0-7/001613 A2 |1 00 0O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 January 2007 (04.01.2007)

lﬂfb A0 0O R0

(10) International Publication Number

WO 2007/001613 A2

(51) International Patent Classification:
GOG6F 7/00 (2006.01)

(21) International Application Number:
PCT/US2006/015962

(22) International Filing Date: 26 April 2006 (26.04.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/168,060 28 June 2005 (28.06.2005) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft

Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: LA CHAPELLE, Kevin, Leigh; One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
WALKER, Brian, James; One Microsoft Way, Redmond,
Washington 98052-6399 (US). MERCER, Ian, Cameron;
One Microsoft Way, Redmond, Washington 98052-6399
(US). KASE, Hiroshi; One Microsoft Way, Redmond,
Washington 98052-6399 (US). MIYAMOTO, Harutoshi;
One Microsoft Way, Redmond, Washington 98052-6399
(US). YAGI, Tomotaka; One Microsoft Way, Redmond,
Washington 98052-6399 (US). TORII, Yasuyuki; One
Microsoft Way, Redmond, Washington 98052-6399 (US).

TAKEGUCHI, Nobuyasu; One Microsoft Way, Red-
mond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, 7ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: PLAYLIST STRUCTURE FOR LARGE PLAYLISTS

l

IDENTIFY MEDIA FILES ASSOCIATED WITH A PLAYLIST

302

A

A

DEFINE MEDIA FILE REFERENCES

FOR THE IDENTIFIED MEDIA FILES 504

Y

y

RETRIEVE METADATA FOR EACH

306
OF THE IDENTIFIED MEDIA FILES

\

A

STORE THE DEFINED MEDIA

RETRIEVED METADATA IN PLAYLIST UNITS

308
/

FILE REFERENCES AND THE

& (57) Abstract: Enabling efficient navigation of a playlist of media files stored on a computer-readable medium. Aspects of the
invention define a playlist structure to have one or more playlist units. Each playlist unit identifies one or more media files in the
playlist and includes metadata for the media files. A consumer electronic device retrieves the playlist units and displays the metadata
contained therein to a user to enable navigation of the playlist. Aspects of the invention reduce the memory requirements of the
consumer electronic devices and reduce the quantity of disk seek operations needed for playlist navigation.

=

WO 2007/001613 PCT/US2006/015962

10

15

20

25

30

PLAYLIST STRUCTURE FOR LARGE PLAYLISTS
CROSS-REFERENCE TO RELATEIS APPLICATION

[0001] This application is a continuation-in-part of co-pending U.S. Patent
Application Serial No. 10/273,415, filed October 17, 2002, entitled “Navigating Media
Content via Groups within a Playlist," hereby incorporated by reference, which claims the
benefit of U.S. Provisional Patent Application Serial No. 60/418,973, filed October 16,
2002, entitled "COMPRESSED MEDIA FORMAT SPECIFICATION," now abandoned.
BACKGROUND

[0002] Due to recent advances in technology, computer users are now able to
enjoy many features that provide an improved user experience, such as playing various
media and multimedia content on their personal or laptop computers. For example, most
computers today are able to play compact discs (CDs) so users can listen to their favorite
musical artists while working on their computers. Many computers are also equipped with
digital versatile disc (DVD) drives enabling users to watch movies.

[0003] In some multimedia environments, a computer has access to a computer-
readable medium storing compressed media files such as Moving Picture Experts Group
audio layer-3 (MP3) files and WINDOWS MEDIA technologies audio (WMA) files.
‘When the media files are rendered on a computer, the computer typically has access to a
database storing metadata describing albums, artists, genres, years, or the like for the
media files. The computer typically organizes the media files into playlists based on the
metadata when the compressed media files are played on the computer. For example, in
the case of audio media files, the files may be organized by album, artist, genre, year, or
some user specified selection and ordering. This allows users to easily have access to all
of their content regardless of whether or not the users manually created a playlist.

[0004] However, when compressed media files are transferred from the computer
to an optical format such as CD or DVD for playback on a portable CD player, car
receiver, DVD player or other consumer electronic devices having a low-power processor,
limited memory and often limited display and user input capabilities, the media files
traditionally lose much of the functionality offered by metadata databases hosted on
devices with greater computing power. The playlists revert to nothing more than a
sequential list of files to be played.

{oo05) Further, a playlist baving a large number of files is difficult for a low-
powered device to navigate. For example, some existing systems store metadata separate

from media files on a computer-readable medium. To render the media files and display

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

metadata associated with the media files, the existing systems have to seek to at least two
separate areas of the computer-readable medium. If the rendering device has a limited
buffer for disk seek and find operations, then such rendering devices cannot navigate large
playlists. For example, a rendering device such as a low end portable CD player only
contains an 8 bit 1 MHz processor with 100 kilobytes of working memory with a five
second seek time.

[0006] Other systems store the metadata within the media files. To obtain the
metadata for the media files, the existing systems have to open each media file in the
playlist to obtain and display the metadata. Opening every media file in a playlist is slow
and increases complexity. The existing systems fail to provide a playlist structure that
supports an unbounded number of media files and is capable of playback on even the
lowest power devices.

[0007] Accordingly, a system for enabling efficient navigation of large playlists is
desired to address one or more of these and other disadvantages.

SUMMARY

[0008] Embodiments of the invention include a playlist structure in which
references to content within the playlist are stored along with metadata associated with the
content in self-contained, easy to parse, fixed-size playlist blocks, chunks, units, or other
discrete elements. Metadata is preserved when storing playlists on a computer-readable
medium for access by a consumer electronic device having a low-power processor, limited
memory and limited display and user input capabilities. The playlist units have a size that
is aligned to a sector size of the computer-readable medium (e.g., CD or DVD) to enable
efficient loading by the consumer electronic device. A low-end rendering device or
software need only load one or more playlist units into memory to acquire and process the
complete metadata and playlist. In one embodiment, the metadata stored in the playlist
units includes file and directory information for the media files, metadata for each of the
media files, and specific playlist data for rendering those files.

[0009] By storing the metadata and the media file references in easy-to-load
playlist units, aspects of the invention reduces the number of disk seek and find
operations. These aspects of the invention also enable rendering devices with low-power
or limited memory to process and navigate large playlists.

{0010} Alternatively, aspects of the invention may comprise various other methods
and apparatuses.

[0011] Other features will be in part apparent and in part pointed out hereinafter.

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 is a block diagram illustrating an exemplary media environment in
which the invention may be implemented.

[0013] FIG. 2 is an exemplary block diagram illustrating a playlist structure.

[0014] FIG. 3 is an exemplary flow chart illustrating operation of playlist creation
software.

[0015] FIG. 4 is an exemplary flow chart illustrating creation of the playlist unit.

[0016] FIG. 5 is an exemplary flow chart illustrating playlist playback using the
playlist unit.

[0017] FIG. 6 is a block diagram illustrating one example of a suitable computing
system environment in which aspects of the invention may be implemented.

[0018] Appendix A includes exemplary group data for the playlist structure of
aspects of the invention.

[0019] Corresponding reference characters indicate corresponding parts
throughout the drawings.
DETAILED DESCRIPTION

[0020] Referring first to FIG. 1, a block diagram illustrates an exemplary media
environment in which the invention may be implemented. A system 100 has one or more
computers 102 coupied to one or more consumer electronic devices 112 providing media
content including audio data, video data, and/or still image data. For example, the devices
112 may include a compact disc (CD) player 104, a camcorder 106, or a camera 108.
Additionally, the devices 112 may include other personal computers, removable hard
drives, network shares, a Moving Picture Experts Group audio layer-3 (MP3) player, an
audio system in an automobile, a personal digital assistant, a cellular telephone, or the like.
The consumer electronic devices 112 may include any suitable rendering filter or media
player or device (e.g., a portable media device) that is configured to render digital media
so that the user can experience the content that is embodied on the consumer electronic
device 112. For example, suitable media player applications include a compact disc (CD)
media player and a digital versatile disc or digital video disc (DVD) media player. The
computer 102 also has rendering capability including a processor and rendering software
(e.g., a media player).

[0021] One aspect of the present invention enables the user or, particularly,
enables a media player program executing on computing device 112, to access, retrieve,

and display for the user, so-called metadata. Those skilled in the art are familiar with

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

metadata, which is simply information about data. In the context of the illustrated
embodiment, metadata includes information related to specific content of a digital media
file being played on the media player. Basic metadata includes, but is not limited to, title,
performer, genre, track number, and the like. Extended metadata includes, but is not
limited to, cover art, composer, description of content, performer biographies, reviews,
ratings, related performers, where to buy similar items, upcoming concerts, ticket sales,
URLs to other related experiences including purchase opportunities, studio, director, and
the like. In one embodiment, extended metadata may be organized into two main
categories: metadata retrieved or downloaded, and metadata computed from the media file
(e.g., digital signal processing of the file stream). The metadata may be stored within the
media file or stored in another file accessible and known to the media file.

[0022] In one example, additional metadata is available from the metadata
provider 111 via a data communication network 113. The computer 102 and metadata
provider 111 are coupled to the data communication network 113, While the network 113
includes the Internet in one example, the teachings of the invention may be applied to any
data communication network. Data communication network 113 may support, for
example, client/server communications or peer-to-peer connections.

[0023] The consumer electronic devices 112 or computer 102 may have access to
one or more computer-readable media (e.g., memory area 122). While the memory area
122 is illustrated to be part of any of the consumer electronic devices 112 in FIG. 1, the
memory area 122 may be separate from the consumer electronic devices 112 yet
accessible to the consumer electronic devices 112, for example, via a network. In one
embodiment, memory area 122 includes one or more computer-readable media for storing
playlists 114. In FIG. 1, a playlist 114 has playlist units 116 such as playlist unit #1
through playlist unit #N. Each of the playlist units 116 includes a content entry field (not
shown) such as a 'content entry' field in FIG. 2 for each of the media files associated with
the playlist unit 116 and a metadata field (not shown) such as an 'offset to textl' field in
FIG. 2 for each content entry field. The content entry field stores a media file reference
identifying a location of the media file. The metadata field stores metadata associated
with the media file associated with the content entry field. The playlist structure is
described in further detail with reference to FIG. 2 below.

[0024] In one embodiment, the consumer electronic devices 112 (e.g., a portable
media device) are configured to execute computer-executable instructions for navigating

the playlist 114 having a plurality of media files associated therewith. The computer-

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

executable instructions may be organized into one or more components. For example, the
consumer electronic devices 112 may store a playlist component 118, a parser component
120, a user interface component 122, and a playback component 124. The playlist
component 118 retrieves, obtains, or otherwise receives one of a plurality of playlist units
116 stored in memory area 122. The playlist units 116 collectively represent the playlist
114. The parser component 120 obtains metadata stored within the playlist unit 116
retrieved by the interface component. The metadata describes a media file associated with
the playlist 114, The user interface component 122 displays, to a user, the obtained
metadata or a portion thereof to enable user selection of a media file associated with the
displayed metadata. The user interface component 122 receives a media file selection
from the user. The playback component 124 renders the selected media file to the user via
the media file reference associated with the media file selection. In one embodiment, each
of the playlist units 116 has a size derived from a sector size associated with the memory
area.

[0025] The computer 102, or other device or software, also has one or more
exemplary modules or components for implementing aspects of the invention. For
example, the computer 102 may have computer-executable instructions for creating
playlist 114 which has an efficient structure described herein to enable efficient navigation
of the playlist 114. Such computer-executable instractions are described in FIG. 3.

[0026] Those skilled in the art will note that the invention software may be
implemented with any number and organization of components or modules. That is, the
invention is not limited to the specific configuration of the playlist component 118, the
parser component 120, the user interface component 122, the playback component 124,
and the computer-executable instructions executed by computer 102, but may include
more or less components having more or less individual functionality than described
herein. Further, the invention may be embodied in hardware, software, or a combination
thereof in a media player, operating system, DVD recorder, CD recorder, video camera,
hard drive, flash drive, personal digital assistant, wireless device (e.g., cellular telephone),
or the like.

[0027] Referring next to FIG. 2, an exemplary block diagram illustrates a playlist
structure. In one embodiment, each playlist is represented as a unique <playlist> HMT
file such as nnnnnnnn. HMT file, where nnnnnnnn is an upper-case, string representation
of a hexadecimal number without leading zeros that represents a playlist identifier. The

playlists may contain one or more of the following media files; audio files, video files,

10

15

20

WO 2007/001613

PCT/US2006/015962

image files (along with the minimum duration an image should be displayed as well as
transitions to use between each image), and parallel images (e.g., an image slideshow with
background audio). Further, in one embodiment, each playlist may be organized into
groups. There are four different types of playlist groups: an audio playlist group, a video
playlist group, a timed image playlist group, and a parallel image audio playlist group.
Audio playlist groups have one or more audio files. Video playlist groups have one or
more video files and support the ability to specify the starting and ending point to use
when playing a video file. Timed image playlist groups have one or more image files and
support the ability to specify the minimum duration an image should be displayed as well
as transitions to use between each image. Parallel image audio playlist groups allow for
an image slideshow with background audio.

[0028] The playlist structure in FIG. 2 generally includes a file header, an offset
group table, a group name table, and playlist unit data. Playlists that are created on
rewritable media also include padding to allow for future edits. For example, the padding
may be after an offset group table as well as after the group name table. In one
embodiment, the size of the padding is a minimum of 2,048 bytes for each padding
section. If the playlist authoring software of the invention expects a large number of edits
to be made to the playlist, an increased padding size may be warranted.

[0029] An exemplary file header is shown below.

Offset | Length Field Name
0 8 Identifier
8 2 Version
10 4 Size of Playlist File
14 1 Playlist Summary Type
15 1 Reserved
16 4 Number of Playlist Groups
20 4 Number of Playlist units
24 2 Size of Playlist unit
26 4 Next Available Group ID
30 4 Offset to Group Name Table
34 4 Offset to Playlist unit Data
38 4 Offset to Padding After Group Name Table
42 64 Name of Authoring Application

Table 1. File Header.
The identifier field is an 8-byte entry such as the text string “PLISTHMT”. The
version field is a 2-byte entry representing the compliant version of the specification to

which this playlist file conforms. The 'size of playlist file' field is a 4-byte entry that

10

15

20

25

WO 2007/001613 PCT/US2006/015962

includes the size of this <Playlist>.HMT file in bytes. The 'playlist summary type' field is
a 1-byte entry that specifies the type of playlist (e.g., audio, video, timed image, or parallel
image). The 'number of playlist groups' field is a 4-byte entry representing a quantity of
playlist groups. The number of playlist units' field is a 4-byte entry representing a
quantity of playlist units in this playlist file. The 'size of playlist unit' field is a 2-byte
entry representing the byte size of the playlist units in this playlist file. The 'next available
group ID' field is a 4-byte entry representing the next available group identifier in this
playlist file. The 'offset to group name table' field is a 4-byte entry representing the byte
offset from the beginning of the file to the beginning of the group name table. The 'offset
to playlist unit data' field is a 4-byte entry representing the byte offset from the beginning
of the file to the beginning of the playlist unit data. The 'offset to padding after group
name table' field is a 4-byte entry representing the byte offset from the beginning of the
file to the beginning of the padding after the group name table. The 'name of authoring
application' field is a 64-byte entry representing the name of the authoring application.

[0030] The offset group table includes a list of one or more offset group
entries. The offset group entries in the offset group table are listed in the playback order
of the groups in the playlist file. An exemplary offset group entry is shown in the table

below.
Offset Length Field Name
0 4 Group ID
4 2 Number of File Indexes in Group
6 2 Number of Playlist units in Group
8 1 Type of Playlist Group
9 1 Reserved
10 4 Starting Playlist unit Index
14 4 Offset to Group Name

Table 2. Offset Group Entry.

The 'group ID' field is a 4-byte entry representing the identifier of the group in this
offset group entry. The 'number of file indexes in group' field is a 2-byte entry
representing the number of media files referenced in this group. For example, a playlist
group that references the files A, B and C in the following order A, B, C, B shall have a
value of 4, not 3. The 'number of playlist units in group' field is a 2-byte entry
representing the number of playlist units that contain this group. The 'type of playlist
group' field is a 1-byte entry representing the type of the playlist group as defined in the
following table.

10

15

20

25

WO 2007/001613 PCT/US2006/015962

Playlist Group Type Value
0 Audio Playlist Group
1 Video Playlist Group
2 Timed Image Playlist Group
3 Parallel Image Audio Playlist Group
4 -255 Reserved

Table 3. Playlist Group Type.

The 'starting playlist unit index" field is a 4-byte entry representing the index of the
first playlist unit that contains this group. The 'offset to group name' field is a 4-byte entry
representing a byte offset from the beginning of the playlist file to the group name length
field.

[0031] The group name table includes a list of one or more group name entries.

Each group name entry includes a group name using the following exemplary format.

Offset | Length Field Name
0 2 Group Name Length
2 Variable Group Name

Table 4. Group Name Entry.

The 'group name length' field is a 2-byte entry representing the byte length of the
group name. The 'group name' field is the text string group name.

[0032] Playlist units are fixed size blocks that reference one or more media files.
In one embodiment, 10-15 media files are referenced in a single playlist unit. In an
embodiment in which the playlist is further organized into playlist groups, a playlist unit
may include one or more groups. Further, one playlist group may span multiple playlist
units. Each of the playlist units includes data to render all or part of a playlist group. This
data lowers the memory required for a player to render very large playlists. A player only
needs to have enough memory to hold at least one playlist unit in memory at any given
time.

[0033] An exemplary playlist unit includes a playlist unit header, a directory table,
a content table, group data, and the file names of the content as shown below. Empty
playlist units may be in the playlist file. An empty playlist unit only contains a playlist
unit header where all fields are zero except for the previous and 'next playlist unit index'
fields. Offsets inside a playlist unit are relative to the beginning of the playlist unit. This
allows each playlist unit to be a self-contained unit that can be interpreted without any
other information. For DVD media, the playlist unit size is 2,048 bytes corresponding to

the sector size of a DVD medium. In addition, the playlist units are in playback order.

5

10

15

20

WO 2007/001613 PCT/US2006/015962

While the playlist units have equal sizes in one embodiment, the invention is operable with

playlists of differing sizes (e.g., multiples).

Playlist Unit Header
Directory Table
Content Table

Group Data
Padding
File Name/Text Strings

Table 5. Playlist Unit Structure.

The 'file name/text string' field of each playlist unit is a contignous section of bytes
that contains the text data (e.g., metadata) for the files in the playlist unit. This text data
includes, for example, file name, directory name, and text metadata for the files and
associated group name in the playlist unit. Each of the strings is formatted as text data
structures. In one embodiment, the authoring application of the invention conserves space
by not adding duplicate strings to the 'file name/text string' field; instead, the authoring
application references the one instance in the 'file name/text string area."

[0034] An exemplary playlist unit header is shown below.

Offset | Length Field Name

0 4 Previous Playlist unit Index

4 4 Next Playlist unit Index

8 2 Number of Directories in Playlist unit
10 2 Number of Contents in Playlist unit
12 2 Number of Groups in Playlist unit
14 2 Offset to Content Table

16 2 Offset to Group Data

18 2 Offset to Padding
20 2 Offset to File Name/Text Strings

Table 6. Playlist Unit Header.

The 'previous playlist unit index' field is a 4-byte entry representing the index of the
playlist unit that precedes the current playlist unit. A value of zero indicates that the
current playlist unit is the first playlist unit. The 'next playlist unit index' field is a 4-byte
entry representing the index of the next playlist unit. A value of zero indicates that the
current playlist is the last playlist unit. The 'number of directories in playlist unit' field is a
2-byte entry representing the number of directory table entries in the current playlist unit.
The 'number of contents in playlist unit' field is a 2-byte entry representing the number of

content entries contained in the current playlist unit. The mumber of groups in playlist

10

15

20

WO 2007/001613 PCT/US2006/015962

unit' field is a 2-byte entry representing the number of groups contained in this playlist
unit, including partial groups. The ‘offset to content table' field is a 2-byte entry
representing the byte offset from the beginning of the playlist unit to the content table.
The 'offset to group data' field is a 2-byte entry representing the byte offset from the
beginning of the playlist unit to the group data. The 'offset to padding' field is a 2-byte
entry representing the byte offset from the beginning of the playlist unit to the padding.
The 'offset to file name/text strings' field is a 2-byte entry representing the byte offset from
the beginning of the playlist unit to the file name/text string data.

[0035] The directory table in a playlist unit as shown below only contains the
directories that are referenced in the content table of the same playlist unit for memory
storage optimization. The exemplary directory table below stores one or more directory

paths associated with the media files in the playlist unit.

Length Field Name
2 Parent Directory Number #1
2 Offset to Directory Name #1
4 Directory ID #1
2 Parent Directory Number #n
2 Offset to Directory Name #n
4 Directory ID #n

Table 7. Directory Table.

The 'parent directory number' field is a 2-byte entry representing the index in the
directory table for the parent directory. The 'offset to directory name' field is a 2-byte
entry representing the offset from the beginning of the current playlist unit to the text data
for the directory name. The 'directory ID' field is a 4-byte entry representing a directory
identifier for this directory,

[0036] The content table includes a list of content entries. There is one content
entry for each unique file referenced in a playlist unit. An exemplary content entry is

formatted as defined in the table below.

Offset | Length Field Name
0 2 File Type
2 2 Special Flags
4 4 Media File ID
8 2 Directory Number
10 2 Track Number
12 4 Duration
16 2 Vertical Size
18 2 Horizontal Size

10

10

15

20

25

WO 2007/001613 PCT/US2006/015962

20 2 Offset to Textl
22 2 Offset to Text2
24 2 Offset to Text3
26 2 Offset to Text4
28 2 Offset to Text5
30 2 Offset to File Name

Table 8. Content Entry.

The 'file type' field is a 2-byte entry representing the file type (e.g., the data encoding
format and the file format). The 'special flags' field is a 2-byte entry summarizing the
special attributes of this file. The ‘'media file ID' field is a 4-byte entry representing the
identifier that corresponds to the current media file entry. The 'directory number' field is a
2-byte entry representing the index in the directory table for the directory that contains the
current media file. A value of one indicates the first directory listed in the Directory
Table. The 'track number' field is a 2-byte entry containing the track number of the audio
file. A value of zero indicates no track number. Image files and video files have this field
set to zero. The duration field is a 4-byte entry containing the duration of the current
media file in milliseconds. Image Files have a value of zero. The 'vertical size' field is a
2-byte entry representing the vertical size of the image or video file in pixels. Audio files
have a value of zero. The ‘horizontal size' field is a 2-byte entry representing the
horizontal size of the image or video file in pixels. Audio files have a value of zero.

[0037] In one embodiment, metadata associated with each media file is organized
into fields such as textl, text2, text3, text4, and text5. The metadata in each of the text
fields may represent a particular metadata such as album, artist, and movie title depending
on the type of media file associated with the metadata. The 'offset to textl' field is a 2-
byte entry representing the offset from the beginning of the current playlist unit to the text
data for Text 1 data. The 'offset to text2' field is a 2-byte entry representing the offset
from the beginning of the current playlist unit to the text data for text2 data. The 'offset to
text3' field is a 2-byte entry representing the offset from the beginning of the current
playlist unit to the text data for text3 data. The 'offset to text4' field is a 2-byte entry
representing the offset from the beginning of the current playlist unit to the text data for
text4 data. The 'offset to text5' field is a 2-byte entry representing the offset from the
beginning of the current playlist unit to the text data for text5 data. The 'offset to file
name' field is a 2-byte entry representing the offset from the beginning of the current
playlist unit to the text data structure which contains the file name of the current media
file.

11

5

10

15

20

25

WO 2007/001613 PCT/US2006/015962

[0038] An exemplary mapping of metadata to the text fields in a content entry is

outlined in the following table.

Audio Files Image Files Video Files
Textl Audio Title Image Title Video Title
Text2 Artist Name Creating Device Name | Artist Name
Text3 Composer Name Date Image Taken Date
Textd Album Name Event Name Event Name
Text5 Genre Name Subject Genre Name

Table 9. Text Mapping.

[0039] The 'group data' field is described in Appendix A.

[0040] Referring next to FIG. 3, an exemplary flow chart illustrates operation of
playlist creation software. The invention includes playlist creation software, playlist
authoring software, or the like, to populate a playlist structure such as illustrated in FIG. 2.
The playlist authoring method of the invention allocates playlist unit space between
metadata and content (e.g., media files). For example, a playlist unit may include one
media file reference and all metadata. In one embodiment, all of the playlist units have
equal sizes derived from a sector size of the computer-readable medium storing the
playlist units. For example, the playlist unit size may be 2048 bytes for a DVD medium.

[0041] The invention includes a computerized method for enabling efficient
navigation of the playlist of media files as shown in FIG. 3. The computerized method
aids user selection of the media files prior to rendering the media files. The computerized
method includes identifying one or more media files associated with a playlist at 302 and
defining media file references for the identified media files at 304. In one embodiment,
defining the media file references includes defining pointers to each of the identified
media files. The computerized method also includes retrieving metadata (e.g., via the
defined media file references) corresponding to each of the identified media files at 306.
The computerized method also includes storing the defined media file references and the
retrieved metadata in one or more playlist units at 308. For example, the computerized
method populates the playlist data structure of FIG. 2 with the defined media file
references and the retrieved metadata. The playlist units collectively constitute the
playlist.

[0042] The invention is not limited to a particular playlist authoring method.
Various playlist authoring methods are within the scope of the invention. In a particular
example, the playlist authoring method of the invention populates two playlist unit data

structures simultaneously. When the size of one of the playlist unit data structures exceeds

12

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

the playlist unit size, the method considers the other playlist unit to be a "full" playlist
unit.

[0043] Another example of a playlist authoring method of the invention includes
determining a quantity of playlist units to store the media file references and the retrieved
metadata as a function of the size of each playlist unit. The method stores the media file
references and the retrieved metadata in the determined quantity of playlist units. Another
exemplary method for storing the media file references and the retrieved metadata
includes successively storing at least a portion of the media file references and the
retrieved metadata corresponding thereto in a first playlist unit until the playlist unit size
has been reached. The method closes the first playlist unit, opens a second playlist unit,
and successively stores at least a remaining portion of the media file references and the
retrieved metadata corresponding thereto in the opened, second playlist unit.

[0044] In one embodiment, one or more computer-readable media have computer-
executable instructions for performing the computerized method illustrated in FIG. 3.

[0045] Referring next to FIG. 4, an exemplary flow chart illustrates creation of the
playlist unit in one embodiment. At 402, a media file number and a playlist unit ("unit")
number are set to one. The method in one embodiment obtains metadata strings for the
media file corresponding to the current media file number at 404. For each metadata
string, the method determines if the metadata string is already stored in the current playlist
unit at 406. If so, then the location of the stored metadata string in the current playlist unit
is noted (and subsequently stored at 414). If the obtained metadata string is not already
stored in the current playlist unit at 406, then the metadata string is added to the metadata
to be added to the current playlist unit (e.g., at 414). If the playlist entry data and the
metadata to be added to the current playlist unit will fit in the current playlist unit at 408,
the method writes the playlist entry data and the metadata to the current unit at 414, The
media file number is incremented at 416 and a determination is made at 418 as to whether
more files are to be processed. If more files are not to be processed, the method writes the
last unit at 420. If more files are to be processed, metadata is obtained at 404 for the next
media file to be processed. If the playlist entry data and the metadata to be added to the
current playlist unit will not fit in the current playlist unit at 408, the method in this
embodiment writes the unit at 410 (e.g., to the computer-readable medium), increments
the unit number at 412, and then proceeds at 406.

[0046] Referring next to FIG. 5, an exemplary flow chart illustrates playlist

playback using the playlist unit in one embodiment. The playlist unit number is set to one

13

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

at 502. The media file number is set to one within the current unit at 504. The media file
corresponding to the current media file number is rendered (e.g., played back) at 506. If
there are more media files in the current playlist unit to play back at 508, the media file
number is incremented at 510 and the next media file is played back at 506. If there are no
more media files in the current playlist unit to play back at 508 and there are no more units
in the playlist at 512, the method in one embodiment returns to the playlist menu at 514.

If there are more units in the playlist at 512, the unit number is incremented at 516 and the
method proceeds to reset the media file number to one for the current unit at 504,

Exemplary Operating Environment

[0047] FIG. 6 shows one example of a general purpose computing device in the
form of a computer 130. In one embodiment of the invention, a computer such as the
computer 130 is suitable for use in the other figures illustrated and described herein.
Computer 130 has one or more processors or processing units 132 and a system memory
134. In the illustrated embodiment, a system bus 136 couples various system components
including the system memory 134 to the processors 132. The bus 136 represents one or
more of any of several types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and a processor or local bus
using any of a variety of bus architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also
known as Mezzanine bus.

[0048] The computer 130 typically has at least some form of computer readable
media. Computer readable media, which include both volatile and nonvolatile media,
removable and non-removable media, may be any available medium that may be accessed
by computer 130. By way of example and not limitation, computer readable media
comprise computer storage media and communication media. Computer storage media
include volatile and nonvolatile, removable and non-removable media implemented in any
method or technology for storage of information such as computer readable instructions,
data structures, program modules or other data. For example, computer storage media
include RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium that

may be used to store the desired information and that may be accessed by computer 130.

14

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

Communication media typically embody computer readable instructions, data structures,
program modules, or other data in a modulated data signal such as a carrier wave or other
transport mechanism and include any information delivery media. Those skilled in the art
are familiar with the modulated data signal, which has one or more of its characteristics set
or changed in such a manner as to encode information in the signal. Wired media, such as
a wired network or direct-wired connection, and wireless media, such as acoustic, RF,
infrared, and other wireless media, are examples of communication media. Combinations
of any of the above are also included within the scope of computer readable media.

[0049] The system memory 134 includes computer storage media in the form of
removable and/or non-removable, volatile and/or nonvolatile memory. In the illustrated
embodiment, system memory 134 includes read only memory (ROM) 138 and random
access memory (RAM) 140. A basic input/output system 142 (BIOS), containing the
basic routines that help to transfer information between elements within computer 130,
such as during start-up, is typically stored in ROM 138. RAM 140 typically contains data
and/or program modules that are immediately accessible to and/or presently being
operated on by processing unit 132. By way of example, and not limitation, FIG. 6
illustrates operating system 144, application programs 146, other program modules 148,
and program data 150.

[0050] The computer 130 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. For example, FIG. 6 illustrates a hard disk
drive 154 that reads from or writes to non-removable, nonvolatile magnetic media. FIG. 6
also shows a magnetic disk drive 156 that reads from or writes to a removable, nonvolatile
magnetic disk 158, and an optical disk drive 160 that reads from or writes to a removable,
nonvolatile optical disk 162 such as a CD-ROM or other optical media. Other
removable/non-removable, volatile/nonvolatile computer storage media that may be used
in the exemplary operating environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 154, and magnetic disk drive 156 and
optical disk drive 160 are typically connected to the system bus 136 by a non-volatile
memory interface, such as interface 166.

[0051] The drives or other mass storage devices and their associated computer
storage media discussed above and illustrated in FIG. 6, provide storage of computer
readable instructions, data structures, program modules and other data for the computer

130. In FIG. 6, for example, hard disk drive 154 is illustrated as storing operating system

15

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

170, application programs 172, other program modules 174, and program data 176. Note
that these components may either be the same as or different from operating system 144,
application programs 146, other program modules 148, and program data 150. Operating
system 170, application programs 172, other program modules 174, and program data 176
are given different numbers here to illustrate that, at a minimum, they are different copies.

[0052] A user may enter commands and information into computer 130 through
input devices or user interface selection devices such as a keyboard 180 and a pointing
device 182 (e.g., a mouse, trackball, pen, or touch pad). Other input devices (not shown)
may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These
and other input devices are connected to processing unit 132 through a user input interface
184 that is coupled to system bus 136, but may be connected by other interface and bus
structures, such as a parallel port, game port, or a Universal Serial Bus (USB). A monitor
188 or other type of display device is also connected to system bus 136 via an interface,
such as a video interface 190. In addition to the monitor 188, computers often include
other peripheral output devices (not shown) such as a printer and speakers, which may be
connected through an output peripheral interface (not shown).

[0053] The computer 130 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 194. The
remote computer 194 may be a personal computer, a server, a router, a network PC, a peer
device or other common network node, and typically includes many or all of the elements
described above relative to computer 130. The logical connections depicted in FIG. 6
include a local area network (LAN) 196 and a wide area network (WAN) 198, but may
also include other networks. LAN 136 and/or WAN 138 may be a wired network, a
wireless network, a combination thereof, and so on. Such networking environments are
commonplace in offices, enterprise-wide computer networks, intranets, and global
computer networks (e.g., the Internet).

[0054] When used in a local area networking environment, computer 130 is
connected to the LAN 196 through a network interface or adapter 186. When used ina
wide area networking environment, computer 130 typically includes a modem 178 or other
means for establishing communications over the WAN 198, such as the Internet. The
modem 178, which may be internal or external, is connected to system bus 136 via the
user input interface 184, or other appropriate mechanism. In a networked environment,
program modules depicted relative to computer 130, or portions thereof, may be stored in

a remote memory storage device (not shown). By way of example, and not limitation,

16

15

20

25

30

WO 2007/001613 PCT/US2006/015962

FIG. 6 illustrates remote application programs 192 as residing on the memory device. The
network connections shown are exemplary and other means of establishing a
communications link between the computers may be used.

[0055] Generally, the data processors of computer 130 are programmed by means
of instructions stored at different times in the various computer-readable storage media of
the computer. Programs and operating systems are typically distributed, for example, on
floppy disks or CD-ROMs. From there, they are installed or loaded into the secondary
memory of a computer. At execution, they are loaded at least partially into the computer’s
primary electronic memory. The invention described herein includes these and other
various types of computer-readable storage media when such media contain instructions or
programs for implementing the steps described below in conjunction with a
microprocessor or other data processor. The invention also includes the computer itself
when programmed according to the methods and techniques described herein.

[0056] For purposes of illustration, programs and other executable program
components, such as the operating system, are illustrated herein as discrete blocks. It is
recognized, however, that such programs and components reside at various times in
different storage components of the computer, and are executed by the data processor(s) of
the computer.

[0057] Although described in connection with an exemplary computing system
environment, including computer 130, the invention is operational with numerous other
general purpose or special purpose computing system environments or configurations.

The computing system environment is not intended to suggest any limitation as to the
scope of use or functionality of the invention. Moreover, the éomputing system
environment should not be interpreted as having any dependency or requirement relating
to any one or combination of components illustrated in the exemplary operating
environment. Examples of well known computing systems, environments, and/or
configurations that may be suitable for use with the invention include, but are not limited
to, personal computers, server computers, hand-held or laptop devices, multiprocessor
systems, microprocessor-based systems, set top boxes, programmable consumer
electronics, mobile telephones, network PCs, minicomputers, mainframe computers,
distributed computing environments that include any of the above systems or devices, and
the like.

[0058] The invention may be described in the general context of computer-

executable instructions, such as program modules, executed by one or more computers or

17

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

other devices. Generally, program modules include, but are not limited to, routines,
programs, objects, components, and data structures that perform particular tasks or
implement particular abstract data types. The invention may also be practiced in
distributed computing environments where tasks are performed by remote processing
devices that are linked through a communications network. In a distributed computing
environment, program modules may be located in both local and remote computer storage
media including memory storage devices,

[0059] An interface in the context of a software architecture includes a software
module, component, code portion, or other sequence of computer-executable instructions.
The interface includes, for example, a first module accessing a second module to perform
computing tasks on behalf of the first module. The first and second modules include, in
one example, application programming interfaces (APIs) such as provided by operating
systems, component object model (COM) interfaces (e.g., for peer-to-peer application
communication), and extensible markup language metadata interchange format (XMI)
interfaces (e.g., for communication between web services).

[0060] The interface may be a tightly coupled, synchronous implementation such
as in Java 2 Platform Enterprise Edition (J2EE), COM, or distributed COM (DCOM)
examples. Alternatively or in addition, the interface may be a loosely coupled,
asynchronous implementation such as in a web service (e.g., using the simple object
access protocol). In general, the interface includes any combination of the following
characteristics: tightly coupled, loosely coupled, synchronous, and asynchronous.
Further, the interface may conform to a standard protocol, a proprietary protocol, or any
combination of standard and proprietary protocols.

[0061] The interfaces described herein may all be part of a single interface or may
be implemented as separate interfaces or any combination therein. The interfaces may
execute locally or remotely to provide functionality. Further, the interfaces may include
additional or less functionality than illustrated or described herein,

[0062] In operation, computer 130 executes computer-executable instructions such
as those illustrated in the figures to implement the invention.

[0063] The invention includes means for creating the playlist unit and means for
populating the data structure. Hardware and software such as a data structure, a user
interface, an application program, an application programming interface (API), computer-
executable instructions, firmware, and the like (such as illustrated in the figures) constitute

means for creating the playlist unit and means for populating the data structure.

18

10

15

20

25

WO 2007/001613 PCT/US2006/015962

[0064] In the examples described herein, the media content of the digital media file
is described in the context of content embodied on a CD or a DVD. It is to be appreciated
and understood that the media content may be embodied on any suitable media and that
the specific examples described herein are given to further understanding of the inventive
principles. For convenience, a digital media file refers to one or more files representing,
for example, a single song track or a collection of tracks such as would be found on an
audio CD. The media content may include, without limitation, specially encoded media
content (e.g., audio, video, or still images) in the form of an encoded media file.

[0065) The exemplary media file operations illustrated in the drawings and
described herein are merely exemplary. Other variations of these file operations are
within the scope of the invention. Alternatively or in addition, other media file operations
not described herein yet embodying the invention are also within the scope of the
invention.

[{0066] The order of execution or performance of the methods illustrated and
described herein is not essential, unless otherwise specified. That is, elements of the
methods may be performed in any order, unless otherwise specified, and that the methods
may include more or less elements than those disclosed herein. For example, it is
contemplated that executing or performing a particular element before,
contemporaneously with, or after another element is within the scope of the invention.

[0067] When introducing elements of the present invention or the embodiment(s)
thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or
more of the elements. The terms “comprising,” “including,” and “having” are intended to
be inclusive and mean that there may be additional elements other than the listed elements.

[0068] In view of the above, it will be seen that the several objects of the invention
are achieved and other advantageous results attained.

[0069] As various changes could be made in the above constructions, products,
and methods without departing from the scope of the invention, it is intended that all
matter contained in the above description and shown in the accompanying drawings shall

be interpreted as illustrative and not in a limiting sense.

19

10

15

20

WO 2007/001613 PCT/US2006/015962

APPENDIX A
[0070] An exemplary 'group data’ field in the playlist structure and the playlist
group objects therein in one embodiment of the invention are described below.
Group Data
Group Data includes a list of one or more Playlist Group Entries as defined below.
Each Playlist Group Entry in the Group Data has different Group ID's and the Playlist
Group Entries are stored in the Group Data in playback order.

Offset Length Field Name
0 2 Previous Group Offset
2 2 Next Group Offset
4 2 Group Flags
6 4 Group ID
10 2 Offset to Group Name
12 1 Type of Playlist Group
13 1 Reserved
14 Var Playlist Group Object

Table Al. Playlist Group Entry.
Previous Group Offset

This 2-byte entry contains the byte offset from the beginning of the Playlist unit to the
previous Playlist Group Entry in this Group Data. A value of zero indicates that this
Playlist Group Entry is the first Group Entry in this Group Data.

Next Group Offset
This 2-byte entry contains the byte offset from the beginning of the Playlist unit to the

next Playlist Group Entry in this Group Data. A value of zero indicates that this Playlist
Group Entry is the last Group Entry in this Group Data.
Group Flags

This 2-byte entry summarizes the special attributes of this Playlist Group Entry. The
following table illustrates the format of this field.

14 Bits 2 Bits
RESERVED Continued
15 0

The continued flags allow players to easily find the starting and ending Playlist units

for a Playlist Group without having to reference the Offset Group Table. Exemplary

continued flags are shown below.

20

10

15

20

25

WO 2007/001613 PCT/US2006/015962

Continued Flags Value
00y GROUP IS CONTAINED IN THIS PLAYLIST UNIT
01y GROUP IS CONTINUED IN NEXT PLAYLIST UNIT
104 GROUP IS CONTINUED FROM PREVIOUS PLAYLIST UNIT
11y GROUP IS CONTINUED FROM PREVIOUS PLAYLIST UNIT
AND CONTINUED IN NEXT PLAYLIST UNIT

Table A2. Continued Flags.

Group ID
This 4-byte entry contains the ID of the Playlist Group.

Offset to Group Name

This 2-byte entry contains the byte offset from the beginning of the Playlist unit to the
Text Data which contains the Group Name of the Playlist Group. Each Playlist Group
Entry has a valid Text Entry for the Group Name.

Type of Playlist Group

This 1-byte entry represents the Type of the Playlist Group.
Reserved

This 1-byte entry is reserved for future use.
Playlist Group Object

This variable size entry contains all or part of the Playlist Group data.

A Playlist Group is represented as the aggregate of one or more Playlist Group
Objects. In the case that one Playlist Group includes more than one Playlist Group Object,
the information for concatenating the Playlist Group Objects within the Playlist Group are
indicated by the Group Flags. If a Playlist Group includes more than one Playlist Group
Object, then the Playlist Group spans Playlist units. The number of Playlist Group Objects
is equal to the number of Playlist units that contain Playlist Group Objects for this Playlist
Group. Therefore, only one Playlist Group Object for a given Playlist Group is allowed in
an individual Playlist unit, in one embodiment.

Audio Playlist Group Object

The order of the Audio File Indexes is the playback order for this Playlist Group
Object.

Offset Length Field Name
0 4 Number of Audio File Indexes
4 4 Audio File Index 1
4+4*(n-1) 4 Audio File Index n

Table A3. Audio Playlist Group Object.

21

10

15

20

WO 2007/001613 PCT/US2006/015962

Number of Audio File Indexes
This 4-byte entry is the number of Audio Files Indexes that are listed in this Playlist

Group Object.
Audio File Index

There is one 4-byte entry for each Audio File Index in this Playlist Group Object. The
value is the Index of the Content Entry which references this Audio File in the Content
Table. A value of one indicates the first Content Entry listed in the Content Table.
Video Playlist Group Object

The order of the Video File Indexes shall be the playback order for this Playlist Group
Object.

Offset Length Field Name

0 4 Number of Video File Indexes

4 4 Video File Index 1

8 4 Starting Point of Video 1

12 4 Ending Point of Video 1

16 8 Starting Point Offset 1

24 8 Ending Point Offset 1
4+28*(n-1) 4 Video File Index n°
8+28*(n-1) 4 Starting Point of Video n
12+28*(n-1) 4 Ending Point of Video n
16+28*(n-1) 8 Starting Point Offset n
24428*(n-1) 8 Ending Point Offset n

Table A4. Video Playlist Group Object.
Number of Video File Indexes

This 4-byte entry is the number of Video File Indexes that are listed in this Playlist

Group Object contained in this Playlist unit.
Video File Index
There is one 4-byte entry for each Video File Index in this Playlist Group Object. The

value is the Index of the Content Entry which references this Video file in the Content
Table. A value of one indicates the first Content Entry listed in the Content Table.
Starting Point of Video

There is one 4-byte entry for each Video File in this Playlist Group. The value is the

offset in milliseconds to the starting time of the starting frame. The offset shall

correspond to an I-frame within the Video File.

22

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

Ending Point of Video
There is one 4-byte entry for each Video File in this Playlist Group. The value is the

offset in milliseconds to the starting time of the next frame of the ending frame. A value
of zero indicates that the Video File should be played to the end of the file. When two
sequential Video File Indexes in a Video Playlist Group indicate the same Video File, this
is a special case intended for uninterrupted playback. Entries such as this allow ‘chapters’
to be created within a single Video File allowing the user to skip by chapter. During
normal playback, the video plays without interruption as each chapter ends where the next
begins. Uninterrupted playback is only mandatory, in one embodiment, for ‘chapters’
contained within a single Playlist unit. Interruptions are allowed when a chapter spans
Playlist unit boundaries.

Starting Point Offset

There is one 8-byte entry for each Video File in this Playlist Group. The value is the
offset from the beginning of the Video File to the location a player may use to start
reading the file. This offset is used with the Starting Point of Video field. Ifthe Starting
Point of Video field is zero then this field is zero in which case the player will locate the
first packet to read by examining the File Header. If the Starting Point of Video field is
non-zero then this field contains the nearest location in the file to start decoding in order to
reach the video starting time.

Ending Point Offset

There is one 8-byte entry for each Video File in this Playlist Group. The value is the

offset from the beginning of the Video File to the location a player may use to stop reading
the file. This offset is to be used with the Ending point of Video field. If the Ending Point
of Video field is zero then this field is zero in which case the player will need to decide for
itself where to stop reading the file. If the Ending Point of Video field is non-zero then
this field contains the nearest location in the file to end reading to ensure all necessary data
has been read.

Timed Image Playlist Group Object

The order of the Image File Indexes is the playback order for this Playlist Group
Object.

Offset Length Field Name
0 4 Number of Image File Indexes
4 2 Initial Transition
6 2 Final Transition
8 4 Image File Index 1

23

10

15

20

WO 2007/001613 PCT/US2006/015962

12 4 Duration 1

16 2 Transition 1
8+10%(n-1) 4 Image File Index n
12+10%(n-1) 4 Duration n
16+10*(n-1) 2 Transition n

Table A5, Timed Image Playlist Group Object.

Number of Image File Indexes

This 4-byte eniry is the number of Image File Indexes that are listed in this Playlist
Group Object.

Initial Transition

This 2-byte entry defines the initial transition to be used to display the first image in
this Playlist Group Object. Exemplary values are CUT and FADE IN.

Final Transition

This 2-byte entry defines the final transition to be used to end the display of the last
image in this Playlist Group Object. Exemplary values are CUT and FADE OUT.

Image File Index

There is one 4-byte entry for each Image File Index in this Playlist Group Object. The
value is the Index of the Content Entry which references this Image file in the Content
Table. A value of one indicates the first Content Entry listed in the Content Table.
Duration

This 4-byte entry is the duration to display the image in milliseconds after the image
has been decoded; a value of zero represents infinity. In one embodiment, the minimum
image duration in a Timed Image Playlist Group is 3 seconds (3000 milliseconds) and the
maximum value is 0x001FFFFE.

Transition

This 2-byte entry defines the type of transition to use when the player changes to the

next Image File. A value of zero is defined as CUT. A list of exemplary transitions is

defined in the following table.

24

10

15

WO 2007/001613 PCT/US2006/015962

Type of Entry Value
0 CUT
1 FADE IN / FADE OUT
2 DISSOLVE
3 WIPE FROM TOP
4 WIPE FROM BOTTOM
5 WIPE FROM LEFT
6 WIPE FROM RIGHT
7 WIPE DIAGONAL LEFT
8 WIPE DIAGONAL RIGHT

9 - 65,535 RESERVED

Table A6. Transition Type.

The duration of the transition is defined by each player. The duration of the transition
should not affect the Image File duration. For example, a transition of 2 seconds duration
between images of durations 20 and 30 seconds respectively should result in 19 seconds of
the first image followed by 2 seconds of transition between the images followed by 29
seconds of the second image.

Parallel Image Audio Playlist Group Object

A Parallel Image Audio Playlist Group contains a list of Audio Files followed by a list
of Image Files with transition and duration information. The list of Audio Files fits within
the first Playlist unit that contains the Parallel Image Audio Playlist Group. The Audio
section (e.g., the list of Audio Files and corresponding Content Entries and File
Name/Text String data) does not span playlist units. The Images are considered the
dominant files within this combination determining most aspects of playback while the

audio is considered an accompaniment with no synchronization to the images.

Length Field Name
4 Number of Image File Indexes
2 Offset to Image Indexes
2 Initial Transition
2 Final Transition
4 Number of Audio File Indexes
4 Audio File Index 1
4 Audio File Index n
4 Image File Index 1
4 Duration 1
2 Transition 1
4 Image File Index m
4 Duration m
2 Transition m

Table A7. Parallel Image Audio Playlist Group Object.

25

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

Number of Image File Indexes

This 4-byte entry is the number of Image File Indexes that are listed in this Playlist
Group Object.
Offset to Image Indexes

This 2-byte entry is the offset from the beginning of this playlist unit to the first Image
File Index. This value is zero if the first Image File Index is stored at the beginning of the
next Playlist unit.

Initial Transition

This 2-byte entry defines the initial transition to be used to display the first image in
this Playlist Group Object. Exemplary values are CUT and FADE IN.

Final Transition

This 2-byte entry defines the final transition to be used to end the display of the last
image in this Playlist Group Object. Exemplary values are CUT and FADE OUT.
Number of Audio File Indexes

This 4-byte entry is the number of Audio File Indexes that are listed in this Playlist

Group Object. This field is zero in all Playlist units except for the first one that contains
this Paralle] Image Audio Playlist Group.
Audio File Index

There is one 4-byte entry for each Audi File Index in this Playlist Group Object. The

value is the Index of the Content Entry which references this Audio File in the Content
Table. A value of one indicates the first Content Entry listed in the Content Table.

Image File Index

There is one 4-byte entry for each Image File Index in this Playlist Group Object. The
value is the Index of the Content Entry which references this Image file in the Content
Table. A value of one indicates the first Content Entry listed in the Content Table.
Duration

This 4-byte entry is the duration to display the image in milliseconds after the image
has been decoded; a value of zero represents infinity. In one embodiment, the minimum
image duration in a Timed Image Playlist Group is 3 seconds (3000 milliseconds) and the
maximum value is 0x001FFFFF.

Transition
This 2-byte entry defines the type of transition to use when the player changes to the

next Image File. A value of zero is defined as CUT.

26

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

CLAIMS
What is claimed is:

1. A computerized method for enabling efficient navigation of a playlist of
media files stored on a computer-readable medium, said computerized method comprising:

identifying one or more media files associated with a playlist;

defining media file references for the identified media files;

retrieving metadata corresponding to each of the identified media files; and

storing the defined media file references and the retrieved metadata in one
or more playlist units representative of the playlist to aid user selection of the media files
prior to rendering the media files.

2. The computerized method of claim 1, wherein each of the playlist units has
a size limit associated therewith, and wherein storing the media file references and the
retrieved metadata comprises:

determining a quantity of playlist units to store the media file references
and the retrieved metadata as a function of the size limit; and

storing the media file references and the retrieved metadata in the
determined quantity of playlist units.

3. The computerized method of claim 1, wherein each playlist unit has a size
limit associated therewith, and wherein storing the media file references and the retrieved
metadata comprises:

successively storing at least a portion of the media file references and the
retrieved metadata corresponding thereto in a first playlist unit until the size limit has been
reached,;

closing the first playlist unit;

opening a second playlist unit; and

successively storing at least a remaining portion of the media file references
and the retrieved metadata corresponding thereto in the opened, second playlist unit.

4. The computerized method of claim 1, further comprising:

receiving one of the playlist units; and
displaying a portion of the metadata stored within the received playlist unit
to a user to enable user selection of a media file associated therewith.

5. The computerized method of claim 4, further comprising:

receiving a media file selection from the user; and

27

10

15

20

25

30

WO 2007/001613 PCT/US2006/015962

rendering the media file associated with the received media file selection
via the media file reference associated with the media file selection.

6. The computerized method of claim 1, wherein retrieving the metadata
comprises retrieving the metadata from the media files via the media file references.

7. The computerized method of claim 1, wherein defining the media file
references for the identified media files comprises defining a pointer to each of the
identified media files.

8. The computerized method of claim 1, wherein storing the media file
references and the retrieved metadata comprises storing the media file references and the
retrieved metadata on a computer-readable medium in one or more playlist units each
having a size derived from a sector size associated with the computer-readable medium.

9. The computerized method of claim 1, wherein all of the playlist units have
an equal size.

10. The computerized method of claim 1, wherein each of the playlist units
occupies 2048 bytes of memory.

11. The computerized method of claim 1, wherein one or more computer-
readable media have computer-executable instructions for performing the computerized
method of claim 1.

12. One or more computer-readable media having computer-executable
components for navigating a playlist having a plurality of media files associated therewith,
said components comprising:

a playlist component for retrieving one of a plurality of playlist units stored
in a memory area, the playlist units collectively representing a playlist;

a parser component for obtaining metadata stored within the playlist unit
retrieved by the interface component, said metadata describing a media file associated
with the playlist;

a user interface component for displaying, to a user, the metadata obtained
by the parser component and receiving a media file selection from the user; and

a playback component for rendering the selected media file to the user.

13. The computer-readable media of claim 12, wherein each of the playlist
units has a size derived from a sector size associated with the memory area.

14, The computer-readable media of claim 12, wherein all of the playlist units

have equal sizes.

28

10

20

25

30

WO 2007/001613 PCT/US2006/015962

15. A computerized system for enabling efficient navigation of a playlist of
media files stored on a computer-readable medium, said computerized system comprising;

a memory area storing a data structure representing a playlist, said data structure
comprising one or more playlist units, each of said playlist units comprising:

a content entry field for each of the media files associated with the
playlist unit, said content entry field storing a media file reference identifying a location of
the media file; and

a metadata field for each content entry field, said metadata field
storing metadata associated with the media file associated with the content entry field; and

a processor configured to execute computer-executable instructions for:
identifying one or more media files associated with a playlist;
defining media file references for the identified media files;

retrieving metadata corresponding to each of the identified media
files; and

populating the data structure stored in the memory area with the
defined media file references and the retrieved metadata to aid user selection of the media
files prior to rendering the media files.

16. The computerized system of claim 15, wherein each of the playlist units
further comprises a directory field for storing one or more directory paths associated with
the media files in the playlist unit.

17. The computerized system of claim 15, wherein each of the playlist units
further comprises a header field for storing an offset to another playlist unit.

18. The computerized system of claim 15, further comprising means for
creating the playlist unit.

19. The computerized system of claim 15, further comprising means for
populating the data structure.

20. The computerized system of claim 15, further comprising a rendering
device for:

receiving one of the playlist units;

retrieving metadata from the received playlist unit, said metadata
corresponding to a media file in the playlist;

displaying the retrieved metadata to a user;

receiving a media file selection from the user; and

rendering the selected media file to the user.

29

WO 2007/001613 PCT/US2006/015962

FIG. 1

111 METADATA
100 Y PROVIDER
S (E.G., SERVER)

112 113

CONSUMER ELECTRONIC DEVICES

102
104 COMPACT DISC MUSIC v
PLAYER
106 I CAMCORDER VIDEO | COMPUTER
108 | STILL
CAMERA =,
122

e
\

114 118
PLAYLIST PLAYLIST COMPONENT

PLAYLIST |V 1% [parser | 120
UNIT #1 COMPONENT

USER INTERFACE | ~ 122
116 | COMPONENT

PLAYLIST
UNIT #N PLAYBACK | 124

\\ COMPONENI/)

1/6

WO 2007/001613

File Header
Identifier (8)
Version (2)
Size of Playlist File (4)
Playlist Summary Type (1)
Reserved (1)

Number of Playlist Groups (4)

Number of Playlist Units (4)

Size of Playlist Unit (2)

Next Available Group ID (4)

Offset to Group Name Table (4)

Offset to Playlist Unit Data (4)

Offset to Padding After
Group Name Table 4)

Name of Authoring Application(64)

Playlist Unit Header

<Playlist>.HMT

File Header

Offset Group Table

PCT/US2006/015962

— Offset Group Entry

Group ID (4)

Number of File Indexes
in Group (2)

Number of Playlist Units

Padding

Group Name Table

Padding

Playlist Unit Data

in Group (2)
Tvpe of Playlist Group (1)
Reserved (1)

Starting playlist unit Index (4)

Offset to Group Name (4)

Group Name Entry

Previous Playlist Unit Index(4)
Next Playlist Unit Index (4)
Number of Directories in
Playlist Unit (2)
Number of Contents in
Playlist Unit (2)
Number of Groups in
Playlist Unit (2)
Offset to Content Table (2)
Offset to Group Data (2)
Offset to Padding (2)
Offset to File Name/Text
Strings (2)
Directory Table
Parent Directory Number #1 (2)
Offset to Directory Name #1 (2)
Directory ID #1 (4)
Parent Directory Number #n (2)
Offset to Directory Name #n_ (2)
Directory ID #n (4)

2/6

Group Name Length (2)
Group Name (MAX 130)
: . —— Content Ent
Playlist Unit Entry | e Type rzlz)
—* (2048 bytes) Special Flags 2)
Playlist Unit Header Media File ID 4)
Directory Table Directory Number (2)
Content Table Track Number (2)
Group Data —— | Duration 4)
Padding Vertical Size (2)
File Name/Text Horizontal Size (2)
Strings Offset to Text (2)
(Group .
e e Offset o Text 5 ()
' ry Offset to File Name (2)
Name, Text 1-5)
—— Group Entry

Previous Group Offset (2)
Next Group Offset (2)
Group Flags (2)
Group ID G
Offset to Group Name (2)
Type of Playlist Group (1)
Reserved (1)
Playlist Group Object

WO 2007/001613 PCT/US2006/015962

FIG. 3

l

i

IDENTIFY MEDIA FILES ASSOCIATED WITH A PLAYLIST — 302

DEFINE MEDIA FILE REFERENCES FOR THE IDENTIFIED MEDIA FILES

|

RETRIEVE METADATA FOR EACH OF THE IDENTIFIED MEDIA FILES

306

|

STORE THE DEFINED MEDIA FILE REFERENCES AND THE
RETRIEVED METADATA IN PLAYLIST UNITS

3/6

308

PCT/US2006/015962

WO 2007/001613

o0¥

pun o3 Aus isijAeid

Slldelpsiy

v

pue ejepelow sl

SOA

Jiun
wauno uil iy Ague
1sijAeld ay} pue
psppe aq 0}
elepejaul |[e |lIAA

1454

Junyo 0} psppe 39 0}
Blep 0} Buuiis ppe ‘yun ui
jou j| "HuUn 8y} ul UoREIO]

ay}] soualajal usyl ‘pun
ut Bugs §f ‘uun uauno ul
Apeaije si Bulys eyepelows
yoeas JI sulwisia(

jiun SjpA
0Ly
Y
#HuUN
juswiaou|
(A% %

Juswalduj

oLy

¢s9lld
aIoN

8Ly

SOA

A. ves .OENCQ__H_
‘Joyny ‘el “6e)
#ollJeIpaly o}

*

¥ "DId

sBuLs ejepejoul 195

wun
1S SJUM

ocvy

A

17074

L=#un
L= #9[lJelps

AV} 2

4/6

PCT/US2006/015962

WO 2007/001613

v1G —1 NUSH\ 0} uIN}oy

Jislikejd uj

ON

AN uj
so|l{ eIpaj\ alo

80§

> #un
TN\ SHun sl JusWaIoU|
CcLS
#9[lIJeIpay
JusWiaIoU|
0LG]
v J
sjideIpapy yoeghe L =#3liJeipsiy
#SI4BIPIIN MoegARld e 4 1A Uy
908 08

L =Aiun

09

G 'Ol

5/6

PCT/US2006/015962

WO 2007/001613

o s e e e e s — s — —

SIWVY90ud _ = VLV S3INAOW SNYY90Md W3LSAS
NOLLYOITddY JLOWIH [\ L WVYO0Yd | WVHOOMd MIHIO | NOWYOIddY | ONLLYY3HO
: 261 COCES T \Nm_\
MHOMLAN y, 9/l 89l / K &
- _| vadvaam 08l j // Ll D T
%617 8l z8) [l

IS B S S St S R S USSR

: 091 GBI~ | o . e !

—_— | 1
T =) = N i
_ (== _ VIVAWYOoud | i

. { .

I N L i — | "

I — N

. OVILNI ! ;!

AOvdIINI HOvHIIN JOV4IINI AHOWIW TOANON | i EL SFNAOW H

MHOMIAN |) L)
VIR V00T § =~ Aﬁ N = < i
i 991 (o1 %

m v8l ! SIWYHDOHd !

* SNaWAlSAS — i NOUVIlddy)

! | i iy

T N E

w = W) P W LT waisas |

| ol JOVAALNI 4 A S

. 03aiA o A

i) (NvY) 1

T ”1 5!
— LINN ONISSI00Hd (7 B Ik

m o6} s : soid !

_ - P o

| 2l D 5_!m..r.-i-.-i.g@#W

{

6/6

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings

