(12) STANDARD PATENT (11) Application No. AU 2015330676 B2

(19) AUSTRALIAN PATENT OFFICE

(54) Title
Intra block copy prediction restrictions for parallel processing

(51) International Patent Classification(s)

HO4N 19/11 (2014.01) HO4N 19/436 (2014.01)
HO4N 19/157 (2014.01) HO4N 19/55 (2014.01)
HO4N 19/174 (2014.01) HO4N 19/593 (2014.01)
(21) Application No: 2015330676 (22) Date of Filing: 2015.10.09

(87) WIPONo: WO16/057938

(30) Priority Data

(31) Number (32) Date (33) Country
62/062,122 2014.10.09 us
14/878,825 2015.10.08 us

(43) Publication Date: 2016.04.14

(44) Accepted Journal Date: 2019.09.26

(71) Applicant(s)
Qualcomm Incorporated

(72) Inventor(s)
Rapaka, Krishnakanth;Pang, Chao;Seregin, Vadim;Karczewicz, Marta

(74) Agent/ Attorney
Madderns Pty Ltd, GPO Box 2752, Adelaide, SA, 5001, AU

(56) Related Art
LAROCHE G ET AL, "AHG14: On IBC constraint for Wavefront Parallel
Processing”, 19. JCT-VC MEETING; 17-10-2014 - 24-10-2014; STRASBOURG;
JCTVC OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16, no. JCTVC-S0070
AU 2014408228 A1
RAPAKA K ET AL, "On parallel processing capability of intra block copy™, 19.
JCT-VC MEETING; 17-10-2014 - 24-10-2014; STRASBOURG; JCTVC OF ISO/IEC
JTC1/SC29/WG11 AND ITU-T SG.16, no. JCTVC-S0220-v2

wO 2016/057938 A1 |)]0 0 OO0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

~
é

W

14 April 2016 (14.04.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/057938 Al

(31

21

(22)

(25)
(26)
(30)

1

(72)

International Patent Classification:

HO4N 19/11 (2014.01) HO4N 19/436 (2014.01)
HO4N 19/157 (2014.01) HO04N 19/593 (2014.01)
HO4N 19/174 (2014.01) HO04N 19/55 (2014.01)

International Application Number:
PCT/US2015/054967

International Filing Date:

9 October 2015 (09.10.2015)
Filing Language: English
Publication Language: English
Priority Data:
62/062,122 9 October 2014 (09.10.2014) UsS
14/878,825 8 October 2015 (08.10.2015) UsS

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: RAPAKA, Krishnakanth; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US). PANG,

(74)

81)

Chao; 5775 Morehouse Drive, San Diego, California
92121-1714 (US). SEREGIN, Vadim; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US). KAR-
CZEWICZ, Marta; 5775 Morehouse Drive, San Diego,
California 92121-1714 (US).

Agent: JOSEPH, Jeffrey R.; Shumaker & Sieffert, P.A.,
1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125

(US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: INTRA BLOCK COPY PREDICTION RESTRICTIONS FOR PARALLEL PROCESSING

(57) Abstract: A video decoder can be configured to, for one or more

~—300

FOR ONE OR MORE BLOCKS CODED WITH
WPP ENABLED, DETERMINE A CTB DELAY

FOR A FIRST BLOCK OF VIDEO DATA
CODED IN AN IBC MODE AND CODED WITH
WPP DISABLED, DETERMINE AN IBC
PREDICTION REGION FOR THE FIRST
BLOCK BASED ON THE CTB DELAY

Y 302

Y 304
IDENTIFY, FROM WITHIN THE IBC
PREDICTION REGION FOR THE FIRST
BLOCK, A PREDICTIVE BLOCK FOR THE
FIRST BLOCK
Y 306

GENERATE SYNTAX TO INDICATE A BLOCK
VECTOR FOR LOCATING THE PREDICTIVE
BLOCK

FIG. 17

blocks coded with wavefront parallel processing enabled, determine a
coding tree block (CTB) delay, wherein the CTB delay identifies a delay
between when a first row of CTBs starts being decoded and when a
second row of CTBs below the first row of CTBs starts being decoded;
for a current block of video data coded in an intra-block copy (IBC)
mode and coded with wavefront parallel processing disabled, determine
an IBC prediction region for the current block within a picture that in-
cludes the current block based on the CTB delay that was determined for
the one or more blocks coded with wavefront parallel processing enabled;
identify, from within the determined IBC prediction region for the current
block, a predictive block for the current block; and IBC decode the cur-
rent block based on the predictive block.

WO 2016/057938 A1 WAL 00T 00O OO

(84) Designated States (unless otherwise indicated, for every SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA,
kind of regional protection available). ARIPO (BW, GH, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Published:
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, — Pished
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, — with international search report (Art. 21(3))
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,

WO 2016/057938 PCT/US2015/054967

INTRA BLOCK COPY PREDICTION RESTRICTIONS
FOR PARALLEL PROCESSING

[0001] This Application claims the benefit of U.S. Provisional Patent Application
62/062,122, filed October 9, 2014, the entire content of which is incorporated by

reference herein.

TECHNICAL FIELD
[0002] This disclosure relates to video coding and, more particularly, prediction of

video blocks based on other video blocks.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency
Video Coding (HEVC) standard(H.265) , and extensions of such standards. The video
devices may transmit, receive, encode, decode, and/or store digital video information
more efficiently by implementing such video compression techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.c., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I)
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring

blocks in the same picture or temporal prediction with respect to reference samples in

2015330676 01 Apr 2019

other reference pictures. Pictures may be referred to as frames, and reference pictures
may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY

[0006] This disclosure introduces techniques to potentially enhance parallel processing
when IBC mode is enabled.

[0007] In one example, there is provided a method of decoding video data, the method
comprising: determining that a first block of video data in a first picture is coded in an
intra block copy (IBC) mode, wherein the first block of video data is in a first row of
coding tree blocks (CTBs); determining that the first block of video data is coded with
wavefront parallel processing enabled; determining a shape of an IBC prediction region
for the first block using a CTB delay for the first block of video data, wherein the CTB
delay specifies a delay between when the first row of CTBs starts being decoded and
when a second row of CTBs above the first row of CTBs starts being decoded;
identifying, from within the IBC prediction region for the first block, a predictive block
for the first block; IBC decoding the first block based on the predictive block for the
first block; determining that a second block of video data in a second picture is coded in
the IBC mode; determining that the second block of video data is coded with wavefront
parallel processing disabled; determining a shape of an IBC prediction region for the

second block based on the CTB delay that was used for the first block; identifying, from

2015330676 01 Apr 2019

within the determined IBC prediction region for the second block, a predictive block for
the second block; and IBC decoding the second block based on the predictive block.
[0008] In another example, there is provided a method of encoding video data, the
method comprising: determining that a first block of video data in a first picture is
coded in an intra block copy (IBC) mode, wherein the first block of video data is in a
first row of coding tree blocks (CTBs); determining that the first block of video data is
coded with wavefront parallel processing enabled; determining a shape of an IBC
prediction region for the first block using a CTB delay for the first block of video data,
wherein the CTB delay specifies a delay between when the first row of CTBs starts
being decoded and when a second row of CTBs above the first row of CTBs starts being
decoded; identifying, from within the IBC prediction region for the first block, a first
predictive block for the first block; generating a first syntax to indicate a first block
vector for locating the first predictive block; determining that a second block of video
data in a second picture is coded in the IBC mode; determining that the second block of
video data is coded with wavefront parallel processing disabled; determining a shape of
an IBC prediction region for the second block based on the CTB delay that was used for
the first block; identifying, from within the determined IBC prediction region for the
second block, a second predictive block for the second block; and generating a second
syntax to indicate a second block vector for locating the second predictive block.

[0009] In another example, there is provided a device for performing video decoding,
the device comprising: a memory to store video data; one or more processors configured
to: determine that a first block of video data in a first picture is coded in an intra block
copy (IBC) mode, wherein the first block of video data is in a first row of coding tree
blocks (CTBs); determine that the first block of video data is coded with wavefront
parallel processing enabled; determine a shape of an IBC prediction region for the first
block using a CTB delay for the first block of video data, wherein the CTB delay
specifies a delay between when the first row of CTBs starts being decoded and when a
second row of CTBs above the first row of CTBs starts being decoded; identify, from
within the IBC prediction region for the first block, a predictive block for the first block;
IBC decode the first block based on the predictive block for the first block; determine
that a second block of video data in a second picture is coded in the IBC mode;
determine that the second block of video data is coded with wavefront parallel
processing disabled; determine a shape of an IBC prediction region for the second block

based on the CTB delay that was used for the first block; identify, from within the

2015330676 01 Apr 2019

determined IBC prediction region for the second block, a predictive block for the
second block; and IBC decode the second block based on the predictive block.

[0010] In another example, there is provided a device for performing video encoding,
the device comprising: a memory to store video data; one or more processors configured
to: determine that a first block of video data in a first picture is coded in an intra block
copy (IBC) mode, wherein the first block of video data is in a first row of coding tree
blocks (CTBs); determine that the first block of video data is coded with wavefront
parallel processing enabled; determine a shape of an IBC prediction region for the first
block using a CTB delay for the first block of video data, wherein the CTB delay
specifies a delay between when the first row of CTBs starts being decoded and when a
second row of CTBs above the first row of CTBs starts being decoded; identify, from
within the IBC prediction region for the first block, a first predictive block for the first
block; generate a first syntax to indicate a first block vector for locating the first
predictive block; determine that a second block of video data in a second picture is
coded in the IBC mode; determine that the second block of video data is coded with
wavefront parallel processing disabled; determine a shape for an IBC prediction region
for the second block based on the CTB delay that was used for the first block; identify,
from within the determined IBC prediction region for the second block, a second
predictive block for the second block; and generate a second syntax to indicate a second
block vector for locating the second predictive block.

[0011] In another example, there is provided an apparatus for decoding video data, the
apparatus comprising: means for determining that a first block of video data in a first
picture is coded in an intra block copy (IBC) mode, wherein the first block of video data
is in a first row of coding tree blocks (CTBs); means for determining that the first block
of video data is coded with wavefront parallel processing enabled; means for
determining a shape of an IBC prediction region for the first block using a CTB delay
for the first block of video data, wherein the CTB delay specifies a delay between when
the first row of CTBs starts being decoded and when a second row of CTBs above the
first row of CTBs starts being decoded; means for identifying, from within the IBC
prediction region for the first block, a predictive block for the first block; means for IBC
decoding the first block based on the predictive block for the first block; means for
determining that a second block of video data in a second picture is coded in the IBC
mode; means for determining that the second block of video data is coded with

wavefront parallel processing disabled; means for determining a shape of an IBC

2015330676 01 Apr 2019

prediction region for the second block based on the CTB delay that was used for the
first block; means for identifying, from within the determined IBC prediction region for
the second block, a predictive block for the second block; and means for IBC decoding
the second block based on the predictive block.

[0012] In another example, there is provided a non-transitory computer readable storage
medium storing instructions that when executed by one or more processors cause the
one or more processors to: determine that a first block of video data in a first picture is
coded in an intra block copy (IBC) mode, wherein the first block of video data is in a
first row of coding tree blocks (CTBs); determine that the first block of video data is
coded with wavefront parallel processing enabled; determine a shape of an IBC
prediction region for the first block using a CTB delay for the first block of video data,
wherein the CTB delay specifies a delay between when the first row of CTBs starts
being decoded and when a second row of CTBs above the first row of CTBs starts being
decoded; identify, from within the IBC prediction region for the first block, a predictive
block for the first block; IBC decode the first block based on the predictive block for the
first block; determine that a second block of video data in a second picture is coded in
the IBC mode; determine that the second block of video data is coded with wavefront
parallel processing disabled; determine a shape of an IBC prediction region for the
second block based on the CTB delay that was used for the first block; identify, from
within the determined IBC prediction region for the second block, a predictive block for
the second block; and IBC decode the second block based on the predictive block.
[0013] In another example, there is provided an apparatus for encoding video data, the
apparatus comprising: means for determining that a first block of video data in a first
picture is coded in an intra block copy (IBC) mode, wherein the first block of video data
is in a first row of coding tree blocks (CTBs); means for determining that the first block
of video data is coded with wavefront parallel processing enabled; means for
determining a shape of an IBC prediction region for the first block using a CTB delay
for the first block of video data, wherein the CTB delay specifies a delay between when
the first row of CTBs starts being decoded and when a second row of CTBs above the
first row of CTBs starts being decoded; means for identifying, from within the IBC
prediction region for the first block, a first predictive block for the first block; means for
generating a first syntax to indicate a first block vector for locating the first predictive
block; means for determining that a second block of video data in a second picture is

coded in the IBC mode; means for determining that the second block of video data is

2015330676 01 Apr 2019

5a

coded with wavefront parallel processing disabled; means for determining a shape for
an IBC prediction region for the second block based on the CTB delay that was used for
the first block; means for identifying, from within the determined IBC prediction region
for the second block, a second predictive block for the second block; and means for
generating a second syntax to indicate a second block vector for locating the second
predictive block.

[0014] In another example, there is provided a non-transitory computer readable storage
medium storing instructions that when executed by one or more processors cause the
one or more processors to: determine that a first block of video data in a first picture is
coded in an intra block copy (IBC) mode, wherein the first block of video data is in a
first row of coding tree blocks (CTBs); determine that the first block of video data is
coded with wavefront parallel processing enabled; determine a shape of an IBC
prediction region for the first block using a CTB delay for the first block of video data,
wherein the CTB delay specifies a delay between when the first row of CTBs starts
being decoded and when a second row of CTBs above the first row of CTBs starts being
decoded; identify, from within the IBC prediction region for the first block, a first
predictive block for the first block; generate a first syntax to indicate a first block vector
for locating the first predictive block; determine that a second block of video data in a
second picture is coded in the IBC mode; determine that the second block of video data
is coded with wavefront parallel processing disabled; determine a shape for an IBC
prediction region for the second block based on the CTB delay that was used for the
first block; identify, from within the determined IBC prediction region for the second
block, a second predictive block for the second block; and generate a second syntax to
indicate a second block vector for locating the second predictive block.

[0015] The details of one or more aspects of the techniques are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the techniques will be apparent from the description and drawings, and

from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0016] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system that may utilize the techniques described in this disclosure.

2015330676 01 Apr 2019

5b

[0017] FIGS. 2A-2C are conceptual diagrams illustrating different sample formats for
video data.

[0018] FIG. 3 is a conceptual diagram illustrating a 16x16 coding unit formatted
according to a 4:2:0 sample format.

[0019] FIG. 4 is a conceptual diagram illustrating a 16x16 coding unit formatted
according to a 4:2:2 sample format.

[0020] FIG. 5 shows a conceptual illustration of the intra block copy (IBC) mode.
[0021] FIG. 6 shows an example of raster scan of a picture when tiles are used.

[0022] FIG. 7 shows an example of WPP processes rows of CTBs in parallel, each row
starting with the CABAC probabilities available after processing the second CTB of the
row above.

[0023] FIGS. 8-12 show valid prediction regions for various examples described in this
disclosure.

[0024] FIG. 13 shows an example method of signaling an intra_bc flag syntax element.
[0025] FIG. 14 shows another example method of signaling an intra_bc_flag syntax
element.

[0026] FIG. 15 is a block diagram illustrating an example video encoder that may
implement the techniques described in this disclosure.

[0027] FIG. 16 is a block diagram illustrating an example video decoder that may

implement the techniques described in this disclosure.

WO 2016/057938 PCT/US2015/054967

[0028] FIG. 17 is a block diagram illustrating an example video encoding process that
incorporates techniques described in this disclosure.
[0029] FIG. 18 is a block diagram illustrating an example video decoding process that

incorporates techniques described in this disclosure.

DETAILED DESCRIPTION
[0030] Various video coding standards, including the recently developed High
Efficiency Video Coding (HEVC) standard include predictive coding modes for video
blocks, where a block currently being coded is predicted based on an already coded
block of video data. In an intra prediction mode, the current block is predicted based on
one or more previously coded, neighboring blocks in the same picture as the current
block, while in an inter prediction mode the current block is predicted based on an
already coded block in a different picture. In inter prediction mode, the process of
determining a block of a previously coded frame to use as a predictive block is
sometimes referred to as motion estimation, which is generally performed by a video
encoder, and the process of identifying and retrieving a predictive block is sometimes
referred to as motion compensation, which is performed by both video encoders and
video decoders.
[0031] A video encoder typically determines how to code a sequence of video data by
coding the video using multiple coding scenarios and identifying the coding scenario
that produces a desirable rate-distortion tradeoff. When testing intra prediction coding
scenarios for a particular video block, a video encoder typically tests the neighboring
row of pixels (i.c. the row of pixels immediately above the block being coded) and tests
the neighboring column of pixels (i.e. the column of pixels immediately to the left of the
block being coded). In contrast, when testing inter prediction scenarios, the video
encoder typically identifies candidate predictive blocks in a much larger search area,
where the search area corresponds to video blocks in previously coded frames of video
data.
[0032] It has been discovered, however, that for certain types of video images, such as
video images that include text, symbols, or repetitive patterns, coding gains can be
achieved relative to intra prediction and inter prediction by using an intra block copy
(IBC) mode, which is also sometimes referred to as an intra motion compensation
(IMC) mode. In the development of various coding standards, the term IMC mode was

originally used, but later modified to IBC mode. In an IBC mode, a video encoder

WO 2016/057938 PCT/US2015/054967

searches for a predictive block in the same frame or picture as the block being coded, as
in an intra prediction mode, but the video encoder searches a wider search area and not
just the neighboring rows and columns of pixels.

[0033] In IBC mode, the video encoder may determine an offset vector, also referred to
sometimes as a motion vector or block vector, for identifying the predictive block
within the same frame or picture as the block being predicted. The offset vector
includes, for example, an x-component and a y-component, where the x-component
identifies the horizontal displacement between a video block being predicted and the
predictive block, and where the y-component identifies a vertical displacement between
the video block being predicted and the predictive block. The video encoder signals, in
the encoded bitstream, the determined offset vector so that a video decoder, when
decoding the encoded bitstream, can identify the same predictive block selected by the
video encoder.

[0034] Various video coding standards, including HEVC, also support parallel
processing mechanisms such as tiles and wavefront parallel processing so that different
blocks within the same picture may be decoded at the same time. Tiles offer rectangular
partitioning (with coded tree block (CTB) granularity) of a picture into multiple
independently decodable (including parsing and reconstruction) regions, such that a
video decoder can decode multiple tiles in parallel. Unlike tiles, wavefronts are not
independently decodable, but a video decoder may still be able to decode multiple
wavefronts in parallel by staggering the time at which decoding of the various
wavefronts start. For example, if a video decoder decodes two blocks of a first
wavefront before starting to decode a second wavefront below the first wavefront, then
the video decoder can ensure that any information of the first wavefront necessary for
the decoding the second wavefront is already decoded, and thus available for use in
decoding the second wavefront.

[0035] This disclosure introduces techniques to potentially enhance parallel processing
when IBC mode is enabled. More specifically, this disclosure introduces restrictions
on IBC block vectors (BVs) such that a decoder can process, in parallel, multiple CTUs
in non-raster scan order, which is sometimes referred to as wavefront parallel
processing. The techniques of this disclosure are directed to, but not limited to, screen
content coding, including the support of possibly high bit depth (more than 8 bit),
different chroma sampling format such as 4:4:4, 4:2:2,4:2:0, 4:0:0 and etc.

WO 2016/057938 PCT/US2015/054967

[0036] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize the techniques described in this disclosure, including
techniques for coding blocks in an IBC mode and techniques for parallel processing. As
shown in FIG. 1, system 10 includes a source device 12 that generates encoded video
data to be decoded at a later time by a destination device 14. Source device 12 and
destination device 14 may comprise any of a wide range of devices, including desktop
computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone
handsets such as so-called “smart” phones, so-called “smart” pads, televisions, cameras,
display devices, digital media players, video gaming consoles, video streaming device,
or the like. In some cases, source device 12 and destination device 14 may be equipped
for wireless communication.

[0037] Destination device 14 may receive the encoded video data to be decoded via a
link 16. Link 16 may comprise any type of medium or device capable of moving the
encoded video data from source device 12 to destination device 14. In one example,
link 16 may comprise a communication medium to enable source device 12 to transmit
encoded video data directly to destination device 14 in real-time. The encoded video
data may be modulated according to a communication standard, such as a wireless
communication protocol, and transmitted to destination device 14. The communication
medium may comprise any wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmission lines. The
communication medium may form part of a packet-based network, such as a local arca
network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from source device 12 to
destination device 14.

[0038] Alternatively, encoded data may be output from output interface 22 to a storage
device 17. Similarly, encoded data may be accessed from storage device 17 by input
interface. Storage device 17 may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, storage device 17 may
correspond to a file server or another intermediate storage device that may hold the
encoded video generated by source device 12. Destination device 14 may access stored

video data from storage device 17 via streaming or download. The file server may be

WO 2016/057938 PCT/US2015/054967

any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from storage device 17 may be a
streaming transmission, a download transmission, or a combination of both.

[0039] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, streaming video
transmissions, ¢.g., via the Internet, encoding of digital video for storage on a data
storage medium, decoding of digital video stored on a data storage medium, or other
applications. In some examples, system 10 may be configured to support one-way or
two-way video transmission to support applications such as video streaming, video
playback, video broadcasting, and/or video telephony.

[0040] In the example of FIG. 1, source device 12 includes a video source 18, video
encoder 20 and an output interface 22. In some cases, output interface 22 may include a
modulator/demodulator (modem) and/or a transmitter. In source device 12, video
source 18 may include a source such as a video capture device, ¢.g., a video camera, a
video archive containing previously captured video, a video feed interface to receive
video from a video content provider, and/or a computer graphics system for generating
computer graphics data as the source video, or a combination of such sources. As one
example, if video source 18 is a video camera, source device 12 and destination device
14 may form so-called camera phones or video phones. However, the techniques
described in this disclosure may be applicable to video coding in general, and may be
applied to wireless and/or wired applications.

[0041] The captured, pre-captured, or computer-generated video may be encoded by
video encoder 20. The encoded video data may be transmitted directly to destination
device 14 via output interface 22 of source device 12. The encoded video data may also
(or alternatively) be stored onto storage device 17 for later access by destination device

14 or other devices, for decoding and/or playback.

WO 2016/057938 PCT/US2015/054967
10

[0042] Destination device 14 includes an input interface 28, a video decoder 30, and a
display device 32. In some cases, input interface 28 may include a receiver and/or a
modem. Input interface 28 of destination device 14 receives the encoded video data
over link 16. The encoded video data communicated over link 16, or provided on
storage device 17, may include a variety of syntax elements generated by video encoder
20 for use by a video decoder, such as video decoder 30, in decoding the video data.
Such syntax elements may be included with the encoded video data transmitted on a
communication medium, stored on a storage medium, or stored a file server.

[0043] Display device 32 may be integrated with, or external to, destination device 14.
In some examples, destination device 14 may include an integrated display device and
also be configured to interface with an external display device. In other examples,
destination device 14 may be a display device. In general, display device 32 displays
the decoded video data to a user, and may comprise any of a variety of display devices
such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

[0044] Video encoder 20 and video decoder 30 may operate according to a video
compression standard, such as HEVC, and may conform to the HEVC Test Model
(HM). A working draft of the HEVC standard, referred to as “HEVC Working Draft
10” or “HEVC WD10,” is described in Bross et al., “Editors’ proposed corrections to
HEVC version 1,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T
SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 13™ Meeting, Incheon, KR, April 2013.
Another HEVC draft specification is available from http://phenix.int-
evry.fr/jct/doc_end user/documents/15 Geneva/wgl1/JCTVC-01003-v2.zip. The
techniques described in this disclosure may also operate according to extensions of the
HEVC standard that are currently in development.

[0045] Alternatively or additionally, video encoder 20 and video decoder 30 may
operate according to other proprietary or industry standards, such as the ITU-T H.264
standard, alternatively referred to as MPEG-4, Part 10, Advanced Video Coding (AVC),
or extensions of such standards. The techniques of this disclosure, however, are not
limited to any particular coding standard. Other examples of video compression
standards include ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC
MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also
known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC) and
Multiview Video Coding (MVC) extensions.

http://phenix.int-evry.fr/j

WO 2016/057938 PCT/US2015/054967
11

[0046] The design of the HEVC has been recently finalized by the JCT-VC of ITU-T
Video Coding Experts Group (VCEG) and ISO/IEC Motion Picture Experts Group
(MPEQG). The Range Extensions to HEVC, referred to as HEVC RExt, are also being
developed by the JCT-VC. A recent Working Draft (WD) of Range extensions, referred
to as RExt WD7 hereinafter, is available from http://phenix.int-

evry.fr/jct/doc_end user/documents/17 Valencia/wgl 1/JCTVC-Q1005-v4.zip.

[0047] This disclosure will generally refer to the recently finalized HEVC specification
text as HEVC version 1 or base HEVC. The range extension specification may become
the version 2 of the HEVC. With respect to many coding tools, such as motion vector
prediction, HEVC version 1 and the range extension specification are technically
similar. Therefore whenever this disclosure describes changes relative to HEVC
version 1, the same changes may also apply to the range extension specification, which
generally includes the base HEVC specification, plus some additional coding tools.
Furthermore, it can generally be assumed that HEVC version 1 modules may also be
incorporated into a decoder implementing the HEVC range extension.

[0048] New coding tools for screen-content material such as text and graphics with
motion are currently in development and being contemplated for inclusion in future
video coding standards, including future version of HEVC. These new coding tools
potentially improve coding efficiency for screen content. As there is evidence that
significant improvements in coding efficiency may be obtained by exploiting the
characteristics of screen content with novel dedicated coding tools, a Call for Proposals
(CfP) has been issued with the target of possibly developing future extensions of the
HEVC standard including specific tools for SCC). Companies and organizations have
been invited to submit proposals in response to this Call. The use cases and
requirements of this CfP are described in MPEG document N14174. During the 17"
JCT-VC meeting, SCC test model (SCM) is established. A recent Working Draft (WD)
of SCC is available from http://phenix.int-

evry.fr/jct/doc_end user/documents/18 Sapporo/wgl1/JCTVC-R1005-v3.zip.

[0049] 1t is generally contemplated that video encoder 20 of source device 12 may be
configured to encode video data according to any of these current or future standards.
Similarly, it is also generally contemplated that video decoder 30 of destination device
14 may be configured to decode video data according to any of these current or future

standards.

http://phenix.int-evry
http://phenix.int-evry.fr/jct/doc_end_user/documents/18_Sapporo/wgll/JCTVC-R1005-v3.zip

WO 2016/057938 PCT/US2015/054967
12

[0050] Although not shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0051] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0052] As introduced above, the JCT-VC has recently finalized development of the
HEVC standard. The HEVC standardization efforts were based on an evolving model
of a video coding device referred to as the HEVC Test Model (HM). The HM presumes
several additional capabilities of video coding devices relative to existing devices
according to, e.g., ITU-T H.264/AVC. For example, whereas H.264 provides nine intra-
prediction encoding modes, the HM may provide as many as thirty-five intra-prediction
encoding modes.

[0053] In HEVC and other video coding specifications, a video sequence typically
includes a series of pictures. Pictures may also be referred to as “frames.” A picture
may include three sample arrays, denoted Sy, Scp, and S¢;. St is a two-dimensional
array (i.c., a block) of luma samples. Scy is a two-dimensional array of Cb chrominance
samples. Sc; is a two-dimensional array of Cr chrominance samples. Chrominance
samples may also be referred to herein as “chroma” samples. In other instances, a
picture may be monochrome and may only include an array of luma samples.

[0054] To generate an encoded representation of a picture, video encoder 20 may
generate a set of coding tree units (CTUs). Each of the CTUs may comprise a coding
tree block (CTB) of luma samples, two corresponding coding tree blocks of chroma

samples, and syntax structures used to code the samples of the coding tree blocks. In

WO 2016/057938 PCT/US2015/054967
13

monochrome pictures or pictures having three separate color planes, a CTU may
comprise a single coding tree block and syntax structures used to code the samples of
the coding tree block. A coding tree block may be an NxN block of samples. A CTU
may also be referred to as a “tree block” or a “largest coding unit” (LCU). The CTUs of
HEVC may be broadly analogous to the macroblocks of other standards, such as
H.264/AVC. However, a CTU is not necessarily limited to a particular size and may
include one or more coding units (CUs). A slice may include an integer number of
CTUs ordered consecutively in a raster scan order.

[0055] To generate a coded CTU, video encoder 20 may recursively perform quad-tree
partitioning on the coding tree blocks (CTBs) of a CTU to divide the coding tree blocks
into coding blocks, hence the name “coding tree units.” A coding block may be an NxN
block of samples. A CU may comprise a coding block of luma samples and two
corresponding coding blocks of chroma samples of a picture that has a luma sample
array, a Cb sample array, and a Cr sample array, and syntax structures used to code the
samples of the coding blocks. In monochrome pictures or pictures having three separate
color planes, a CU may comprise a single coding block and syntax structures used to
code the samples of the coding block.

[0056] Video encoder 20 may partition a coding block of a CU into one or more
prediction blocks. A prediction block is a rectangular (i.e., square or non-square) block
of samples on which the same prediction is applied. A prediction unit (PU) of a CU
may comprise a prediction block of luma samples, two corresponding prediction blocks
of chroma samples, and syntax structures used to predict the prediction blocks. In
monochrome pictures or pictures having three separate color planes, a PU may comprise
a single prediction block and syntax structures used to predict the prediction block.
Video encoder 20 may generate predictive luma, Cb, and Cr blocks for luma, Cb, and Cr
prediction blocks of each PU of the CU.

[0057] Video encoder 20 may use intra prediction or inter prediction to generate the
predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the
predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the
PU based on decoded samples of the picture associated with the PU. If video encoder
20 uses inter prediction to generate the predictive blocks of a PU, video encoder 20 may
generate the predictive blocks of the PU based on decoded samples of one or more

pictures other than the picture associated with the PU.

WO 2016/057938 PCT/US2015/054967
14

[0058] After video encoder 20 generates predictive luma, Cb, and Cr blocks for one or
more PUs of a CU, video encoder 20 may generate a luma residual block for the CU.
Each sample in the CU’s luma residual block indicates a difference between a luma
sample in one of the CU’s predictive luma blocks and a corresponding sample in the
CU’s original luma coding block. In addition, video encoder 20 may generate a Cb
residual block for the CU. Each sample in the CU’s Cb residual block may indicate a
difference between a Cb sample in one of the CU’s predictive Cb blocks and a
corresponding sample in the CU’s original Cb coding block. Video encoder 20 may
also generate a Cr residual block for the CU. Each sample in the CU’s Cr residual block
may indicate a difference between a Cr sample in one of the CU’s predictive Cr blocks
and a corresponding sample in the CU’s original Cr coding block.

[0059] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the
luma, Cb, and Cr residual blocks of a CU into one or more luma, Cb, and Cr transform
blocks. A transform block is a rectangular (e.g., square or non-square) block of samples
on which the same transform is applied. A transform unit (TU) of a CU may comprise a
transform block of luma samples, two corresponding transform blocks of chroma
samples, and syntax structures used to transform the transform block samples. Thus,
cach TU of a CU may be associated with a luma transform block, a Cb transform block,
and a Cr transform block. The luma transform block associated with the TU may be a
sub-block of the CU’s luma residual block. The Cb transform block may be a sub-block
of the CU’s Cb residual block. The Cr transform block may be a sub-block of the CU’s
Cr residual block. In monochrome pictures or pictures having three separate color
planes, a TU may comprise a single transform block and syntax structures used to
transform the samples of the transform block.

[0060] Video encoder 20 may apply one or more transforms to a luma transform block
of a TU to generate a luma coefficient block for the TU. A coefficient block may be a
two-dimensional array of transform coefficients. A transform coefficient may be a
scalar quantity. Video encoder 20 may apply one or more transforms to a Cb transform
block of a TU to generate a Cb coefficient block for the TU. Video encoder 20 may
apply one or more transforms to a Cr transform block of a TU to generate a Cr
coefficient block for the TU.

[0061] After generating a coefficient block (e.g., a luma coefficient block, a Cb
coefficient block or a Cr coefficient block), video encoder 20 may quantize the

coefficient block. Quantization generally refers to a process in which transform

WO 2016/057938 PCT/US2015/054967
15

coefficients are quantized to possibly reduce the amount of data used to represent the
transform coefficients, providing further compression. After video encoder 20 quantizes
a coefficient block, video encoder 20 may entropy encode syntax elements indicating
the quantized transform coefficients. For example, video encoder 20 may perform
Context-Adaptive Binary Arithmetic Coding (CABAC) on the syntax elements
indicating the quantized transform coefficients.

[0062] Video encoder 20 may output a bitstream that includes a sequence of bits that
forms a representation of coded pictures and associated data. The bitstream may
comprise a sequence of NAL units. A NAL unit is a syntax structure containing an
indication of the type of data in the NAL unit and bytes containing that data in the form
of a RBSP interspersed as necessary with emulation prevention bits. Each of the NAL
units includes a NAL unit header and encapsulates a RBSP. The NAL unit header may
include a syntax element that indicates a NAL unit type code. The NAL unit type code
specified by the NAL unit header of a NAL unit indicates the type of the NAL unit. A
RBSP may be a syntax structure containing an integer number of bytes that is
encapsulated within a NAL unit. In some instances, an RBSP includes zero bits.
[0063] Different types of NAL units may encapsulate different types of RBSPs. For
example, a first type of NAL unit may encapsulate an RBSP for a PPS, a second type of
NAL unit may encapsulate an RBSP for a coded slice, a third type of NAL unit may
encapsulate an RBSP for SEI messages, and so on. NAL units that encapsulate RBSPs
for video coding data (as opposed to RBSPs for parameter sets and SEI messages) may
be referred to as VCL NAL units.

[0064] Video decoder 30 may receive a bitstream generated by video encoder 20. In
addition, video decoder 30 may parse the bitstream to obtain syntax elements from the
bitstream. Video decoder 30 may reconstruct the pictures of the video data based at
least in part on the syntax elements obtained from the bitstream. The process to
reconstruct the video data may be generally reciprocal to the process performed by
video encoder 20. In addition, video decoder 30 may inverse quantize coefficient
blocks associated with TUs of a current CU. Video decoder 30 may perform inverse
transforms on the coefficient blocks to reconstruct transform blocks associated with the
TUs of the current CU. Video decoder 30 may reconstruct the coding blocks of the
current CU by adding the samples of the predictive blocks for PUs of the current CU to
corresponding samples of the transform blocks of the TUs of the current CU. By

WO 2016/057938 PCT/US2015/054967

16

reconstructing the coding blocks for each CU of a picture, video decoder 30 may
reconstruct the picture.

[0065] A video sampling format, which may also be referred to as a chroma format,
may define the number of chroma samples included in a CU with respect to the number
of luma samples included in a CU. Depending on the video sampling format for the
chroma components, the size, in terms of number of samples, of the U and V
components may be the same as or different from the size of the Y component. In the
HEVC standard, a value called chroma format idc is defined to indicate different
sampling formats of the chroma components, relative to the luma component. In
HEVC, chroma format idc is signaled in the SPS. Table 1 illustrates the relationship

between values of chroma_format idc and associated chroma formats.

chroma_format idc | chroma format SubWidthC SubHeightC
0 Monochrome - -
1 4:2:0 2 2
2 4:2:2 2 1
3 4:4:4 1 1

Table 1: different chroma formats defined in HEVC

[0066] In Table 1, the variables SubWidthC and SubHeightC can be used to indicate the
horizontal and vertical sampling rate ratio between the number of samples for the luma
component and the number of samples for each chroma component. In the chroma
formats described in Table 1, the two chroma components have the same sampling rate.
Thus, in 4:2:0 sampling, each of the two chroma arrays has half the height and half the
width of the luma array, while in 4:2:2 sampling, cach of the two chroma arrays has the
same height and half the width of the luma array. In 4:4:4 sampling, each of the two
chroma arrays, may have the same height and width as the luma array, or in some
instances, the three color planes may all be separately processed as monochrome
sampled pictures.

[0067] In the example of Table 1, for the 4:2:0 format, the sampling rate for the luma
component is twice that of the chroma components for both the horizontal and vertical
directions. As a result, for a coding unit formatted according to the 4:2:0 format, the
width and height of an array of samples for the luma component are twice that of each

array of samples for the chroma components. Similarly, for a coding unit formatted

WO 2016/057938 PCT/US2015/054967
17

according to the 4:2:2 format, the width of an array of samples for the luma component
is twice that of the width of an array of samples for each chroma component, but the
height of the array of samples for the luma component is equal to the height of an array
of samples for each chroma component. For a coding unit formatted according to the
4:4:4 format, an array of samples for the luma component has the same width and height
as an array of samples for each chroma component. It should be noted that in addition
to the YUV color space, video data can be defined according to an RGB space color. In
this manner, the chroma formats described herein may apply to either the YUV or RGB
color space. RGB chroma formats are typically sampled such that the number of red
samples, the number of green samples and the number of blue samples are equal. Thus,
the term “4:4:4 chroma format” as used herein may refer to either a YUV color space or
an RGB color space wherein the number of samples is equal for all color components.
[0068] FIGS. 2A-2C are conceptual diagrams illustrating different sample formats for
video data. FIG. 2A is a conceptual diagram illustrating the 4:2:0 sample format. As
illustrated in FIG. 2A, for the 4:2:0 sample format, the chroma components are one
quarter of the size of the luma component. Thus, for a CU formatted according to the
4:2:0 sample format, there are four luma samples for every sample of a chroma
component. FIG. 2B is a conceptual diagram illustrating the 4:2:2 sample format. As
illustrated in FIG. 2B, for the 4:2:2 sample format, the chroma components are one half
of the size of the luma component. Thus, for a CU formatted according to the 4:2:2
sample format, there are two luma samples for every sample of a chroma component.
FIG. 2C is a conceptual diagram illustrating the 4:4:4 sample format. As illustrated in
FIG. 2C, for the 4:4:4 sample format, the chroma components are the same size of the
luma component. Thus, for a CU formatted according to the 4:4:4 sample format, there
is one luma sample for every sample of a chroma component.

[0069] FIG. 3 is a conceptual diagram illustrating an example of a 16x16 coding unit
formatted according to a 4:2:0 sample format. FIG. 3 illustrates the relative position of
chroma samples with respect to luma samples within a CU. As described above, a CU
is typically defined according to the number of horizontal and vertical luma samples.
Thus, as illustrated in FIG. 3, a 16x16 CU formatted according to the 4:2:0 sample
format includes 16x16 samples of luma components and 8x8 samples for each chroma
component. Further, as described above, a CU may be partitioned into smaller CUs.

For example, the CU illustrated in FIG. 3 may be partitioned into four 8x8 CUs, where

WO 2016/057938 PCT/US2015/054967
18

cach 8x8 CU includes 8x8 samples for the luma component and 4x4 samples for each
chroma component.

[0070] FIG. 4 is a conceptual diagram illustrating an example of a 16x16 coding unit
formatted according to a 4:2:2 sample format. FIG.4 illustrates the relative position of
chroma samples with respect to luma samples within a CU. As described above, a CU
is typically defined according to the number of horizontal and vertical luma samples.
Thus, as illustrated in FIG. 4, a 16x16 CU formatted according to the 4:2:2 sample
format includes 16x16 samples of luma components and 8x16 samples for each chroma
component. Further, as described above, a CU may be partitioned into smaller CUs.
For example, the CU illustrated in FIG. 4 may be partitioned into four 8x8 CUs, where
cach CU includes 8x8 samples for the luma component and 4x8 samples for each
chroma component.

[0071] FIG. 5 shows a conceptual illustration of the IBC mode. Video encoder 20 and
video decoder 30 may, for example be configured to encode and decode blocks of video
data using an IBC mode. Many applications, such as remote desktop, remote gaming,
wireless displays, automotive infotainment, cloud computing, etc., are becoming routine
in people’s daily lives, and the coding efficiency when coding such content may be
improved by the use of an IBC mode. System 10 of FIG. 1 may represent devices
configured to execute any of these applications. Video content in these applications are
often combinations of natural content, text, artificial graphics, etc. In text and artificial
graphics regions of video frames, repeated patterns (such as characters, icons, symbols,
etc.) often exist. As introduced above, IBC is a dedicated technique which enables
removing this kind of redundancy and potentially improving the intra-frame coding
efficiency as reported in JCT-VC M0350. As illustrated in FIG. 5, for the CUs which
use IBC, the prediction signals are obtained from the already reconstructed region in the
same frame (e.g., picture). In the end, the offset or block vector, which indicates the
position of the prediction signal displaced from the current CU, together with the
residue signal are encoded.

[0072] For instance, FIG. 5 illustrates an example technique for predicting a current
block 102 of video data within a current picture 103 according to an IBC mode in
accordance with the techniques of this disclosure. FIG. 5 illustrates a predictive video
block 104 within current picture 103. A video coder, ¢.g., video encoder 20 and/or
video decoder 30, may use predictive video block 104 to predict current video block 102

according to an IBC mode in accordance with the techniques of this disclosure.

WO 2016/057938 PCT/US2015/054967
19

[0073] Video encoder 20 selects predictive video block 104 for predicting current video
block 102 from a set of previously reconstructed blocks of video data. Video encoder
20 reconstructs blocks of video data by inverse quantizing and inverse transforming the
video data that is also included in the encoded video bitstream, and summing the
resulting residual blocks with the predictive blocks used to predict the reconstructed
blocks of video data. In the example of FIG. 5, intended region 108 within picture 103,
which may also be referred to as an “intended area” or “raster area,” includes the set of
previously reconstructed video blocks. Video encoder 20 may define intended region
108 within picture 103 in variety of ways, as described in greater detail below. Video
encoder 20 may select predictive video block 104 to predict current video block 102
from among the video blocks in intended region 108 based on an analysis of the relative
efficiency and accuracy of predicting and coding current video block 102 based on
various video blocks within intended region 108.

[0074] Intended region 108 may also be referred to in this disclosure as an IBC
prediction region. This disclosure describes various techniques that may modify what
blocks are included in intended region 108. Thus, when implementing the techniques of
this disclosure, the size and shape of intended region 108 may be different than that
shown in the example of FIG. 5.

[0075] Video encoder 20 determines two-dimensional vector 106 representing the
location or displacement of predictive video block 104 relative to current video block
102. Two-dimensional vector 106, which is an example of an offset vector, includes
horizontal displacement component 112 and vertical displacement component 110,
which respectively represent the horizontal and vertical displacement of predictive
video block 104 relative to current video block 102. Video encoder 20 may include one
or more syntax elements that identify or define two-dimensional vector 106, e.g., that
define horizontal displacement component 112 and vertical displacement component
110, in the encoded video bitstream. Video decoder 30 may decode the one or more
syntax elements to determine two-dimensional vector 106, and use the determined
vector to identify predictive video block 104 for current video block 102.

[0076] In some examples, the resolution of two-dimensional vector 106 can be integer
pixel, e.g., be constrained to have integer pixel resolution. In such examples, the
resolution of horizontal displacement component 112 and vertical displacement

component 110 will be integer pixel. In such examples, video encoder 20 and video

WO 2016/057938 PCT/US2015/054967
20

decoder 30 need not interpolate pixel values of predictive video block 104 to determine
the predictor for current video block 102.

[0077] In other examples, the resolution of one or both of horizontal displacement
component 112 and vertical displacement component 110 can be sub-pixel. For
example, one of components 112 and 110 may have integer pixel resolution, while the
other has sub-pixel resolution. In some examples, the resolution of both of horizontal
displacement component 112 and vertical displacement component 110 can be sub-
pixel, but horizontal displacement component 112 and vertical displacement component
110 may have different resolutions.

[0078] In some examples, a video coder, ¢.g., video encoder 20 and/or video decoder
30, adapts the resolution of horizontal displacement component 112 and vertical
displacement component 110 based on a specific level, e.g., block-level, slice-level, or
picture-level adaptation . For example, video encoder 20 may signal a flag at the slice
level, e.g., in a slice header, that indicates whether the resolution of horizontal
displacement component 112 and vertical displacement component 110 is integer pixel
resolution or is not integer pixel resolution. If the flag indicates that the resolution of
horizontal displacement component 112 and vertical displacement component 110 is not
integer pixel resolution, video decoder 30 may infer that the resolution is sub-pixel
resolution. In some examples, one or more syntax elements, which are not necessarily a
flag, may be transmitted for each slice or other unit of video data to indicate the
collective or individual resolutions of horizontal displacement component 112 and/or
vertical displacement component 110.

[0079] In still other examples, instead of a flag or a syntax element, video encoder 20
may set based on, and video decoder 30 may infer the resolution of horizontal
displacement component 112 and/or vertical displacement component 110 from
resolution context information. Resolution context information may include, as
examples, the color space (e.g., YUV, RGB, or the like), the specific color format (e.g.,
4:4:4, 4:2:2, 4:2:0, or the like), the frame size, the frame rate, or the quantization
parameter (QP) for the picture or sequence of pictures that include current video block
102. In at least some examples, a video coder may determine the resolution of
horizontal displacement component 112 and/or vertical displacement component 110
based on information related to previously coded frames or pictures. In this manner, the
resolution of horizontal displacement component 112 and the resolution for vertical

displacement component 110 may be pre-defined, signaled, may be inferred from other,

WO 2016/057938 PCT/US2015/054967
21

side information (e.g., resolution context information), or may be based on already
coded frames.

[0080] Current video block 102 may be a CU, or a PU of a CU. In some examples, a
video coder, ¢.g., video encoder 20 and/or video decoder 30, may split a CU that is
predicted according to IBC into a number of PUs. In such examples, the video coder
may determine a respective (e.g., different) two-dimensional vector 106 for each of the
PUs of the CU. For example, a video coder may split a 2Nx2N CU into two 2NxN PUs,
two Nx2N PUs, or four NxN PUs. As other examples, a video coder may split a 2Nx2N
CU into ((N/2)xN + (3N/2)xN) PUs, ((3N/2)xN + (N/2)xN) PUs, (Nx(N/2) + Nx(3N/2))
PUs, (Nx(3N/2) + Nx(N/2)) PUs, four (N/2)x2N PUs, or four 2Nx(N/2) PUs. In some
examples, video coder may predict a 2Nx2N CU using a 2Nx2N PU.

[0081] Current video block 102 includes a luma video block (e.g., luma component)
and a chroma video block (e.g., chroma component) corresponding to the luma video
block. In some examples, video encoder 20 may only encode one or more syntax
elements defining two-dimensional vectors 106 for luma video blocks into the encoded
video bitstream. In such examples, video decoder 30 may derive two-dimensional
vectors 106 for each of one or more chroma blocks corresponding to a luma block based
on the two-dimensional vector signaled for the luma block. In the techniques described
in this disclosure, in the derivation of the two-dimensional vectors for the one or more
chroma blocks, video decoder 30 may modify the two-dimensional vector for the luma
block if the two-dimensional vector for the luma block points to a sub-pixel position
within the chroma sample.

[0082] Depending on the color format, e.g., color sampling format or chroma sampling
format, a video coder may downsample corresponding chroma video blocks relative to
the luma video block. Color format 4:4:4 does not include downsampling, meaning that
the chroma blocks include the same number of samples in the horizontal and vertical
directions as the luma block. Color format 4:2:2 is downsampled in the horizontal
direction, meaning that there are half as many samples in the horizontal direction in the
chroma blocks relative to the luma block. Color format 4:2:0 is downsampled in the
horizontal and vertical directions, meaning that there are half as many samples in the
horizontal and vertical directions in the chroma blocks relative to the luma block.

[0083] In examples in which video coders determine vectors 106 for chroma video
blocks based on vectors 106 for corresponding luma blocks, the video coders may need

to modify the luma vector. For example, if a luma vector 106 has integer resolution

WO 2016/057938 PCT/US2015/054967
22

with horizontal displacement component 112 and/or vertical displacement component
110 being an odd number of pixels, and the color format is 4:2:2 or 4:2:0, the converted
luma vector may not point an integer pixel location in the corresponding chroma block.
In such examples, video coders may scale the luma vector for use as a chroma vector to
predict a corresponding chroma block.

[0084] As described, FIG. 5 shows a current CU that is being coded in an IBC mode. A
predictive block for the current CU may be obtained from the search region. The search
region includes already coded blocks from the same frame as the current CU.
Assuming, for example, the frame is being coded in a raster scan order (i.c. left-to-right
and top-to-bottom), the already coded blocks of the frame correspond to blocks that are
to the left of and above the current CU, as shown in FIG. 5. In some examples, the
search region may include all of the already coded blocks in the frame, while in other
examples, the search region may include fewer than all of the already coded blocks.
The offset vector in FIG. 5, sometimes referred to as a motion vector or prediction
vector, identifies the differences between a top-left pixel of the current CU and a top-left
pixel of the predictive block (labeled prediction signal in FIG. 5). Thus, by signaling
the offset vector in the encoded video bitstream, a video decoder can identify the
predictive block for the current CU, when the current CU is coded in an IBC mode.
[0085] IBC has been included in various implementations of SCC, including the SCC
extension to HEVC. An example of IBC is described above with respect to FIG. 5,
where the current CU/PU is predicted from an already decoded block of the current
picture/slice. In IBC, a predictive block (e.g. predictive video block 104 in FIG. 5) may
be a reconstructed block that has not been loop filtered, e.g. has not been deblock
filtered or SAO filtered.

[0086] For the luma component or the chroma components that are coded with IBC, the
block compensation is done with integer block compensation, therefore no interpolation
is needed. Therefore, the block vector is predicted and signalled at an integer level
precision.

[0087] In current implementations of SCC, the block vector predictor is set to (-w, 0) at
the beginning of each CTB, where w corresponds to the width of the CU. Such a block
vector predictor is updated to be the one of the latest coded CU/PU if that is coded with
IBC mode. If a CU/PU is not coded with IBC, then the block vector predictor remains
unchanged. After block vector prediction, the block vector difference is encoded using

a MV difference (MVD) coding method such as in HEVC.

WO 2016/057938 PCT/US2015/054967
23

[0088] Current implementations of IBC enable IBC coding at both CU and PU levels.
For PU level IBC, 2NxN and Nx2N PU partitions are supported for all the CU sizes. In
addition, when the CU is the smallest CU, NxN PU partition is supported.

[0089] As introduced above, HEVC contains several proposals to make the codec more
parallel-friendly, including tiles and wavefront parallel processing (WPP). HEVC
defines tiles as an integer number of coding tree blocks co-occurring in one column and
one row, ordered consecutively in coding tree block raster scan of the tile. The division
of each picture into tiles is a partitioning.

[0090] FIG. 6 shows a raster scan of a picture when tiles are used. Tiles in a picture are
ordered consecutively in tile raster scan of the picture as shown in FIG. 6. The number
of tiles and the location of their boundaries can be defined for the entire sequence or
changed from picture to picture. Tile boundaries, similar to slice boundaries, break parse
and prediction dependencies so that a tile can be processed independently. In-loop
filters (de-blocking and SAO), however, may still cross tile boundaries. HEVC also
specifies some constraints on the relationship between slices and tiles. In the example
of FIG. 6, lines 114A and 114B represent vertical tile boundaries, and lines 114C and
114D represent horizontal tile boundaries. The numbers within each tile represent the
raster scan order for the CTBs within the tile. For example, for the upper left most tile,
the block labeled 0 is first decoded, then the block labeled 1, then the block labeled 2,
and so on.

[0091] A potential advantage of using tiles is that that tiles do not always require
communication between processors of a video decoder, such as video decoder 30, for
entropy decoding and motion compensation reconstruction. Such communication may,
however, be needed if the syntax element loop_filter across_tiles enabled flag is set to
1. Compared to slices, tiles potentially have better coding efficiency because tiles allow
picture partition shapes that contain samples with a potential higher correlation than
slices, and also because tiles potentially reduce slice header overhead.

[0092] The tile design in HEVC may provide several benefits. As one example, tiles
may enable parallel processing by video decoder 30. As another example, tiles may
improve coding efficiency by allowing a changed decoding order of CTUs compared to
the use of slices, while the main benefit is the first one. When a tile is used in single-
layer coding, the syntax element min_spatial segmentation_idc may be used by a
decoder to calculate the maximum number of luma samples to be processed by one

processing thread, making the assumption that the decoder maximally utilizes the

WO 2016/057938 PCT/US2015/054967
24

parallel decoding information. In HEVC there may be same picture inter-dependencies
between the different threads — e.g. due to entropy coding synchronization or de-
blocking filtering across tile or slice boundaries. HEVC includes a note which
encourages encoders to set the value of min_spatial segmentation idc to be the highest
possible value.

[0093] As introduced above, HEVC also supports WPP. When WPP is enabled, each
CTU row of a picture is a separated partition. Compared to slices and tiles, however,
with WPP no coding dependences are broken at CTU row boundaries. Additionally,
CABAC probabilities are propagated from the second CTU of the previous row, to
further reduce the coding losses. Also, WPP does not change the regular raster scan
order. As dependencies are not broken, the rate-distortion loss of a WPP bitstream may
be small compared to that of a nonparallel bitstream.

[0094] When WPP is enabled, a number of processors up to the number of CTU rows
can work in parallel to process the CTU row (or lines). The wavefront dependences,
however, do not allow all the CTU rows to start decoding at the beginning of the
picture. Consequently, the CTU rows also cannot finish decoding at the same time at
the end of the picture. This introduces parallelization inefficiencies that become more
evident when a high number of processors are used.

[0095] FIG. 7 shows an example of WPP processes rows of CTBs in parallel, each row
starting with the CABAC probabilities available after processing the second CTB of the
row above. Each of rows 116A-116G may be decoded in parallel, but as each row
potentially depends on information of the row above, the decoding of all the rows may
not be able to begin at the same time. For example, video decoder 30 cannot start
decoding row 116D until a certain number of blocks of row 116C have been decoded.
Similarly, video decoder 30 cannot start decoding 116E until a certain number of blocks
of row 116D have already been decoded. As will be explained in more detail below, the
amount of time video decoder 30 waits before decoding a row after starting to decode
the row above may be referred to as a delay. In the example, of FIG. 7, the grey blocks
represent already decoded blocks, while the white blocks represent yet to be decoded
blocks. As can be seen in FIG. 7, a row typically has more already decoded blocks than
the row immediately below.

[0096] Coding video data in IBC mode in conjunction with parallel processing
techniques such as tiles and WPP may pose potential difficulties. IBC mode uses

previously decoded unfiltered samples within the same picture for prediction. In the

WO 2016/057938 PCT/US2015/054967
25

current test model, for the IBC mode the search range is unrestricted and can use any
unfiltered decoded samples of the current picture (full search IBC). In real-time
applications it is typical to process in non-raster order (e.g WPP) to enabled processing
multiple CTU at a same time. HEVC defines the entropy decoding order when WPP or
entropy_coding_sync enabled flag is enabled.

[0097] Certain implementations of SCC with WPP and tiles potentially have some
problems when a non-raster scan is enabled. As a first example, the availability of
prediction samples is always considered based on the raster order sequential processing.
This potentially significantly impacts the parallel processing capabilities of the system.
As a second example, there have been some proposals in the recent JCT-VC meetings to
restrict the IBC prediction region in the similar lines to entropy parsing when WPP is
enabled. However, this potentially has a significant impact on the coding efficiency due
to a limited search range being available for IBC mode.

[0098] In order to allow WPP like parallel processing schemes and reduce the coding
efficiency loss this disclosure describes techniques to add some flexible restrictions on
the IBC search range and/or on IBC block vectors.

[0099] Each of the following techniques may be applied separately or jointly. The
techniques described in this disclosure detail the availability of prediction region for
IBC prediction. In addition this region may depend based on WPP is enabled or not.
[0100] According to a first technique, a fixed processing order of reconstructing the
samples may be considered. (e.g entropy parsing order when WPP is enabled or any of
the below processing order). The samples that are already decoded/reconstructed may
be only used for prediction.

[0101] According to a second technique, a fixed processing order of reconstructing the
samples may be considered. (e.g entropy parsing order when WPP is enabled or any of
the below processing order). The samples that are already decoded/reconstructed may
be only used for prediction. Further any region below the current CTB is considered as
not available for IBC prediction.

[0102] According to a third technique, a fixed processing order of reconstructing the
samples may be considered. (e.g entropy parsing order when WPP is enabled or any of
the below processing order) and any region below the current CTB is considered as not
available for IBC prediction and partial regions are considered as not available for the

above the current CTB based on the max TU size specified in the SPS header.

WO 2016/057938 PCT/US2015/054967
26

[0103] According to a fourth technique, a fixed processing order of reconstructing the
samples may be considered. (e.g entropy parsing order when WPP is enabled or any of
the below processing order) and partial regions are considered as not available for the
above the current CTB based on the max TU size specified in the SPS header.

[0104] According to a fifth technique, a flexible processing order of reconstructing the
samples may be considered to be valid for IBC prediction and this regions are signalled
in the bitstream.

[0105] According to a sixth technique, a flexible processing order of reconstructing the
samples may be considered to be valid for IBC prediction and this regions are signalled
in the bitstream and any region below the current CTB is considered as no available for
IBC prediction. Examples of the various techniques introduced above will now be
illustrated in more detail.

[0106] FIGS. 8-12 show examples of blocks configured to be decoded using WPP.
Each of the regions shown in FIGS. 8-12 corresponds to a CTB. In the examples of
FIGS. 8-12, the CTB labeled with an X represents a current block being decoded. For
IBC prediction, blocks labeled with 1 may be used for IBC, while blocks labeled with 0
may not be used for IBC.

[0107] FIG. 8 shows a first example with an IBC processing order with a 1 CTB delay
with regard to the above CTB row will now be described. The following restriction as
shown in FIG. 8 is applied on the IBC block vectors, such that no IBC block predicts
from region marked with 0’s. In FIG. 8, the region marked with “1’s” is a valid
predicted region that has already been reconstructed. These restrictions would allow

processing of any “0” marked region in parallel with current block x.

8.4.4 Derivation process for block vector components in intra block copying prediction

mode
— Itis arequirement of bitstream conformance that
(xPb + bvIntra[xPb][yPb][0] + nPbSw — 1)/CtbSizeY — xCurr/CtbSizeY <=
yCurr/CtbSizeY — (yPb + bvintra] xPb][yPb][1] + nPbSh —
1)/CtbSizeY
and

yCurr/CtbSizeY — (yPb + bvintra] xPb][yPb][1] + nPbSh —
1)/CtbSizeY >=0

WO 2016/057938 PCT/US2015/054967
27

[0108] According to one technique of this disclosure, for one or more blocks coded with
wavefront parallel processing enabled, video decoder 30 may determine a CTB delay
that identifies a delay between when a first row of CTBs starts being decoded and when
a second row of CTBs below the first row of CTBs starts being decoded. For a current
block of video data coded in an IBC mode and coded with wavefront parallel processing
disabled, video decoder 30 may determine an IBC prediction region for the current
block within a picture that includes the current block based on the CTB delay that was
determined for the one or more blocks coded with WPP enabled. In other words, video
decoder 30 may determine the IBC prediction region for the current block based on the
CTB delay regardless of the value of the entropy coding sync_enabled flag, which
means regardless of whether or not WPP is enabled or disabled. By always determining
the IBC prediction region based on the CTB delay, overall decoding complexity is
reduced, but reduced in a way that still enables video decoder 30 to support IBC mode
with WPP enabled.
[0109] In some alternative implementations, the above restriction may only be applied
on the IBC block vectors when entropy coding_sync_enabled flag is equal to 1 such
that no IBC block predicts from non—decoded region.
8.4.4 Derivation process for block vector components in intra block copying prediction
mode
- It is a requirement of bitstream conformance that when
entropy_coding_sync enabled flag is equal to 1
yCurr/CtbSizeY — (yPb + bvIntra[xPb][yPb][1] + nPbSh — 1)/CtbSizeY >=0
and when entropy coding sync enabled flag is equal to 1
(xPb + bvIntra[xPb][yPb][0] + nPbSw — 1)/CtbSizeY — xCurr/CtbSizeY <=
yCurr/CtbSizeY — (yPb + bvIntra[xPb][yPb][1] + nPbSh — 1)/CtbSizeY

[0110] A second example with IBC processing order with 2 CTB delay with regard to
the above CTB row will now be described. The following restriction as shown in FIG.
9 is applied on the IBC block vectors, such that no IBC block predicts from the “0”
region. In FIG. 9, the region marked with 1’s is a valid predicted region that has already
been reconstructed. These restrictions would allow processing of any “0”” marked region

in parallel with current block x. Here each region corresponds to CTB.

WO 2016/057938 PCT/US2015/054967
28

8.4.4 Derivation process for block vector components in intra block copying prediction
mode
— Itis arequirement of bitstream conformance that
(xPb + bvIntra[xPb][yPb][0] + nPbSw — 1)/CtbSizeY — xCurt/CtbSizeY <=
2* (yCurr/CtbSizeY — (yPb + bvIntra[xPb][yPb][1] + nPbSh —
1)/CtbSizeY)
and
yCurr/CtbSizeY — (yPb + bvintra] xPb][yPb][1] + nPbSh —
1)/CtbSizeY >=0

[0111] Alternatively the above restriction conditions are applied on the IBC block

vectors only when entropy coding_sync enabled flag is equal to 1 such that no IBC

block predicts from non—decoded region.

8.4.4 Derivation process for block vector components in intra block copying prediction
mode

- It is a requirement of bitstream conformance that when

entropy coding_sync_enabled flag is equal to 1

yCurr/CtbSizeY — (yPb + bvIntra[xPb][yPb][1] + nPbSh — 1)/CtbSizeY >=0

and when entropy coding sync enabled flag is equal to 1
(xPb + bvIntra] xPb][yPb][0] + nPbSw — 1)/CtbSizeY —
xCurr/CtbSizeY <=
2 *(yCurr/CtbSizeY —

(yPb + bvintra[xPb][yPb][1] + nPbSh — 1)/CtbSizeY)
[0112] A third example with IBC processing order with tile shaped regions will now be
described. The following restriction as shown in FIG. 10 is applied on the IBC block
vectors, such that no IBC block predicts from the “0” region. In FIG. 10, the region
marked with 1°s is a valid predicted region that has already been reconstructed. These
restrictions would allow processing of any “0” marked region in parallel with current
block x. Here each region corresponds to CTB.
[0113] In one example, the above restriction is applied only when

entropy_coding_sync_enabled flag is equal to 1 as below

WO 2016/057938 PCT/US2015/054967
29

8.4.4 Derivation process for block vector components in intra block copying prediction
mode
- It is a requirement of bitstream conformance that
xCurr/CtbSizeY — (xPb + bvIntra[xPb][yPb][0] + nPbSw —
1)/CtbSizeY >=0
yCurr/CtbSizeY — (yPb + bvintra] xPb][yPb][1] + nPbSh —
1)/CtbSizeY >=0
[0114] Alternatively the above restriction conditions are applied on the IBC block
vectors only when entropy coding sync_enabled flag is equal to 1 such that no IBC
block predicts from non—decoded region.
- It is a requirement of Dbitstream conformance that when
entropy_coding_sync enabled flag is equal tol
xCurr/CtbSizeY — (xPb + bvIntra[xPb][yPb][0] + nPbSw —
1)/CtbSizeY >=0
yCurr/CtbSizeY — (yPb + bvintra] xPb][yPb][1] + nPbSh —
1)/CtbSizeY >=0
[0115] A fourth example with IBC processing order with less than 1 CTB delay with
regard to the above CTB row will now be described. In this example it is proposed to
restrict prediction samples for IBC similar to “IBC processing order with 1 CTB delay
with regard to the above CTB row” discussed above but with the delay of the maximum
TU block instead, which is less than 1 CTB delay. Let the maximum TU size
maxTUSizeY is derived as maxTUSizeY = 1 << MaxTbLog2SizeY. (signalled in SPS).
8.4.4 Derivation process for block vector components in intra block copying prediction
mode
— Itis arequirement of bitstream conformance that
(xPb + bvIntra[xPb][yPb][0] + nPbSw — 1)/ maxTUSizeY — xCurr/
maxTUSizeY <=
yCurr/ maxTUSizeY —
(yPb + bvintra[xPb][yPb][1] + nPbSh — 1)/ maxTUSizeY
and
yCurr/ maxTUSizeY —
(yPb + bvIntra[xPb][yPb][1] + nPbSh — 1)/ maxTUSizeY >=0

WO 2016/057938 PCT/US2015/054967
30

[0116] Alternatively the above restriction conditions are applied on the IBC block
vectors only when entropy coding sync enabled flag is equal to 1 such that no IBC
block predicts from non—decoded region.
8.4.4 Derivation process for block vector components in intra block copying prediction
mode
- It is a requirement of bitstream conformance that when
entropy coding_sync_enabled flag is equal tol
yCurr/ maxTUSizeY — (yPb + bvIntra] xPb][yPb][1] + nPbSh -1)/
maxTUSizeY >=0
and when entropy coding sync_enabled flag is equal to 1
(xPb + bvIntra[xPb][yPb][0] + nPbSw — 1)/ maxTUSizeY — xCurr/
maxTUSizeY<= yCurr/ maxTUSizeY —
(yPb + bvintra[xPb][yPb][1] + nPbSh — 1)/ maxTUSizeY
[0117] Wavefront parallel processing enables to parallel process each CTB row in the
picture. For example, in a 1080p picture, upto 17 CTB rows can be processed in
parallel if the system has 17 parallel processing cores. However, in most multi-core
systems, it is typical that only limited number of parallel processing cores are used (e.g
4). In this scenario, only 4 CTB rows are processed in parallel and 5™ CTB row is
processed after completion of one of above 4 CTB rows. In such a scenario, it is
possible for the 5™ CTB row to predict from the regions that are already decoded from
the previous 4 CTB rows. In this example it is proposed to signal for each CTB row,
the valid decoded region (CTB’s) for all its previous decoded CTB rows. In another
embodiment it is proposed to signal for each CTB row, the valid decoded region
(CTB’s) for all its CTB rows. This information can be signalled in SPS, VPS, PPS, slice
header or their respective extension. Alternatively this information can be signalled in
SEI message.
[0118] In one example, the below information is signalled conditionally based on when
entropy_coding_sync_enabled flag is equal tol. Alternatively below information is
signaled independent of whether entropy coding sync enabled flag is enabled or not.
[0119] In another example, the below information is signalled conditionally on IBC tool
enabling flag which can be signaled in at least one parameter set (PPS, SPS, VPS) or its
extension.
[0120] In a first example, for cach CTB row, the availability regions for IBC prediction

for all of its above CTB’s rows are signalled. See for example FIG. 11. The regions

WO 2016/057938
31

PCT/US2015/054967

below the current CTB are considered unavailable for IBC prediction. Below is an

example implementation of the proposed method at slice header.

pps_scc_extension () { Descriptor
if(intra_block copy enabled flag){
pps_ibc_ref avail signal present flag
}
}
slice_segment header() { Descript
or
first_slice_segment_in_pic_flag u(l)
if(tiles_enabled flag || entropy coding sync enabled flag) {
num_entry_point_offsets ue(v)
if(num_entry point offsets >0) {
offset len_minusl ue(v)
for(1=0;1<num_entry point offsets; i++)
entry_point_offset minusl[1i] u(v)
}
}
if(pps_ibc _ref avail restriction present flag) {
num_ctbY in_slice minusl ue(v)
for(i=0;i< num_ctbY in_slice;it++)
for(j=0;j< 1;i++)
max_delay IBCPred in CTBs[i][j] ue(v)
}
byte alignment()
}

pps_ibc_ref avail restriction present flag equal to 1 specifies that intra

block copy reference usage restrictions are present and are signaled in the slice segment

header for all the coded tree blocks of the slice. pps_ibc_ref avail restriction

_present flag equal to 0 specifies that intra block copy reference usage info is not

present in the slice segment header When pps_ibc_ref avail restriction present flag

18 not present, it is inferred to be 0.

WO 2016/057938 PCT/US2015/054967
32

num_ctbY_in_slice minusl plus 1 specifies the number of CTB rows in the
slice.

max_delay IBCPred_in_CTBs|[i][j] specifies for the current CTB row 1
that maximum delay in terms of CTB’s for each the previous CTB row j that is
available for IBC prediction. When not present it is inferred to be equal to number of
CTB in the row.
[0121] In another example implementation, for each CTB row, the availability regions
for IBC prediction for all CTB’s rows are signalled. See for example FIG. 12. Below is

an example implementation of the proposed method at slice header.

slice_segment header() { Descript
or
first_slice_segment_in_pic_flag u(l)

if(tiles_enabled flag || entropy coding sync enabled flag) {

num_entry_point_offsets ue(v)

if(num_entry point_offsets >0) {

offset len_minusl ue(v)

for(1=0;1<num_entry point offsets; i++)

entry_point_offset minusl[1i] u(v)

}

if(pps_ibc_ref avail restriction_present flag) {

num_ctbY_in_slice_minusl ue(v)

for(i=0;i<num_ctbY in_slice;it++)

for(j=0;j< num_ctbY in_slice;i++)

max_delay IBCPred_in CTBs[i][] ue(v)

}

byte alignment()

}

pps_ibc_ref avail restriction present flag ecqual to 1 specifies that intra
block copy reference usage restrictions are present and are signaled in the slice segment
header for all the coded tree blocks of the slice. pps_ibc_ref avail restriction
_present flag equal to 0 specifies that intra block copy reference usage info is not
present in the slice segment header When pps_ibc_ref avail restriction present flag

18 not present, it is inferred to be 0.

WO 2016/057938 PCT/US2015/054967
33

num_ctbY_in_slice minusl plus 1 specifies the number of CTB rows in the
slice.

max_delay IBCPred_in_CTBs|[i][j] specifies for the current CTB row 1
that maximum delay in terms of CTB’s for each the previous CTB row j that is
available for IBC prediction. When not present it is inferred to be equal to number of
CTB in the row.
[0122] Alternatively, this can be signalled at SPS VUI or SEI message and combined
with aspects proposed in JCTVC-S0145 and U.S. Provisional Patent Application
62/061,063 filed 7 October 2014.
[0123] Another example technique of this disclosure relates to signaling of IBC mode
for merge. This disclosure introduces techniques signal the usage of IBC mode for
merge mode. The proposed methods are mainly concerned on screen content coding,
including the support of possibly high bit depth (more than 8 bit), different chroma
sampling format such as 4:4:4, 4:2:2, 4:2:0, 4:0:0 and etc.
[0124] In the recent JCT-VC meeting, there have been proposals to modify merge
candidate list generation when IBC mode is used. As prediction characteristics of IBC
is observed to be different from inter, it was shown to provide coding efficiency when
the merge candidate list generation process is modified differently from inter.
[0125] FIG. 13 shows an example signaling techniques wherein the IBC merge process
is signaled separately from the inter merge process. In the example of FIG. 13, video
decoder 30 receives, for a PU, syntax elements indicating if a CU of the PU is coded in
inter mode (210). If a cu_skip flag for the CU is true (212, yes), then the CU is coded
in a skip mode, and video decoder 30 receives, or infers, a merge index for the CU (214)
and codes the CU according to the motion information associated with the determined
merge index. If a cu_skip flag for the CU is false (212, no), then video decoder 30
receives the syntax element intra_bc_flag (216) and a merge flag (218). If the merge
flag is true (220, yes), then video decoder 30 receives a merge index (214) and decodes
the CU according to the motion information associated with the merge index. If the
merge flag is false (220, no), then video decoder 30 receives another intra_bc flag
(224). If the intra_bc_flag is true (224, yes), then video decoder 30 receives block
vector information (226). Based on the received block vector information, video
decoder 30 decodes the CU. If the intra be flag is false (224, no), then video decoder
30 receives motion vector information (228). Based on the motion vector information,

video decoder 30 decodes the CU.

WO 2016/057938 PCT/US2015/054967
34

[0126] The scheme of signaling described in FIG. 13 has potential problems. As one
example, the signaling of intra_bc_flag for every PU to separate inter and IBC mode
may not be efficient for unification of IBC and inter modes. Aspects/solutions related to
this problem are covered in U.S. Provisional Patent Application 62/061,121, filed 7
October 2014, U.S. Patent Application 14/876,699 filed 6 October 2015, and JCTVC-
S0113. It has been proposed to align coding of BVD and BVP_idx with the coding of
MVD and MVP index with respect to inter prediction.

[0127] According to one technique of this disclosure, it is proposed to signal
intra_bc_flag only when the current PU is merge (that is merge flag is 1) as shown in
FIG. 14. Additionally, the intra_bc_flag may be signalled conditionally on IBC tool
enabling flag which can be signaled in at least one parameter set (PPS, SPS, VPS) or
elsewhere. This disclsoure introduces techniques to separate IBC merge process from
the inter merge process based on intra_bc_flag that is signaled only for merge PU. In
such an instance, the merge candidate lists for IBC modes and conventional inter
prediction may be different. The syntax element intra_bc_flag may not be signalled and
inferred as 1 in the following cases: (1) the current slice is I-slice; (2) the current CU
size is 8x8 and its partition size is NxN.

[0128] FIG. 14 shows an example signaling techniques wherein the IBC merge process
is only signaled once compared to the separately signaling of FIG. 13. In the example
of FIG. 14, video decoder 30 receives, for a PU, syntax elements indicating if a CU of
the PU is coded in inter mode (230). If a cu_skip flag for the CU is true (232, yes),
then the CU is coded in a skip mode, and video decoder 30 receives an intra_bc flag
(234) and a merge index for the CU (214) and codes the CU according to the motion
information associated with the determined merge index. If a cu_skip flag for the CU
is false (232, no), then video decoder 30 receives a merge flag (240). If the merge flag
is true (240, yes), then video decoder 30 receives an intra_be_flag (234) and a merge
index (236) and decodes the CU according to the motion information associated with
the merge index. If the merge flag is false (240, no), then video decoder 30 receives
motion information (242), possibly include IBC block vector information, and decodes
the CU according to the motion information.

[0129] FIG. 15 is a block diagram illustrating an example video encoder 20 that may
implement the techniques described in this disclosure. Video encoder 20 may be
configured to output video to post-processing entity 27. Post-processing entity 27 is

intended to represent an example of a video entity, such as a MANE or splicing/editing

WO 2016/057938 PCT/US2015/054967
35

device, that may process encoded video data from video encoder 20. In some instances,
post-processing entity 27 may be an example of a network entity. In some video
encoding systems, post-processing entity 27 and video encoder 20 may be parts of
separate devices, while in other instances, the functionality described with respect to
post-processing entity 27 may be performed by the same device that comprises video
encoder 20. In some example, post-processing entity 27 is an example of storage device
17 of FIG. 1

[0130] Video encoder 20 may perform intra-, inter-, and IBC coding of video blocks
within video slices. Intra-coding relies on spatial prediction to reduce or remove spatial
redundancy in video within a given video frame or picture. Inter-coding relies on
temporal prediction to reduce or remove temporal redundancy in video within adjacent
frames or pictures of a video sequence. Intra-mode (I mode) may refer to any of several
spatial based compression modes. Inter-modes, such as uni-directional prediction (P
mode) or bi-prediction (B mode), may refer to any of several temporal-based
compression modes. IBC coding modes, as described above, may remove spatial
redundancy from a frame of video data, but unlike tradition intra modes, IBC coding
codes may be used to locate predictive blocks in a larger search area within the frame
and refer to the predictive blocks with offset vectors, rather than relying on intra-
prediction coding modes.

[0131] In the example of FIG. 15, video encoder 20 includes video data memory 33,
partitioning unit 35, prediction processing unit 41, filter unit 63, decoded picture buffer
64, summer 50, transform processing unit 52, quantization unit 54, and entropy
encoding unit 56. Prediction processing unit 41 includes motion estimation unit 42,
motion compensation unit 44, intra-prediction processing unit 46, and IBC unit 48. For
video block reconstruction, video encoder 20 also includes inverse quantization unit 58,
inverse transform processing unit 60, and summer 62. Filter unit 63 is intended to
represent one or more loop filters such as a deblocking filter, an adaptive loop filter
(ALF), and a sample adaptive offset (SAO) filter. Although filter unit 63 is shown in
FIG. 15 as being an in loop filter, in other configurations, filter unit 63 may be
implemented as a post loop filter.

[0132] In various examples, a fixed or programmable hardware unit of video encoder 20
may be tasked to perform the techniques of this disclosure. Also, in some examples, the
techniques of this disclosure may be divided among one or more of the illustrated fixed

or programmable hardware units of video encoder 20 shown in FIG. 15, though other

WO 2016/057938 PCT/US2015/054967
36

devices may also perform the techniques of this disclosure. For example, consistent
with the example of FIG. 15, IBC unit 48of video encoder 20 may perform the
techniques of this disclosure, alone, or in combination with other units of video encoder
20, such as motion estimation unit 42, motion compensation unit 44, intra-prediction
processing unit 46, and entropy encoding unit 56. In some examples, video encoder 20
may not include IBC unit 48 and the functionality of IBC unit 48 may be performed by
other components of prediction processing unit 41, such as motion estimation unit 42
and/or motion compensation unit 44.

[0133] Video data memory 33 may store video data to be encoded by the components of
video encoder 20. The video data stored in video data memory 33 may be obtained, for
example, from video source 18. Decoded picture buffer 64 may be a reference picture
memory that stores reference video data for use in encoding video data by video
encoder 20, e.g., in intra-, inter-, or IBC coding modes. Video data memory 33 and
decoded picture buffer 64 may be formed by any of a variety of memory devices, such
as dynamic random access memory (DRAM), including synchronous DRAM
(SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of
memory devices. Video data memory 33 and decoded picture buffer 64 may be
provided by the same memory device or separate memory devices. In various
examples, video data memory 33 may be on-chip with other components of video
encoder 20, or off-chip relative to those components.

[0134] As shown in FIG. 15, video encoder 20 receives video data and stores the video
data in video data memory 33. Partitioning unit 35 partitions the data into video blocks.
This partitioning may also include partitioning into slices, tiles, or other larger units, as
wells as video block partitioning, ¢.g., according to a quadtree structure of LCUs and
CUs. Video encoder 20 generally illustrates the components that encode video blocks
within a video slice to be encoded. The slice may be divided into multiple video blocks
(and possibly into sets of video blocks referred to as tiles). Prediction processing unit
41 may select one of a plurality of possible coding modes, such as one of a plurality of
intra coding modes, one of a plurality of inter coding modes, or one of a plurality of
IBC coding modes, for the current video block based on error results (e.g., coding rate
and the level of distortion). Prediction processing unit 41 may provide the resulting
intra-, inter-, or IBC coded block to summer 50 to generate residual block data and to

summer 62 to reconstruct the encoded block for use as a reference picture.

WO 2016/057938 PCT/US2015/054967
37

[0135] Intra-prediction processing unit 46 within prediction processing unit 41 may
perform intra-predictive coding of the current video block relative to one or more
neighboring blocks in the same frame or slice as the current block to be coded to
provide spatial compression. Motion estimation unit 42 and motion compensation unit
44 within prediction processing unit 41 may perform inter-predictive coding of the
current video block relative to one or more predictive blocks in one or more reference
pictures to provide temporal compression. Motion estimation unit 42 and motion
compensation unit 44 within prediction processing unit 41 may also perform IBC
coding of the current video block relative to one or more predictive blocks in the same
picture to provide spatial compression.

[0136] Motion estimation unit 42 may be configured to determine the inter-prediction
mode or IBC mode for a video slice according to a predetermined pattern for a video
sequence. The predetermined pattern may designate video slices in the sequence as P
slices, B slices or GPB slices. Motion estimation unit 42 and motion compensation unit
44 may be highly integrated, but are illustrated separately for conceptual purposes.
Motion estimation, performed by motion estimation unit 42, is the process of generating
motion vectors, which estimate motion for video blocks. A motion vector, for example,
may indicate the displacement of a PU of a video block within a current video frame or
picture relative to a predictive block within a reference picture. In the case of IBC
coding, a motion vector, which may be referred to as an offset vector in IBC, may
indicate the displacement of a PU of a video block within a current video frame or
picture relative to a predictive block within the current video frame. IBC unit 48 may
determine vectors, ¢.g., block vectors, for IBC coding in a manner similar to the
determination of motion vectors by motion estimation unit 42 for inter prediction, or
may utilize motion estimation unit 42 to determine the block vector.

[0137] A predictive block is a block that is found to closely match the PU of the video
block to be coded in terms of pixel difference, which may be determined by sum of
absolute difference (SAD), sum of square difference (SSD), or other difference metrics.
In some examples, video encoder 20 may calculate values for sub-integer pixel positions
of reference pictures stored in decoded picture buffer 64. For example, video encoder
20 may interpolate values of one-quarter pixel positions, one-cighth pixel positions, or
other fractional pixel positions of the reference picture. Therefore, motion estimation
unit 42 may perform a motion search relative to the full pixel positions and fractional

pixel positions and output a motion vector with fractional pixel precision.

WO 2016/057938 PCT/US2015/054967
38

[0138] Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in decoded picture buffer 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

[0139] In some examples, IBC unit 48 may generate vectors and fetch predictive blocks
in a manner similar to that described above with respect to motion estimation unit 42
and motion compensation unit 44, but with the predictive blocks being in the same
picture or frame as the current block and with the vectors being referred to as block
vectors as opposed to motion vectors. In other examples, IBC unit 48 may use motion
estimation unit 42 and motion compensation unit 44, in whole or in part, to perform
such functions for IBC prediction according to the techniques described herein. In
either case, for IBC, a predictive block may be a block that is found to closely match the
block to be coded, in terms of pixel difference, which may be determined by sum of
absolute difference (SAD), sum of squared difference (SSD), or other difference
metrics, and identification of the block may include calculation of values for sub-integer
pixel positions.

[0140] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation, possibly performing interpolations to sub-pixel precision.
Interpolation filtering may generate additional pixel samples from known pixel samples,
thus potentially increasing the number of candidate predictive blocks that may be used
to code a video block. Upon receiving the motion vector for the PU of the current video
block, motion compensation unit 44 may locate the predictive block to which the
motion vector points in one of the reference picture lists, or in the case of the IBC
coding, within the picture being coded. Video encoder 20 forms a residual video block
by subtracting pixel values of the predictive block from the pixel values of the current
video block being coded, forming pixel difference values. The pixel difference values
form residual data for the block, and may include both luma and chroma difference
components. Summer 50 represents the component or components that perform this

subtraction operation. Motion compensation unit 44 may also generate syntax elements

WO 2016/057938 PCT/US2015/054967
39

associated with the video blocks and the video slice for use by video decoder 30 in
decoding the video blocks of the video slice.

[0141] Intra-prediction processing unit 46 may intra-predict a current block, as an
alternative to the inter-prediction performed by motion estimation unit 42 and motion
compensation unit 44 or IBC performed by IBC unit 48, as described above. In
particular, intra-prediction processing unit 46 may determine an intra-prediction mode
to use to encode a current block. In some examples, intra-prediction processing unit 46
may encode a current block using various intra-prediction modes, ¢.g., during separate
encoding passes, and intra-prediction processing unit 46 (or mode select unit 40, in
some examples) may select an appropriate intra-prediction mode to use from the tested
modes. For example, intra-prediction processing unit 46 may calculate rate-distortion
values using a rate-distortion analysis for the various tested intra-prediction modes, and
select the intra-prediction mode having the best rate-distortion characteristics among the
tested modes. Rate-distortion analysis generally determines an amount of distortion (or
error) between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bit rate (that is, a number of bits) used to
produce the encoded block. Intra-prediction processing unit 46 may calculate ratios
from the distortions and rates for the various encoded blocks to determine which intra-
prediction mode exhibits the best rate-distortion value for the block.

[0142] In any case, after selecting an intra-prediction mode for a block, intra-prediction
processing unit 46 may provide information indicative of the selected intra-prediction
mode for the block to entropy encoding unit 56. Entropy encoding unit 56 may encode
the information indicating the selected intra-prediction mode in accordance with the
techniques of this disclosure. Video encoder 20 may include in the transmitted
bitstream configuration data, which may include a plurality of intra-prediction mode
index tables and a plurality of modified intra-prediction mode index tables (also referred
to as codeword mapping tables), definitions of encoding contexts for various blocks,
and indications of a most probable intra-prediction mode, an intra-prediction mode
index table, and a modified intra-prediction mode index table to use for each of the
contexts.

[0143] After prediction processing unit 41 generates the predictive block for the current
video block via either inter-prediction, intra-prediction, or IBC, video encoder 20 forms
a residual video block by subtracting the predictive block from the current video block.

The residual video data in the residual block may be included in one or more TUs and

WO 2016/057938 PCT/US2015/054967
40

applied to transform processing unit 52. Transform processing unit 52 transforms the
residual video data into residual transform coefficients using a transform, such as a
discrete cosine transform (DCT) or a conceptually similar transform. Transform
processing unit 52 may convert the residual video data from a pixel domain to a
transform domain, such as a frequency domain.

[0144] Transform processing unit 52 may send the resulting transform coefficients to
quantization unit 54. Quantization unit 54 quantizes the transform coefficients to
further reduce bit rate. The quantization process may reduce the bit depth associated
with some or all of the coefficients. The degree of quantization may be modified by
adjusting a quantization parameter. In some examples, quantization unit 54 may then
perform a scan of the matrix including the quantized transform coefficients.
Alternatively, entropy encoding unit 56 may perform the scan.

[0145] Following quantization, entropy encoding unit 56 entropy encodes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive binary arithmetic coding (CABAC) or another entropy encoding methodology
or technique. Following the entropy encoding by entropy encoding unit 56, the encoded
bitstream may be transmitted to video decoder 30, or archived for later transmission or
retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode the
motion vectors and the other syntax elements for the current video slice being coded.
[0146] Inverse quantization unit 58 and inverse transform processing unit 60 apply
inverse quantization and inverse transformation, respectively, to reconstruct the residual
block in the pixel domain for later use as a reference block of a reference picture.
Motion compensation unit 44 may calculate a reference block by adding the residual
block to a predictive block of one of the reference pictures within one of the reference
picture lists. Motion compensation unit 44 may also apply one or more interpolation
filters to the reconstructed residual block to calculate sub-integer pixel values for use in
motion estimation. Interpolation filtering may generate additional pixel samples from
known pixel samples, thus potentially increasing the number of candidate predictive
blocks that may be used to code a video block. Summer 62 adds the reconstructed
residual block to the motion compensated prediction block produced by motion
compensation unit 44 to produce a reference block for storage in decoded picture buffer
64. The reference block may be used by motion estimation unit 42 and motion
compensation unit 44 as a reference block to inter-predict a block in a subsequent video

frame or picture.

WO 2016/057938 PCT/US2015/054967
41

[0147] Video encoder 20 represents an example of a video encoder configured to
encode video data in accordance with the techniques of this disclosure. For example,
video encoder 20 may determine a CTB delay for one or more blocks coded with WPP
enabled. The CTB delay may, for example, identify a delay between when a first row of
CTBs starts being decoded and when a second row of CTBs below the first row of
CTBs starts being decoded. For a first block of video data coded in an intra-block copy
(IBC) mode and coded with WPP disabled, video encoder 20 may determine an IBC
prediction region for the first block based on the CTB delay. Video encoder 20 may
identify, from within the IBC prediction region for the first block, a predictive block for
the first block and generate syntax to indicate a block vector for locating the predictive
block.

[0148] FIG. 16 is a block diagram illustrating an example video decoder 30 that may
implement the techniques described in this disclosure. In the example of FIG. 16, video
decoder 30 includes a video data memory 78, entropy decoding unit 80, prediction
processing unit 81, inverse quantization unit 86, inverse transform processing unit 88,
summer 90, filter unit 91, and decoded picture buffer (DPB) 92. Prediction processing
unit 81 includes motion compensation unit 82, intra-prediction processing unit 84, and
IBC unit 85. Video decoder 30 may, in some examples, perform a decoding pass
generally reciprocal to the encoding pass described with respect to video encoder 20
from FIG. 15.

[0149] In various examples, a unit of video decoder 30 may be tasked to perform the
techniques of this disclosure. Also, in some examples, the techniques of this disclosure
may be divided among one or more of the units of video decoder 30. For example, IBC
unit 85 may perform the techniques of this disclosure, alone, or in combination with
other units of video decoder 30, such as motion compensation unit 82, intra-prediction
processing unit 84, and entropy decoding unit 80. In some examples, video decoder 30
may not include IBC unit 85 and the functionality of IBC unit 85 may be performed by
other components of prediction processing unit 81, such as motion compensation unit
82.

[0150] During the decoding process, video decoder 30 receives video data, e.g. an
encoded video bitstream that represents video blocks of an encoded video slice and
associated syntax elements, from video encoder 20. Video decoder 30 may receive the
video data from network entity 29 and store the video data in video data memory 78.

Video data memory 78 may store video data, such as an encoded video bitstream, to be

WO 2016/057938 PCT/US2015/054967
42

decoded by the components of video decoder 30. The video data stored in video data
memory 78 may be obtained, for example, from storage device 17, e.g., from a local
video source, such as a camera, via wired or wireless network communication of video
data, or by accessing physical data storage media. Video data memory 78 may form a
coded picture buffer that stores encoded video data from an encoded video bitstream.
Thus, although shown separately in FIG. 16, video data memory 78 and DPB 92 may be
provided by the same memory device or separate memory devices. Video data memory
78 and DPB 92 may be formed by any of a variety of memory devices, such as dynamic
random access memory (DRAM), including synchronous DRAM (SDRAM),
magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory
devices. In various examples, video data memory 78 may be on-chip with other
components of video decoder 30, or off-chip relative to those components.

[0151] Network entity 29 may, for example, be a server, a MANE, a video
editor/splicer, or other such device configured to implement one or more of the
techniques described above. Network entity 29 may or may not include a video
encoder, such as video encoder 20. Some of the techniques described in this disclosure
may be implemented by network entity 29 prior to network entity 29 transmitting the
encoded video bitstream to video decoder 30. In some video decoding systems,
network entity 29 and video decoder 30 may be parts of separate devices, while in other
instances, the functionality described with respect to network entity 29 may be
performed by the same device that comprises video decoder 30. Network entity 29 may
be an example of storage device 17 of FIG. 1 in some cases.

[0152] Entropy decoding unit 80 of video decoder 30 entropy decodes the bitstream to
generate quantized coefficients, motion vectors, and other syntax elements. Entropy
decoding unit 80 forwards the motion vectors and other syntax elements to prediction
processing unit 81. Video decoder 30 may receive the syntax elements at the video slice
level and/or the video block level.

[0153] When the video slice is coded as an intra-coded (1) slice, intra-prediction
processing unit 84 of prediction processing unit 81 may generate prediction data for a
video block of the current video slice based on a signaled intra prediction mode and data
from previously decoded blocks of the current frame or picture. When the video frame
is coded as an inter-coded (i.e. B or P) slice or when a block is IBC coded, motion
compensation unit 82 of prediction processing unit 81 produces predictive blocks for a

video block of the current video slice based on the motion vectors and other syntax

WO 2016/057938 PCT/US2015/054967
43

elements received from entropy decoding unit 80. For inter prediction, the predictive
blocks may be produced from one of the reference pictures within one of the reference
picture lists. Video decoder 30 may construct the reference frame lists, List 0 and List
1, using default construction techniques based on reference pictures stored in DPB 92.
For IBC coding, the predictive blocks may be produced from the same picture as the
block being predicted.

[0154] In other examples, when the video block is coded according to the IBC mode
described herein, IBC unit 85 of prediction processing unit 81 produces predictive
blocks for the current video block based on block vectors and other syntax elements
received from entropy decoding unit 80. The predictive blocks may be within a
reconstructed region within the same picture as the current video block defined by video
encoder 20, and retrieved from DPB 92.

[0155] Motion compensation unit 82 and/or IBC unit 85 may determine prediction
information for a video block of the current video slice by parsing the motion vectors
and other syntax elements, and uses the prediction information to produce the predictive
blocks for the current video block being decoded. For example, motion compensation
unit 82 uses some of the received syntax elements to determine a prediction mode (e.g.,
intra or inter prediction) used to code the video blocks of the video slice, an inter
prediction slice type (e.g., B slice or P slice), construction information for one or more
of the reference picture lists for the slice, motion vectors for each inter encoded video
block of the slice, inter prediction status for each inter coded video block of the slice,
and other information to decode the video blocks in the current video slice.

[0156] Similarly, IBC unit 85 may use some of the received syntax elements, ¢.g., a
flag, to determine that the current video block was predicted using the IBC mode,
construction information indicating which video blocks of the picture are within the
reconstructed region and should be stored in DPB 92, block vectors for each IBC
predicted video block of the slice, IBC prediction status for each IBC predicted video
block of the slice, and other information to decode the video blocks in the current video
slice.

[0157] Motion compensation unit 82 may also perform interpolation based on
interpolation filters. Motion compensation unit 82 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values

for sub-integer pixels of reference blocks. In this case, motion compensation unit 82

WO 2016/057938 PCT/US2015/054967
44

may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0158] Inverse quantization unit 86 inverse quantizes, i.¢., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
80. The inverse quantization process may include use of a quantization parameter
calculated by video encoder 20 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied. Inverse transform processing unit 88 applies an inverse transform, e.g., an
inverse DCT, an inverse integer transform, or a conceptually similar inverse transform
process, to the transform coefficients in order to produce residual blocks in the pixel
domain.

[0159] After motion compensation unit 82 or IBC unit 85 generates the predictive block
for the current video block based on the motion vectors and other syntax elements,
video decoder 30 forms a decoded video block by summing the residual blocks from
inverse transform processing unit 88 with the corresponding predictive blocks generated
by motion compensation unit 82. Summer 90 represents the component or components
that perform this summation operation. If desired, loop filters (either in the coding loop
or after the coding loop) may also be used to smooth pixel transitions, or otherwise
improve the video quality. Filter unit 91 is intended to represent one or more loop
filters such as a deblocking filter, an adaptive loop filter (ALF), and a sample adaptive
offset (SAO) filter. Although filter unit 91 is shown in FIG. 16 as being an in loop
filter, in other configurations, filter unit 91 may be implemented as a post loop filter.
The decoded video blocks in a given frame or picture are then stored in DPB 92, which
stores reference pictures used for subsequent motion compensation. DPB 92 may be
part of a memory that also stores decoded video for later presentation on a display
device, such as display device 32 of FIG. 1, or may be separate from such a memory.
[0160] Video decoder 30 represents an example of a video decoder configured to
decode video data in accordance with the techniques of this disclosure. For one or more
blocks coded with WPP enabled, video decoder 30 determines CTB delay that identifies
a delay between when a first row of CTBs starts being decoded and when a second row
of CTBs below the first row of CTBs starts being decoded. The CTB delay may, for
example, be in units of CTBs. For a current block of video data coded in an IBC mode
and coded with WPP disabled, video decoder 30 determines an IBC prediction region

for the current block within a picture that includes the current block based on the CTB

WO 2016/057938 PCT/US2015/054967
45

delay that was determined for the one or more blocks coded with WPP enabled. Video
decoder 30 identifies, from within the determined IBC prediction region for the current
block, a predictive block for the current block and IBC decodes the current block based
on the predictive block. For a second block of video data coded in the IBC mode and
coded with WPP enabled, video decoder 30 may also determine an IBC prediction
region for the second block based on the CTB delay and identify, from within the IBC
prediction region for the second block, a predictive block for the second block; an IBC
decode the current block based on the predictive block.

[0161] Video decoder 30 may, for example, determine that WPP is disabled for the first
block based on a value of the syntax element (e.g. entropy _coding_sync_enabled
described above). The syntax element may, for example, be a synchronization process
enabling syntax element that indicates if a specific synchronization process for context
variables is to be invoked.

[0162] The IBC prediction region for the first block may include previously decoded
unfiltered CTBs. Additionally or alternatively, the IBC prediction region may include a
diagonally located CTB located to the right of the first block and at least two or more
rows above the first block and excludes a CTB directly below the diagonally located
CTB. For a diagonally located CTB, video decoder 30 may decode the CTB directly
below the diagonally located CTB in parallel with the first block.

[0163] Video decoder 30 may receive, in an encoded bitstream of video data, one or
more syntax elements indicating that a coding mode for the first block of video data is
the IBC mode and receive in the encoded bitstream of video data, one or more syntax
elements identifying a block vector for the first block of video data. To identify, from
within the IBC prediction region for the first block, the predictive block for the first
block, video decoder 30 may locate the predictive block with the block vector.

[0164] FIG. 17 is a flow diagram illustrating techniques for encoding video data
according to the techniques of this disclosure. The techniques of FIG. 17 will be
described with references to a generic video encoder. The generic video encoder may
incorporate features of video encoder 20 or may be a different configuration of video
encoder. For one or more blocks coded with WPP enabled, the video encoder
determines a CTB delay (300). The CTB delay identifies, in units of CTBs, a delay
between when a first row of CTBs starts being decoded and when a second row of
CTBs below the first row of CTBs starts being decoded. The CTB delay may, for

example, be one CTB, two CTBs, or some other such delay. For a first block of video

WO 2016/057938 PCT/US2015/054967
46

data coded in an IBC mode and coded with WPP disabled, the video encoder determines
an IBC prediction region for the first block based on the CTB delay (302). The video
encoder identifies, from within the IBC prediction region for the first block, a predictive
block for the first block (304) and generates syntax to indicate a block vector for
locating the predictive block (306).

[0165] For a second block of video data coded in the IBC mode and coded with WPP
enabled, the video encoder may determine an IBC prediction region for the second
block based on the CTB delay and identify, from within the IBC prediction region for
the second block, a predictive block for the second block. The IBC prediction region
may include a CTB to the right of the first block and at least two or more rows above
the first block and exclude a CTB directly below the CTB to the right of the first block
and at least two or more rows above the first block.

[0166] FIG. 18 is a flow diagram illustrating techniques for decoding video data
according to the techniques of this disclosure. The techniques of FIG. 18 will be
described with references to a generic video decoder. The generic video decoder may
incorporate features of video decoder 30 or may be a different configuration of video
decoder. For one or more blocks coded with WPP enabled, the video decoder
determines CTB delay (310). The CTB delay identifies, in units of CTBs, a delay
between when a first row of CTBs starts being decoded and when a second row of
CTBs below the first row of CTBs starts being decoded. The CTB delay may, for
example, be one CTB, two CTBs, or some other such delay. For a first block of video
data coded in an IBC mode and coded with WPP disabled, the video decoder determines
an IBC prediction region for the first block based on the CTB delay (312). The video
decoder identifies, from within the IBC prediction region for the first block, a predictive
block for the first block (314). Video decoder 30 IBC decodes the current block based
on the predictive block (316).

[0167] For a second block of video data coded in the IBC mode and coded with WPP
enabled, the video decoder determines an IBC prediction region for the second block
based on the CTB delay and identifies, from within the IBC prediction region for the
second block, a predictive block for the second block. The video decoder may
additionally, receive a syntax element and determine that WPP is disabled for the first
block based on a value of the syntax element. The syntax element may, for example, be

a synchronization process enabling syntax element (e.g.

WO 2016/057938 PCT/US2015/054967
47

entropy_coding_sync enabled flag described above) that indicates if a specific
synchronization process for context variables is to be invoked.

[0168] The IBC prediction region for the first block may, for example, include
previously decoded unfiltered CTBs. The IBC prediction region may, for example,
include a CTB to the right of the first block and at least two or more rows above the first
block and excludes a CTB directly below the CTB to the right of the first block and at
least two or more rows above the first block. The video decoder may decode the CTB
directly below the CTB to the right of the first block and at least two or more rows
above the first block in parallel with the first block.

[0169] The video decoder may additionally receive, in an encoded bitstream of video
data, one or more syntax elements indicating a coding mode for the first block of video
data is the IBC mode and receive in the encoded bitstream of video data, one or more
syntax elements identifying a block vector for the first block of video data. To identify,
from within the IBC prediction region for the first block, the predictive block for the
first block, the video decoder may locate the predictive block with the block vector.
[0170] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, ¢.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0171] By way of example, and not limitation, such computer-readable storage media
can comprisc RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures

and that can be accessed by a computer. Also, any connection is properly termed a

WO 2016/057938 PCT/US2015/054967
48

computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0172] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0173] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0174] Various examples have been described. These and other examples are within the

scope of the following claims.

2015330676 01 Apr 2019

49

[0175] It will be understood that the term “comprise” and any of its derivatives (eg
comprises, comprising) as used in this specification is to be taken to be inclusive of
features to which it refers, and is not meant to exclude the presence of any additional
features unless otherwise stated or implied.

[0176] The reference to any prior art in this specification is not, and should not be taken
as, an acknowledgement or any form of suggestion that such prior art forms part of the

common general knowledge.

2015330676 01 Apr 2019

50

CLAIMS

1. A method of decoding video data, the method comprising:

determining that a first block of video data in a first picture is coded in an intra
block copy (IBC) mode, wherein the first block of video data is in a first
row of coding tree blocks (CTBs);

determining that the first block of video data is coded with wavefront parallel
processing enabled;

determining a shape of an IBC prediction region for the first block using a CTB
delay for the first block of video data, wherein the CTB delay specifies a
delay between when the first row of CTBs starts being decoded and
when a second row of CTBs above the first row of CTBs starts being
decoded;

identifying, from within the IBC prediction region for the first block, a
predictive block for the first block;

IBC decoding the first block based on the predictive block for the first block;

determining that a second block of video data in a second picture is coded in the
IBC mode;

determining that the second block of video data is coded with wavefront parallel
processing disabled;

determining a shape of an IBC prediction region for the second block based on
the CTB delay that was used for the first block;

identifying, from within the determined IBC prediction region for the second
block, a predictive block for the second block; and

IBC decoding the second block based on the predictive block.

2. The method of claim 1, further comprising:
receiving a syntax element; and
determining that wavefront parallel processing is disabled for the second block

based on a value of the syntax element.

3. The method of claim 2, wherein the syntax element comprises a synchronization
process enabling syntax element that indicates if a specific synchronization process for

context variables is to be invoked.

2015330676 01 Apr 2019

51

4. The method of any of claims 1 to 3, wherein the IBC prediction region for the

second block comprises previously decoded unfiltered CTBs.

5. The method of any of claims 1 to 4, wherein the IBC prediction region includes
a diagonally located CTB located to the right of the second block and at least two or
more rows above the second block and excludes a CTB directly below the diagonally
located CTB.

6. The method of claim 5, further comprising:
decoding the CTB directly below the diagonally located CTB in parallel with the

second block.

7. The method of any of claims 1 to 6, wherein the CTB delay comprises a delay of
one CTB.
8. The method of any of claims 1 to 7, further comprising:

receiving, in an encoded bitstream of video data, one or more syntax elements
indicating that a coding mode for the second block of video data is the
IBC mode;

receiving in the encoded bitstream of video data, one or more syntax elements
identifying a block vector for the second block of video data, wherein
identifying, from within the IBC prediction region for the second block,
the predictive block for the second block comprises locating the

predictive block with the block vector.

9. The method of any of claims 1 to 8, wherein determining the CTB delay
comprises determining the CTB delay in units of CTBs.

10. A method of encoding video data, the method comprising:
determining that a first block of video data in a first picture is coded in an intra
block copy (IBC) mode, wherein the first block of video data is in a first
row of coding tree blocks (CTBs);

2015330676 01 Apr 2019

52

determining that the first block of video data is coded with wavefront parallel
processing enabled;

determining a shape of an IBC prediction region for the first block using a CTB
delay for the first block of video data, wherein the CTB delay specifies a
delay between when the first row of CTBs starts being decoded and when
a second row of CTBs above the first row of CTBs starts being decoded;

identifying, from within the IBC prediction region for the first block, a first
predictive block for the first block;

generating a first syntax to indicate a first block vector for locating the first
predictive block;

determining that a second block of video data in a second picture is coded in the
IBC mode;

determining that the second block of video data is coded with wavefront parallel
processing disabled;

determining a shape of an IBC prediction region for the second block based on
the CTB delay that was used for the first block;

identifying, from within the determined IBC prediction region for the second
block, a second predictive block for the second block; and

generating a second syntax to indicate a second block vector for locating the

second predictive block.

The method of claim 10, wherein the IBC prediction region includes a CTB to

the right of the second block and at least two or more rows above the second block and
excludes a CTB directly below the CTB to the right of the second block and at least two

or more rows above the second block.

The method of any of claims 10 to 11, wherein the CTB delay comprises a two

CTB delay.

A device for performing video decoding, the device comprising:
a memory to store video data;

one or more pProcessors conﬁgured to:

2015330676 01 Apr 2019

53

determine that a first block of video data in a first picture is coded in an
intra block copy (IBC) mode, wherein the first block of video data is in a first
row of coding tree blocks (CTBs);

determine that the first block of video data is coded with wavefront
parallel processing enabled;

determine a shape of an IBC prediction region for the first block using a
CTB delay for the first block of video data, wherein the CTB delay specifies a
delay between when the first row of CTBs starts being decoded and when a
second row of CTBs above the first row of CTBs starts being decoded;

identify, from within the IBC prediction region for the first block, a
predictive block for the first block;

IBC decode the first block based on the predictive block for the first
block;

determine that a second block of video data in a second picture is coded
in the IBC mode;

determine that the second block of video data is coded with wavefront
parallel processing disabled;

determine a shape of an IBC prediction region for the second block based
on the CTB delay that was used for the first block;

identify, from within the determined IBC prediction region for the
second block, a predictive block for the second block; and

IBC decode the second block based on the predictive block.

14. The device of claim 13, wherein the one or more processors are further
configured to:

receive a syntax element; and

determine that wavefront parallel processing is disabled for the second block

based on a value of the syntax element.

15. The device of claim 14, wherein the syntax element comprises a synchronization
process enabling syntax element that indicates if a specific synchronization process for

context variables is to be invoked.

2015330676 01 Apr 2019

54

16. The device of any of claims 13 to 15, wherein the IBC prediction region for the

second block comprises previously decoded unfiltered CTBs.

17. The device of any of claims 13 to 16, wherein the IBC prediction region
includes a diagonally located CTB located to the right of the second block and at least
two or more rows above the second block and excludes a CTB directly below the

diagonally located CTB.

18. The device of claim 17, wherein the one or more processors are further
configured to:
decode the CTB directly below the diagonally located CTB in parallel with the

second block.

19. The device of any of claims 13 to 18, wherein the CTB delay comprises a one

CTB delay.

20. The device of any of claims 13 to 19, wherein the one or more processors are
further configured to:
receive, in an encoded bitstream of video data, one or more syntax elements
indicating that a coding mode for the second block of video data is the
IBC mode; and
receive in the encoded bitstream of video data, one or more syntax elements
identifying a block vector for the second block of video data, wherein
identifying, from within the IBC prediction region for the second block,
the predictive block for the second block comprises locating the

predictive block with the block vector.

21. The device of any of claims 13 to 20, wherein to determine the CTB delay, the
one or more processors are further configured to determine the CTB delay in units of
CTBs.

22. The device of any of claims 13 to 21, wherein the device comprises at least one
of:

an integrated circuit;

2015330676 01 Apr 2019

55

a microprocessor; or

a wireless communication device comprising a display.

23. A device for performing video encoding, the device comprising:

a memory to store video data;

one or more processors configured to:

determine that a first block of video data in a first picture is coded in an intra
block copy (IBC) mode, wherein the first block of video data is in a first row of coding
tree blocks (CTBs);

determine that the first block of video data is coded with wavefront parallel
processing enabled;

determine a shape of an IBC prediction region for the first block using a CTB
delay for the first block of video data, wherein the CTB delay specifies a delay between
when the first row of CTBs starts being decoded and when a second row of CTBs above
the first row of CTBs starts being decoded;

identify, from within the IBC prediction region for the first block, a first
predictive block for the first block;

generate a first syntax to indicate a first block vector for locating the first
predictive block;determine that a second block of video data in a second picture is
coded in the IBC mode;

determine that the second block of video data is coded with wavefront parallel
processing disabled;

determine a shape for an IBC prediction region for the second block based on
the CTB delay that was used for the first block;

identify, from within the determined IBC prediction region for the second block,
a second predictive block for the second block; and

generate a second syntax to indicate a second block vector for locating the

second predictive block.

24. The device of claim 23, wherein the IBC prediction region includes a CTB to the
right of the second block and at least two or more rows above the second block and
excludes a CTB directly below the CTB to the right of the second block and at least two

or more rows above the second block.

2015330676 01 Apr 2019

56

25. The device of any of claims 23 to 24, wherein the CTB delay comprises a one
CTB delay.
26. The device of any of claims 23 to 25, wherein the device comprises at least one
of:

an integrated circuit;

a microprocessor; or

a wireless communication device comprising a camera.
27. An apparatus for decoding video data, the apparatus comprising:

means for determining that a first block of video data in a first picture is coded
in an intra block copy (IBC) mode, wherein the first block of video data
is in a first row of coding tree blocks (CTBs);

means for determining that the first block of video data is coded with wavefront
parallel processing enabled;

means for determining a shape of an IBC prediction region for the first block
using a CTB delay for the first block of video data, wherein the CTB
delay specifies a delay between when the first row of CTBs starts being
decoded and when a second row of CTBs above the first row of CTBs
starts being decoded;

means for identifying, from within the IBC prediction region for the first block,
a predictive block for the first block; means for IBC decoding the first
block based on the predictive block for the first block;

means for determining that a second block of video data in a second picture is
coded in the IBC mode;

means for determining that the second block of video data is coded with
wavefront parallel processing disabled;

means for determining a shape of an IBC prediction region for the second block
based on the CTB delay that was used for the first block;

means for identifying, from within the determined IBC prediction region for the
second block, a predictive block for the second block; and

means for IBC decoding the second block based on the predictive block.

2015330676 01 Apr 2019

57

28. A non-transitory computer readable storage medium storing instructions that
when executed by one or more processors cause the one or more processors to:

determine that a first block of video data in a first picture is coded in an intra
block copy (IBC) mode, wherein the first block of video data is in a first
row of coding tree blocks (CTBs);

determine that the first block of video data is coded with wavefront parallel
processing enabled;

determine a shape of an IBC prediction region for the first block using a CTB
delay for the first block of video data, wherein the CTB delay specifies a
delay between when the first row of CTBs starts being decoded and
when a second row of CTBs above the first row of CTBs starts being
decoded;

identify, from within the IBC prediction region for the first block, a predictive
block for the first block;

IBC decode the first block based on the predictive block for the first block;

determine that a second block of video data in a second picture is coded in the
IBC mode;

determine that the second block of video data is coded with wavefront parallel
processing disabled;

determine a shape of an IBC prediction region for the second block based on the
CTB delay that was used for the first block;

identify, from within the determined IBC prediction region for the second block,
a predictive block for the second block; and

IBC decode the second block based on the predictive block.

WO 2016/057938 PCT/US2015/054967
1/18

/10
SOURCE DEVICE DESTINATION DEVICE
12 14
VIDEO SOURCE DISPLAY DEVICE
18 32
(—————
VIDEO | STORAGE | VIDEO
ENCODER P DEVICE (- DECODER
20 | 1z : 30
OUTPUT
INTERFACE > INPUT INTERFACE
28
z ,
16

FIG. 1

WO 2016/057938 PCT/US2015/054967
2/18

Y
U Vv
4:2:0 sample format

FIG. 2A

Y U Vv
4:2:2 sample format

FIG. 2B

Y U Vv

4:4:4 sample format
FIG. 2C

WO 2016/057938 PCT/US2015/054967
3/18

©0RLRLRLBLRLOBO BV
O000000000000000
©00EO0RLHORLRO GO
O000000000000000
@O0 R0EOROBOROBO GO
O000000000000000
0 BOROBOBOBOBOGO
Q0000000000000 00
©O0BOBOBOBHOBOBGO GO
O000000000000000
®0B0eOROBOPOBO GO
O000000000000000
©000eO0HOHORORO GO
O000000000000000
@O0 ROEOBOBOBOBOBO
O000000000000000

16x16 CU with 4:2:0 Sample Formatting

QO Luma Sample
& Chroma Samples

FIG. 3

WO 2016/057938 PCT/US2015/054967
4/18

000000 ELEO RO
©000e0e0E0BORO GO
©00LEOLELEORO GO
0006000000
©0R0ELRORLEOBO YO
©0e0e0eLEeO0BOROBO
B0 00RO ROEOHOBO
©0 60000 B0R0o0 GO0
©0 00 OLHOHOBRO GO
®0e0e0Be0oeLBOEO GO
00000 EOHOBO
©0 0000 BEOBO GO
©0 0RO RLEHOROBO GO
®0 0000 e0e0 o
00000 BOBO GO
©00e0e00BROBO GO
16x16 CU with 4:2:2 Sample Formatting

O Luma Sample
@ Chroma Samples

FIG. 4

WO 2016/057938 PCT/US2015/054967
5/18

—
o
(O]

102

FIG. 5

WO 2016/057938 PCT/US2015/054967

114C

114D

FIG. 6

WO 2016/057938 PCT/US2015/054967
7/18

FIG. 7

WO 2016/057938 PCT/US2015/054967
8/18

FIG. 8

WO 2016/057938 PCT/US2015/054967
9/18

FIG.9

PCT/US2015/054967

WO 2016/057938

0l '©Old

WO 2016/057938 PCT/US2015/054967
11/18

_ _, .= _ G E

7 2

L

T

FIG. 11

PCT/US2015/054967
12/18

WO 2016/057938

_nt
N
N
R

N
s

i

s

FIG. 12

PCT/US2015/054967

WO 2016/057938

13/18

(XPI" dAIN ‘GAIN

‘XpI_J9y ‘nQ)

uonewoul AN

A

(xpI"dAg ‘ang)

uonewoul Ag

977—"

xpi-abiaw

prg—"

ON

€L 'Ol

=

1 ey obiow

"

Bey 2q enul

LT
RIS ~dys” 3\

gLz—"

orz—

"y

SO

7 0o 1931 jo A
S mc___mcm_w :n_\

c—.N(M

PCT/US2015/054967
14/18

WO 2016/057938

¥l 'Old

P SO (xpI”dAd ‘GAg on : -
_ \ XPI dAW ‘GAN | Beyy] MO IR0 /
pu3 \x ‘Xp| 19y ‘nq@) o omm__ mmhws o dysTng T mc___mcm_m :n_
- uonew.joul AW 9&1\ ql eeT—" "y~ -
wnm -
ve— 0

S3A

xpi oblow «—— bBey oqenu| =

97— per—"

PCT/US2015/054967

WO 2016/057938

15/18

1Z ALILN3 GlL Old
*00¥d-1S0d
|| .
_ 07 SMD0719 03AIA
_ ¥3dOON3 O3dIA d3LoN¥ISNODIY
_ 29 £ V9
— — — 1INn
| 9% 8% 09 LINN ¥31714 ada
| 1INN 1INN .| ONISS300Ud
| | ONIQOON3 I NowLvzZIINVND || WHO4SNVHL +
| | AdOYLN3 ISUIANI ISUIANI |
_ X -a1s3y 9% LINN
| "NOD3Y ONISSIO0Nd o
| NOILOIaTNd LINA 98
_ VAINI
_ —
_ 7 -
_ 1INN 1INN
NOILVSNIdINOD
SLNIWI 13 XVLNAS

_ NOLLOW NOILILYVd
_ A
_ [47 _
_ 1INN %7
_ NOILVWILS3 1INN
_ 0S NOILOW ONISS3O0Nd
_ SLN3I0I44309D . 75 NOILLOIa3¥d
| WHOJSNwyL 7S n i

Ivnais3ay 1INN < €€
_ 9NISSID0Nd €¢
| d3ZILNVNO NOILVZILNYNO INNO4SNVyL [S¥001d AHOWIN
_ aisay Vv.iva o3daiA

PCT/US2015/054967

WO 2016/057938

16/18

91 "OId

¥3a0903d O3dIA

_. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII e |
— — I
| = 88 LINN 38 |
ONISSIO0Nd 1INN _
_ iy R WHO4SNVYL [Y | NOLLVZILNVND | |
06 $M0078 | 3ISHIANI ISHUIANI _
_ ﬁ IvNais3y |
o3ain | 44300 _
a30093a | 75 "ZILNVNO _
< _ ada v8 P "
_ 1INN 08 |
_ ONISS3O0Nd | | LINN |
| ‘a3yd VHLNI 9NIA0O3a
_ 13 SINIWI1a | AdO¥LNI _
| 1INN Z8 XVLINAS _
_ ogl 1INN q _
_ > NOILVSN3dNO9 _ = ===
| NOILOW 3l | &
_ 18 AHOWAW | | ALILNT |
" L1INN v.1va O3alA " _>_<wwm_u.w,._._m “ MHOMLAN |
| ONISSIO0¥d NOILIIATNd | a3dooNg ——— —— I
_ 0S _
_ I

WO 2016/057938 PCT/US2015/054967
17/18

~—300

FOR ONE OR MORE BLOCKS CODED WITH
WPP ENABLED, DETERMINE A CTB DELAY

l —302

FOR A FIRST BLOCK OF VIDEO DATA
CODED IN AN IBC MODE AND CODED WITH
WPP DISABLED, DETERMINE AN IBC
PREDICTION REGION FOR THE FIRST
BLOCK BASED ON THE CTB DELAY

l —304

IDENTIFY, FROM WITHIN THE IBC
PREDICTION REGION FOR THE FIRST
BLOCK, A PREDICTIVE BLOCK FOR THE
FIRST BLOCK

306

GENERATE SYNTAX TO INDICATE A BLOCK
VECTOR FOR LOCATING THE PREDICTIVE
BLOCK

FIG. 17

WO 2016/057938 PCT/US2015/054967
18/18

~—310

FOR ONE OR MORE BLOCKS CODED WITH
WPP ENABLED, DETERMINE A CTB DELAY

l —312

FOR A FIRST BLOCK OF VIDEO DATA
CODED IN AN IBC MODE AND CODED WITH
WPP DISABLED, DETERMINE AN IBC
PREDICTION REGION FOR THE FIRST
BLOCK BASED ON THE CTB DELAY

l —314

IDENTIFY, FROM WITHIN THE IBC
PREDICTION REGION FOR THE FIRST
BLOCK, A PREDICTIVE BLOCK FOR THE
FIRST BLOCK

~—316

IBC DECODE THE CURRENT BLOCK BASED
ON THE PREDICTIVE BLOCK

FIG. 18

