
(12)
(19)

(54)

(51)

(21)

(87)

(30)

(31)

(43)
(44)

(71)

(72)

(74)

(56)

STANDARD PATENT (11) Application No. AU 2015330676 B2
AUSTRALIAN PATENT OFFICE

Title
Intra block copy prediction restrictions for parallel processing

International Patent Classification(s)
H04N 19/11 (2014.01)
H04N 19/157(2014.01)
H04N 19/174 (2014.01)

H04N 19/436 (2014.01)
H04N 19/55 (2014.01)
H04N 19/593 (2014.01)

Application No: 2015330676 (22) Date of Filing: 2015.10.09

WIPO No: WO16/057938

Priority Data

Number
62/062,122
14/878,825

(32) Date (33) Country
2014.10.09 US
2015.10.08 US

Publication Date: 2016.04.14
Accepted Journal Date: 2019.09.26

Applicant(s)
Qualcomm Incorporated

Inventor(s)
Rapaka, Krishnakanth;Pang, Chao;Seregin, Vadim;Karczewicz, Marta

Agent / Attorney
Madderns Pty Ltd, GPO Box 2752, Adelaide, SA, 5001, AU

Related Art
LAROCHE G ET AL, "AHG14: On IBC constraint for Wavefront Parallel
Processing", 19. JCT-VC MEETING; 17-10-2014 - 24-10-2014; STRASBOURG;
JCTVC OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16, no. JCTVC-S0070
AU 2014408228A1
RAPAKA K ET AL, On parallel processing capability of intra block copy , 19.
JCT-VC MEETING; 17-10-2014 - 24-10-2014; STRASBOURG; JCTVC OF ISO/IEC
JTC1/SC29/WG11 AND ITU-T SG.16, no. JCTVC-S0220-v2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization
International Bureau

(43) International Publication Date
14 April 2016 (14.04.2016) WIPO I PCT

lll^

(10) International Publication Number
WO 2016/057938 Al

(51) International Patent Classification:
H04N19/11 (2014.01) H04N19/436 (2014.01)
H04N19/157 (2014.01) H04N19/593 (2014.01)
H04N19/174 (2014.01) H04N19/55 (2014.01)

(21) International Application Number:
PCT/US2015/054967

(22) International Filing Date:
9 October 2015 (09.10.2015)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/062,122 9 October 2014 (09.10.2014) US
14/878,825 8 October 2015 (08.10.2015) US

(71) Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

(72) Inventors: RAP AKA, Krishnakanth; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US). PANG,

Chao; 5775 Morehouse Drive, San Diego, California
92121-1714 (US). SEREGIN, Vadim; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US). KAR-
CZEWICZ, Marta; 5775 Morehouse Drive, San Diego,
California 92121-1714 (US).

(74) Agent: JOSEPH, Jeffrey R.; Shumaker & Sieffert, P.A.,
1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125
(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: INTRA BLOCK COPY PREDICTION RESTRICTIONS FOR PARALLEL PROCESSING

w
o

20
16

/0
57

93
8 A

l llll
lll

lll
lll

lll
lll

lll
lll

lll
lll

lll
lll

lll
lll

lll
ll̂

FIG. 17

(57) Abstract: A video decoder can be configured to, for one or more
blocks coded with wavefront parallel processing enabled, determine a
coding tree block (CTB) delay, wherein the CTB delay identifies a delay
between when a first row of CTBs starts being decoded and when a
second row of CTBs below the first row of CTBs starts being decoded;
for a current block of video data coded in an intra-block copy (IBC)
mode and coded with wavefront parallel processing disabled, determine
an IBC prediction region for the current block within a picture that in­
cludes the current block based on the CTB delay that was determined for
the one or more blocks coded with wavefront parallel processing enabled;
identify, from within the determined IBC prediction region for the current
block, a predictive block for the current block; and IBC decode the cur­
rent block based on the predictive block.

wo 2016/057938 Al IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,

SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

WO 2016/057938 PCT/US2015/054967
1

INTRA BLOCK COPY PREDICTION RESTRICTIONS
FOR PARALLEL PROCESSING

[0001] This Application claims the benefit of U.S. Provisional Patent Application

62/062,122, filed October 9, 2014, the entire content of which is incorporated by

reference herein.

TECHNICAL FIELD

[0002] This disclosure relates to video coding and, more particularly, prediction of

video blocks based on other video blocks.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,

including digital televisions, digital direct broadcast systems, wireless broadcast

systems, personal digital assistants (PDAs), laptop or desktop computers, tablet

computers, e-book readers, digital cameras, digital recording devices, digital media

players, video gaming devices, video game consoles, cellular or satellite radio

telephones, so-called “smart phones,” video teleconferencing devices, video streaming

devices, and the like. Digital video devices implement video compression techniques,

such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,

ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency

Video Coding (HEVC) standard(H.265) , and extensions of such standards. The video

devices may transmit, receive, encode, decode, and/or store digital video information

more efficiently by implementing such video compression techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video

sequences. For block-based video coding, a video slice (i.e., a video frame or a portion

of a video frame) may be partitioned into video blocks, which may also be referred to as

treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an infra-coded (I)

slice of a picture are encoded using spatial prediction with respect to reference samples

in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice

of a picture may use spatial prediction with respect to reference samples in neighboring

blocks in the same picture or temporal prediction with respect to reference samples in

2

20
15

33
06

76
 01 Ap

r 2
01

9

other reference pictures. Pictures may be referred to as frames, and reference pictures

may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be

coded. Residual data represents pixel differences between the original block to be

coded and the predictive block. An inter-coded block is encoded according to a motion

vector that points to a block of reference samples forming the predictive block, and the

residual data indicating the difference between the coded block and the predictive block.

An intra-coded block is encoded according to an intra-coding mode and the residual

data. For further compression, the residual data may be transformed from the pixel

domain to a transform domain, resulting in residual transform coefficients, which then

may be quantized. The quantized transform coefficients, initially arranged in a two­

dimensional array, may be scanned in order to produce a one-dimensional vector of

transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY

[0006] This disclosure introduces techniques to potentially enhance parallel processing

when IBC mode is enabled.

[0007] In one example, there is provided a method of decoding video data, the method

comprising: determining that a first block of video data in a first picture is coded in an

intra block copy (IBC) mode, wherein the first block of video data is in a first row of

coding tree blocks (CTBs); determining that the first block of video data is coded with

wavefront parallel processing enabled; determining a shape of an IBC prediction region

for the first block using a CTB delay for the first block of video data, wherein the CTB

delay specifies a delay between when the first row of CTBs starts being decoded and

when a second row of CTBs above the first row of CTBs starts being decoded;

identifying, from within the IBC prediction region for the first block, a predictive block

for the first block; IBC decoding the first block based on the predictive block for the

first block; determining that a second block of video data in a second picture is coded in

the IBC mode; determining that the second block of video data is coded with wavefront

parallel processing disabled; determining a shape of an IBC prediction region for the

second block based on the CTB delay that was used for the first block; identifying, from

3

20
15

33
06

76
 01 Ap

r 2
01

9

within the determined IBC prediction region for the second block, a predictive block for

the second block; and IBC decoding the second block based on the predictive block.

[0008] In another example, there is provided a method of encoding video data, the

method comprising: determining that a first block of video data in a first picture is

coded in an intra block copy (IBC) mode, wherein the first block of video data is in a

first row of coding tree blocks (CTBs); determining that the first block of video data is

coded with wavefront parallel processing enabled; determining a shape of an IBC

prediction region for the first block using a CTB delay for the first block of video data,

wherein the CTB delay specifies a delay between when the first row of CTBs starts

being decoded and when a second row of CTBs above the first row of CTBs starts being

decoded; identifying, from within the IBC prediction region for the first block, a first

predictive block for the first block; generating a first syntax to indicate a first block

vector for locating the first predictive block; determining that a second block of video

data in a second picture is coded in the IBC mode; determining that the second block of

video data is coded with wavefront parallel processing disabled; determining a shape of

an IBC prediction region for the second block based on the CTB delay that was used for

the first block; identifying, from within the determined IBC prediction region for the

second block, a second predictive block for the second block; and generating a second

syntax to indicate a second block vector for locating the second predictive block.

[0009] In another example, there is provided a device for performing video decoding,

the device comprising: a memory to store video data; one or more processors configured

to: determine that a first block of video data in a first picture is coded in an intra block

copy (IBC) mode, wherein the first block of video data is in a first row of coding tree

blocks (CTBs); determine that the first block of video data is coded with wavefront

parallel processing enabled; determine a shape of an IBC prediction region for the first

block using a CTB delay for the first block of video data, wherein the CTB delay

specifies a delay between when the first row of CTBs starts being decoded and when a

second row of CTBs above the first row of CTBs starts being decoded; identify, from

within the IBC prediction region for the first block, a predictive block for the first block;

IBC decode the first block based on the predictive block for the first block; determine

that a second block of video data in a second picture is coded in the IBC mode;

determine that the second block of video data is coded with wavefront parallel

processing disabled; determine a shape of an IBC prediction region for the second block

based on the CTB delay that was used for the first block; identify, from within the

4

20
15

33
06

76
 01 Ap

r 2
01

9

determined IBC prediction region for the second block, a predictive block for the

second block; and IBC decode the second block based on the predictive block.

[0010] In another example, there is provided a device for performing video encoding,

the device comprising: a memory to store video data; one or more processors configured

to: determine that a first block of video data in a first picture is coded in an intra block

copy (IBC) mode, wherein the first block of video data is in a first row of coding tree

blocks (CTBs); determine that the first block of video data is coded with wavefront

parallel processing enabled; determine a shape of an IBC prediction region for the first

block using a CTB delay for the first block of video data, wherein the CTB delay

specifies a delay between when the first row of CTBs starts being decoded and when a

second row of CTBs above the first row of CTBs starts being decoded; identify, from

within the IBC prediction region for the first block, a first predictive block for the first

block; generate a first syntax to indicate a first block vector for locating the first

predictive block; determine that a second block of video data in a second picture is

coded in the IBC mode; determine that the second block of video data is coded with

wavefront parallel processing disabled; determine a shape for an IBC prediction region

for the second block based on the CTB delay that was used for the first block; identify,

from within the determined IBC prediction region for the second block, a second

predictive block for the second block; and generate a second syntax to indicate a second

block vector for locating the second predictive block.

[0011] In another example, there is provided an apparatus for decoding video data, the

apparatus comprising: means for determining that a first block of video data in a first

picture is coded in an intra block copy (IBC) mode, wherein the first block of video data

is in a first row of coding tree blocks (CTBs); means for determining that the first block

of video data is coded with wavefront parallel processing enabled; means for

determining a shape of an IBC prediction region for the first block using a CTB delay

for the first block of video data, wherein the CTB delay specifies a delay between when

the first row of CTBs starts being decoded and when a second row of CTBs above the

first row of CTBs starts being decoded; means for identifying, from within the IBC

prediction region for the first block, a predictive block for the first block; means for IBC

decoding the first block based on the predictive block for the first block; means for

determining that a second block of video data in a second picture is coded in the IBC

mode; means for determining that the second block of video data is coded with

wavefront parallel processing disabled; means for determining a shape of an IBC

5

20
15

33
06

76
 01 Ap

r 2
01

9

prediction region for the second block based on the CTB delay that was used for the

first block; means for identifying, from within the determined IBC prediction region for

the second block, a predictive block for the second block; and means for IBC decoding

the second block based on the predictive block.

[0012] In another example, there is provided a non-transitory computer readable storage

medium storing instructions that when executed by one or more processors cause the

one or more processors to: determine that a first block of video data in a first picture is

coded in an intra block copy (IBC) mode, wherein the first block of video data is in a

first row of coding tree blocks (CTBs); determine that the first block of video data is

coded with wavefront parallel processing enabled; determine a shape of an IBC

prediction region for the first block using a CTB delay for the first block of video data,

wherein the CTB delay specifies a delay between when the first row of CTBs starts

being decoded and when a second row of CTBs above the first row of CTBs starts being

decoded; identify, from within the IBC prediction region for the first block, a predictive

block for the first block; IBC decode the first block based on the predictive block for the

first block; determine that a second block of video data in a second picture is coded in

the IBC mode; determine that the second block of video data is coded with wavefront

parallel processing disabled; determine a shape of an IBC prediction region for the

second block based on the CTB delay that was used for the first block; identify, from

within the determined IBC prediction region for the second block, a predictive block for

the second block; and IBC decode the second block based on the predictive block.

[0013] In another example, there is provided an apparatus for encoding video data, the

apparatus comprising: means for determining that a first block of video data in a first

picture is coded in an intra block copy (IBC) mode, wherein the first block of video data

is in a first row of coding tree blocks (CTBs); means for determining that the first block

of video data is coded with wavefront parallel processing enabled; means for

determining a shape of an IBC prediction region for the first block using a CTB delay

for the first block of video data, wherein the CTB delay specifies a delay between when

the first row of CTBs starts being decoded and when a second row of CTBs above the

first row of CTBs starts being decoded; means for identifying, from within the IBC

prediction region for the first block, a first predictive block for the first block; means for

generating a first syntax to indicate a first block vector for locating the first predictive

block; means for determining that a second block of video data in a second picture is

coded in the IBC mode; means for determining that the second block of video data is

5a

20
15

33
06

76
 01 Ap

r 2
01

9

coded with wavefront parallel processing disabled; means for determining a shape for

an IBC prediction region for the second block based on the CTB delay that was used for

the first block; means for identifying, from within the determined IBC prediction region

for the second block, a second predictive block for the second block; and means for

generating a second syntax to indicate a second block vector for locating the second

predictive block.

[0014] In another example, there is provided a non-transitory computer readable storage

medium storing instructions that when executed by one or more processors cause the

one or more processors to: determine that a first block of video data in a first picture is

coded in an intra block copy (IBC) mode, wherein the first block of video data is in a

first row of coding tree blocks (CTBs); determine that the first block of video data is

coded with wavefront parallel processing enabled; determine a shape of an IBC

prediction region for the first block using a CTB delay for the first block of video data,

wherein the CTB delay specifies a delay between when the first row of CTBs starts

being decoded and when a second row of CTBs above the first row of CTBs starts being

decoded; identify, from within the IBC prediction region for the first block, a first

predictive block for the first block; generate a first syntax to indicate a first block vector

for locating the first predictive block; determine that a second block of video data in a

second picture is coded in the IBC mode; determine that the second block of video data

is coded with wavefront parallel processing disabled; determine a shape for an IBC

prediction region for the second block based on the CTB delay that was used for the

first block; identify, from within the determined IBC prediction region for the second

block, a second predictive block for the second block; and generate a second syntax to

indicate a second block vector for locating the second predictive block.

[0015] The details of one or more aspects of the techniques are set forth in the

accompanying drawings and the description below. Other features, objects, and

advantages of the techniques will be apparent from the description and drawings, and

from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0016] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system that may utilize the techniques described in this disclosure.

5b

[0017] FIGS. 2A-2C are conceptual diagrams illustrating different sample formats for

video data.

[0018] FIG. 3 is a conceptual diagram illustrating a 16x16 coding unit formatted

according to a 4:2:0 sample format.

[0019] FIG. 4 is a conceptual diagram illustrating a 16x16 coding unit formatted

according to a 4:2:2 sample format.

[0020] FIG. 5 shows a conceptual illustration of the intra block copy (IBC) mode.

[0021] FIG. 6 shows an example of raster scan of a picture when tiles are used.

[0022] FIG. 7 shows an example of WPP processes rows of CTBs in parallel, each row

starting with the CABAC probabilities available after processing the second CTB of the

row above.

[0023] FIGS. 8-12 show valid prediction regions for various examples described in this

disclosure.

[0024] FIG. 13 shows an example method of signaling an intrabcflag syntax element.

[0025] FIG. 14 shows another example method of signaling an intra bc flag syntax

element.

[0026] FIG. 15 is a block diagram illustrating an example video encoder that may

implement the techniques described in this disclosure.

[0027] FIG. 16 is a block diagram illustrating an example video decoder that may

implement the techniques described in this disclosure. ---------------------------------- -,

WO 2016/057938 PCT/US2015/0549676

[0028] FIG. 17 is a block diagram illustrating an example video encoding process that

incorporates techniques described in this disclosure.

[0029] FIG. 18 is a block diagram illustrating an example video decoding process that

incorporates techniques described in this disclosure.

DETAILED DESCRIPTION
[0030] Various video coding standards, including the recently developed High

Efficiency Video Coding (HEVC) standard include predictive coding modes for video

blocks, where a block currently being coded is predicted based on an already coded

block of video data. In an intra prediction mode, the current block is predicted based on

one or more previously coded, neighboring blocks in the same picture as the current

block, while in an inter prediction mode the current block is predicted based on an

already coded block in a different picture. In inter prediction mode, the process of

determining a block of a previously coded frame to use as a predictive block is

sometimes referred to as motion estimation, which is generally performed by a video

encoder, and the process of identifying and retrieving a predictive block is sometimes

referred to as motion compensation, which is performed by both video encoders and

video decoders.

[0031] A video encoder typically determines how to code a sequence of video data by

coding the video using multiple coding scenarios and identifying the coding scenario

that produces a desirable rate-distortion tradeoff. When testing intra prediction coding

scenarios for a particular video block, a video encoder typically tests the neighboring

row of pixels (i.e. the row of pixels immediately above the block being coded) and tests

the neighboring column of pixels (i.e. the column of pixels immediately to the left of the

block being coded). In contrast, when testing inter prediction scenarios, the video

encoder typically identifies candidate predictive blocks in a much larger search area,

where the search area corresponds to video blocks in previously coded frames of video

data.

[0032] It has been discovered, however, that for certain types of video images, such as

video images that include text, symbols, or repetitive patterns, coding gains can be

achieved relative to intra prediction and inter prediction by using an intra block copy

(IBC) mode, which is also sometimes referred to as an intra motion compensation

(IMC) mode. In the development of various coding standards, the term IMC mode was

originally used, but later modified to IBC mode. In an IBC mode, a video encoder

WO 2016/057938 PCT/US2015/054967
7

searches for a predictive block in the same frame or picture as the block being coded, as

in an intra prediction mode, but the video encoder searches a wider search area and not

just the neighboring rows and columns of pixels.

[0033] In IBC mode, the video encoder may determine an offset vector, also referred to

sometimes as a motion vector or block vector, for identifying the predictive block

within the same frame or picture as the block being predicted. The offset vector

includes, for example, an x-component and a y-component, where the x-component

identifies the horizontal displacement between a video block being predicted and the

predictive block, and where the y-component identifies a vertical displacement between

the video block being predicted and the predictive block. The video encoder signals, in

the encoded bitstream, the determined offset vector so that a video decoder, when

decoding the encoded bitstream, can identify the same predictive block selected by the

video encoder.

[0034] Various video coding standards, including HEVC, also support parallel

processing mechanisms such as tiles and wavefront parallel processing so that different

blocks within the same picture may be decoded at the same time. Tiles offer rectangular

partitioning (with coded tree block (CTB) granularity) of a picture into multiple

independently decodable (including parsing and reconstruction) regions, such that a

video decoder can decode multiple tiles in parallel. Unlike tiles, wavefronts are not

independently decodable, but a video decoder may still be able to decode multiple

wavefronts in parallel by staggering the time at which decoding of the various

wavefronts start. For example, if a video decoder decodes two blocks of a first

wavefront before starting to decode a second wavefront below the first wavefront, then

the video decoder can ensure that any information of the first wavefront necessary for

the decoding the second wavefront is already decoded, and thus available for use in

decoding the second wavefront.

[0035] This disclosure introduces techniques to potentially enhance parallel processing

when IBC mode is enabled. More specifically, this disclosure introduces restrictions

on IBC block vectors (BVs) such that a decoder can process, in parallel, multiple CTUs

in non-raster scan order, which is sometimes referred to as wavefront parallel

processing. The techniques of this disclosure are directed to, but not limited to, screen

content coding, including the support of possibly high bit depth (more than 8 bit),

different chroma sampling format such as 4:4:4, 4:2:2, 4:2:0, 4:0:0 and etc.

WO 2016/057938 PCT/US2015/054967
8

[0036] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system 10 that may utilize the techniques described in this disclosure, including

techniques for coding blocks in an IBC mode and techniques for parallel processing. As

shown in FIG. 1, system 10 includes a source device 12 that generates encoded video

data to be decoded at a later time by a destination device 14. Source device 12 and

destination device 14 may comprise any of a wide range of devices, including desktop

computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone

handsets such as so-called “smart” phones, so-called “smart” pads, televisions, cameras,

display devices, digital media players, video gaming consoles, video streaming device,

or the like. In some cases, source device 12 and destination device 14 may be equipped

for wireless communication.

[0037] Destination device 14 may receive the encoded video data to be decoded via a

link 16. Link 16 may comprise any type of medium or device capable of moving the

encoded video data from source device 12 to destination device 14. In one example,

link 16 may comprise a communication medium to enable source device 12 to transmit

encoded video data directly to destination device 14 in real-time. The encoded video

data may be modulated according to a communication standard, such as a wireless

communication protocol, and transmitted to destination device 14. The communication

medium may comprise any wireless or wired communication medium, such as a radio

frequency (RF) spectrum or one or more physical transmission lines. The

communication medium may form part of a packet-based network, such as a local area

network, a wide-area network, or a global network such as the Internet. The

communication medium may include routers, switches, base stations, or any other

equipment that may be useful to facilitate communication from source device 12 to

destination device 14.

[0038] Alternatively, encoded data may be output from output interface 22 to a storage

device 17. Similarly, encoded data may be accessed from storage device 17 by input

interface. Storage device 17 may include any of a variety of distributed or locally

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,

flash memory, volatile or non-volatile memory, or any other suitable digital storage

media for storing encoded video data. In a further example, storage device 17 may

correspond to a file server or another intermediate storage device that may hold the

encoded video generated by source device 12. Destination device 14 may access stored

video data from storage device 17 via streaming or download. The file server may be

WO 2016/057938 PCT/US2015/054967
9

any type of server capable of storing encoded video data and transmitting that encoded

video data to the destination device 14. Example file servers include a web server (e.g.,

for a website), an FTP server, network attached storage (NAS) devices, or a local disk

drive. Destination device 14 may access the encoded video data through any standard

data connection, including an Internet connection. This may include a wireless channel

(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a

combination of both that is suitable for accessing encoded video data stored on a file

server. The transmission of encoded video data from storage device 17 may be a

streaming transmission, a download transmission, or a combination of both.

[0039] The techniques of this disclosure are not necessarily limited to wireless

applications or settings. The techniques may be applied to video coding in support of

any of a variety of multimedia applications, such as over-the-air television broadcasts,

cable television transmissions, satellite television transmissions, streaming video

transmissions, e.g., via the Internet, encoding of digital video for storage on a data

storage medium, decoding of digital video stored on a data storage medium, or other

applications. In some examples, system 10 may be configured to support one-way or

two-way video transmission to support applications such as video streaming, video

playback, video broadcasting, and/or video telephony.

[0040] In the example of FIG. 1, source device 12 includes a video source 18, video

encoder 20 and an output interface 22. In some cases, output interface 22 may include a

modulator/demodulator (modem) and/or a transmitter. In source device 12, video

source 18 may include a source such as a video capture device, e.g., a video camera, a

video archive containing previously captured video, a video feed interface to receive

video from a video content provider, and/or a computer graphics system for generating

computer graphics data as the source video, or a combination of such sources. As one

example, if video source 18 is a video camera, source device 12 and destination device

14 may form so-called camera phones or video phones. However, the techniques

described in this disclosure may be applicable to video coding in general, and may be

applied to wireless and/or wired applications.

[0041] The captured, pre-captured, or computer-generated video may be encoded by

video encoder 20. The encoded video data may be transmitted directly to destination

device 14 via output interface 22 of source device 12. The encoded video data may also

(or alternatively) be stored onto storage device 17 for later access by destination device

14 or other devices, for decoding and/or playback.

WO 2016/057938 PCT/US2015/054967
10

[0042] Destination device 14 includes an input interface 28, a video decoder 30, and a

display device 32. In some cases, input interface 28 may include a receiver and/or a

modem. Input interface 28 of destination device 14 receives the encoded video data

over link 16. The encoded video data communicated over link 16, or provided on

storage device 17, may include a variety of syntax elements generated by video encoder

20 for use by a video decoder, such as video decoder 30, in decoding the video data.

Such syntax elements may be included with the encoded video data transmitted on a

communication medium, stored on a storage medium, or stored a file server.

[0043] Display device 32 may be integrated with, or external to, destination device 14.

In some examples, destination device 14 may include an integrated display device and

also be configured to interface with an external display device. In other examples,

destination device 14 may be a display device. In general, display device 32 displays

the decoded video data to a user, and may comprise any of a variety of display devices

such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode

(OLED) display, or another type of display device.

[0044] Video encoder 20 and video decoder 30 may operate according to a video

compression standard, such as HEVC, and may conform to the HE VC Test Model

(HM). A working draft of the HEVC standard, referred to as “HEVC Working Draft

10” or “HEVC WD10,” is described in Bross et al., “Editors’ proposed corrections to

HEVC version 1,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T

SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 13th Meeting, Incheon, KR, April 2013.

Another HEVC draft specification is available from http://phenix.int-

evry.fr/j ct/doc_end_user/documents/15_Geneva/wg 11 /JCTVC-01003-v2 .zip. The

techniques described in this disclosure may also operate according to extensions of the

HEVC standard that are currently in development.

[0045] Alternatively or additionally, video encoder 20 and video decoder 30 may

operate according to other proprietary or industry standards, such as the ITU-T H.264

standard, alternatively referred to as MPEG-4, Part 10, Advanced Video Coding (AVC),

or extensions of such standards. The techniques of this disclosure, however, are not

limited to any particular coding standard. Other examples of video compression

standards include ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC

MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also

known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC) and

Multiview Video Coding (MVC) extensions.

http://phenix.int-evry.fr/j

WO 2016/057938 PCT/US2015/054967
11

[0046] The design of the HEVC has been recently finalized by the JCT-VC of ITU-T

Video Coding Experts Group (VCEG) and ISO/IEC Motion Picture Experts Group

(MPEG). The Range Extensions to HEVC, referred to as HEVC RExt, are also being

developed by the JCT-VC. A recent Working Draft (WD) of Range extensions, referred

to as RExt WD7 hereinafter, is available from http://phenix.int-

evry .fr/j ct/doc_end_user/documents/17 _V alencia/wg 11 /JCT VC-Q1005 -v4 .zip.

[0047] This disclosure will generally refer to the recently finalized HEVC specification

text as HEVC version 1 or base HEVC. The range extension specification may become

the version 2 of the HEVC. With respect to many coding tools, such as motion vector

prediction, HEVC version 1 and the range extension specification are technically

similar. Therefore whenever this disclosure describes changes relative to HEVC

version 1, the same changes may also apply to the range extension specification, which

generally includes the base HEVC specification, plus some additional coding tools.

Furthermore, it can generally be assumed that HEVC version 1 modules may also be

incorporated into a decoder implementing the HEVC range extension.

[0048] New coding tools for screen-content material such as text and graphics with

motion are currently in development and being contemplated for inclusion in future

video coding standards, including future version of HEVC. These new coding tools

potentially improve coding efficiency for screen content. As there is evidence that

significant improvements in coding efficiency may be obtained by exploiting the

characteristics of screen content with novel dedicated coding tools, a Call for Proposals

(CfP) has been issued with the target of possibly developing future extensions of the

HEVC standard including specific tools for SCC). Companies and organizations have

been invited to submit proposals in response to this Call. The use cases and

requirements of this CfP are described in MPEG document N14174. During the 17th

JCT-VC meeting, SCC test model (SCM) is established. A recent Working Draft (WD)

of SCC is available from http://phenix.int-

evry.fr/jct/doc_end_user/documents/18_Sapporo/wgll/JCTVC-R1005-v3.zip .

[0049] It is generally contemplated that video encoder 20 of source device 12 may be

configured to encode video data according to any of these current or future standards.

Similarly, it is also generally contemplated that video decoder 30 of destination device

14 may be configured to decode video data according to any of these current or future

standards.

http://phenix.int-evry
http://phenix.int-evry.fr/jct/doc_end_user/documents/18_Sapporo/wgll/JCTVC-R1005-v3.zip

WO 2016/057938 PCT/US2015/054967
12

[0050] Although not shown in FIG. 1, in some aspects, video encoder 20 and video

decoder 30 may each be integrated with an audio encoder and decoder, and may include

appropriate MUX-DEMUX units, or other hardware and software, to handle encoding

of both audio and video in a common data stream or separate data streams. If

applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223

multiplexer protocol, or other protocols such as the user datagram protocol (UDP).

[0051] Video encoder 20 and video decoder 30 each may be implemented as any of a

variety of suitable encoder circuitry, such as one or more microprocessors, digital signal

processors (DSPs), application specific integrated circuits (ASICs), field programmable

gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations

thereof. When the techniques are implemented partially in software, a device may store

instructions for the software in a suitable, non-transitory computer-readable medium and

execute the instructions in hardware using one or more processors to perform the

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be

included in one or more encoders or decoders, either of which may be integrated as part

of a combined encoder/decoder (CODEC) in a respective device.

[0052] As introduced above, the JCT-VC has recently finalized development of the

HE VC standard. The HE VC standardization efforts were based on an evolving model

of a video coding device referred to as the HE VC Test Model (HM). The HM presumes

several additional capabilities of video coding devices relative to existing devices

according to, e.g., ITU-T H.264/AVC. For example, whereas H.264 provides nine intra­

prediction encoding modes, the HM may provide as many as thirty-five intra-prediction

encoding modes.

[0053] In HEVC and other video coding specifications, a video sequence typically

includes a series of pictures. Pictures may also be referred to as “frames.” A picture

may include three sample arrays, denoted Sl, Scb, and So Sl is a two-dimensional

array (i.e., a block) of luma samples. Scb is a two-dimensional array of Cb chrominance

samples. Sq is a two-dimensional array of Cr chrominance samples. Chrominance

samples may also be referred to herein as “chroma” samples. In other instances, a

picture may be monochrome and may only include an array of luma samples.

[0054] To generate an encoded representation of a picture, video encoder 20 may

generate a set of coding tree units (CTUs). Each of the CTUs may comprise a coding

tree block (CTB) of luma samples, two corresponding coding tree blocks of chroma

samples, and syntax structures used to code the samples of the coding tree blocks. In

WO 2016/057938 PCT/US2015/05496713

monochrome pictures or pictures having three separate color planes, a CTU may

comprise a single coding tree block and syntax structures used to code the samples of

the coding tree block. A coding tree block may be an NxN block of samples. A CTU

may also be referred to as a “tree block” or a “largest coding unit” (LCU). The CTUs of

HEVC may be broadly analogous to the macroblocks of other standards, such as

H.264/AVC. However, a CTU is not necessarily limited to a particular size and may

include one or more coding units (CUs). A slice may include an integer number of

CTUs ordered consecutively in a raster scan order.

[0055] To generate a coded CTU, video encoder 20 may recursively perform quad-tree

partitioning on the coding tree blocks (CTBs) of a CTU to divide the coding tree blocks

into coding blocks, hence the name “coding tree units.” A coding block may be an NxN

block of samples. A CU may comprise a coding block of luma samples and two

corresponding coding blocks of chroma samples of a picture that has a luma sample

array, a Cb sample array, and a Cr sample array, and syntax structures used to code the

samples of the coding blocks. In monochrome pictures or pictures having three separate

color planes, a CU may comprise a single coding block and syntax structures used to

code the samples of the coding block.

[0056] Video encoder 20 may partition a coding block of a CU into one or more

prediction blocks. A prediction block is a rectangular (i.e., square or non-square) block

of samples on which the same prediction is applied. A prediction unit (PU) of a CU

may comprise a prediction block of luma samples, two corresponding prediction blocks

of chroma samples, and syntax structures used to predict the prediction blocks. In

monochrome pictures or pictures having three separate color planes, a PU may comprise

a single prediction block and syntax structures used to predict the prediction block.

Video encoder 20 may generate predictive luma, Cb, and Cr blocks for luma, Cb, and Cr

prediction blocks of each PU of the CU.

[0057] Video encoder 20 may use intra prediction or inter prediction to generate the

predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the

predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the

PU based on decoded samples of the picture associated with the PU. If video encoder

20 uses inter prediction to generate the predictive blocks of a PU, video encoder 20 may

generate the predictive blocks of the PU based on decoded samples of one or more

pictures other than the picture associated with the PU.

WO 2016/057938 PCT/US2015/054967
14

[0058] After video encoder 20 generates predictive luma, Cb, and Cr blocks for one or

more PUs of a CU, video encoder 20 may generate a luma residual block for the CU.

Each sample in the CU’s luma residual block indicates a difference between a luma

sample in one of the CU’s predictive luma blocks and a corresponding sample in the

CU’s original luma coding block. In addition, video encoder 20 may generate a Cb

residual block for the CU. Each sample in the CU’s Cb residual block may indicate a

difference between a Cb sample in one of the CU’s predictive Cb blocks and a

corresponding sample in the CU’s original Cb coding block. Video encoder 20 may

also generate a Cr residual block for the CU. Each sample in the CU’s Cr residual block

may indicate a difference between a Cr sample in one of the CU’s predictive Cr blocks

and a corresponding sample in the CU’s original Cr coding block.

[0059] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the

luma, Cb, and Cr residual blocks of a CU into one or more luma, Cb, and Cr transform

blocks. A transform block is a rectangular (e.g., square or non-square) block of samples

on which the same transform is applied. A transform unit (TU) of a CU may comprise a

transform block of luma samples, two corresponding transform blocks of chroma

samples, and syntax structures used to transform the transform block samples. Thus,

each TU of a CU may be associated with a luma transform block, a Cb transform block,

and a Cr transform block. The luma transform block associated with the TU may be a

sub-block of the CU’s luma residual block. The Cb transform block may be a sub-block

of the CU’s Cb residual block. The Cr transform block may be a sub-block of the CU’s

Cr residual block. In monochrome pictures or pictures having three separate color

planes, a TU may comprise a single transform block and syntax structures used to

transform the samples of the transform block.

[0060] Video encoder 20 may apply one or more transforms to a luma transform block

of a TU to generate a luma coefficient block for the TU. A coefficient block may be a

two-dimensional array of transform coefficients. A transform coefficient may be a

scalar quantity. Video encoder 20 may apply one or more transforms to a Cb transform

block of a TU to generate a Cb coefficient block for the TU. Video encoder 20 may

apply one or more transforms to a Cr transform block of a TU to generate a Cr

coefficient block for the TU.

[0061] After generating a coefficient block (e.g., a luma coefficient block, a Cb

coefficient block or a Cr coefficient block), video encoder 20 may quantize the

coefficient block. Quantization generally refers to a process in which transform

WO 2016/057938 PCT/US2015/054967
15

coefficients are quantized to possibly reduce the amount of data used to represent the

transform coefficients, providing further compression. After video encoder 20 quantizes

a coefficient block, video encoder 20 may entropy encode syntax elements indicating

the quantized transform coefficients. For example, video encoder 20 may perform

Context-Adaptive Binary Arithmetic Coding (CABAC) on the syntax elements

indicating the quantized transform coefficients.

[0062] Video encoder 20 may output a bitstream that includes a sequence of bits that

forms a representation of coded pictures and associated data. The bitstream may

comprise a sequence of NAL units. A NAL unit is a syntax structure containing an

indication of the type of data in the NAL unit and bytes containing that data in the form

of a RBSP interspersed as necessary with emulation prevention bits. Each of the NAL

units includes a NAL unit header and encapsulates a RBSP. The NAL unit header may

include a syntax element that indicates a NAL unit type code. The NAL unit type code

specified by the NAL unit header of a NAL unit indicates the type of the NAL unit. A

RBSP may be a syntax structure containing an integer number of bytes that is

encapsulated within a NAL unit. In some instances, an RBSP includes zero bits.

[0063] Different types of NAL units may encapsulate different types of RBSPs. For

example, a first type of NAL unit may encapsulate an RBSP for a PPS, a second type of

NAL unit may encapsulate an RBSP for a coded slice, a third type of NAL unit may

encapsulate an RBSP for SEI messages, and so on. NAL units that encapsulate RBSPs

for video coding data (as opposed to RBSPs for parameter sets and SEI messages) may

be referred to as VCL NAL units.

[0064] Video decoder 30 may receive a bitstream generated by video encoder 20. In

addition, video decoder 30 may parse the bitstream to obtain syntax elements from the

bitstream. Video decoder 30 may reconstruct the pictures of the video data based at

least in part on the syntax elements obtained from the bitstream. The process to

reconstruct the video data may be generally reciprocal to the process performed by

video encoder 20. In addition, video decoder 30 may inverse quantize coefficient

blocks associated with TUs of a current CU. Video decoder 30 may perform inverse

transforms on the coefficient blocks to reconstruct transform blocks associated with the

TUs of the current CU. Video decoder 30 may reconstruct the coding blocks of the

current CU by adding the samples of the predictive blocks for PUs of the current CU to

corresponding samples of the transform blocks of the TUs of the current CU. By

WO 2016/057938 PCT/US2015/054967
16

reconstructing the coding blocks for each CU of a picture, video decoder 30 may

reconstruct the picture.

[0065] A video sampling format, which may also be referred to as a chroma format,

may define the number of chroma samples included in a CU with respect to the number

of luma samples included in a CU. Depending on the video sampling format for the

chroma components, the size, in terms of number of samples, of the U and V

components may be the same as or different from the size of the Y component. In the

HE VC standard, a value called chromaformatidc is defined to indicate different

sampling formats of the chroma components, relative to the luma component. In

HEVC, chroma format idc is signaled in the SPS. Table 1 illustrates the relationship

between values of chroma format idc and associated chroma formats.

chromaformatidc chroma format SubWidthC SubHeightC

0 Monochrome - -

1 4:2:0 2 2

2 4:2:2 2 1

3 4:4:4 1 1

Table 1: different chroma formats defined in H EVC

[0066] In Table 1, the variables SubWidthC and SubHeightC can be used to indicate the

horizontal and vertical sampling rate ratio between the number of samples for the luma

component and the number of samples for each chroma component. In the chroma

formats described in Table 1, the two chroma components have the same sampling rate.

Thus, in 4:2:0 sampling, each of the two chroma arrays has half the height and half the

width of the luma array, while in 4:2:2 sampling, each of the two chroma arrays has the

same height and half the width of the luma array. In 4:4:4 sampling, each of the two

chroma arrays, may have the same height and width as the luma array, or in some

instances, the three color planes may all be separately processed as monochrome

sampled pictures.

[0067] In the example of Table 1, for the 4:2:0 format, the sampling rate for the luma

component is twice that of the chroma components for both the horizontal and vertical

directions. As a result, for a coding unit formatted according to the 4:2:0 format, the

width and height of an array of samples for the luma component are twice that of each

array of samples for the chroma components. Similarly, for a coding unit formatted

WO 2016/057938 PCT/US2015/054967
17

according to the 4:2:2 format, the width of an array of samples for the luma component

is twice that of the width of an array of samples for each chroma component, but the

height of the array of samples for the luma component is equal to the height of an array

of samples for each chroma component. For a coding unit formatted according to the

4:4:4 format, an array of samples for the luma component has the same width and height

as an array of samples for each chroma component. It should be noted that in addition

to the YUV color space, video data can be defined according to an RGB space color. In

this manner, the chroma formats described herein may apply to either the YUV or RGB

color space. RGB chroma formats are typically sampled such that the number of red

samples, the number of green samples and the number of blue samples are equal. Thus,

the term “4:4:4 chroma format” as used herein may refer to either a YUV color space or

an RGB color space wherein the number of samples is equal for all color components.

[0068] FIGS. 2A-2C are conceptual diagrams illustrating different sample formats for

video data. FIG. 2A is a conceptual diagram illustrating the 4:2:0 sample format. As

illustrated in FIG. 2A, for the 4:2:0 sample format, the chroma components are one

quarter of the size of the luma component. Thus, for a CU formatted according to the

4:2:0 sample format, there are four luma samples for every sample of a chroma

component. FIG. 2B is a conceptual diagram illustrating the 4:2:2 sample format. As

illustrated in FIG. 2B, for the 4:2:2 sample format, the chroma components are one half

of the size of the luma component. Thus, for a CU formatted according to the 4:2:2

sample format, there are two luma samples for every sample of a chroma component.

FIG. 2C is a conceptual diagram illustrating the 4:4:4 sample format. As illustrated in

FIG. 2C, for the 4:4:4 sample format, the chroma components are the same size of the

luma component. Thus, for a CU formatted according to the 4:4:4 sample format, there

is one luma sample for every sample of a chroma component.

[0069] FIG. 3 is a conceptual diagram illustrating an example of a 16x16 coding unit

formatted according to a 4:2:0 sample format. FIG. 3 illustrates the relative position of

chroma samples with respect to luma samples within a CU. As described above, a CU

is typically defined according to the number of horizontal and vertical luma samples.

Thus, as illustrated in FIG. 3, a 16x16 CU formatted according to the 4:2:0 sample

format includes 16x16 samples of luma components and 8x8 samples for each chroma

component. Further, as described above, a CU may be partitioned into smaller CUs.

For example, the CU illustrated in FIG. 3 may be partitioned into four 8x8 CUs, where

WO 2016/057938 PCT/US2015/054967
18

each 8x8 CU includes 8x8 samples for the luma component and 4x4 samples for each

chroma component.

[0070] FIG. 4 is a conceptual diagram illustrating an example of a 16x16 coding unit

formatted according to a 4:2:2 sample format. FIG.4 illustrates the relative position of

chroma samples with respect to luma samples within a CU. As described above, a CU

is typically defined according to the number of horizontal and vertical luma samples.

Thus, as illustrated in FIG. 4, a 16x16 CU formatted according to the 4:2:2 sample

format includes 16x16 samples of luma components and 8x16 samples for each chroma

component. Further, as described above, a CU may be partitioned into smaller CUs.

For example, the CU illustrated in FIG. 4 may be partitioned into four 8x8 CUs, where

each CU includes 8x8 samples for the luma component and 4x8 samples for each

chroma component.

[0071] FIG. 5 shows a conceptual illustration of the IBC mode. Video encoder 20 and

video decoder 30 may, for example be configured to encode and decode blocks of video

data using an IBC mode. Many applications, such as remote desktop, remote gaming,

wireless displays, automotive infotainment, cloud computing, etc., are becoming routine

in people’s daily lives, and the coding efficiency when coding such content may be

improved by the use of an IBC mode. System 10 of FIG. 1 may represent devices

configured to execute any of these applications. Video content in these applications are

often combinations of natural content, text, artificial graphics, etc. In text and artificial

graphics regions of video frames, repeated patterns (such as characters, icons, symbols,

etc.) often exist. As introduced above, IBC is a dedicated technique which enables

removing this kind of redundancy and potentially improving the intra-frame coding

efficiency as reported in JCT-VC M0350. As illustrated in FIG. 5, for the CUs which

use IBC, the prediction signals are obtained from the already reconstructed region in the

same frame (e.g., picture). In the end, the offset or block vector, which indicates the

position of the prediction signal displaced from the current CU, together with the

residue signal are encoded.

[0072] For instance, FIG. 5 illustrates an example technique for predicting a current

block 102 of video data within a current picture 103 according to an IBC mode in

accordance with the techniques of this disclosure. FIG. 5 illustrates a predictive video

block 104 within current picture 103. A video coder, e.g., video encoder 20 and/or

video decoder 30, may use predictive video block 104 to predict current video block 102

according to an IBC mode in accordance with the techniques of this disclosure.

WO 2016/057938 PCT/US2015/054967
19

[0073] Video encoder 20 selects predictive video block 104 for predicting current video

block 102 from a set of previously reconstructed blocks of video data. Video encoder

20 reconstructs blocks of video data by inverse quantizing and inverse transforming the

video data that is also included in the encoded video bitstream, and summing the

resulting residual blocks with the predictive blocks used to predict the reconstructed

blocks of video data. In the example of FIG. 5, intended region 108 within picture 103,

which may also be referred to as an “intended area” or “raster area,” includes the set of

previously reconstructed video blocks. Video encoder 20 may define intended region

108 within picture 103 in variety of ways, as described in greater detail below. Video

encoder 20 may select predictive video block 104 to predict current video block 102

from among the video blocks in intended region 108 based on an analysis of the relative

efficiency and accuracy of predicting and coding current video block 102 based on

various video blocks within intended region 108.

[0074] Intended region 108 may also be referred to in this disclosure as an IBC

prediction region. This disclosure describes various techniques that may modify what

blocks are included in intended region 108. Thus, when implementing the techniques of

this disclosure, the size and shape of intended region 108 may be different than that

shown in the example of FIG. 5.

[0075] Video encoder 20 determines two-dimensional vector 106 representing the

location or displacement of predictive video block 104 relative to current video block

102. Two-dimensional vector 106, which is an example of an offset vector, includes

horizontal displacement component 112 and vertical displacement component 110,

which respectively represent the horizontal and vertical displacement of predictive

video block 104 relative to current video block 102. Video encoder 20 may include one

or more syntax elements that identify or define two-dimensional vector 106, e.g., that

define horizontal displacement component 112 and vertical displacement component

110, in the encoded video bitstream. Video decoder 30 may decode the one or more

syntax elements to determine two-dimensional vector 106, and use the determined

vector to identify predictive video block 104 for current video block 102.

[0076] In some examples, the resolution of two-dimensional vector 106 can be integer

pixel, e.g., be constrained to have integer pixel resolution. In such examples, the

resolution of horizontal displacement component 112 and vertical displacement

component 110 will be integer pixel. In such examples, video encoder 20 and video

WO 2016/057938 PCT/US2015/054967
20

decoder 30 need not interpolate pixel values of predictive video block 104 to determine

the predictor for current video block 102.

[0077] In other examples, the resolution of one or both of horizontal displacement

component 112 and vertical displacement component 110 can be sub-pixel. For

example, one of components 112 and 110 may have integer pixel resolution, while the

other has sub-pixel resolution. In some examples, the resolution of both of horizontal

displacement component 112 and vertical displacement component 110 can be sub­

pixel, but horizontal displacement component 112 and vertical displacement component

110 may have different resolutions.

[0078] In some examples, a video coder, e.g., video encoder 20 and/or video decoder

30, adapts the resolution of horizontal displacement component 112 and vertical

displacement component 110 based on a specific level, e.g., block-level, slice-level, or

picture-level adaptation . For example, video encoder 20 may signal a flag at the slice

level, e.g., in a slice header, that indicates whether the resolution of horizontal

displacement component 112 and vertical displacement component 110 is integer pixel

resolution or is not integer pixel resolution. If the flag indicates that the resolution of

horizontal displacement component 112 and vertical displacement component 110 is not

integer pixel resolution, video decoder 30 may infer that the resolution is sub-pixel

resolution. In some examples, one or more syntax elements, which are not necessarily a

flag, may be transmitted for each slice or other unit of video data to indicate the

collective or individual resolutions of horizontal displacement component 112 and/or

vertical displacement component 110.

[0079] In still other examples, instead of a flag or a syntax element, video encoder 20

may set based on, and video decoder 30 may infer the resolution of horizontal

displacement component 112 and/or vertical displacement component 110 from

resolution context information. Resolution context information may include, as

examples, the color space (e.g., YUV, RGB, or the like), the specific color format (e.g.,

4:4:4, 4:2:2, 4:2:0, or the like), the frame size, the frame rate, or the quantization

parameter (QP) for the picture or sequence of pictures that include current video block

102. In at least some examples, a video coder may determine the resolution of

horizontal displacement component 112 and/or vertical displacement component 110

based on information related to previously coded frames or pictures. In this manner, the

resolution of horizontal displacement component 112 and the resolution for vertical

displacement component 110 may be pre-defined, signaled, may be inferred from other,

WO 2016/057938 PCT/US2015/054967
21

side information (e.g., resolution context information), or may be based on already

coded frames.

[0080] Current video block 102 may be a CU, or a PU of a CU. In some examples, a

video coder, e.g., video encoder 20 and/or video decoder 30, may split a CU that is

predicted according to IBC into a number of PUs. In such examples, the video coder

may determine a respective (e.g., different) two-dimensional vector 106 for each of the

PUs of the CU. For example, a video coder may split a 2Nx2N CU into two 2NxN PUs,

two Nx2N PUs, or four NxN PUs. As other examples, a video coder may split a 2Nx2N

CU into ((N/2)xN + (3N/2)xN) PUs, ((3N/2)xN + (N/2)xN) PUs, (Nx(N/2) + Nx(3N/2))

PUs, (Nx(3N/2) + Nx(N/2)) PUs, four (N/2)x2N PUs, or four 2Nx(N/2) PUs. In some

examples, video coder may predict a 2Nx2N CU using a 2Nx2N PU.

[0081] Current video block 102 includes a luma video block (e.g., luma component)

and a chroma video block (e.g., chroma component) corresponding to the luma video

block. In some examples, video encoder 20 may only encode one or more syntax

elements defining two-dimensional vectors 106 for luma video blocks into the encoded

video bitstream. In such examples, video decoder 30 may derive two-dimensional

vectors 106 for each of one or more chroma blocks corresponding to a luma block based

on the two-dimensional vector signaled for the luma block. In the techniques described

in this disclosure, in the derivation of the two-dimensional vectors for the one or more

chroma blocks, video decoder 30 may modify the two-dimensional vector for the luma

block if the two-dimensional vector for the luma block points to a sub-pixel position

within the chroma sample.

[0082] Depending on the color format, e.g., color sampling format or chroma sampling

format, a video coder may downsample corresponding chroma video blocks relative to

the luma video block. Color format 4:4:4 does not include downsampling, meaning that

the chroma blocks include the same number of samples in the horizontal and vertical

directions as the luma block. Color format 4:2:2 is downsampled in the horizontal

direction, meaning that there are half as many samples in the horizontal direction in the

chroma blocks relative to the luma block. Color format 4:2:0 is downsampled in the

horizontal and vertical directions, meaning that there are half as many samples in the

horizontal and vertical directions in the chroma blocks relative to the luma block.

[0083] In examples in which video coders determine vectors 106 for chroma video

blocks based on vectors 106 for corresponding luma blocks, the video coders may need

to modify the luma vector. For example, if a luma vector 106 has integer resolution

WO 2016/057938 PCT/US2015/054967
22

with horizontal displacement component 112 and/or vertical displacement component

110 being an odd number of pixels, and the color format is 4:2:2 or 4:2:0, the converted

luma vector may not point an integer pixel location in the corresponding chroma block.

In such examples, video coders may scale the luma vector for use as a chroma vector to

predict a corresponding chroma block.

[0084] As described, FIG. 5 shows a current CU that is being coded in an IBC mode. A

predictive block for the current CU may be obtained from the search region. The search

region includes already coded blocks from the same frame as the current CU.

Assuming, for example, the frame is being coded in a raster scan order (i.e. left-to-right

and top-to-bottom), the already coded blocks of the frame correspond to blocks that are

to the left of and above the current CU, as shown in FIG. 5. In some examples, the

search region may include all of the already coded blocks in the frame, while in other

examples, the search region may include fewer than all of the already coded blocks.

The offset vector in FIG. 5, sometimes referred to as a motion vector or prediction

vector, identifies the differences between a top-left pixel of the current CU and a top-left

pixel of the predictive block (labeled prediction signal in FIG. 5). Thus, by signaling

the offset vector in the encoded video bitstream, a video decoder can identify the

predictive block for the current CU, when the current CU is coded in an IBC mode.

[0085] IBC has been included in various implementations of SCC, including the SCC

extension to HEVC. An example of IBC is described above with respect to FIG. 5,

where the current CU/PU is predicted from an already decoded block of the current

picture/slice. In IBC, a predictive block (e.g. predictive video block 104 in FIG. 5) may

be a reconstructed block that has not been loop filtered, e.g. has not been deblock

filtered or SAO filtered.

[0086] For the luma component or the chroma components that are coded with IBC, the

block compensation is done with integer block compensation, therefore no interpolation

is needed. Therefore, the block vector is predicted and signalled at an integer level

precision.

[0087] In current implementations of SCC, the block vector predictor is set to (-w, 0) at

the beginning of each CTB, where w corresponds to the width of the CU. Such a block

vector predictor is updated to be the one of the latest coded CU/PU if that is coded with

IBC mode. If a CU/PU is not coded with IBC, then the block vector predictor remains

unchanged. After block vector prediction, the block vector difference is encoded using

a MV difference (MVD) coding method such as in HEVC.

WO 2016/057938 PCT/US2015/054967
23

[0088] Current implementations of IBC enable IBC coding at both CU and PU levels.

For PU level IBC, 2NxN and Nx2N PU partitions are supported for all the CU sizes. In

addition, when the CU is the smallest CU, NxN PU partition is supported.

[0089] As introduced above, HE VC contains several proposals to make the codec more

parallel-friendly, including tiles and wavefront parallel processing (WPP). HE VC

defines tiles as an integer number of coding tree blocks co-occurring in one column and

one row, ordered consecutively in coding tree block raster scan of the tile. The division

of each picture into tiles is a partitioning.

[0090] FIG. 6 shows a raster scan of a picture when tiles are used. Tiles in a picture are

ordered consecutively in tile raster scan of the picture as shown in FIG. 6. The number

of tiles and the location of their boundaries can be defined for the entire sequence or

changed from picture to picture. Tile boundaries, similar to slice boundaries, break parse

and prediction dependencies so that a tile can be processed independently. In-loop

filters (de-blocking and SAO), however, may still cross tile boundaries. HEVC also

specifies some constraints on the relationship between slices and tiles. In the example

of FIG. 6, lines 114A and 114B represent vertical tile boundaries, and lines 114C and

114D represent horizontal tile boundaries. The numbers within each tile represent the

raster scan order for the CTBs within the tile. For example, for the upper left most tile,

the block labeled 0 is first decoded, then the block labeled 1, then the block labeled 2,

and so on.

[0091] A potential advantage of using tiles is that that tiles do not always require

communication between processors of a video decoder, such as video decoder 30, for

entropy decoding and motion compensation reconstruction. Such communication may,

however, be needed if the syntax element loop filter across tiles enabled flag is set to

1. Compared to slices, tiles potentially have better coding efficiency because tiles allow

picture partition shapes that contain samples with a potential higher correlation than

slices, and also because tiles potentially reduce slice header overhead.

[0092] The tile design in HEVC may provide several benefits. As one example, tiles

may enable parallel processing by video decoder 30. As another example, tiles may

improve coding efficiency by allowing a changed decoding order of CTUs compared to

the use of slices, while the main benefit is the first one. When a tile is used in single­

layer coding, the syntax element min spatial segmentation idc may be used by a

decoder to calculate the maximum number of luma samples to be processed by one

processing thread, making the assumption that the decoder maximally utilizes the

WO 2016/057938 PCT/US2015/054967
24

parallel decoding information. In HEVC there may be same picture inter-dependencies

between the different threads - e.g. due to entropy coding synchronization or de­

blocking filtering across tile or slice boundaries. HEVC includes a note which

encourages encoders to set the value of min spatial segmentation idc to be the highest

possible value.

[0093] As introduced above, HEVC also supports WPP. When WPP is enabled, each

CTU row of a picture is a separated partition. Compared to slices and tiles, however,

with WPP no coding dependences are broken at CTU row boundaries. Additionally,

CAB AC probabilities are propagated from the second CTU of the previous row, to

further reduce the coding losses. Also, WPP does not change the regular raster scan

order. As dependencies are not broken, the rate-distortion loss of a WPP bitstream may

be small compared to that of a nonparallel bitstream.

[0094] When WPP is enabled, a number of processors up to the number of CTU rows

can work in parallel to process the CTU row (or lines). The wave front dependences,

however, do not allow all the CTU rows to start decoding at the beginning of the

picture. Consequently, the CTU rows also cannot finish decoding at the same time at

the end of the picture. This introduces parallelization inefficiencies that become more

evident when a high number of processors are used.

[0095] FIG. 7 shows an example of WPP processes rows of CTBs in parallel, each row

starting with the CABAC probabilities available after processing the second CTB of the

row above. Each of rows 116A-116G may be decoded in parallel, but as each row

potentially depends on information of the row above, the decoding of all the rows may

not be able to begin at the same time. For example, video decoder 30 cannot start

decoding row 116D until a certain number of blocks of row 116C have been decoded.

Similarly, video decoder 30 cannot start decoding 116E until a certain number of blocks

of row 116D have already been decoded. As will be explained in more detail below, the

amount of time video decoder 30 waits before decoding a row after starting to decode

the row above may be referred to as a delay. In the example, of FIG. 7, the grey blocks

represent already decoded blocks, while the white blocks represent yet to be decoded

blocks. As can be seen in FIG. 7, a row typically has more already decoded blocks than

the row immediately below.

[0096] Coding video data in IBC mode in conjunction with parallel processing

techniques such as tiles and WPP may pose potential difficulties. IBC mode uses

previously decoded unfiltered samples within the same picture for prediction. In the

WO 2016/057938 PCT/US2015/054967
25

current test model, for the IBC mode the search range is unrestricted and can use any

unfiltered decoded samples of the current picture (full search IBC). In real-time

applications it is typical to process in non-raster order (e.g WPP) to enabled processing

multiple CTU at a same time. HEVC defines the entropy decoding order when WPP or

entropy coding sync enabled flag is enabled.

[0097] Certain implementations of SCC with WPP and tiles potentially have some

problems when a non-raster scan is enabled. As a first example, the availability of

prediction samples is always considered based on the raster order sequential processing.

This potentially significantly impacts the parallel processing capabilities of the system.

As a second example, there have been some proposals in the recent JCT-VC meetings to

restrict the IBC prediction region in the similar lines to entropy parsing when WPP is

enabled. However, this potentially has a significant impact on the coding efficiency due

to a limited search range being available for IBC mode.

[0098] In order to allow WPP like parallel processing schemes and reduce the coding

efficiency loss this disclosure describes techniques to add some flexible restrictions on

the IBC search range and/or on IBC block vectors.

[0099] Each of the following techniques may be applied separately or jointly. The

techniques described in this disclosure detail the availability of prediction region for

IBC prediction. In addition this region may depend based on WPP is enabled or not.

[0100] According to a first technique, a fixed processing order of reconstructing the

samples may be considered, (e.g entropy parsing order when WPP is enabled or any of

the below processing order). The samples that are already decoded/reconstructed may

be only used for prediction.

[0101] According to a second technique, a fixed processing order of reconstructing the

samples may be considered, (e.g entropy parsing order when WPP is enabled or any of

the below processing order). The samples that are already decoded/reconstructed may

be only used for prediction. Further any region below the current CTB is considered as

not available for IBC prediction.

[0102] According to a third technique, a fixed processing order of reconstructing the

samples may be considered, (e.g entropy parsing order when WPP is enabled or any of

the below processing order) and any region below the current CTB is considered as not

available for IBC prediction and partial regions are considered as not available for the

above the current CTB based on the max TU size specified in the SPS header.

WO 2016/057938 PCT/US2015/054967
26

[0103] According to a fourth technique, a fixed processing order of reconstructing the

samples may be considered, (e.g entropy parsing order when WPP is enabled or any of

the below processing order) and partial regions are considered as not available for the

above the current CTB based on the max TU size specified in the SPS header.

[0104] According to a fifth technique, a flexible processing order of reconstructing the

samples may be considered to be valid for IBC prediction and this regions are signalled

in the bitstream.

[0105] According to a sixth technique, a flexible processing order of reconstructing the

samples may be considered to be valid for IBC prediction and this regions are signalled

in the bitstream and any region below the current CTB is considered as no available for

IBC prediction. Examples of the various techniques introduced above will now be

illustrated in more detail.

[0106] FIGS. 8-12 show examples of blocks configured to be decoded using WPP.

Each of the regions shown in FIGS. 8-12 corresponds to a CTB. In the examples of

FIGS. 8-12, the CTB labeled with an X represents a current block being decoded. For

IBC prediction, blocks labeled with 1 may be used for IBC, while blocks labeled with 0

may not be used for IBC.

[0107] FIG. 8 shows a first example with an IBC processing order with a 1 CTB delay

with regard to the above CTB row will now be described. The following restriction as

shown in FIG. 8 is applied on the IBC block vectors, such that no IBC block predicts

from region marked with 0’s. In FIG. 8, the region marked with “1 ’s” is a valid

predicted region that has already been reconstructed. These restrictions would allow

processing of any “0” marked region in parallel with current block x.

8.4.4 Derivation process for block vector components in intra block copying prediction

mode

- It is a requirement of bitstream conformance that

(xPb + bvlntra[xPb][yPb][0] + nPbSw - l)/CtbSizeY - xCurr/CtbSizeY <=

yCurr/CtbSizeY - (yPb + bvlntra[xPb][yPb][1] + nPbSh -

1)/CtbSizeY

and

yCurr/CtbSizeY - (yPb + bvlntra[xPb][yPb][1] + nPbSh -

1)/CtbSizeY >=0

WO 2016/057938 PCT/US2015/054967
27

[0108] According to one technique of this disclosure, for one or more blocks coded with

wave front parallel processing enabled, video decoder 30 may determine a CTB delay

that identifies a delay between when a first row of CTBs starts being decoded and when

a second row of CTBs below the first row of CTBs starts being decoded. For a current

block of video data coded in an IBC mode and coded with wavefront parallel processing

disabled, video decoder 30 may determine an IBC prediction region for the current

block within a picture that includes the current block based on the CTB delay that was

determined for the one or more blocks coded with WPP enabled. In other words, video

decoder 30 may determine the IBC prediction region for the current block based on the

CTB delay regardless of the value of the entropy coding sync enabled flag, which

means regardless of whether or not WPP is enabled or disabled. By always determining

the IBC prediction region based on the CTB delay, overall decoding complexity is

reduced, but reduced in a way that still enables video decoder 30 to support IBC mode

with WPP enabled.

[0109] In some alternative implementations, the above restriction may only be applied

on the IBC block vectors when entropy coding sync enabled flag is equal to 1 such

that no IBC block predicts from non-decoded region.

8.4.4 Derivation process for block vector components in intra block copying prediction

mode

- It is a requirement of bitstream conformance that when

entropy coding sync enabled flag is equal to 1

yCurr/CtbSizeY - (yPb + bvlntra[xPb][yPb][1] + nPbSh - 1)/CtbSizeY >=0

and when entropy coding sync enabled flag is equal to 1

(xPb + bvlntra[xPb][yPb][0] + nPbSw - l)/CtbSizeY - xCurr/CtbSizeY <=

yCurr/CtbSizeY - (yPb + bvlntra[xPb][yPb][1] + nPbSh - 1)/CtbSizeY

[0110] A second example with IBC processing order with 2 CTB delay with regard to

the above CTB row will now be described. The following restriction as shown in FIG.

9 is applied on the IBC block vectors, such that no IBC block predicts from the “0”

region. In FIG. 9, the region marked with l’s is a valid predicted region that has already

been reconstructed. These restrictions would allow processing of any “0” marked region

in parallel with current block x. Here each region corresponds to CTB.

WO 2016/057938 PCT/US2015/054967
28

8.4.4 Derivation process for block vector components in intra block copying prediction

mode

- It is a requirement of bitstream conformance that

(xPb + bvlntraf xPb][yPb][0] + nPbSw - l)/CtbSizeY - xCurr/CtbSizeY <=

2* (yCurr/CtbSizeY - (yPb + bvlntraf xPb][yPb][1] + nPbSh -

1)/CtbSizeY)

and

yCurr/CtbSizeY - (yPb + bvlntraf xPb][yPb][1] + nPbSh -

1)/CtbSizeY >=0

[0111] Alternatively the above restriction conditions are applied on the IBC block

vectors only when entropycodingsyncenabledflag is equal to 1 such that no IBC

block predicts from non-decoded region.

8.4.4 Derivation process for block vector components in intra block copying prediction

mode

- It is a requirement of bitstream conformance that when

entropy coding sync enabled flag is equal to 1

yCurr/CtbSizeY - (yPb + bvlntraf xPb][yPb][1] + nPbSh - 1)/CtbSizeY >=0

and when entropy coding sync enabled flag is equal to 1

(xPb + bvlntraf xPb][yPb][0] + nPbSw - l)/CtbSizeY -

xCurr/CtbSizeY <=

2 *(yCurr/CtbSizeY -

(yPb + bvlntraf xPb][yPb][1] + nPbSh - 1)/CtbSizeY)

[0112] A third example with IBC processing order with tile shaped regions will now be

described. The following restriction as shown in FIG. 10 is applied on the IBC block

vectors, such that no IBC block predicts from the “0” region. In FIG. 10, the region

marked with l’s is a valid predicted region that has already been reconstructed. These

restrictions would allow processing of any “0” marked region in parallel with current

block x. Here each region corresponds to CTB.

[0113] In one example, the above restriction is applied only when

entropy coding sync enabled flag is equal to 1 as below

WO 2016/057938 PCT/US2015/054967
29

8.4.4 Derivation process for block vector components in intra block copying prediction

mode

- It is a requirement of bitstream conformance that

xCurr/CtbSizeY - (xPb + bvlntraf xPb][yPb][0] + nPbSw -

1)/CtbSizeY >=0

yCurr/CtbSizeY - (yPb + bvlntraf xPb][yPb][1] + nPbSh -

1)/CtbSizeY >=0

[0114] Alternatively the above restriction conditions are applied on the IBC block

vectors only when entropycodingsyncenabledflag is equal to 1 such that no IBC

block predicts from non-decoded region.

- It is a requirement of bitstream conformance that when

entropy coding sync enabled flag is equal tol

xCurr/CtbSizeY - (xPb + bvlntraf xPb][yPb][0] + nPbSw -

1)/CtbSizeY >=0

yCurr/CtbSizeY - (yPb + bvlntraf xPb][yPb][1] + nPbSh -

1)/CtbSizeY >=0

[0115] A fourth example with IBC processing order with less than 1 CTB delay with

regard to the above CTB row will now be described. In this example it is proposed to

restrict prediction samples for IBC similar to “IBC processing order with 1 CTB delay

with regard to the above CTB row” discussed above but with the delay of the maximum

TU block instead, which is less than 1 CTB delay. Let the maximum TU size

maxTUSizeY is derived as maxTUSizeY = 1 « MaxTbLog2SizeY. (signalled in SPS).

8.4.4 Derivation process for block vector components in intra block copying prediction

mode

- It is a requirement of bitstream conformance that

(xPb + bvlntraf xPb][yPb][0] + nPbSw - 1)/ maxTUSizeY - xCurr/

maxTUSizeY <=

yCurr/ maxTUSizeY -

(yPb + bvlntraf xPb][yPb][1] + nPbSh -1)/ maxTUSizeY

and

yCurr/ maxTUSizeY -

(yPb + bvlntraf xPb][yPb][1] + nPbSh -1)/ maxTUSizeY >=0

WO 2016/057938 PCT/US2015/054967
30

[0116] Alternatively the above restriction conditions are applied on the IBC block

vectors only when entropycodingsyncenabledflag is equal to 1 such that no IBC

block predicts from non-decoded region.

8.4.4 Derivation process for block vector components in intra block copying prediction

mode

- It is a requirement of bitstream conformance that when

entropycodingsyncenabledflag is equal tol

yCurr/ maxTUSizeY - (yPb + bvlntra[xPb][yPb][1] + nPbSh -1)/

maxTUSizeY >=0

and when entropy coding sync enabled flag is equal to 1

(xPb + bvlntra[xPb][yPb][0] + nPbSw - 1)/ maxTUSizeY - xCurr/

maxTUSizeY<= yCurr/ maxTUSizeY -

(yPb + bvlntra[xPb][yPb][1] + nPbSh -1)/ maxTUSizeY

[0117] Wavefront parallel processing enables to parallel process each CTB row in the

picture. For example, in a 1080p picture, upto 17 CTB rows can be processed in

parallel if the system has 17 parallel processing cores. However, in most multi-core

systems, it is typical that only limited number of parallel processing cores are used (e.g
4). In this scenario, only 4 CTB rows are processed in parallel and 5th CTB row is

processed after completion of one of above 4 CTB rows. In such a scenario, it is
possible for the 5th CTB row to predict from the regions that are already decoded from

the previous 4 CTB rows. In this example it is proposed to signal for each CTB row,

the valid decoded region (CTB’s) for all its previous decoded CTB rows. In another

embodiment it is proposed to signal for each CTB row, the valid decoded region

(CTB’s) for all its CTB rows. This information can be signalled in SPS, VPS, PPS, slice

header or their respective extension. Alternatively this information can be signalled in

SEI message.

[0118] In one example, the below information is signalled conditionally based on when

entropy coding sync enabled flag is equal tol. Alternatively below information is

signaled independent of whether entropy coding sync enabled flag is enabled or not.

[0119] In another example, the below information is signalled conditionally on IBC tool

enabling flag which can be signaled in at least one parameter set (PPS, SPS, VPS) or its

extension.

[0120] In a first example, for each CTB row, the availability regions for IBC prediction

for all of its above CTB’s rows are signalled. See for example FIG. 11. The regions

WO 2016/057938 PCT/US2015/054967
31

below the current CTB are considered unavailable for IBC prediction. Below is an

example implementation of the proposed method at slice header.

pps scc extension () { Descriptor
• · ·
if(intra block copy enabled flag){

pps ibc ref avail signal present flag
}

}

slice_segment_header() { Descript
or

first slice segment in pic flag u(l)
if(tiles_enabled_flag entropy_coding_sync_enabled_flag) {

numentrypointoffsets ue(v)
if(num entry point offsets > 0) {

offsetlenminusl ue(v)
for(i = 0; i < num entry point offsets; i++)

entry point offset minusl[i] u(v)
}

}
if(pps_ibc_ref_avail_restriction_present_flag) {
numctbYinsliceminusl ue(v)

for(i=0;i< num_ctbY_in_slice;i++)
for(j=0;j< i;i++)

max delay IBCPred in CTBs[i][j] ue(v)
}
byte_alignment()

}

pps_ibc_ref_avail_ restriction present flag equal to 1 specifies that intra

block copy reference usage restrictions are present and are signaled in the slice segment

header for all the coded tree blocks of the slice. pps_ibc_ref_avail_ restriction

_present_flag equal to 0 specifies that intra block copy reference usage info is not

present in the slice segment header When pps_ibc_ref_avail_ restriction _present_flag

is not present, it is inferred to be 0.

WO 2016/057938 PCT/US2015/054967
32

num_ctbY_in_slice_minusl plus 1 specifies the number of CTB rows in the

slice.

max_delay_IBCPred_in_CTBs[i][j] specifies for the current CTB row i

that maximum delay in terms of CTB’s for each the previous CTB row j that is

available for IBC prediction. When not present it is inferred to be equal to number of

CTB in the row.

[0121] In another example implementation, for each CTB row, the availability regions

for IBC prediction for all CTB’s rows are signalled. See for example FIG. 12. Below is

an example implementation of the proposed method at slice header.

slice_segment_header() { Descript
or

first slice segment in pic flag u(l)
if(tiles enabled flag entropy coding sync enabled flag) {

numentrypointoffsets ue(v)
if(num_entry_point_offsets > 0) {

offsetlenminusl ue(v)
for(i = 0; i < num_entry_point_offsets; i++)

entry_point_offset_minusl[i] u(v)
}

}
if(pps ibc ref avail restriction present flag) {
numctbYinsliceminusl ue(v)

for(i=0;i< num ctbY in slice;i++)
for(j=0;j< num ctbY in slice;i++)

max delay IBCPred in CTBs[i][j] ue(v)
}
byte_alignment()

}

pps_ibc_ref_avail_ restriction present flag equal to 1 specifies that intra

block copy reference usage restrictions are present and are signaled in the slice segment

header for all the coded tree blocks of the slice. pps_ibc_ref_avail_ restriction

_present_flag equal to 0 specifies that intra block copy reference usage info is not

present in the slice segment header When pps_ibc_ref_avail_ restriction _present_flag

is not present, it is inferred to be 0.

WO 2016/057938 PCT/US2015/054967
33

num_ctbY_in_slice_minusl plus 1 specifies the number of CTB rows in the

slice.

max_delay_IBCPred_in_CTBs[i][j] specifies for the current CTB row i

that maximum delay in terms of CTB’s for each the previous CTB row j that is

available for IBC prediction. When not present it is inferred to be equal to number of

CTB in the row.

[0122] Alternatively, this can be signalled at SPS VUI or SEI message and combined

with aspects proposed in JCTVC-S0145 and U.S. Provisional Patent Application

62/061,063 filed 7 October 2014.

[0123] Another example technique of this disclosure relates to signaling of IBC mode

for merge. This disclosure introduces techniques signal the usage of IBC mode for

merge mode. The proposed methods are mainly concerned on screen content coding,

including the support of possibly high bit depth (more than 8 bit), different chroma

sampling format such as 4:4:4, 4:2:2, 4:2:0, 4:0:0 and etc.

[0124] In the recent JCT-VC meeting, there have been proposals to modify merge

candidate list generation when IBC mode is used. As prediction characteristics of IBC

is observed to be different from inter, it was shown to provide coding efficiency when

the merge candidate list generation process is modified differently from inter.

[0125] FIG. 13 shows an example signaling techniques wherein the IBC merge process

is signaled separately from the inter merge process. In the example of FIG. 13, video

decoder 30 receives, for a PU, syntax elements indicating if a CU of the PU is coded in

inter mode (210). If a cu skip flag for the CU is true (212, yes), then the CU is coded

in a skip mode, and video decoder 30 receives, or infers, a merge index for the CU (214)

and codes the CU according to the motion information associated with the determined

merge index. If a cu skip flag for the CU is false (212, no), then video decoder 30

receives the syntax element intra_bc_flag (216) and a merge flag (218). If the merge

flag is true (220, yes), then video decoder 30 receives a merge index (214) and decodes

the CU according to the motion information associated with the merge index. If the

merge flag is false (220, no), then video decoder 30 receives another intrabcflag

(224). If the intra_bc_flag is true (224, yes), then video decoder 30 receives block

vector information (226). Based on the received block vector information, video

decoder 30 decodes the CU. If the intra bc flag is false (224, no), then video decoder

30 receives motion vector information (228). Based on the motion vector information,

video decoder 30 decodes the CU.

WO 2016/057938 PCT/US2015/054967
34

[0126] The scheme of signaling described in FIG. 13 has potential problems. As one

example, the signaling of intra bc flag for every PU to separate inter and IBC mode

may not be efficient for unification of IBC and inter modes. Aspects/solutions related to

this problem are covered in U.S. Provisional Patent Application 62/061,121, filed 7

October 2014, U.S. Patent Application 14/876,699 filed 6 October 2015, and JCTVC-

S0113. It has been proposed to align coding of BVD and BVP idx with the coding of

MVD and MVP index with respect to inter prediction.

[0127] According to one technique of this disclosure, it is proposed to signal

intra_bc_flag only when the current PU is merge (that is merge_flag is 1) as shown in

FIG. 14. Additionally, the intra bc flag may be signalled conditionally on IBC tool

enabling flag which can be signaled in at least one parameter set (PPS, SPS, VPS) or

elsewhere. This disclsoure introduces techniques to separate IBC merge process from

the inter merge process based on intra bc flag that is signaled only for merge PU. In

such an instance, the merge candidate lists for IBC modes and conventional inter

prediction may be different. The syntax element intra bc flag may not be signalled and

inferred as 1 in the following cases: (1) the current slice is I-slice; (2) the current CU

size is 8x8 and its partition size is NxN.

[0128] FIG. 14 shows an example signaling techniques wherein the IBC merge process

is only signaled once compared to the separately signaling of FIG. 13. In the example

of FIG. 14, video decoder 30 receives, for a PU, syntax elements indicating if a CU of

the PU is coded in inter mode (230). If a cuskipflag for the CU is true (232, yes),

then the CU is coded in a skip mode, and video decoder 30 receives an intra bc flag

(234) and a merge index for the CU (214) and codes the CU according to the motion

information associated with the determined merge index. If a cu skip flag for the CU

is false (232, no), then video decoder 30 receives a merge flag (240). If the merge flag

is true (240, yes), then video decoder 30 receives an intra_bc_flag (234) and a merge

index (236) and decodes the CU according to the motion information associated with

the merge index. If the merge flag is false (240, no), then video decoder 30 receives

motion information (242), possibly include IBC block vector information, and decodes

the CU according to the motion information.

[0129] FIG. 15 is a block diagram illustrating an example video encoder 20 that may

implement the techniques described in this disclosure. Video encoder 20 may be

configured to output video to post-processing entity 27. Post-processing entity 27 is

intended to represent an example of a video entity, such as a MANE or splicing/editing

WO 2016/057938 PCT/US2015/054967
35

device, that may process encoded video data from video encoder 20. In some instances,

post-processing entity 27 may be an example of a network entity. In some video

encoding systems, post-processing entity 27 and video encoder 20 may be parts of

separate devices, while in other instances, the functionality described with respect to

post-processing entity 27 may be performed by the same device that comprises video

encoder 20. In some example, post-processing entity 27 is an example of storage device

17 of FIG. 1

[0130] Video encoder 20 may perform intra-, inter-, and IBC coding of video blocks

within video slices. Intra-coding relies on spatial prediction to reduce or remove spatial

redundancy in video within a given video frame or picture. Inter-coding relies on

temporal prediction to reduce or remove temporal redundancy in video within adjacent

frames or pictures of a video sequence. Intra-mode (I mode) may refer to any of several

spatial based compression modes. Inter-modes, such as uni-directional prediction (P

mode) or bi-prediction (B mode), may refer to any of several temporal-based

compression modes. IBC coding modes, as described above, may remove spatial

redundancy from a frame of video data, but unlike tradition intra modes, IBC coding

codes may be used to locate predictive blocks in a larger search area within the frame

and refer to the predictive blocks with offset vectors, rather than relying on intra­

prediction coding modes.

[0131] In the example of FIG. 15, video encoder 20 includes video data memory 33,

partitioning unit 35, prediction processing unit 41, filter unit 63, decoded picture buffer

64, summer 50, transform processing unit 52, quantization unit 54, and entropy

encoding unit 56. Prediction processing unit 41 includes motion estimation unit 42,

motion compensation unit 44, intra-prediction processing unit 46, and IBC unit 48. For

video block reconstruction, video encoder 20 also includes inverse quantization unit 58,

inverse transform processing unit 60, and summer 62. Filter unit 63 is intended to

represent one or more loop filters such as a deblocking filter, an adaptive loop filter

(ALF), and a sample adaptive offset (SAO) filter. Although filter unit 63 is shown in

FIG. 15 as being an in loop filter, in other configurations, filter unit 63 may be

implemented as a post loop filter.

[0132] In various examples, a fixed or programmable hardware unit of video encoder 20

may be tasked to perform the techniques of this disclosure. Also, in some examples, the

techniques of this disclosure may be divided among one or more of the illustrated fixed

or programmable hardware units of video encoder 20 shown in FIG. 15, though other

WO 2016/057938 PCT/US2015/054967
36

devices may also perform the techniques of this disclosure. For example, consistent

with the example of FIG. 15, IBC unit 48of video encoder 20 may perform the

techniques of this disclosure, alone, or in combination with other units of video encoder

20, such as motion estimation unit 42, motion compensation unit 44, intra-prediction

processing unit 46, and entropy encoding unit 56. In some examples, video encoder 20

may not include IBC unit 48 and the functionality of IBC unit 48 may be performed by

other components of prediction processing unit 41, such as motion estimation unit 42

and/or motion compensation unit 44.

[0133] Video data memory 33 may store video data to be encoded by the components of

video encoder 20. The video data stored in video data memory 33 may be obtained, for

example, from video source 18. Decoded picture buffer 64 may be a reference picture

memory that stores reference video data for use in encoding video data by video

encoder 20, e.g., in intra-, inter-, or IBC coding modes. Video data memory 33 and

decoded picture buffer 64 may be formed by any of a variety of memory devices, such

as dynamic random access memory (DRAM), including synchronous DRAM

(SDRAM), magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of

memory devices. Video data memory 33 and decoded picture buffer 64 may be

provided by the same memory device or separate memory devices. In various

examples, video data memory 33 may be on-chip with other components of video

encoder 20, or off-chip relative to those components.

[0134] As shown in FIG. 15, video encoder 20 receives video data and stores the video

data in video data memory 33. Partitioning unit 35 partitions the data into video blocks.

This partitioning may also include partitioning into slices, tiles, or other larger units, as

wells as video block partitioning, e.g., according to a quadtree structure of LCUs and

CUs. Video encoder 20 generally illustrates the components that encode video blocks

within a video slice to be encoded. The slice may be divided into multiple video blocks

(and possibly into sets of video blocks referred to as tiles). Prediction processing unit

41 may select one of a plurality of possible coding modes, such as one of a plurality of

intra coding modes, one of a plurality of inter coding modes, or one of a plurality of

IBC coding modes, for the current video block based on error results (e.g., coding rate

and the level of distortion). Prediction processing unit 41 may provide the resulting

intra-, inter-, or IBC coded block to summer 50 to generate residual block data and to

summer 62 to reconstruct the encoded block for use as a reference picture.

WO 2016/057938 PCT/US2015/054967
37

[0135] Intra-prediction processing unit 46 within prediction processing unit 41 may

perform intra-predictive coding of the current video block relative to one or more

neighboring blocks in the same frame or slice as the current block to be coded to

provide spatial compression. Motion estimation unit 42 and motion compensation unit

44 within prediction processing unit 41 may perform inter-predictive coding of the

current video block relative to one or more predictive blocks in one or more reference

pictures to provide temporal compression. Motion estimation unit 42 and motion

compensation unit 44 within prediction processing unit 41 may also perform IBC

coding of the current video block relative to one or more predictive blocks in the same

picture to provide spatial compression.

[0136] Motion estimation unit 42 may be configured to determine the inter-prediction

mode or IBC mode for a video slice according to a predetermined pattern for a video

sequence. The predetermined pattern may designate video slices in the sequence as P

slices, B slices or GPB slices. Motion estimation unit 42 and motion compensation unit

44 may be highly integrated, but are illustrated separately for conceptual purposes.

Motion estimation, performed by motion estimation unit 42, is the process of generating

motion vectors, which estimate motion for video blocks. A motion vector, for example,

may indicate the displacement of a PU of a video block within a current video frame or

picture relative to a predictive block within a reference picture. In the case of IBC

coding, a motion vector, which may be referred to as an offset vector in IBC, may

indicate the displacement of a PU of a video block within a current video frame or

picture relative to a predictive block within the current video frame. IBC unit 48 may

determine vectors, e.g., block vectors, for IBC coding in a manner similar to the

determination of motion vectors by motion estimation unit 42 for inter prediction, or

may utilize motion estimation unit 42 to determine the block vector.

[0137] A predictive block is a block that is found to closely match the PU of the video

block to be coded in terms of pixel difference, which may be determined by sum of

absolute difference (SAD), sum of square difference (SSD), or other difference metrics.

In some examples, video encoder 20 may calculate values for sub-integer pixel positions

of reference pictures stored in decoded picture buffer 64. For example, video encoder

20 may interpolate values of one-quarter pixel positions, one-eighth pixel positions, or

other fractional pixel positions of the reference picture. Therefore, motion estimation

unit 42 may perform a motion search relative to the full pixel positions and fractional

pixel positions and output a motion vector with fractional pixel precision.

WO 2016/057938 PCT/US2015/054967
38

[0138] Motion estimation unit 42 calculates a motion vector for a PU of a video block

in an inter-coded slice by comparing the position of the PU to the position of a

predictive block of a reference picture. The reference picture may be selected from a

first reference picture list (List 0) or a second reference picture list (List 1), each of

which identify one or more reference pictures stored in decoded picture buffer 64.

Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit

56 and motion compensation unit 44.

[0139] In some examples, IBC unit 48 may generate vectors and fetch predictive blocks

in a manner similar to that described above with respect to motion estimation unit 42

and motion compensation unit 44, but with the predictive blocks being in the same

picture or frame as the current block and with the vectors being referred to as block

vectors as opposed to motion vectors. In other examples, IBC unit 48 may use motion

estimation unit 42 and motion compensation unit 44, in whole or in part, to perform

such functions for IBC prediction according to the techniques described herein. In

either case, for IBC, a predictive block may be a block that is found to closely match the

block to be coded, in terms of pixel difference, which may be determined by sum of

absolute difference (SAD), sum of squared difference (SSD), or other difference

metrics, and identification of the block may include calculation of values for sub-integer

pixel positions.

[0140] Motion compensation, performed by motion compensation unit 44, may involve

fetching or generating the predictive block based on the motion vector determined by

motion estimation, possibly performing interpolations to sub-pixel precision.

Interpolation filtering may generate additional pixel samples from known pixel samples,

thus potentially increasing the number of candidate predictive blocks that may be used

to code a video block. Upon receiving the motion vector for the PU of the current video

block, motion compensation unit 44 may locate the predictive block to which the

motion vector points in one of the reference picture lists, or in the case of the IBC

coding, within the picture being coded. Video encoder 20 forms a residual video block

by subtracting pixel values of the predictive block from the pixel values of the current

video block being coded, forming pixel difference values. The pixel difference values

form residual data for the block, and may include both luma and chroma difference

components. Summer 50 represents the component or components that perform this

subtraction operation. Motion compensation unit 44 may also generate syntax elements

WO 2016/057938 PCT/US2015/054967
39

associated with the video blocks and the video slice for use by video decoder 30 in

decoding the video blocks of the video slice.

[0141] Intra-prediction processing unit 46 may intra-predict a current block, as an

alternative to the inter-prediction performed by motion estimation unit 42 and motion

compensation unit 44 or IBC performed by IBC unit 48, as described above. In

particular, intra-prediction processing unit 46 may determine an intra-prediction mode

to use to encode a current block. In some examples, intra-prediction processing unit 46

may encode a current block using various intra-prediction modes, e.g., during separate

encoding passes, and intra-prediction processing unit 46 (or mode select unit 40, in

some examples) may select an appropriate intra-prediction mode to use from the tested

modes. For example, intra-prediction processing unit 46 may calculate rate-distortion

values using a rate-distortion analysis for the various tested intra-prediction modes, and

select the intra-prediction mode having the best rate-distortion characteristics among the

tested modes. Rate-distortion analysis generally determines an amount of distortion (or

error) between an encoded block and an original, unencoded block that was encoded to

produce the encoded block, as well as a bit rate (that is, a number of bits) used to

produce the encoded block. Intra-prediction processing unit 46 may calculate ratios

from the distortions and rates for the various encoded blocks to determine which intra­

prediction mode exhibits the best rate-distortion value for the block.

[0142] In any case, after selecting an intra-prediction mode for a block, intra-prediction

processing unit 46 may provide information indicative of the selected intra-prediction

mode for the block to entropy encoding unit 56. Entropy encoding unit 56 may encode

the information indicating the selected intra-prediction mode in accordance with the

techniques of this disclosure. Video encoder 20 may include in the transmitted

bitstream configuration data, which may include a plurality of intra-prediction mode

index tables and a plurality of modified intra-prediction mode index tables (also referred

to as codeword mapping tables), definitions of encoding contexts for various blocks,

and indications of a most probable intra-prediction mode, an intra-prediction mode

index table, and a modified intra-prediction mode index table to use for each of the

contexts.

[0143] After prediction processing unit 41 generates the predictive block for the current

video block via either inter-prediction, intra-prediction, or IBC, video encoder 20 forms

a residual video block by subtracting the predictive block from the current video block.

The residual video data in the residual block may be included in one or more TUs and

WO 2016/057938 PCT/US2015/054967
40

applied to transform processing unit 52. Transform processing unit 52 transforms the

residual video data into residual transform coefficients using a transform, such as a

discrete cosine transform (DCT) or a conceptually similar transform. Transform

processing unit 52 may convert the residual video data from a pixel domain to a

transform domain, such as a frequency domain.

[0144] Transform processing unit 52 may send the resulting transform coefficients to

quantization unit 54. Quantization unit 54 quantizes the transform coefficients to

further reduce bit rate. The quantization process may reduce the bit depth associated

with some or all of the coefficients. The degree of quantization may be modified by

adjusting a quantization parameter. In some examples, quantization unit 54 may then

perform a scan of the matrix including the quantized transform coefficients.

Alternatively, entropy encoding unit 56 may perform the scan.

[0145] Following quantization, entropy encoding unit 56 entropy encodes the quantized

transform coefficients. For example, entropy encoding unit 56 may perform context

adaptive binary arithmetic coding (CABAC) or another entropy encoding methodology

or technique. Following the entropy encoding by entropy encoding unit 56, the encoded

bitstream may be transmitted to video decoder 30, or archived for later transmission or

retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode the

motion vectors and the other syntax elements for the current video slice being coded.

[0146] Inverse quantization unit 58 and inverse transform processing unit 60 apply

inverse quantization and inverse transformation, respectively, to reconstruct the residual

block in the pixel domain for later use as a reference block of a reference picture.

Motion compensation unit 44 may calculate a reference block by adding the residual

block to a predictive block of one of the reference pictures within one of the reference

picture lists. Motion compensation unit 44 may also apply one or more interpolation

filters to the reconstructed residual block to calculate sub-integer pixel values for use in

motion estimation. Interpolation filtering may generate additional pixel samples from

known pixel samples, thus potentially increasing the number of candidate predictive

blocks that may be used to code a video block. Summer 62 adds the reconstructed

residual block to the motion compensated prediction block produced by motion

compensation unit 44 to produce a reference block for storage in decoded picture buffer

64. The reference block may be used by motion estimation unit 42 and motion

compensation unit 44 as a reference block to inter-predict a block in a subsequent video

frame or picture.

WO 2016/057938 PCT/US2015/054967
41

[0147] Video encoder 20 represents an example of a video encoder configured to

encode video data in accordance with the techniques of this disclosure. For example,

video encoder 20 may determine a CTB delay for one or more blocks coded with WPP

enabled. The CTB delay may, for example, identify a delay between when a first row of

CTBs starts being decoded and when a second row of CTBs below the first row of

CTBs starts being decoded. For a first block of video data coded in an intra-block copy

(IBC) mode and coded with WPP disabled, video encoder 20 may determine an IBC

prediction region for the first block based on the CTB delay. Video encoder 20 may

identify, from within the IBC prediction region for the first block, a predictive block for

the first block and generate syntax to indicate a block vector for locating the predictive

block.

[0148] FIG. 16 is a block diagram illustrating an example video decoder 30 that may

implement the techniques described in this disclosure. In the example of FIG. 16, video

decoder 30 includes a video data memory 78, entropy decoding unit 80, prediction

processing unit 81, inverse quantization unit 86, inverse transform processing unit 88,

summer 90, filter unit 91, and decoded picture buffer (DPB) 92. Prediction processing

unit 81 includes motion compensation unit 82, intra-prediction processing unit 84, and

IBC unit 85. Video decoder 30 may, in some examples, perform a decoding pass

generally reciprocal to the encoding pass described with respect to video encoder 20

from FIG. 15.

[0149] In various examples, a unit of video decoder 30 may be tasked to perform the

techniques of this disclosure. Also, in some examples, the techniques of this disclosure

may be divided among one or more of the units of video decoder 30. For example, IBC

unit 85 may perform the techniques of this disclosure, alone, or in combination with

other units of video decoder 30, such as motion compensation unit 82, intra-prediction

processing unit 84, and entropy decoding unit 80. In some examples, video decoder 30

may not include IBC unit 85 and the functionality of IBC unit 85 may be performed by

other components of prediction processing unit 81, such as motion compensation unit

82.

[0150] During the decoding process, video decoder 30 receives video data, e.g. an

encoded video bitstream that represents video blocks of an encoded video slice and

associated syntax elements, from video encoder 20. Video decoder 30 may receive the

video data from network entity 29 and store the video data in video data memory 78.

Video data memory 78 may store video data, such as an encoded video bitstream, to be

WO 2016/057938 PCT/US2015/054967
42

decoded by the components of video decoder 30. The video data stored in video data

memory 78 may be obtained, for example, from storage device 17, e.g., from a local

video source, such as a camera, via wired or wireless network communication of video

data, or by accessing physical data storage media. Video data memory 78 may form a

coded picture buffer that stores encoded video data from an encoded video bitstream.

Thus, although shown separately in FIG. 16, video data memory 78 and DPB 92 may be

provided by the same memory device or separate memory devices. Video data memory

78 and DPB 92 may be formed by any of a variety of memory devices, such as dynamic

random access memory (DRAM), including synchronous DRAM (SDRAM),

magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory

devices. In various examples, video data memory 78 may be on-chip with other

components of video decoder 30, or off-chip relative to those components.

[0151] Network entity 29 may, for example, be a server, a MANE, a video

editor/splicer, or other such device configured to implement one or more of the

techniques described above. Network entity 29 may or may not include a video

encoder, such as video encoder 20. Some of the techniques described in this disclosure

may be implemented by network entity 29 prior to network entity 29 transmitting the

encoded video bitstream to video decoder 30. In some video decoding systems,

network entity 29 and video decoder 30 may be parts of separate devices, while in other

instances, the functionality described with respect to network entity 29 may be

performed by the same device that comprises video decoder 30. Network entity 29 may

be an example of storage device 17 of FIG. 1 in some cases.

[0152] Entropy decoding unit 80 of video decoder 30 entropy decodes the bitstream to

generate quantized coefficients, motion vectors, and other syntax elements. Entropy

decoding unit 80 forwards the motion vectors and other syntax elements to prediction

processing unit 81. Video decoder 30 may receive the syntax elements at the video slice

level and/or the video block level.

[0153] When the video slice is coded as an intra-coded (I) slice, intra-prediction

processing unit 84 of prediction processing unit 81 may generate prediction data for a

video block of the current video slice based on a signaled intra prediction mode and data

from previously decoded blocks of the current frame or picture. When the video frame

is coded as an inter-coded (i.e. B or P) slice or when a block is IBC coded, motion

compensation unit 82 of prediction processing unit 81 produces predictive blocks for a

video block of the current video slice based on the motion vectors and other syntax

WO 2016/057938 PCT/US2015/054967
43

elements received from entropy decoding unit 80. For inter prediction, the predictive

blocks may be produced from one of the reference pictures within one of the reference

picture lists. Video decoder 30 may construct the reference frame lists, Fist 0 and Fist

1, using default construction techniques based on reference pictures stored in DPB 92.

For IBC coding, the predictive blocks may be produced from the same picture as the

block being predicted.

[0154] In other examples, when the video block is coded according to the IBC mode

described herein, IBC unit 85 of prediction processing unit 81 produces predictive

blocks for the current video block based on block vectors and other syntax elements

received from entropy decoding unit 80. The predictive blocks may be within a

reconstructed region within the same picture as the current video block defined by video

encoder 20, and retrieved from DPB 92.

[0155] Motion compensation unit 82 and/or IBC unit 85 may determine prediction

information for a video block of the current video slice by parsing the motion vectors

and other syntax elements, and uses the prediction information to produce the predictive

blocks for the current video block being decoded. For example, motion compensation

unit 82 uses some of the received syntax elements to determine a prediction mode (e.g.,

intra or inter prediction) used to code the video blocks of the video slice, an inter

prediction slice type (e.g., B slice or P slice), construction information for one or more

of the reference picture lists for the slice, motion vectors for each inter encoded video

block of the slice, inter prediction status for each inter coded video block of the slice,

and other information to decode the video blocks in the current video slice.

[0156] Similarly, IBC unit 85 may use some of the received syntax elements, e.g., a

flag, to determine that the current video block was predicted using the IBC mode,

construction information indicating which video blocks of the picture are within the

reconstructed region and should be stored in DPB 92, block vectors for each IBC

predicted video block of the slice, IBC prediction status for each IBC predicted video

block of the slice, and other information to decode the video blocks in the current video

slice.

[0157] Motion compensation unit 82 may also perform interpolation based on

interpolation filters. Motion compensation unit 82 may use interpolation filters as used

by video encoder 20 during encoding of the video blocks to calculate interpolated values

for sub-integer pixels of reference blocks. In this case, motion compensation unit 82

WO 2016/057938 PCT/US2015/054967
44

may determine the interpolation filters used by video encoder 20 from the received

syntax elements and use the interpolation filters to produce predictive blocks.

[0158] Inverse quantization unit 86 inverse quantizes, i.e., de-quantizes, the quantized

transform coefficients provided in the bitstream and decoded by entropy decoding unit

80. The inverse quantization process may include use of a quantization parameter

calculated by video encoder 20 for each video block in the video slice to determine a

degree of quantization and, likewise, a degree of inverse quantization that should be

applied. Inverse transform processing unit 88 applies an inverse transform, e.g., an

inverse DCT, an inverse integer transform, or a conceptually similar inverse transform

process, to the transform coefficients in order to produce residual blocks in the pixel

domain.

[0159] After motion compensation unit 82 or IBC unit 85 generates the predictive block

for the current video block based on the motion vectors and other syntax elements,

video decoder 30 forms a decoded video block by summing the residual blocks from

inverse transform processing unit 88 with the corresponding predictive blocks generated

by motion compensation unit 82. Summer 90 represents the component or components

that perform this summation operation. If desired, loop filters (either in the coding loop

or after the coding loop) may also be used to smooth pixel transitions, or otherwise

improve the video quality. Filter unit 91 is intended to represent one or more loop

filters such as a deblocking filter, an adaptive loop filter (ALF), and a sample adaptive

offset (SAO) filter. Although filter unit 91 is shown in FIG. 16 as being an in loop

filter, in other configurations, filter unit 91 may be implemented as a post loop filter.

The decoded video blocks in a given frame or picture are then stored in DPB 92, which

stores reference pictures used for subsequent motion compensation. DPB 92 may be

part of a memory that also stores decoded video for later presentation on a display

device, such as display device 32 of FIG. 1, or may be separate from such a memory.

[0160] Video decoder 30 represents an example of a video decoder configured to

decode video data in accordance with the techniques of this disclosure. For one or more

blocks coded with WPP enabled, video decoder 30 determines CTB delay that identifies

a delay between when a first row of CTBs starts being decoded and when a second row

of CTBs below the first row of CTBs starts being decoded. The CTB delay may, for

example, be in units of CTBs. For a current block of video data coded in an IBC mode

and coded with WPP disabled, video decoder 30 determines an IBC prediction region

for the current block within a picture that includes the current block based on the CTB

WO 2016/057938 PCT/US2015/054967
45

delay that was determined for the one or more blocks coded with WPP enabled. Video

decoder 30 identifies, from within the determined IBC prediction region for the current

block, a predictive block for the current block and IBC decodes the current block based

on the predictive block. For a second block of video data coded in the IBC mode and

coded with WPP enabled, video decoder 30 may also determine an IBC prediction

region for the second block based on the CTB delay and identify, from within the IBC

prediction region for the second block, a predictive block for the second block; an IBC

decode the current block based on the predictive block.

[0161] Video decoder 30 may, for example, determine that WPP is disabled for the first

block based on a value of the syntax element (e.g. entropy coding sync enabled

described above). The syntax element may, for example, be a synchronization process

enabling syntax element that indicates if a specific synchronization process for context

variables is to be invoked.

[0162] The IBC prediction region for the first block may include previously decoded

unfiltered CTBs. Additionally or alternatively, the IBC prediction region may include a

diagonally located CTB located to the right of the first block and at least two or more

rows above the first block and excludes a CTB directly below the diagonally located

CTB. For a diagonally located CTB, video decoder 30 may decode the CTB directly

below the diagonally located CTB in parallel with the first block.

[0163] Video decoder 30 may receive, in an encoded bitstream of video data, one or

more syntax elements indicating that a coding mode for the first block of video data is

the IBC mode and receive in the encoded bitstream of video data, one or more syntax

elements identifying a block vector for the first block of video data. To identify, from

within the IBC prediction region for the first block, the predictive block for the first

block, video decoder 30 may locate the predictive block with the block vector.

[0164] FIG. 17 is a flow diagram illustrating techniques for encoding video data

according to the techniques of this disclosure. The techniques of FIG. 17 will be

described with references to a generic video encoder. The generic video encoder may

incorporate features of video encoder 20 or may be a different configuration of video

encoder. For one or more blocks coded with WPP enabled, the video encoder

determines a CTB delay (300). The CTB delay identifies, in units of CTBs, a delay

between when a first row of CTBs starts being decoded and when a second row of

CTBs below the first row of CTBs starts being decoded. The CTB delay may, for

example, be one CTB, two CTBs, or some other such delay. For a first block of video

WO 2016/057938 PCT/US2015/054967
46

data coded in an IBC mode and coded with WPP disabled, the video encoder determines

an IBC prediction region for the first block based on the CTB delay (302). The video

encoder identifies, from within the IBC prediction region for the first block, a predictive

block for the first block (304) and generates syntax to indicate a block vector for

locating the predictive block (306).

[0165] For a second block of video data coded in the IBC mode and coded with WPP

enabled, the video encoder may determine an IBC prediction region for the second

block based on the CTB delay and identify, from within the IBC prediction region for

the second block, a predictive block for the second block. The IBC prediction region

may include a CTB to the right of the first block and at least two or more rows above

the first block and exclude a CTB directly below the CTB to the right of the first block

and at least two or more rows above the first block.

[0166] FIG. 18 is a flow diagram illustrating techniques for decoding video data

according to the techniques of this disclosure. The techniques of FIG. 18 will be

described with references to a generic video decoder. The generic video decoder may

incorporate features of video decoder 30 or may be a different configuration of video

decoder. For one or more blocks coded with WPP enabled, the video decoder

determines CTB delay (310). The CTB delay identifies, in units of CTBs, a delay

between when a first row of CTBs starts being decoded and when a second row of

CTBs below the first row of CTBs starts being decoded. The CTB delay may, for

example, be one CTB, two CTBs, or some other such delay. For a first block of video

data coded in an IBC mode and coded with WPP disabled, the video decoder determines

an IBC prediction region for the first block based on the CTB delay (312). The video

decoder identifies, from within the IBC prediction region for the first block, a predictive

block for the first block (314). Video decoder 30 IBC decodes the current block based

on the predictive block (316).

[0167] For a second block of video data coded in the IBC mode and coded with WPP

enabled, the video decoder determines an IBC prediction region for the second block

based on the CTB delay and identifies, from within the IBC prediction region for the

second block, a predictive block for the second block. The video decoder may

additionally, receive a syntax element and determine that WPP is disabled for the first

block based on a value of the syntax element. The syntax element may, for example, be

a synchronization process enabling syntax element (e.g.

WO 2016/057938 PCT/US2015/054967
47

entropy coding sync enabled flag described above) that indicates if a specific

synchronization process for context variables is to be invoked.

[0168] The IBC prediction region for the first block may, for example, include

previously decoded unfiltered CTBs. The IBC prediction region may, for example,

include a CTB to the right of the first block and at least two or more rows above the first

block and excludes a CTB directly below the CTB to the right of the first block and at

least two or more rows above the first block. The video decoder may decode the CTB

directly below the CTB to the right of the first block and at least two or more rows

above the first block in parallel with the first block.

[0169] The video decoder may additionally receive, in an encoded bitstream of video

data, one or more syntax elements indicating a coding mode for the first block of video

data is the IBC mode and receive in the encoded bitstream of video data, one or more

syntax elements identifying a block vector for the first block of video data. To identify,

from within the IBC prediction region for the first block, the predictive block for the

first block, the video decoder may locate the predictive block with the block vector.

[0170] In one or more examples, the functions described may be implemented in

hardware, software, firmware, or any combination thereof. If implemented in software,

the functions may be stored on or transmitted over, as one or more instructions or code,

a computer-readable medium and executed by a hardware-based processing unit.

Computer-readable media may include computer-readable storage media, which

corresponds to a tangible medium such as data storage media, or communication media

including any medium that facilitates transfer of a computer program from one place to

another, e.g., according to a communication protocol. In this manner, computer-

readable media generally may correspond to (1) tangible computer-readable storage

media which is non-transitory or (2) a communication medium such as a signal or

carrier wave. Data storage media may be any available media that can be accessed by

one or more computers or one or more processors to retrieve instructions, code and/or

data structures for implementation of the techniques described in this disclosure. A

computer program product may include a computer-readable medium.

[0171] By way of example, and not limitation, such computer-readable storage media

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic

disk storage, or other magnetic storage devices, flash memory, or any other medium that

can be used to store desired program code in the form of instructions or data structures

and that can be accessed by a computer. Also, any connection is properly termed a

WO 2016/057938 PCT/US2015/054967
48

computer-readable medium. For example, if instructions are transmitted from a

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless

technologies such as infrared, radio, and microwave are included in the definition of

medium. It should be understood, however, that computer-readable storage media and

data storage media do not include connections, carrier waves, signals, or other transient

media, but are instead directed to non-transient, tangible storage media. Disk and disc,

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,

while discs reproduce data optically with lasers. Combinations of the above should also

be included within the scope of computer-readable media.

[0172] Instructions may be executed by one or more processors, such as one or more

digital signal processors (DSPs), general purpose microprocessors, application specific

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other

equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as

used herein may refer to any of the foregoing structure or any other structure suitable for

implementation of the techniques described herein. In addition, in some aspects, the

functionality described herein may be provided within dedicated hardware and/or

software modules configured for encoding and decoding, or incorporated in a combined

codec. Also, the techniques could be fully implemented in one or more circuits or logic

elements.

[0173] The techniques of this disclosure may be implemented in a wide variety of

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of

ICs (e.g., a chip set). Various components, modules, or units are described in this

disclosure to emphasize functional aspects of devices configured to perform the

disclosed techniques, but do not necessarily require realization by different hardware

units. Rather, as described above, various units may be combined in a codec hardware

unit or provided by a collection of interoperative hardware units, including one or more

processors as described above, in conjunction with suitable software and/or firmware.

[0174] Various examples have been described. These and other examples are within the

scope of the following claims.

49
20

15
33

06
76

 01 Ap
r 2

01
9

[0175] It will be understood that the term “comprise” and any of its derivatives (eg

comprises, comprising) as used in this specification is to be taken to be inclusive of

features to which it refers, and is not meant to exclude the presence of any additional

features unless otherwise stated or implied.

[0176] The reference to any prior art in this specification is not, and should not be taken

as, an acknowledgement or any form of suggestion that such prior art forms part of the

common general knowledge.

50
20

15
33

06
76

 01 Ap
r 2

01
9

CLAIMS

1. A method of decoding video data, the method comprising:

determining that a first block of video data in a first picture is coded in an intra

block copy (IBC) mode, wherein the first block of video data is in a first

row of coding tree blocks (CTBs);

determining that the first block of video data is coded with wavefront parallel

processing enabled;

determining a shape of an IBC prediction region for the first block using a CTB

delay for the first block of video data, wherein the CTB delay specifies a

delay between when the first row of CTBs starts being decoded and

when a second row of CTBs above the first row of CTBs starts being

decoded;

identifying, from within the IBC prediction region for the first block, a

predictive block for the first block;

IBC decoding the first block based on the predictive block for the first block;

determining that a second block of video data in a second picture is coded in the

IBC mode;

determining that the second block of video data is coded with wavefront parallel

processing disabled;

determining a shape of an IBC prediction region for the second block based on

the CTB delay that was used for the first block;

identifying, from within the determined IBC prediction region for the second

block, a predictive block for the second block; and

IBC decoding the second block based on the predictive block.

2. The method of claim 1, further comprising:

receiving a syntax element; and

determining that wavefront parallel processing is disabled for the second block

based on a value of the syntax element.

3. The method of claim 2, wherein the syntax element comprises a synchronization

process enabling syntax element that indicates if a specific synchronization process for

context variables is to be invoked.

51
20

15
33

06
76

 01 Ap
r 2

01
9

4. The method of any of claims 1 to 3, wherein the IBC prediction region for the

second block comprises previously decoded unfdtered CTBs.

5. The method of any of claims 1 to 4, wherein the IBC prediction region includes

a diagonally located CTB located to the right of the second block and at least two or

more rows above the second block and excludes a CTB directly below the diagonally

located CTB.

6. The method of claim 5, further comprising:

decoding the CTB directly below the diagonally located CTB in parallel with the

second block.

7. The method of any of claims 1 to 6, wherein the CTB delay comprises a delay of

one CTB.

8. The method of any of claims 1 to 7, further comprising:

receiving, in an encoded bitstream of video data, one or more syntax elements

indicating that a coding mode for the second block of video data is the

IBC mode;

receiving in the encoded bitstream of video data, one or more syntax elements

identifying a block vector for the second block of video data, wherein

identifying, from within the IBC prediction region for the second block,

the predictive block for the second block comprises locating the

predictive block with the block vector.

9. The method of any of claims 1 to 8, wherein determining the CTB delay

comprises determining the CTB delay in units of CTBs.

10. A method of encoding video data, the method comprising:

determining that a first block of video data in a first picture is coded in an intra

block copy (IBC) mode, wherein the first block of video data is in a first

row of coding tree blocks (CTBs);

52
20

15
33

06
76

 01 Ap
r 2

01
9

determining that the first block of video data is coded with wavefront parallel

processing enabled;

determining a shape of an IBC prediction region for the first block using a CTB

delay for the first block of video data, wherein the CTB delay specifies a

delay between when the first row of CTBs starts being decoded and when

a second row of CTBs above the first row of CTBs starts being decoded;

identifying, from within the IBC prediction region for the first block, a first

predictive block for the first block;

generating a first syntax to indicate a first block vector for locating the first

predictive block;

determining that a second block of video data in a second picture is coded in the

IBC mode;

determining that the second block of video data is coded with wavefront parallel

processing disabled;

determining a shape of an IBC prediction region for the second block based on

the CTB delay that was used for the first block;

identifying, from within the determined IBC prediction region for the second

block, a second predictive block for the second block; and

generating a second syntax to indicate a second block vector for locating the

second predictive block.

11. The method of claim 10, wherein the IBC prediction region includes a CTB to

the right of the second block and at least two or more rows above the second block and

excludes a CTB directly below the CTB to the right of the second block and at least two

or more rows above the second block.

12. The method of any of claims 10 to 11, wherein the CTB delay comprises a two

CTB delay.

13. A device for performing video decoding, the device comprising:

a memory to store video data;

one or more processors configured to:

53
20

15
33

06
76

 01 Ap
r 2

01
9

determine that a first block of video data in a first picture is coded in an

intra block copy (IBC) mode, wherein the first block of video data is in a first

row of coding tree blocks (CTBs);

determine that the first block of video data is coded with wavefront

parallel processing enabled;

determine a shape of an IBC prediction region for the first block using a

CTB delay for the first block of video data, wherein the CTB delay specifies a

delay between when the first row of CTBs starts being decoded and when a

second row of CTBs above the first row of CTBs starts being decoded;

identify, from within the IBC prediction region for the first block, a

predictive block for the first block;

IBC decode the first block based on the predictive block for the first

block;

determine that a second block of video data in a second picture is coded

in the IBC mode;

determine that the second block of video data is coded with wavefront

parallel processing disabled;

determine a shape of an IBC prediction region for the second block based

on the CTB delay that was used for the first block;

identify, from within the determined IBC prediction region for the

second block, a predictive block for the second block; and

IBC decode the second block based on the predictive block.

14. The device of claim 13, wherein the one or more processors are further

configured to:

receive a syntax element; and

determine that wavefront parallel processing is disabled for the second block

based on a value of the syntax element.

15. The device of claim 14, wherein the syntax element comprises a synchronization

process enabling syntax element that indicates if a specific synchronization process for

context variables is to be invoked.

54
20

15
33

06
76

 01 Ap
r 2

01
9

16. The device of any of claims 13 to 15, wherein the IBC prediction region for the

second block comprises previously decoded unfiltered CTBs.

17. The device of any of claims 13 to 16, wherein the IBC prediction region

includes a diagonally located CTB located to the right of the second block and at least

two or more rows above the second block and excludes a CTB directly below the

diagonally located CTB.

18. The device of claim 17, wherein the one or more processors are further

configured to:

decode the CTB directly below the diagonally located CTB in parallel with the

second block.

19. The device of any of claims 13 to 18, wherein the CTB delay comprises a one

CTB delay.

20. The device of any of claims 13 to 19, wherein the one or more processors are

further configured to:

receive, in an encoded bitstream of video data, one or more syntax elements

indicating that a coding mode for the second block of video data is the

IBC mode; and

receive in the encoded bitstream of video data, one or more syntax elements

identifying a block vector for the second block of video data, wherein

identifying, from within the IBC prediction region for the second block,

the predictive block for the second block comprises locating the

predictive block with the block vector.

21. The device of any of claims 13 to 20, wherein to determine the CTB delay, the

one or more processors are further configured to determine the CTB delay in units of

CTBs.

22. The device of any of claims 13 to 21, wherein the device comprises at least one

of:

an integrated circuit;

55
20

15
33

06
76

 01 Ap
r 2

01
9

a microprocessor; or

a wireless communication device comprising a display.

23. A device for performing video encoding, the device comprising:

a memory to store video data;

one or more processors configured to:

determine that a first block of video data in a first picture is coded in an intra

block copy (IBC) mode, wherein the first block of video data is in a first row of coding

tree blocks (CTBs);

determine that the first block of video data is coded with wavefront parallel

processing enabled;

determine a shape of an IBC prediction region for the first block using a CTB

delay for the first block of video data, wherein the CTB delay specifies a delay between

when the first row of CTBs starts being decoded and when a second row of CTBs above

the first row of CTBs starts being decoded;

identify, from within the IBC prediction region for the first block, a first

predictive block for the first block;

generate a first syntax to indicate a first block vector for locating the first

predictive block;determine that a second block of video data in a second picture is

coded in the IBC mode;

determine that the second block of video data is coded with wavefront parallel

processing disabled;

determine a shape for an IBC prediction region for the second block based on

the CTB delay that was used for the first block;

identify, from within the determined IBC prediction region for the second block,

a second predictive block for the second block; and

generate a second syntax to indicate a second block vector for locating the

second predictive block.

24. The device of claim 23, wherein the IBC prediction region includes a CTB to the

right of the second block and at least two or more rows above the second block and

excludes a CTB directly below the CTB to the right of the second block and at least two

or more rows above the second block.

56
20

15
33

06
76

 01 Ap
r 2

01
9

25. The device of any of claims 23 to 24, wherein the CTB delay comprises a one

CTB delay.

26. The device of any of claims 23 to 25, wherein the device comprises at least one

of:

an integrated circuit;

a microprocessor; or

a wireless communication device comprising a camera.

27. An apparatus for decoding video data, the apparatus comprising:

means for determining that a first block of video data in a first picture is coded

in an intra block copy (IBC) mode, wherein the first block of video data

is in a first row of coding tree blocks (CTBs);

means for determining that the first block of video data is coded with wavefront

parallel processing enabled;

means for determining a shape of an IBC prediction region for the first block

using a CTB delay for the first block of video data, wherein the CTB

delay specifies a delay between when the first row of CTBs starts being

decoded and when a second row of CTBs above the first row of CTBs

starts being decoded;

means for identifying, from within the IBC prediction region for the first block,

a predictive block for the first block; means for IBC decoding the first

block based on the predictive block for the first block;

means for determining that a second block of video data in a second picture is

coded in the IBC mode;

means for determining that the second block of video data is coded with

wavefront parallel processing disabled;

means for determining a shape of an IBC prediction region for the second block

based on the CTB delay that was used for the first block;

means for identifying, from within the determined IBC prediction region for the

second block, a predictive block for the second block; and

means for IBC decoding the second block based on the predictive block.

57
20

15
33

06
76

 01 Ap
r 2

01
9

28. A non-transitory computer readable storage medium storing instructions that

when executed by one or more processors cause the one or more processors to:

determine that a first block of video data in a first picture is coded in an intra

block copy (IBC) mode, wherein the first block of video data is in a first

row of coding tree blocks (CTBs);

determine that the first block of video data is coded with wavefront parallel

processing enabled;

determine a shape of an IBC prediction region for the first block using a CTB

delay for the first block of video data, wherein the CTB delay specifies a

delay between when the first row of CTBs starts being decoded and

when a second row of CTBs above the first row of CTBs starts being

decoded;

identify, from within the IBC prediction region for the first block, a predictive

block for the first block;

IBC decode the first block based on the predictive block for the first block;

determine that a second block of video data in a second picture is coded in the

IBC mode;

determine that the second block of video data is coded with wavefront parallel

processing disabled;

determine a shape of an IBC prediction region for the second block based on the

CTB delay that was used for the first block;

identify, from within the determined IBC prediction region for the second block,

a predictive block for the second block; and

IBC decode the second block based on the predictive block.

WO 2016/057938 PCT/US2015/054967
1/18

10

FIG. 1

WO 2016/057938 PCT/US2015/054967
2/18

4:4:4 sample format
FIG. 2C

WO 2016/057938 PCT/US2015/054967
3/18

16x16 CU with 4:2:0 Sample Formatting
O Luma Sample
@ Chroma Samples

FIG. 3

WO 2016/057938 PCT/US2015/054967
4/18

16x16 CU with 4:2:2 Sample Formatting
O Luma Sample
© Chroma Samples

FIG. 4

WO 2016/057938 PCT/US2015/054967
5/18

FIG. 5

WO 2016/057938 PCT/US2015/054967
6/18

FIG. 6

WO 2016/057938 PCT/US2015/054967
7/18

116A

116εΓ~

116C^~

116cC

116G

116E

116F^~

FIG. 7

WO 2016/057938 PCT/US2015/054967
8/18

FIG. 8

WO 2016/057938 PCT/US2015/054967
9/18

FIG. 9

WO 2016/057938 PCT/US2015/054967
10/18

FI
G

. 1
0

WO 2016/057938 PCT/US2015/054967
11/18

FIG. 11

WO 2016/057938 PCT/US2015/054967
12/18

FIG. 12

WO 2016/057938 PCT/US2015/054967
13/18

/

(xpi
dAIAI ‘C

JAIAI

WO 2016/057938 PCT/US2015/054967
14/18

WO 2016/057938 PCT/US2015/054967
15/18

WO 2016/057938 PCT/US2015/054967
16/18

Q

FI
G

. 1
6

WO 2016/057938 PCT/US2015/054967
17/18

FIG. 17

WO 2016/057938 PCT/US2015/054967
18/18

FIG. 18

