(54) Title: LAYOUT STRUCTURE OF CLUTCH LEVER SHAFT

(57) Abstract:
To provide a layout structure of a clutch lever shaft capable of realizing compact layouts of a whole power unit in which a starter centrifugal clutch and a transmission manual multi-plate clutch are provided, and of a whole vehicle on which the power unit is mounted. A centrifugal clutch shaft and a manual multi-plate clutch shaft are disposed in parallel. The clutch lever shaft of the manual multi-plate clutch is disposed orthogonally and substantially vertically upward in relation to a pressing direction of a friction plate in a vicinity of an end portion of a lifter pin. The clutch lever shaft is disposed between the centrifugal clutch and the manual multi-plate clutch when viewed from a top of the power unit.
ABSTRACT OF THE DISCLOSURE

To provide a layout structure of a clutch lever shaft capable of realizing compact layouts of a whole power unit in which a starter centrifugal clutch and a transmission manual multi-plate clutch are provided, and of a whole vehicle on which the power unit is mounted. A centrifugal clutch shaft and a manual multi-plate clutch shaft are disposed in parallel. The clutch lever shaft of the manual multi-plate clutch is disposed orthogonally and substantially vertically upward in relation to a pressing direction of a friction plate in a vicinity of an end portion of a lifter pin. The clutch lever shaft is disposed between the centrifugal clutch and the manual multi-plate clutch when viewed from a top of the power unit.
LAYOUT STRUCTURE OF CLUTCH LEVER SHAFT

FIELD OF THE INVENTION
The present invention relates to a layout structure of a clutch lever shaft, which is caused to be rotationally moved for engaging and disengaging a transmission multi-plate clutch.

BACKGROUND OF THE INVENTION
In a power unit in which a starter centrifugal clutch and a transmission manual multi-plate clutch are disposed in parallel and closely to one another, a clutch lever shaft of the transmission multi-plate clutch is conventionally disposed in a position distant from these clutches (see, for example, Japanese Patent Laid-open Publication No. Sho 59-114130 (a cam 20 in this document corresponds to the clutch lever shaft in the above description). In this layout, a clutch cable extends out of the left and right sides of the power unit when viewed from the top thereof, and comes close to the body frame of a vehicle and outer parts. Therefore, the layout of the power unit becomes large and complicated.

It is an object of the present invention to provide a layout structure of a clutch lever shaft, in the power unit provided with a starter centrifuge clutch and a transmission manual multi-plate clutch, capable of realizing compact layouts of a whole power unit and of a whole vehicle on which the power unit is mounted.

SUMMARY OF THE INVENTION
The present invention has been made to solve the above problem, and a first aspect of the present invention relates to a layout structure of a clutch lever
shaft of a power unit in which a crankshaft and a transmission shaft are disposed in parallel with an anteroposterior direction of a vehicle, and in which a starter centrifugal clutch and a transmission manual multi-plate clutch are provided. The layout structure of the clutch lever shaft is characterized by disposing the centrifugal clutch and the manual multi-plate clutch respectively in front portions of the crankshaft and the transmission main shaft; disposing the clutch lever shaft of the manual multi-plate clutch in a vicinity of an end portion of a lifter pin of the clutch, orthogonally and substantially vertically upward in relation to a direction in which a friction plate is pressed; and disposing the clutch lever shaft between the centrifugal clutch and the manual multi-plate clutch when viewed from the top of the power unit.

According to the first aspect of the present invention, the clutch and the clutch lever shaft are closely disposed. Therefore, the layout of a whole power unit becomes compact.

In the layout structure of the clutch lever shaft according to the aspect of the present invention, a second aspect of the present invention is characterized in that a clutch cable, an end of which is connected with the clutch lever shaft of the manual clutch, and the other end of which is connected with a clutch operating lever provided on a handlebar of the vehicle, is disposed over a clutch cover covering the both clutches.

According to the second aspect of the present invention, the clutch cable does not affect the width of the vehicle because the clutch cable does not extend out of the left nor right sides of the power unit. Therefore, the layout of a whole vehicle, on which the power unit is mounted, becomes compact.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a partial front view of a power unit of a rough terrain vehicle according to one embodiment of the present invention.

FIG. 2 is a top view of the above-described clutch portion and a cylinder portion contiguous therewith.
FIG. 3 is a cross sectional development including the center line of a centrifugal clutch 11, the center line of a multi-plate clutch 15, a clutch lever shaft 20, a clutch lever 21, and a cable securing portion 22.

5 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Preferred embodiments of the invention are shown in the drawings, wherein:

FIG. 1 is a partial front view of a power unit of a rough terrain vehicle according to an embodiment of the present invention. Arrow L indicates left and arrow R indicates right of the vehicle. A clutch cover 10 mounted on a front crank case 5 is shown in the figure. The right half of the figure is a centrifugal clutch cover 12 and the left half is a multi-plate clutch cover 16. Both of the centrifugal clutch cover 12 and the multi-plate clutch cover 16 form a part of the clutch cover 10, and the covers are connected with one another as one. As illustrated in the figure, a centrifugal clutch 11 is provided in the centrifugal clutch cover 12, and a multi-plate clutch 15 is provided in the multi-plate clutch cover 16. In the above-described power unit, a crankshaft and a transmission shaft are disposed in parallel with an anteroposterior line of the vehicle, and the centrifugal clutch 11 is provided at an anterior end of the crankshaft, and the multi-plate clutch 15 is provided at an anterior end of the main shaft of the transmission.

In the figure, positions of a centrifugal clutch center 13 and a multi-plate clutch center 17 are shown in center portions of the respective covers. The centrifugal clutch center 13 is identical to the center of axle of the crankshaft, and the multi-plate clutch center 17 is identical to the center of axle of the main shaft of the transmission. A clutch lever shaft 20 extends obliquely upward from a vicinity of the multi-plate clutch center 17, a clutch lever 21 is mounted on a top end portion thereof. Further, a clutch cable 23 is secured to a cable securing portion 22 at the tip end of the clutch lever and extends to the left of the vehicle, passing through a cylindrical portion of a cable guiding member 24.

FIG. 2 is a top view of the above-described clutch portion and a cylinder portion contiguous therewith. Arrow F indicates the front of vehicle. In the figure, the clutch lever shaft 20 is provided substantially vertically between the centrifugal clutch 11 and the multi-plate clutch 15, the clutch lever 21, the
cable securing portion 22, and the clutch cable 23 are contiguous with one another. The clutch cable 23 extends to the left of vehicle passing through the cylindrical portion of the cable guiding member 24. In the rear of the multi-plate clutch 15, the front crank case 5 and a rear crank case 6 are seen. In the rear of the centrifugal clutch 11, a cylinder head 26, a cylinder head cover 27, and an ignition plug 28, which are contiguous with the upper portions of the front crank case 5 and of the rear crank case 6, are seen.

FIG. 3 is a development view of a cross section, seen from the above, which includes the center line of the centrifugal clutch 11, the centre line of the multi-plate clutch 15, the clutch lever shaft 20, the clutch lever 21, and the cable securing portion 22. The centrifugal clutch 11 is provided at the anterior end portion of the crankshaft 7. The multi-plate clutch 15 is provided at the anterior end portion of the main shaft 8 of the transmission. The anterior end of the crankshaft 7 is supported by the centrifugal clutch cover 12 through a ball bearing 9.

In the centrifugal clutch 11, a driving disk 30 is spline-fitted to the crankshaft 7 at a boss portion 30a thereof and is axially fixed by a nut 31. Adjacently to the above-described driving disk 30, a boss member 32 provided with an output gear 32a at an end portion is rotatably mounted on the crankshaft 7 through a needle bearing 33. The above-described output gear 32a is an output gear of the centrifugal clutch 11. A clutch drum 34 is fixed to the above-described boss member 32 by a rivet 35. Each of clutch shoes 37 is swingably supported by each of a plurality of pins 36 protruded on the above-described driving disk 30. The clutch shoe 37 is biased by a return spring towards the boss portion 30a of the driving disk 30 when an internal combustion engine is stopped.

In the multi-plate clutch 15, a cylindrical member 40 is fitted onto the main shaft 8 of the transmission so as to be capable of moving rotationally. A clutch outer 41 is supported on the outer circumference of the cylindrical member, so as to be capable of moving rotationally. An input gear 42 of the transmission is mounted on a plurality of rear protruding portions 41a of the clutch outer 41 through a cushioning material 43 by a plate 44 and a rivet 45. This input gear 42 always meshes with the output gear 32a of the centrifugal clutch 11. Adjacently to the above-described cylindrical member 40, a clutch
center 46 is spline-fitted to an end portion of the main shaft 8 and is axially fixed by a nut 47.

Provided in the cylindrical portion of the clutch outer 41 are a plurality of driving friction plates 48, engaged therewith movably in a axial direction. Provided in the cylindrical portion of the clutch center 46 are a plurality of driven friction plates 49, engaged therewith movably in a axial direction and alternately disposed in relation to the above-described driving friction plates 48.

A protruding portion 50a of a pressure plate 50A is provided, penetrating a disk portion of the clutch center 46 and protruding to the other side. The pressure plate 50 is put onto the protruding portion adjacently to the clutch center 46 and slidably in the axial direction. A coil spring 53 is put on between the clutch center 46 and a spring bearing plate 52 mounted on the protruding portion 50a through a bolt 51. Pressed by a biasing force of this coil spring 53 are pairs of the above-described pluralities of driving friction plates 48 and driven friction plates 49, which are sandwiched between the clutch center 46 and the pressure plate 50. A state in which the above-described friction plates 48 and 49 are pressed is a clutch engaged state, which is a normal state.

A lifter 55 is fitted into the above-described spring bearing plate 52. A lifter pin 56 is fitted, slidably in the axial direction, into a concave portion on the inside of the multi-plate clutch cover 16. A ball bearing 57 is set between the lifter 55 and the lifter pin 56 to prevent the lifter pin 56 from being affected by the rotation of the multi-plate clutch 15.

On the inside of the multi-plate clutch cover 16, the clutch lever shaft 20, which is movable rotationally, is provided orthogonal to the above-described lifter pin 56 through the needle bearing 58. A cam touching to the end portion of the lifter pin 56 is formed at the inner end of the clutch lever shaft 20. The cam moves rotationally according to the rotational movement of the clutch lever shaft 20 to press the lifter pin 56. The clutch lever shaft 20 is set to return to an initial position by a screw coil spring 59.
The outer end of the clutch lever shaft 20 protrudes out of the multi-plate clutch cover 16, the clutch lever 21 is mounted on the end portion thereof, and the cable securing portion 22 is further provided at the tip end thereof. As shown in FIGS. 1 and 2, the clutch cable 23 is connected with the cable securing portion 22. The tip end of the clutch cable 23 is connected with a clutch operating lever 62, which is mounted adjacent to a grip 61 at the left end of the traveling handlebar of the vehicle.

In the power unit provided with the clutch of the above-described configuration, when the internal combustion engine is started and the rotation of the crankshaft 7 exceeds a predetermined rotation speed, the clutch shoe 37, supported by the driving disk 30 rotating along with the crankshaft 7 in the centrifugal clutch 11, outwardly moves due to the centrifugal force and touches to the clutch drum 34. And thereby, the power of the crankshaft 7 is transmitted to the input gear 42, which is provided on the multi-plate clutch 15, through the clutch drum 34, the boss member 32, and the output gear 32a.

In a normal state, the multi-plate clutch 15 is in the engaged state. Therefore, the power transmitted from the centrifugal clutch 11 is transmitted to the main shaft 8 of the transmission through the clutch outer 41, the driving friction plate 48, the driven friction plate 49, and the clutch center 46.

When an operator of the vehicle operates the clutch operating lever 62 and pulls the clutch cable 23 in order to shift gears, the clutch lever 21 and the clutch lever shaft 20 move rotationally, and the lifer pin 56 moves in the axial direction. By the thrust of the lifter pin 56, the pressure plate 50 is pressed, through the ball bearing 57, the lifter 55, and the spring bearing plate 52, against the biasing force of the coil spring 53. And thereby the pressing force onto the above-described friction plates 48 and 49 is eased, causing the multi-plate clutch 15 to be in a disengaged state.

As described above, the following effects are provided in the present embodiment.

(1) In the first aspect of the present invention, the layout of the whole power unit becomes compact because the multi-plate clutch 15 and the clutch lever
shaft 20 are adjacently disposed, and because the clutch lever shaft 20 is disposed between the centrifugal clutch 11 and the multi-plate clutch 15 when viewed from the top of the power unit.

5 (2) According to the second aspect of the present invention, the clutch cable does not extend out of the left and right sides of the power unit, nor affects the width of vehicle. Therefore, when the power unit is mounted on the vehicle, the layout of the whole vehicle becomes compact.

10 Although various preferred embodiments of the present invention have been described herein in detail, it will be appreciated by those skilled in the art, that variations may be made thereto without departing from the spirit of the invention or the scope of the appended claims.
THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A layout structure of a clutch lever shaft of a power unit in which a crankshaft and a transmission shaft are disposed in parallel with an anteroposterior direction of a vehicle and a starter centrifugal clutch and a transmission manual multi-plate clutch are provided, the layout structure of the clutch lever shaft being characterized by: disposing the centrifugal clutch and the manual multi-plate clutch in front portions of the crankshaft and the transmission main shaft, respectively; disposing the clutch lever shaft of the manual multi-plate clutch, in a vicinity of an end portion of a lifter pin of the clutch, orthogonally and substantially vertically upward in relation to a direction in which a friction plate is pressed; and disposing the clutch lever shaft between the centrifugal clutch and the manual multi-plate clutch when viewed from a top of the power unit.

2. The layout structure of the clutch lever shaft according to claim 1, characterized in that a clutch cable, an end of which is connected with the clutch lever shaft of the manual clutch, and the other end of which is connected with a clutch operating lever provided on a handlebar of the vehicle, is disposed over a clutch cover covering the both clutches.