
(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2009308007 B2

(54) Title
Opportunistic page largification

(51) International Patent Classification(s)
G06F 12/02 (2006.01) GOOF 12/08 (2006.01)
G06F 12/06 (2006.01)

(21) Application No: 2009308007 (22) Date of Filing: 2009.09.26

(87) WIPONo: WO10/047918

(30) Priority Data

(31) Number (32) Date (33) Country
12/257,091 2008.10.23 US

(43)
(44)

Publication Date: 2010.04.29
Accepted Journal Date: 2014.05.15

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Foltz, Forrest C.;Cutler, David N.

(74) Agent / Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

(56) Related Art
US 2007/0283125 A1



(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 
29 April 2010 (29.04.2010)

(10) International Publication Number

PCT WO 2010/047918 A3

(51) International Patent Classification:
GOOF12/02 (2006.01) GOOF 12/08 (2006.01)
G06F12/06 (2006.01)

(21) International Application Number:
PCT/US2009/058511

(22) International Filing Date:
26 September 2009 (26.09.2009)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
12/257,091 23 October 2008 (23.10.2008) US

(71) Applicant for all designated States except US): MI­
CROSOFT CORPORATION [US/US]; One Microsoft 
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: FOLTZ, Forrest, C.; c/o Microsoft Corpora­
tion, International Patents, One Microsoft Way, Red­
mond, Washington 98052-6399 (US). CUTLER, David, 
N.; c/o Microsoft Corporation, International Patents, One 
Microsoft Way, Redmond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every 
kind of national protection available)'. AE, AG, AL, AM, 
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

CA, CH, CL, CN, CO, CR, C.U, CZ, DE, DK, DM, DO, 
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 
SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, 
TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every 
kind of regional protection available)'. ARIPO (BW, GH, 
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, 
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, 
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, 
ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV, 
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, 
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, 
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted 

a patent (Rule 4.17(H))

— as to the applicant's entitlement to claim the priority of 
the earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: OPPORTUNISTIC PAGE LARGIFICATION

w
o 2

01
0/

04
79

18
 A

3 II
III

III
III

III
III

III
III

IH
III

III
IIH

(57) Abstract: Page tables in the last level 
of a hierarchical page table system are 
scanned for candidate page tables. Candi­
date page tables are converted to large 
pages, having a page table entry in a level 
before the last level of the hierarchical page 
table system adjusted to be associated with 
the newly created large page. Upon receiv­
ing a notification that a large page is to be 
converted into a page table, a new page ta­
ble is created. Each entry in the new page 
table is associated with a small segment of 
memory in the large page and an entry in a 
page table one level before the last level in 
a hierarchical page table system is adjusted 
to be associated with the new page table.



WO 2010/047918 A3 IIIIIIM^

Published: (88) Date of publication of the international search report:
— with international search report (Art. 21(3)) June 201

— before the expiration of the time limit for amending the 
claims and to be republished in the event of receipt of 
amendments (Rule 48.2(h))



WO 2010/047918 PCT/US2009/058511

OPPORTUNISTIC PAGE LARGIFICATION

BACKGROUND

[0001] Processes executing on computing devices often require data to be used in

computations. This data is typically stored by the operating system in memory, such as

RAM. This memory is broken up into chunks called pages. Each page is associated with

a unique address. When processes require data, the data is referenced by its unique 

address, and the address is used to lookup the physical location of the page to return the

data. One common way this address to physical location translation is performed is by

traversing a page table hierarchy. Such hierarchies trade off the size of the pages that are

addressed with the number of levels in the hierarchy. However, the size of the pages also

dictates how efficiently the memory space is used, with larger pages being less efficient.

Therefore, there is a direct trade off between space efficiency (due to page size) and 

translation time efficiency (due to the number of pages in the page table hierarchy).

[0002] An additional factor in determining the efficiency of a page table system

consists of the needs of the processes. If processes typically require large amounts of data, 

then larger pages may in fact be efficient in terms of memory usage. However, if

processes typically require small amounts of data, then smaller pages will be more

efficient. Since processes of both types tend to operate on computing devices, a method of

dynamically supporting both would lead to greater efficiency. Operating system support

for large pages is also not as robust in computing devices as support for smaller sized

pages. This leads to an additional challenge in using large pages.

SUMMARY

[0003] This summary is provided to introduce a selection of concepts in a

simplified form that are further described below in the Detailed Description. This

1



20
09

30
80

07
 

07
 A

pr
 2

01
4

summary is not intended to identify key features or essential features of the claimed

subject matter, nor is it intended to be used as an aid in determining the scope of the

claimed subject matter.

[0004] Embodiments of the present invention relate to scanning the last level in a

page table hierarchy to locate candidate page table entries (PTEs) for conversion to large

page mappings. Once candidate PTEs are located, these candidate PTEs are converted to

large pages by locating a large, contiguous segment of physical memory, transferring the

data associated with all the PTEs in the candidate page table page to the located segment

of memory, and then adjusting a PTE in a page table page one level before the last level of

the page table hierarchy to be associated with the newly created large page. In some

embodiments, when a notification is received, indicating a large page that is to be

converted back to small pages, a new page table page is created. Each PTE in the new

page table page is associated with a small segment of the large page and a PTE in the page

table one level before the last level of the hierarchical page table system is adjusted to be

associated with the new page table page.

[0004a] In a first broad form the present invention seeks to provide one or more

computer-readable media storing computer-executable instructions for performing a

method of converting a plurality of small pages associated with one or more processes

executing on a computer system into a large page, each of the plurality of small pages

being associated with one of a plurality of page table entries from a hierarchical page table

system containing at least two levels of page tables, the method comprising:

scanning a last level of the hierarchical page table system for a page table in

which each of at least a threshold of a plurality of entries are associated with one of a

plurality of pages, resulting in the identification of a candidate page table;

2



20
09

30
80

07
 

07
 A

pr
 2

01
4

locating a memory segment composed of a plurality of contiguous segments

of physical memory, large enough to store each of the plurality of segments of physical

memory associated with all of the plurality of entries of the candidate page table;

copying each of the plurality of segments of physical memory associated

with all of the plurality of entries of the candidate page table into the memory segment

composed of a plurality of contiguous segments of physical memory; and

adjusting a page table entry in a page table one level before the last level of

the hierarchical page table system to be associated with the memory segment composed of

a plurality of contiguous segments of physical memory.

[0004b] Typically scanning a last level of the hierarchical page table system

comprises selectively scanning each of a plurality of address spaces associated with the

one or more processes executing on the computer system.

[0004c] Typically the threshold of a plurality of entries is all of the plurality of

entries.

[0004d] Typically each of the plurality of entries of the candidate page table are

associated with a single one of the one or more processes executing on the computer

system.

[0004e] Typically locating a memory segment composed of a plurality of

contiguous segments of physical memory comprises copying data from a first location

near an area of physical memory to a second location away from said area in order to

create a plurality of contiguous segments of physical memory large enough to store each

of the plurality of segments of physical memory associated with all of the plurality of

entries of the candidate page table.

[0004f] Typically the memory segment composed of a plurality of contiguous

segments of physical memory is on a predetermined byte boundary.

2a



20
09

30
80

07
 

07
 A

pr
 2

01
4

0004g] Typically copying each of the plurality of segments of physical memory

associated with all of the plurality of entries of the candidate page table further comprises

freeing said plurality of segments of physical memory after they have been copied.

[0004h] Typically said page table entry in a page table one level before the last level

of the hierarchical page table system was previously associated with the candidate page

table.

[0004i] Typically adjusting a page table entry further comprises freeing a segment

of memory containing the candidate page table.

[0004j] In a second broad form the present invention seeks to provide one or more

computer-readable media storing computer-executable instructions for performing a

method comprising:

scanning a last level of a hierarchical page table system, containing at least

two levels of page tables, in each of a plurality of address spaces associated with one or

more processes executing on a computer system for a page table in which each of at least a

threshold of a plurality of entries are associated with one of a plurality of segments of

physical memory, resulting in the identification of a candidate page table;

locating a memory segment composed of a plurality of contiguous segments

of physical memory, large enough to store each of the plurality of segments of physical

memory associated with all of the plurality of entries of the candidate page table;

copying each of the plurality of segments of physical memory associated

with all of the plurality of entries of the candidate page table into the memory segment

composed of a plurality of contiguous segments of physical memory;

freeing a segment of memory containing the candidate page table;

adjusting a page table entry in a page table one level before the last level of

the hierarchical page table system, said page table entry being previously associated with

2b



20
09

30
80

07
 

07
 A

pr
 2

01
4

the candidate page table, to be associated with the memory segment composed of a

plurality of contiguous segments of physical memory;

receiving an indication from a memory subsystem incapable of swapping

out large pages, indicating a segment of a large page is to be swapped out;

creating a new page table with each entry in said new page table associated

with a segment of the large page; and

adjusting a page table entry in a page table one level before the last level of

the hierarchical page table system to be associated with the new page table, wherein said

page table entry in a page table one level before the last level of the hierarchical page table

system was previously associated with the large page.

[0004k] Typically the hierarchical page table system contains four levels.

[00041] Typically each small page is 4KB.

[0004m] Typically each large page is 2MB.

[0004n] Typically the memory segment composed of a plurality of contiguous

segments of physical memory is on a predetermined byte boundary.

[0004o] Typically the predetermined byte boundary is 2MB.

[0004p] Typically the page table hierarchical page table system is addressed

according to a 64-bit architecture.

[0004q] In a third broad form the present invention seeks to provide a computing

device comprising a processor configured to perform a method of converting a plurality of

small pages associated with one or more processes into a large page, each of the plurality

of small pages being associated with one of a plurality of page table entries from a

hierarchical page table system containing at least two levels of page tables, the method

comprising:

2c



20
09

30
80

07
 

07
 A

pr
 2

01
4

scanning a last level of the hierarchical page table system for a page table in

which each of at least a threshold of a plurality of entries are associated with one of a

plurality of pages, resulting in the identification of a candidate page table;

locating a memory segment composed of a plurality of contiguous segments

of physical memory, large enough to store each of the plurality of segments of physical

memory associated with all of the plurality of entries of the candidate page table;

copying each of the plurality of segments of physical memory associated

with all of the plurality of entries of the candidate page table into the memory segment

composed of a plurality of contiguous segments of physical memory; and

adjusting a page table entry in a page table one level before the last level of

the hierarchical page table system to be associated with the memory segment composed of

a plurality of contiguous segments of physical memory.

[0004r] Typically the threshold of a plurality of entries is all of the plurality of

entries.

[0004s] Typically the memory segment composed of a plurality of contiguous

segments of physical memory is on a predetermined byte boundary.

[0004t] Typically copying each of the plurality of segments of physical memory

associated with all of the plurality of entries of the candidate page table further comprises

freeing said plurality of segments of physical memory after they have been copied.

2d



20
09

30
80

07
 

07
 A

pr
 2

01
4

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The present invention is described in detail below with reference to the

attached drawing figures, wherein:

[0006] FIG. 1 depicts a block diagram of an exemplary computing device suitable

for use in implementing the present invention;

[0007] FIG. 2 is a diagram of a typical physical memory layout as used by

operating systems and user processes;

[0008] FIG. 3 depicts an exemplary relationship between a page table and physical

memory;

2e



WO 2010/047918 PCT/US2009/058511

[0009] FIG. 4 depicts an exemplary hierarchical page table system;

[ooio] FIG. 5 is a flow diagram showing a method for finding candidate page

tables for conversion into large pages and performing the conversion;

[0011] FIG. 6 is a flow diagram showing a method for receiving a notification that

a large page is to be converted into a page table associated with small pages and

performing the conversion; and

[0012] FIG. 7 is a flow diagram showing a method for either receiving a

notification that a large page is to be converted to a page table associated with small pages,

or receiving a timeout indicating it is time to scan for candidate page tables for conversion

to large pages.

DETAILED DESCRIPTION

[0013] The subject matter of the present invention is described with specificity

herein to meet statutory requirements. However, the description itself is not intended to 

limit the scope of this patent. Rather, the inventors have contemplated that the claimed

subject matter might also be embodied in other ways, to include different steps or 

combinations of steps similar to the ones described in this document, in conjunction with

other present or future technologies. Moreover, although the terms “step” and/or “block”

may be used herein to connote different elements of methods employed, the terms should

not be interpreted as implying any particular order among or between various steps herein

disclosed unless and except when the order of individual steps is explicitly described. 

[0014] Embodiments of the present invention are directed to opportunistically

locating groups of PTEs that could be converted into a large page and performing a

conversion. Additionally, once a page table page has been converted into a large page, the

reverse process may be performed in reaction to a notification from the operating system.

3



WO 2010/047918 PCT/US2009/058511

[0015] In accordance with some embodiments of the present invention, the

memory subsystem of a computing device manages a shared memory resource. Data

required for computation by one or more processes are stored in the shared memory

resource. Typically, processes executing on the computation device are not aware of the

physical location of the data. Instead, these processes are presented with an address space

mapping addresses to physical locations in memory. The one or more processes executing

on the computation device use the address to refer to data required for computation. The

memory subsystem of the computing device handles the translation from address to

physical location, performing address lookups.

[0016] In modem computing devices, the physical memory is divided into

segments referred to as pages. These pages represent the minimum data size that can be

represented by the page table hierarchy. Page tables are used by the memory subsystem 

of the computing device to map virtual addresses to physical locations in memory. There

are a number of possible layouts for page table systems; however, the most common

mappings from addresses to physical memory locations use multiple, hierarchical page

table lookups, which are described in detail below. These hierarchies allow fixed address 

sizes (typically measured in bits) to address large amounts of physical memory. Such 

hierarchical table lookups require multiple memory accesses to locate a physical page

associated with a given virtual address. The more levels in the hierarchical page table

system, the more expensive data access operations are in terms of time for the address to

physical memory translation. However, there is also a tradeoff between the number of

levels in the page table hierarchy and the page size. Fewer levels in the page table

hierarchy implies larger page size. Therefore, for applications using small segments of

data, small page sizes and therefore deeper hierarchies allow less memory waste. 

However, for applications using a large amount of data, larger page sizes will reduce the

4



WO 2010/047918 PCT/US2009/058511

number of page table lookups required to locate the required data, and therefore increase

the lookup efficiency.

[0017] When a particular piece of data is no longer needed or has not been

accessed for a threshold period of time, it is common for memory subsystems to save that

piece of data to disk, freeing up memory for data that is more frequently or currently

needed. This processes is called swapping out memory. However, many memory 

subsystems can only swap out some fixed page size. Therefore, any mechanism that

creates pages larger than this fixed size would have to have the capability to break the

large pages into multiple smaller-sized pages in the event some part of the large page must

be swapped out. There are many other additional situations wherein a large page would

need to be broken up into smaller-sized pages by a memory subsystem.

[0018] Accordingly, an embodiment of the invention is directed to computer-

readable storage media embodying computer-usable instructions for performing a method 

of converting a plurality of small pages associated with one or more processes operating

on a computing device into a large page. Each of the pages is associated with an entry in a

page table from a hierarchical page table system containing at least two levels of page

tables. The method includes scanning the last level of the hierarchical page table system 

for candidate PTEs, which are page tables with at least a threshold of entries associated

with pages. The method then locates a physically contiguous memory segment large

enough to store each of the pages associated with the entries in the candidate page table

and copies the segments of memory in each of the pages to the located memory segment.

The method adjusts a page table entry in a page table one level before the last level in the

hierarchical page table system to be associated with the newly created large page.

[0019] According to other embodiments, the invention is directed to computer-

readable media storing computer-executable instructions embodying a method of

5



WO 2010/047918 PCT/US2009/058511

converting a large page into a plurality of small pages associated with one or more

processes executing on a computer system. Each of the pages is associated with an entry 

of a page table in a hierarchical page table system. The method includes receiving an

operating system notification indicating a large page that is to be converted into a group of

small pages. Upon receiving the notification, a new page table is created and the entries in

the new page table are associated with small segments of the large page. The method

includes adjusting an entry from a page table one level before the last level of the

hierarchical page table system to be associated with the new page table.

[0020] According to a further embodiment, the invention is directed to a computer-

readable media storing computer-executable instructions embodying a method of scanning

a last level of a hierarchical page table system, containing at least two levels of page

tables, in each of a plurality of address spaces associated with one or more processes 

executing on a computer system. This scanning involves attempting to identify candidate 

page tables, which are page tables for which each of the entries are associated with one or

more segments of physical memory. The method further includes locating a memory

segment composed of contiguous segments of physical memory large enough to store each 

of the plurality of segments of physical memory associated with all the entries in a 

candidate page table and copying those segments of physical memory into the newly

located memory segment. The method frees the segment of memory containing the

candidate page table and adjusts a page table entry in a page table one level before the last

level in the hierarchical page table system that was associated with the candidate page

table to be associated with the newly located segment of memory, called a large page. The

method further includes receiving an indication from a memory subsystem incapable of

swapping out large pages that indicates one or more segments of a large page is to be 

swapped out. The method further includes creating a new page table, with each entry in

6



WO 2010/047918 PCT/US2009/058511

the new page table being associated with a segment of the large page containing the

segment or segments that are to be swapped out. The method further includes adjusting a

page table entry in a page table one level before the last level of the hierarchical page table

system that was previously associated with the large page to be associated with the new

page table.

[0021] Having briefly described an overview of embodiments of the present

invention, an exemplary operating environment in which embodiments of the present

invention may be implemented is described below in order to provide a general context for

various aspects of the present invention. Referring initially to FIG. 1 in particular, an

exemplary operating environment for implementing embodiments of the present invention

is shown and designated generally as computing device 100. Computing device 100 is but

one example of a suitable computing environment and is not intended to suggest any

limitation as to the scope of use or functionality of the invention. Neither should the 

computing device 100 be interpreted as having any dependency or requirement relating to

any one or combination of components illustrated.

[0022] The invention may be described in the general context of computer code or

machine-useable instructions, including computer-executable instructions such as program 

modules, being executed by a computer or other machine, such as a personal data assistant

or other handheld device. Generally, program modules including routines, programs,

objects, components, data structures, etc., refer to code that perform particular tasks or

implement particular abstract data types. The invention may be practiced in a variety of

system configurations, including hand-held devices, consumer electronics, general-

purpose computers, more specialty computing devices, etc. The invention may also be 

practiced in distributed computing environments where tasks are performed by remote­

processing devices that are linked through a communications network.

7



WO 2010/047918 PCT/US2009/058511

[0023] With reference to FIG. 1, computing device 100 includes a bus 110 that

directly or indirectly couples the following devices: memory 112, one or more processors 

114, one or more external storage components 116, input/output (I/O) ports 118, input

components 120, output components 121, and an illustrative power supply 122. Bus 110

represents what may be one or more busses (such as an address bus, data bus, or 

combination thereof). Although the various blocks of FIG. 1 are shown with lines for the

sake of clarity, in reality, delineating various components is not so clear, and

metaphorically, the lines would more accurately be grey and fuzzy. For example, many

processors have memory. We recognize that such is the nature of the art, and reiterate that

the diagram of FIG. 1 is merely illustrative of an exemplary computing device that can be

used in connection with one or more embodiments of the present invention. Distinction is

not made between such categories as “workstation,” “server,” “laptop,” “hand-held 

device,” etc., as all are contemplated within the scope of FIG. 1 and reference to

“computing device.”

[0024] Computing device 100 typically includes a variety of computer-readable

media. Computer-readable media can be any available media that can be accessed by

computing device 100 and includes both volatile and nonvolatile media, removable and 

non-removable media. By way of example, and not limitation, computer-readable media

may comprise computer storage media and communication media. Computer storage

media includes both volatile and nonvolatile, removable and non-removable media

implemented in any method or technology for storage of information such as computer-

readable instructions, data structures, program modules or other data. Computer storage

media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other

memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, 

magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage

8



WO 2010/047918 PCT/US2009/058511

devices, or any other medium which can be used to store the desired information and

which can be accessed by computing device 100.

[0025] Memory 112 includes computer-storage media in the form of volatile

memory. Exemplary hardware devices include solid-state memory, such as RAM.

External storage 116 includes computer-storage media in the form of non-volatile

memory. The memory may be removable, nonremovable, or a combination thereof.

Exemplary hardware devices include solid-state memory, hard drives, optical-disc drives,

etc. Computing device 100 includes one or more processors that read data from various 

entities such as memory 112, external storage 116 or input components 120. Output

components 121 present data indications to a user or other device. Exemplary output

components include a display device, speaker, printing component, vibrating component,

etc.

[0026] I/O ports 118 allow computing device 100 to be logically coupled to other

devices including input components 120 and output components 121, some of which may

be built in. Illustrative components include a microphone, joystick, game pad, satellite

dish, scanner, printer, wireless device, etc.

[0027] According to an embodiment of the invention, computing device 100 could

be used as a hypervisor, which is a virtualization platform that abstracts the physical

components of the computing device 100, such as the input components 120 and the 

memory 112 from the operating system or system running on the computing device 100.

Such hypervisors allow multiple operating systems run on a single computing device 100

through such abstraction, allowing each independent operating system to have access to its

own virtual machine. In hypervisor computing devices, the overhead associated with

traversing page table hierarchies is even larger and the benefits of using large pages are

9



WO 2010/047918 PCT/US2009/058511

even greater than in systems running single operating systems that have direct access to

the components of the computing device 100.

[0028] Turning to FIG. 2, a physical memory 200, such as a RAM, is divided into

a number of sections. According to some embodiments of the invention, the memory is

divided into two main partitions, an operating system memory space 201 and a user

memory space 202. A memory subsystem of an operating system executing on the

computing device manages the physical memory 200, allowing user applications to use

portions of user memory space 202. Applications may not have access to contiguous 

memory locations, however. Referring to FIG. 2, according to some embodiments of the

present invention, the user memory space 202 is divided into pages (represented by boxes),

which are distributed between two hypothetical applications for illustration purposes only

and not limitation: application 1 space is represented by x’s (e.g., memory segment 203)

and application 2 space is represented by /’s (e.g., memory segment 204). Free memory 

pages are clear in the diagram (e.g., memory segment 205). The operating system memory

space 201 can be used for a number of purposes, one of which is to store the page tables 

206 that contain the mapping from the address space to physical memory. For

applications, these mappings associate pages in the user memory space 202 where data is

stored with addresses.

[0029] As shown in FIG. 3, according to an embodiment of the present invention, a

page table 301 includes entries 303, each of which being associated with a particular page

in the user memory space, stored in physical memory 304. Note that entries 303 in the

page table 301 may not necessarily be associated with contiguous pages 304 in the

physical memory.

[0030] Referring now to FIG. 4, according to various embodiments of the present

invention, addresses 401 are represented by strings of bits. These addresses are mapped

10



WO 2010/047918 PCT/US2009/058511

through a hierarchical page table system 402. By way of example and not limitation,

consider a 48-bit addressing scheme 401 and a four-level hierarchical page table system

402. The 48-bit address 401 is divided into five sections. A first nine bits 403 are used to

index into a first page table 404. The entry located in the first page table 404 by the first

nine bits 403 of the address 401 is associated with a segment of memory 422 storing a

second page table 406. The second nine bits 405 index into the second page table 406. 

The entry located in the second page table 406 is associated with a segment of memory

422 containing a third page table 408. The third nine bits 407 of the address 401 index

into the third page table 408. The entry located in the third page table 408 is associated

with a segment of memory 423 containing a fourth page table 410. The fourth nine bits

409 of the address 401 index into the fourth page table 410. The entry located in the

fourth page table 410 is associated with a segment of memory 424 in user space memory

containing a page 412. The last twelve bits 411 of the address 401 index into the page 

412. The segment of memory in the page 412 at the index given by the last twelve bits

412 is the data referred to by the address 401. As can be seen there is at least one memory

access per page table lookup in the process of looking up data addressed via a hierarchical

page table system.

[0031] Those skilled in the art will recognize that the specific address sizes,

number of page tables, number of levels in the page table hierarchical system, and size of

pages can be varied. By way of example only and not limitation, page sizes can be 4KB,

2MB, or 1GB. Address sizes can range, for instance, from 32 bits to 64 bits. Given the 

example in FIG. 4, each page table has 512 entries (29) and each page is 4KB (212). It 

takes four page table lookups to locate data in a page. If all of the data associated wdth all

512 entries in a page table were to be combined in a single page, the resulting page (called

11



WO 2010/047918 PCT/US2009/058511

a large page) would be 2MB and would require only three page table lookups in the 

hierarchical page table system to locate.

[0032] Turning to FIG. 5, a flow diagram is provided that illustrates a method 500

for finding a candidate page table to convert to a large page and so converting the page

table (block 550 contains the steps of the method without the timeout portion shown in

block 503, all discussed below). Shown at block 501, the last level of the page table 

hierarchical system is scanned for candidate page tables for conversion to large pages. For

example, the last level of the page table hierarchy of FIG. 4, in which the fourth page table

410 exists, could be scanned for candidate page tables. One skilled in the art will recognize

a wide variety of criteria could be used for determining whether a page table is a candidate

for conversion to a large page. By way of example only and not limitation, such criteria

could include finding a full page table or finding a page table with a threshold of entries

full. A full page table is one wherein all the entries of the page table are associated with 

locations in physical memory. According to one embodiment of the invention, such

scanning involves scanning through each of the page tables associated with the entries in

page tables one level before the last level and examining the found last level page tables to

see if they constitute a full page table. One skilled in the art will recognize that there are 

many ways a threshold could be defined, including but not limited to, a percentage of

entries being associated with physical memory locations or a total number of entries

associated with physical memory locations.

[0033] By scanning the last level in the hierarchical page table system (e.g., the

level in which page table 410 is located in FIG. 4) one or more candidate page tables may

be identified (see block 502). If no candidate page table has been identified, then there is a

time delay 503 before another scan is performed at block 501. This time delay 503 is a 

parameter that could be adjusted by a programmer, system administrator, user, or anyone

12



WO 2010/047918 PCT/US2009/058511

else with appropriate access to the system. If, however, a candidate page table has been 

identified, then a segment of contiguous memory large enough to store the data associated

with each entry in the candidate page table is located, as shown at block 504.

[0034] In embodiments, locating a segment of memory involves scanning the

physical memory for a sufficient number of contiguous segments of memory to store all of

the entries associated with the candidate page table. Recall that a page table may not have

contiguous entries that are associated with contiguous physical memory segments.

However, when the entries in the candidate page table are converted to a large page, they

must be stored in the order of the entries in the page table with which they are associated.

According to one embodiment of the invention, locating a memory segment is simply a

matter of scanning the physical memory and finding a large contiguous segment of

memory (e.g. 2MB). In some embodiments, this scanning could be performed by scanning

a page frame number database containing the state of all physical pages in the system. 

Additionally, the large contiguous segment of memory might be restricted to begin on a

predetermined byte-boundary. By way of example and not limitation, considering the

example above using 512 4KB small-sized pages to combine into a large page of 2MB, the

predetermined byte boundary could be a 2MB byte-boundary. Those skilled in the art will 

recognize that many other values for the predetermined byte-boundary could be used.

According to another embodiment of the invention, if not enough contiguous segments of

memory can be found, then a memory management subroutine is activated that actively

creates a large contiguous segment of memory by moving stored data to free segments

away from a particular location in memory, and adjusting their respective page table

entries. In this way a large contiguous segment of memory is created for use in the large

page table conversion.

13



WO 2010/047918 PCT/US2009/058511

[0035] Once a contiguous segment of memory of sufficient size has been located

or created, all of the physical segments of memory associated with the entries in the

candidate page table are copied in order to the located memory segment, as shown at block

505. In one embodiment of the present invention, as the physical segments of memory are

copied into the located segment, the original location of physical memory is freed. In

another embodiment of the invention, the original memory locations of each of the

memory segments associated with each of the entries of the candidate page table also

maintain their copies of the data.

[0036] As shown at block 506, a page table entry one level before the last level of

the hierarchical page table system (e.g., page table 408 of FIG. 4) is associated with the

new large page. In one embodiment of the invention, the converted page table is freed and

the page table entry from one level before the last level in the hierarchical page table

system that was associated with the freed page table is adjusted to be associated with the 

new large page. After converting candidates to large pages, there is a time delay at block

503 before another scan for new candidate page tables is started. This time delay at block

503 is a parameter that could be adjusted by a programmer, system administrator, user, or

any one else with appropriate access to the system.

[0037] Turning to FIG. 6, a flow diagram is provided that illustrates a method 600

for converting a large page into page table entries associated with multiple smaller-sized

pages. According to one embodiment of the present invention, an operating system

notification is received at block 601 identifying a large page to be converted to small

pages. One skilled in the art will recognize that there are many events that might trigger

such a notification. By way of example only and not limitation, such events include a

segment of the large page being scheduled for swapping out to disk in a system with an

14



WO 2010/047918 PCT/US2009/058511

operating system incapable of swapping out large pages and the page table entries

associated with memory belonging to an application memory space that is being destroyed.

[0038] Upon receiving a notification indicating a large page to be converted, a new

page table is created as shown at block 602. According to one embodiment of the 

invention, this creation involves allocating memory in the operating system memory space

for a new table. Once the page table is created, each entry in the new page table is

associated with one smaller-sized segment of the large page at block 603, until all of the

segments of the large page are associated with some entry in the new page table.

Continuing the example of FIG. 4, each of the 512 page table entries in the new page table

would be associated with one 4KB segment of the large page.

[0039] Finally, a page table entry from one level before the last level of the

hierarchical page table system (e.g., the level in which page table 408 is located in FIG. 4)

is adjusted to be associated with the new page table, as shown in block 604. According to 

one embodiment of the invention, the entry from the page table one level before the last

level of the hierarchical page table system associated with the new page table was the

entry previously associated with the large page.

[0040] According to a further embodiment of the invention, FIG. 7 presents a

method 700 of converting a page table into a large page and converting large pages into

page tables associated with numerous smaller-sized pages. First the method involves 

waiting for an event, as shown at block 701. By way of example and not limitation, the

event could be either a timeout or an operating system notification. One skilled in the art

would recognize that there are numerous other events that could trigger either type of

conversion. Once an event occurs, a decision is made. If the event was a timeout

indicating that a time delay has expired 702, an attempt is made to convert a page table 

from the last level of a hierarchical page table system into a large page, for instance

15



WO 2010/047918 PCT/US2009/058511

according to the method 550 of FIG. 5. This time delay is a parameter that could be

adjusted by a programmer, system administrator, user, or any one else with appropriate

access to the system. If the event is an operating system notification 702, then a large page

is converted to a page table of entries pointing to smaller-sized pages, for instance

according to the method 600 of FIG. 6. Upon completion of either the method of 

attempting to convert a page table to a large page, or the method of converting a large page

to a page table with entries associated with numerous smaller-sized pages, a waiting period

is entered again at block 701. This waiting period again expires either at the arrival of

another operating system notification or the expiration of a time delay.

[0041] Many different arrangements of the various components depicted, as well

as components not shown, are possible without departing from the spirit and scope of the

present invention. Embodiments of the present invention have been described with the

intent to be illustrative rather than restrictive. Alternative embodiments will become

apparent to those skilled in the art that do not depart from its scope. A skilled artisan may

develop alternative means of implementing the aforementioned improvements without

departing from the scope of the present invention.

[0042] It will be understood that certain features and subcombinations are of utility

and may be employed without reference to other features and subcombinations and are

contemplated within the scope of the claims. Not all steps listed in the various figures

need be carried out in the specific order described.

16



20
09

30
80

07
 

07
 A

pr
 2

01
4

[0043] The reference in this specification to any prior publication (or information

derived from it), or to any matter which is known, is not, and should not be taken as an

acknowledgment or admission or any form of suggestion that the prior publication (or

information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

[0044] Throughout this specification and claims which follow, unless the context

requires otherwise, the word “comprise”, and variations such as “comprises” or

“comprising”, will be understood to imply the inclusion of a stated integer or group of

integers or steps but not the exclusion of any other integer or group of integers.

16a



20
09

30
80

07
 

07
 A

pr
 2

01
4

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. One or more computer-readable media storing computer-executable

instructions for performing a method of converting a plurality of small pages associated

with one or more processes executing on a computer system into a large page, each of the

plurality of small pages being associated with one of a plurality of page table entries from

a hierarchical page table system containing at least two levels of page tables, the method

comprising:

scanning a last level of the hierarchical page table system for a page

table in which each of at least a threshold of a plurality of entries are

associated with one of a plurality of pages, resulting in the identification of

a candidate page table;

locating a memory segment composed of a plurality of contiguous

segments of physical memory, large enough to store each of the plurality of

segments of physical memory associated with all of the plurality of entries

of the candidate page table;

copying each of the plurality of segments of physical memory

associated with all of the plurality of entries of the candidate page table into

the memory segment composed of a plurality of contiguous segments of

physical memory; and

adjusting a page table entry in a page table one level before the last

level of the hierarchical page table system to be associated with the

memory segment composed of a plurality of contiguous segments of

physical memory.

17



20
09

30
80

07
 

07
 A

pr
 2

01
4

The media of claim 1, wherein scanning a last level of the2.

hierarchical page table system comprises selectively scanning each of a plurality of

address spaces associated with the one or more processes executing on the computer

system.

3. The media of claim 1 or claim 2, wherein the threshold of a plurality

of entries is all of the plurality of entries.

4. The media of any one of claims 1 to 3, wherein each of the plurality

of entries of the candidate page table are associated with a single one of the one or more

processes executing on the computer system.

5. The media of any one of claims 1 to 4, wherein locating a memory

segment composed of a plurality of contiguous segments of physical memory comprises

copying data from a first location near an area of physical memory to a second location

away from said area in order to create a plurality of contiguous segments of physical

memory large enough to store each of the plurality of segments of physical memory

associated with all of the plurality of entries of the candidate page table.

6. The media of any one of claims 1 to 5, wherein the memory

segment composed of a plurality of contiguous segments of physical memory is on a

predetermined byte boundary.

7. The media of any one of claims 1 to 6, wherein copying each of the

plurality of segments of physical memory associated with all of the plurality of entries of

the candidate page table further comprises freeing said plurality of segments of physical

memory after they have been copied.

18



20
09

30
80

07
 

07
 A

pr
 2

01
4

8. The media of any one of claims 1 to 7, wherein said page table entry

in a page table one level before the last level of the hierarchical page table system was

previously associated with the candidate page table.

9. The media of any one of claims 1 to 8, wherein adjusting a page

table entry further comprises freeing a segment of memory containing the candidate page

table.

10. One or more computer-readable media storing computer-executable

instructions for performing a method comprising:

scanning a last level of a hierarchical page table system, containing

at least two levels of page tables, in each of a plurality of address spaces

associated with one or more processes executing on a computer system for

a page table in which each of at least a threshold of a plurality of entries are

associated with one of a plurality of segments of physical memory,

resulting in the identification of a candidate page table;

locating a memory segment composed of a plurality of contiguous

segments of physical memory, large enough to store each of the plurality of

segments of physical memory associated with all of the plurality of entries

of the candidate page table;

copying each of the plurality of segments of physical memory

associated with all of the plurality of entries of the candidate page table into

the memory segment composed of a plurality of contiguous segments of

physical memory;

freeing a segment of memory containing the candidate page table;

19



20
09

30
80

07
 

07
 A

pr
 2

01
4

adjusting a page table entry in a page table one level before the last

level of the hierarchical page table system, said page table entry being

previously associated with the candidate page table, to be associated with

the memory segment composed of a plurality of contiguous segments of

physical memory;

receiving an indication from a memory subsystem incapable of

swapping out large pages, indicating a segment of a large page is to be

swapped out;

creating a new page table with each entry in said new page table

associated with a segment of the large page; and

adjusting a page table entry in a page table one level before the last

level of the hierarchical page table system to be associated with the new

page table, wherein said page table entry in a page table one level before

the last level of the hierarchical page table system was previously

associated with the large page.

11. The media of claim 10, wherein the hierarchical page table system

contains four levels.

12. The media of claim 10 or claim 11, wherein each small page is

4KB.

13. The media of any one of claims 10 to 12, wherein each large page is

2MB.

20



20
09

30
80

07
 

07
 A

pr
 2

01
4

14. The media of any one of claims 10 to 13, wherein the memory

segment composed of a plurality of contiguous segments of physical memory is on a

predetermined byte boundary.

15. The media of claim 14, wherein the predetermined byte boundary is

2MB.

16. The media of any one of claims 10 to 15, wherein the page table

hierarchical page table system is addressed according to a 64-bit architecture.

17. A computing device comprising a processor configured to perform a

method of converting a plurality of small pages associated with one or more processes into

a large page, each of the plurality of small pages being associated with one of a plurality of

page table entries from a hierarchical page table system containing at least two levels of

page tables, the method comprising:

scanning a last level of the hierarchical page table system for a page

table in which each of at least a threshold of a plurality of entries are

associated with one of a plurality of pages, resulting in the identification of

a candidate page table;

locating a memory segment composed of a plurality of contiguous

segments of physical memory, large enough to store each of the plurality of

segments of physical memory associated with all of the plurality of entries

of the candidate page table;

copying each of the plurality of segments of physical memory

associated with all of the plurality of entries of the candidate page table into

the memory segment composed of a plurality of contiguous segments of

physical memory; and

21



20
09

30
80

07
 

07
 A

pr
 2

01
4

adjusting a page table entry in a page table one level before the last

level of the hierarchical page table system to be associated with the

memory segment composed of a plurality of contiguous segments of

physical memory.

18. The device of claim 17, wherein the threshold of a plurality of

entries is all of the plurality of entries.

19. The device of claim 17 or claim 18, wherein the memory segment

composed of a plurality of contiguous segments of physical memory is on a predetermined

byte boundary.

20. The device of any one of claims 17 to 19, wherein copying each of

the plurality of segments of physical memory associated with all of the plurality of entries

of the candidate page table further comprises freeing said plurality of segments of physical

memory after they have been copied.

22



WO 2010/047918 PCT/US2009/058511

1/5

Λ
οο



WO 2010/047918 PCT/US2009/058511

co

2/5

oCM

PH
Y

 M
EM

O
R

Y

V"
CM
O
CM

O
CM



WO 2010/047918 PCT/US2009/058511

3/5

o
o
o
o
o
oo
o

co
'd-

P
A

G
E 

TA
B

LE
 H

IE
R

AR
C

H
Y

o

CM
o



WO 2010/047918 PCT/US2009/058511

4/5

to

ST
A

R
T

o?
o-^



WO 2010/047918 PCT/US2009/058511

5/5

FI
G

. 6.
 

FI
G

. 7.

o Άο—(Ω


