按照专利合作条约所公布的国际申请

(19) 世界知识产权组织
国际局

(43) 国际公布日

(51) 国际专利分类号:
C07D 403/10 (2006.01)
C07D 235/26 (2006.01)

(10) 国际公布号
WO 2016/192099 A1

(21) 国际申请号:
PCT/CN20 15/080867

(22) 国际申请日: 2015年6月5日 (05.06.2015)

(54) 发明名称:一种制备三苯甲基坎地沙坦的方法

(57) 摘要: 本发明以坎地沙坦环合物为起始原料,经过上四氮唑、水解、上保护基三步反应,中间产物不经过结晶分离,直接得到三苯甲基坎地沙坦,操作程序简便,更适用于工业化生产。
一种制备三苯甲基坎地沙坦的方法

技术领域

本发明涉及药物中间体合成领域，具体涉及一种制备三苯甲基坎地沙坦的方法。

背景技术

坎地沙坦酯是一种降压药，其结构式如下式 I 所示。

![结构式 I]

坎地沙坦酯不抑制激肽酶 II，不影响缓激肽酶降解，是一种具有良好市场前景的抗高血压药物。

CN91102569.3 和 CN98101894.7 均报道了坎地沙坦酯的合成路线，其合成路线包括以下步骤：

a) 使坎地环合物 (II) 与三苯基叠氮化锡反应，反应结束后，冷却反应溶液，减压浓缩，向残留物中加入乙醇和亚硝酸钠溶液，加入浓盐酸将溶液的 pH 调至 4.5-5.5，向溶液中加入醋酸乙酯，用浓盐酸将溶液的 pH 调节到 0.5-1.5，向溶液中加入己烷，用氢氧化钠溶液将溶液的 pH 调节到 3.5±0.5，然后将溶液冷却至 10℃或更低，搅拌，结晶，分离纯化得到坎地沙坦的酯化物 (III)；

b) 向步骤 a) 中分离出来的坎地沙坦的酯化物 (III) 中加入氢氧化钠溶液，加热以进行水解，反应完成后，冷却反应溶液，用有机溶剂洗涤，分离水层并用甲醇提取，加入浓盐酸将 pH 调节至 7.0±0.5，加入活性炭过滤，然后加浓盐酸使坎地沙坦 (IV) 游离析出并分离纯化；
c) 使步骤 a) 中分离出来的坎地沙坦(IV) 与三苯基氯甲烷在三乙胺催化下反应，并在己烷中结晶得到三苯甲基坎地沙坦(V);

d) 使三苯甲基坎地沙坦(V) 与 1-卤代乙基环己基碳酸酯反应以得到三苯甲基坎地沙坦酯(VI);

e) 使三苯甲基坎地沙坦酯(VI) 脱保护基得到坎地沙坦酯(I)，合成路线如下所示：

然而，在采用现有技术中记载的方法制备三苯甲基坎地沙坦(V) 时，例如主要存在以下问题：
(1) 在坎地环合物(II) 与三唑基叠氮化镍反应得到坎地沙坦的酯化物(III) 之后，需要采用多个繁琐的步骤将反应溶液调节至酸性、冷却、在己烷中结晶、分离出来并纯化然后再进行下一步反应；
(2) 在用氢氧化钠溶液使坎地沙坦的酯化物(III) 水解并调酸游离析出坎地沙坦(IV) 之后，需要将析出的坎地沙坦(IV) 分离出来并纯化，然后再进行下一步反应。由此可见，现有技术中记载的用于制备三苯甲基坎地沙坦(V) 的方法操作繁琐，需要
进行结晶分离和纯化操作。同时，分离出来的结晶母液会产生大量的废物，不利于绿色生产。

发明内容

本发明提供了一种制备三苯甲基坎地沙坦（V）的方法，包括以下步骤：

(a) 使坎地沙坦环合物（II）与三垸基叠氮化锡在有机溶剂中反应以得到坎地沙坦的酯化物（III）；

(b) 在不分离步骤(a)得到的坎地沙坦的酯化物（III）的情况下，向步骤(a)的反应液中直接加入碱金属氢氧化物水溶液进行萃取，分离除去有机层，得到碱液层；

(c) 加热步骤(b)分离得到的碱液层使坎地沙坦的酯化物（III）完全水解，然后加酸调节pH值使坎地沙坦（IV）游离并析出；

(d) 在不分离坎地沙坦（IV）的情况下，直接在步骤(c)的料液中加入有机溶剂和有机碱，将料液重新溶解并提取到有机层；

(e) 使步骤(d)得到的提取液直接与三苯基氯甲烷进行反应以得到三苯甲基坎地沙坦（V）。

合成路线如下所示。
上述式中，R 为甲基或乙基，优选为乙基。

作为本发明的优选方案：

步骤 (a) 中所述的有机溶剂优选为甲苯、二甲苯、N,N-二甲基甲酰胺或 N,N-二甲基乙酰胺。

步骤 (a) 中所述的三烷基叠氮化锡优选为三丁基叠氮化锡。

步骤 (b) 中所述的碱金属氢氧化物为氢氧化钾或氢氧化钠，进一步优选为氢氧化钠。

步骤 (c) 中所述的酸选自盐酸、乙酸中的一种或两种的混合物，进一步优选乙酸。

步骤 (c) 中所述的 pH 值范围优选为 4-7，进一步优选为 5-6。

步骤 (d) 中所述的有机溶剂选自：甲苯、二甲苯或二氯甲烷，进一步优选为二氯甲烷。

步骤 (d) 中所述的有机碱优选为三乙胺。
本发明以坎地沙坦环合物为起始原料，经上四氮唑、水解、上保护基三步反应，中间产物不经过结晶分离和纯化步骤，采用一锅法直接得到三苯甲基坎地沙坦，操作程序更简便，更适用于工业化生产；而且，采用本发明的制备三苯甲基坎地沙坦的方法，降低了能耗，节省了成本，还减少了废物的排放，有利于绿色生产，因此本发明的方法是一种环境友好的方法。

另外，在根据现有技术记载的方法中，对于由坎地沙坦的酯化物水解制备坎地沙坦、以及由坎地沙坦制备三苯甲基坎地沙坦这两步反应来说，由于二者之间的反应条件例如反应温度、反应时间、溶剂等，反应体系的酸碱性，反应副产物等相差巨大，因此现有技术中的常规操作方式是将通过碱金属氢氧化物水解游离析出的坎地沙坦从反应液中分离出来并纯化以用于后续反应，从而实现提高产率和纯度的目的。然而，本发明人打破了这种常规的操作方式，没有将水解游离析出的坎地沙坦从反应液中分离出来，而是随着母液直接进行下一步反应。在这种情况下，发明人出人意料地发现了采用本发明的不分离坎地沙坦而直接进行下一步反应的方法产率不仅没有降低，反而显著提高。同时，采用本发明的方法还减少了废物的排放，有利于绿色生产。

此外，在本发明的步骤(b)中向反应溶液加入了碱金属氢氧化物的水溶液，在本发明的步骤(c)中向反应溶液加入了酸以使坎地沙坦游离析出，在这种情况下，本领域技术人员无法预期向这种先加无机碱再加酸的反应体系中直接加入有机碱会产生什么样的影响，也无法预期如果这样做后续反应是否能够进行以及怎样进行。然而，不受任何理论束缚，本发明人出人意料地发现了在步骤(c)和步骤(d)之间不将游离析出的坎地沙坦分离出来，而是直接向其连
同母液中加入有机碱，不仅不会不利地影响坎地沙坦到三苯基坎地沙坦的反应，而且反而促进了其反应，结果是使得整个反应的总产率显著提高。

具体实施方式

为使本发明的目的、技术方案及优点更加清楚明白，通过实施例对本发明进一步进行详细说明。显然，所描述的实施例仅仅是本发明一部分实施例，而不是全部的实施例。基于本发明中的实施例，本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例，都属于本发明保护的范围。

以下结合实施例对本发明作进一步的详细描述。

实施例1：

向600ml二甲苯中加入250g三丁基叠氮化锡，加入100g坎地沙坦环合物（式II中，R为乙基），加热至140−150°C回流反应20h，反应结束，冷却至40−50°C，加入600ml氢氧化钠溶液（48g氢氧化钠溶于600ml水），20−35°C搅拌，分去有机层。

将碱液层加热至70−80°C，使坎地沙坦乙酯完全水解。控制料液温度25−35°C，加入400ml二氯甲烷，滴加冰乙酸将料液pH值调节至5−6，使坎地沙坦析出。

向料液中滴加三乙胺直至坎地沙坦固体部分溶解，分出二氯甲烷层，水层中再加入200ml二氯甲烷提取一次，合并有机层。向有机层中加入68g三苯基氯甲烷，控制料液温度25−35°C进行反应，HPLC控制坎地沙坦残留<1.0%。

反应结束后，加入100ml水进行洗涤，分去水层。减压蒸干有机层，加入600ml
无水乙醇进行结晶。过滤，烘干，得 125.5g 三苯甲基坎地沙坦，产率 78.2%，
纯度 97.5%。

实施例 2-7

以与实施例 1 相同的方式由坎地沙坦环合物制备三苯甲基坎地沙坦，结
果由下表所示:

<table>
<thead>
<tr>
<th>实施例编号</th>
<th>R基</th>
<th>有机溶剂</th>
<th>步骤 (a) 的三烷基叠氮化锡</th>
<th>步骤 (b) 的碱金属氯化物</th>
<th>步骤 (c) 的 pH 范围</th>
<th>步骤 (d) 的有机溶剂</th>
<th>步骤 (d) 的有机碱</th>
<th>产率</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>甲基</td>
<td>甲苯</td>
<td>三丁基叠氮化锡</td>
<td>氢氧化钠</td>
<td>4-5</td>
<td>甲苯</td>
<td>三乙胺</td>
<td>77.3%</td>
</tr>
<tr>
<td>3</td>
<td>乙基</td>
<td>二甲苯</td>
<td>三丁基叠氮化锡</td>
<td>氢氧化钾</td>
<td>5-6</td>
<td>二甲苯</td>
<td>三乙胺</td>
<td>77.6%</td>
</tr>
<tr>
<td>4</td>
<td>甲基</td>
<td>DMF</td>
<td>三丁基叠氮化锡</td>
<td>氢氧化钠</td>
<td>6-7</td>
<td>二氯甲烷</td>
<td>三乙胺</td>
<td>78.1%</td>
</tr>
<tr>
<td>5</td>
<td>乙基</td>
<td>DMA</td>
<td>三丁基叠氮化锡</td>
<td>氢氧化钾</td>
<td>4-5</td>
<td>甲苯</td>
<td>三乙胺</td>
<td>77.1%</td>
</tr>
<tr>
<td>6</td>
<td>甲基</td>
<td>甲苯</td>
<td>三丁基叠氮化锡</td>
<td>氢氧化钠</td>
<td>5-6</td>
<td>二甲苯</td>
<td>三乙胺</td>
<td>77.9%</td>
</tr>
<tr>
<td>7</td>
<td>乙基</td>
<td>二甲苯</td>
<td>三丁基叠氮化锡</td>
<td>氢氧化钾</td>
<td>6-7</td>
<td>二氯甲烷</td>
<td>三乙胺</td>
<td>77.8%</td>
</tr>
</tbody>
</table>

对比例 1
根据 CN98101894.7 的参考实施例 7-9 中描述的方法由坎地沙坦环合物制备三苯基坎地沙坦，由于该文献第一步反应（对应于参考实施例 7）的产物没有干燥，因此没有计算产率，第二步的产率为 80％，第三步的产率为 89％。因此根据该现有技术的方法由坎地沙坦环合物制备三苯甲基坎地沙坦的最终产率最高为 73％，况且以上的最终产率还没有考虑到例如第一步反应的转化率等。因此，该文献所描述的方法的最终产率应远远低于 73％。比较而言，采用本发明的一锅法，产率达到 77% 以上，显著高于现有技术的方法，同时不需要进行结晶分离纯化等复杂操作，减少废物的排放。

对比例 2

向 600ml 二甲苯中加入 250g 三丁基氯化铝，加入 100g 坎地沙坦环合物（式 II 中，R 为乙基），加热至 140-150℃回流反应 20h，反应结束，冷却至 40-50℃，加入 600ml 氢氧化钠溶液（48g 氢氧化钠溶于 600ml 水），20-35℃搅拌，分去有机层。

将碱液层加热至 70-80℃，使坎地沙坦乙酯完全水解。控制料液温度 25-35℃，加入 400ml 二氯甲烷，滴加冰乙酸将料液 pH 值调节至 5-6，使坎地沙坦析出。分离出结晶，用水洗涤，随后用丙酮洗涤，干燥，得 77.6g 坎地沙坦（产率：75％）。

在二氯甲烷中悬浮上述得到的坎地沙坦，向料液中滴加三乙胺直至坎地沙坦固体全部溶清，分出二氯甲烷层，水层中再加入 200ml 二氯甲烷提取一次，合并有机层。向有机层中加入 68g 三苯基氯甲烷，控制料液温度 25-35℃进行反应，HPLC 控制坎地沙坦残留 < 1.0％。反应结束后，加入 100ml 水进行洗
涤，分去水层。减压蒸干有机层，加入 600ml 无水乙醇进行结晶。过滤，烘干，得 120.3g 三苯甲基坎地沙坦，产率为 88.2%。

因此，该对比比例法的最终产率为 66.15%。比较而言，采用本发明的一锅法，产率达到 77% 以上，显著高于该对比例的方法，同时不需要进行结晶分离纯化等繁杂操作，减少废物的排放。

以上所述仅为本发明的较佳实施例而已，并不用以限制本发明，凡在本发明的精神和原则之内，所做的任何修改、等同替换、改进等，均应包含在本发明保护的范围内。
一种制备三苯甲基坎地沙坦（V）的方法，包括以下步骤：

(a) 使坎地沙坦环合物（II）与三烷基叠氮化锡在有机溶剂中反应以得到坎地沙坦的酯化物（III）；

(b) 在不分离步骤（a）得到的坎地沙坦的酯化物（III）的情况下，向步骤（a）的反应液中直接加入碱金属氢氧化物水溶液进行萃取，分离除去有机层，得到碱液层；

(c) 加热步骤（b）分离得到的碱液层使坎地沙坦的酯化物（III）完全水解，然后加酸调节pH值使坎地沙坦（IV）游离并析出；

(d) 在不分离坎地沙坦（IV）的情况下，直接在步骤（c）的料液中加入有机溶剂和有机碱，将料液重新溶解并提取到有机层；

(e) 使步骤（d）得到的提取液与三苯基氯甲烷进行反应以得到三苯甲基坎地沙坦（V），

合成路线如下所示：
上述式中，R 为甲基或乙基。

2. 根据权利要求 1 所述的方法，其中步骤(a)中所述的有机溶剂选自：甲苯、二甲苯、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺。

3. 根据权利要求 1 或 2 所述的方法，其中步骤(a)中所述的三烷基叠氮化锡为三丁基叠氮化锡。

4. 根据权利要求 1-3 中任一项所述的方法，其中步骤(b)中所述的碱金属氢氧化物为氢氧化钾或氢氧化钠。

5. 根据权利要求 1-4 中任一项所述的方法，其中步骤(c)中所述的酸为盐酸、乙酸中的一种或两种的混合物。

6. 根据权利要求 5 所述的方法，其中步骤(c)中所述的酸是乙酸。

7. 根据权利要求 1-6 中任一项所述的方法，其中步骤(c)中所述的pH值范围为4-7。

8. 根据权利要求 7 所述的方法，其中步骤(c)中所述的pH值范围是5-6。

9. 根据权利要求 1-8 中任一项所述的方法，其中步骤(d)中所述的有机溶剂选自：甲苯、二甲苯或二氯甲烷。

10. 根据权利要求 9 所述的方法，其中步骤(d)中所述的有机溶剂为二氯甲烷。

11. 根据权利要求 1-10 中任一项所述的方法，其中步骤(d)中所述的有机碱为三乙胺。
INTERNATIONAL SEARCH REPORT

International application No.
PCT/CN2015/080867

A. CLASSIFICATION OF SUBJECT MATTER

C07D 403/10 (2006.01) i; C07D 257/04 (2006.01) i; C07D 235/26 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

WPI; EPODOC; CPRS; CNKI; CA: biphenyl tetrazole; candesartan; cilexetil; synthesis; biphenyl; tetrazole; synthetic; process

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 103304543 A (DENG, Lili), 18 September 2013 (18.09.2013), claims 1-5, and 4-6</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>CN 103396406 A (WEIHAI DISU PHARMACEUTICAL CO., LTD.), 20 November 2013 (20.11.2013), the whole document</td>
<td>1-11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.
See patent family annex.

- **X** Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search
17 February 2016 (17.02.2016)

Date of mailing of the international search report
04 March 2016 (04.03.2016)

Name and mailing address of the ISA/CN:
State Intellectual Property Office of the P.R. China
No. 6, Xizhucheng Road, Jingshuiqiao
Haidian District, Beijing 100088, China
Facsimile No.: (86-10) 62018451

Authorized officer
LIU, Yanming
Telephone No.: (86-10) 62089194

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Document referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 103304543 A</td>
<td>18 September 2013</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 1203223 A</td>
<td>30 December 1998</td>
<td>ES 2162367 T3</td>
<td>16 December 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6177587 B1</td>
<td>23 January 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0881212 B1</td>
<td>31 October 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69802231 T2</td>
<td>16 May 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 100497300 C</td>
<td>10 June 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 207884 T</td>
<td>15 November 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2238427 A1</td>
<td>26 November 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2238427 C</td>
<td>23 December 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69802231 D1</td>
<td>06 December 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0881212 A1</td>
<td>02 December 1998</td>
</tr>
<tr>
<td>CN 103396406 A</td>
<td>20 November 2013</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
A. 主题的分类

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文献，必要时，指明相关段落</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 103304543 A（邓侧丽）2013年9月18日（2013-09-18）
权利要求1-5，说明书实施例4-6</td>
<td>1-1 1</td>
</tr>
<tr>
<td>X</td>
<td>CN 1203223 A（武田药品工业株式会社）1998年12月30日（1998-12-30）
说明书实施例7-9</td>
<td>1-1 1</td>
</tr>
<tr>
<td>A</td>
<td>CN 103394606 A（威海双熊制药有限公司）2013年11月20日（2013-11-20）
全文</td>
<td>1-1 1</td>
</tr>
</tbody>
</table>

国际检索实际完成的日期

2016年2月17日

国际检索报告邮寄日期

2016年3月4日
<table>
<thead>
<tr>
<th>检索报告引用的专利文件</th>
<th>公布日 (年/月/日)</th>
<th>同族专利</th>
<th>公布日 (年/月/日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 103304543 A</td>
<td>2013年9月18日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 1203223 A</td>
<td>1998年12月30日</td>
<td>ES 2162367 T3</td>
<td>2001年12月16日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6177587 BI</td>
<td>2001年1月23日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0681212 BI</td>
<td>2001年10月31日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69802231 T2</td>
<td>2002年5月16日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 100497300 C</td>
<td>2009年6月10日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 207884 T</td>
<td>2001年11月15日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2238427 AI</td>
<td>1998年11月26日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2238427 C</td>
<td>2008年12月23日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69802231 DI</td>
<td>2001年12月6日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0881212 AI</td>
<td>1998年12月2日</td>
</tr>
<tr>
<td>CN 103396406 A</td>
<td>2013年11月20日</td>
<td>无</td>
<td></td>
</tr>
</tbody>
</table>

表 PCT/ISA/210 (同族专利附件) (2009年7月)