecting column of the right table, rows from the left
table that, based on the connecting condition, do not
match rows from the right table and do not include a
NULL value in the connecting column of the left table.

30. The machine-readable volatile or non-volatile medium
of claim 27, wherein:

the instructions that cause performance of the step of
rewriting said query include instructions which, when
executed by the one or more processors, cause perfor
mance of a step of generating a certain Subquery within
said transformed query that returns a value that indicates
whether a row from the right table contains a NULL
value in the connecting column;

the one or more sequences of instructions further include
instructions which, when executed by the one or more
processors, cause performance of a step of generating a
certain execution plan that performs a nested-loops join
for said anti-join operation; and

wherein said certain execution plan does not execute said
nested-loops join if said certain subquery returns a value
that indicates that a row from the right table contains a
NULL value in the connecting column.

31. The machine-readable volatile or non-volatile medium
of claim 30, wherein the one or more sequences of instruc
tions further include instructions which, when executed by
the one or more processors, cause performance of the steps of

generating another execution plan that does not use a
nested-loops join for said anti-join operation; and

comparing a cost of said another execution plan to a cost of
said certain execution plan, wherein said cost of said
certain execution plan includes a cost based on said
Subquery.

32. The machine-readable volatile or non-volatile medium
of claim 30, wherein the instructions that cause performance
of the steps of generating said certain Subquery and said
execution plan are executed if said left table contains a NULL
value in said connecting column of the left table.

