USOORE46404E

as United States

a2 Reissued Patent US RE46,404 E

(10) Patent Number:

Kim et al. 45) Date of Reissued Patent: May 16, 2017
(54) FLASH MEMORY MANAGEMENT METHOD (52) US. CL
CPC GO6F 12/0246 (2013.01); GOGF 3/0679
(71) Applicant: Samsung Electronics Co., Ltd., (2013~91); GO6F 13/4239 (2013.01);
Suwon-si (KR) (Continued)
(58) Field of Classification Search
(72) Inventors: Bum-Soo Kim, Seongnam (KR); CPC oo G06F3/1026/(7)§46(§0(6}g6§2%377%(3)25 gggg
Gui-Young Lee, Yongin-si (KR); 2212/2022; GOGF 3/0616; GOGF 3/0656
Jong-Min Kim, Yongin-si (KR); Continued
Ji-Hyun In, Seongnam (KR); Je-Sung (Continued)
Kim, Newton, MA (US); Sam-Hyuk (56) References Cited

Noh, Seoul (KR); Sang-Lyul Min,
Seoul (KR); Dong-Hee Lee, Seoul
(KR); Jae-Yong Jeong, Hwaseong
(KR); Yoo-Kun Cho, Seoul (KR);
Jong-Moo Choi, Yongjin (KR)

(73) Assignee: SAMSUNG ELECTRONICS CO.,
LTD., Samsung-ro, Yeongtong-gu,
Suwon-si, Gyeonggi-do (KR)

(21) Appl. No.: 14/628,462

(22) Filed: Feb. 23, 2015
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 6,938,116
Issued: Aug. 30, 2005
Appl. No.: 10/029,966
Filed: Dec. 31, 2001

U.S. Applications:
(60) Continuation of application No. 13/151,735, filed on
Jun. 2, 2011, now Pat. No. Re. 45,577, which is a

(Continued)
(30) Foreign Application Priority Data
Jun. 4, 2001 (KR) ceoevnevineercicnne 10-2001-31124
(51) Imt.CL
GO6F 13/42 (2006.01)
GO6F 12/02 (2006.01)
GO6F 3/06 (2006.01)

SEARCH LOG POINTER TABLE
WITH LOGICAL ADDRESS

1402

U.S. PATENT DOCUMENTS

5,266,133 A 11/1993 Taylor et al.
5,388,083 A * 2/1995 Assaretal. ... 365/185.33
(Continued)

FOREIGN PATENT DOCUMENTS

Jp 05-241741 A * 9/1993
Jp 05-282889 A * 10/1993
(Continued)

OTHER PUBLICATIONS

Jim Handy, The Cache Memory Book, Academic Press, 1993, pp.
1-107 and 240-269.

Primary Examiner — Majid A Banankhah
(74) Attorney, Agent, or Firm — Muir Patent Law, PLLC

(57) ABSTRACT

A flash memory management method is provided. Accord-
ing to the method, when a request to write the predetermined
data to a page to which data has been written is made, the
predetermined data is written to a log block corresponding
to a data block containing the page. When a request to write
the predetermined data to the page again is received, the
predetermined data is written to an empty free page in the
log block. Even if the same page is requested to be con-
tinuously written to, the management method allows this to
be processed in one log block, thereby improving the
effectiveness in the use of flash memory resources.

20 Claims, 12 Drawing Sheets

18
ENTRY FOUND?

1403 YES
1S PAGE
AT SAME POSITION
USABLE?.
YES

WRITE TO
CORRESPONDING
PAGE INLOG
BLOCK

1406

TAN
! BEALLOCA
FREE PAGE BE o
ALLOCATED IN LOG,
Cl ALLOCATE LOG BLOCK
'AFTER BLOCK MERGE

ES

BLOCK?
VES
4 WRITETO
1407~ ALLOCATED PAGE WRITE TO PAGE
AT SAME POSITION
1405

UPDATE LOG
POINTER TABLE

1410

US RE46,404 E
Page 2

(52)

(58)

(56)

Related U.S. Application Data

division of application No. 11/848,005, filed on Aug.
30, 2007, now Pat. No. Re. 44,052, which is an
application for the reissue of Pat. No. 6,938,116.

U.S. CL
CPC ..o GOG6F 2212/2022 (2013.01); GO6F
2212/7203 (2013.01)
Field of Classification Search
USPC oo 711/103, 159, 170, E12.008
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
5404485 A * 4/1995 Banccoeeiieinieeninn. 711/202
5,479,638 A 12/1995 Assar et al.
5,485,595 A * 1/1996 Assaretal. ... 711/103
5,528,764 A * 6/1996 Heilooooevvvenreennnn.. 710/113
5,530,828 A 6/1996 Kaki et al.
5,696,929 A * 12/1997 Hasbun etal. ... 711/103
5,717,886 A * 2/1998 Miyauchiccecevenenee 711/103
5,745,418 A 4/1998 Ma et al.
5,778,427 A 7/1998 Hagersten et al.
5,802,554 A 9/1998 Caceres et al.
5845313 A * 12/1998 Estakhri etal. 711/103

5,860,083
5,933,368
5,937,425
5,956,473
5,999,446
6,000,006
6,263,398
6,298,428
6,327,639
6,418,506
6,564,286
6,587,915
6,704,835
6,760,805
6,836,816

2001/0040827
2002/0002652
2002/0144059
2002/0166022
2005/0144358

JP
JP
JP
JP
WO

* cited by examiner

> e

g2z
*

BL*
B2 *
BL*
Bl
B2 *
B2
Al
Al*
Al*
Al*
Al

1/1999
8/1999
8/1999
9/1999
12/1999
12/1999
7/2001
10/2001
12/2001
7/2002
5/2003
7/2003
3/2004
7/2004
12/2004
11/2001
1/2002
10/2002
11/2002
6/2005

Sukegawa 711/103
Ma et al.
Ban

Ma et al.
Harari et al.
Bruce et al.
Taylor et al.
Munroe et al.

.................. 711/103

Asnaashari 711/103
Pashley et al. ... 711/103
DaCosta 711/103
Kim oo, 711/103
Garner

Lasser ..occcovvvvveenvinnnnn, 711/103
Kendall

Dosaka et al.

Takahashiccco....... 711/103
Kendallcccceeevenne 711/118
Suzuki oo 711/103

Conley et al.

FOREIGN PATENT DOCUMENTS

07-154870 A
09-097205 A
10-040175 A
2001-521220 A
WO 99/21063 Al

*
*
*
*
*

6/1995
4/1997
2/1998
11/2001
4/1999

U.S. Patent May 16, 2017 Sheet 1 of 12 US RE46,404 E

FIG. 1
1 2 3
/ I]
FLASH
MEMORY ROM RAM
1
i
4
PROCESSOR -
FIG. 2
DATA BLOCKS
|
LOG BLOCKS r

U.S. Patent May 16, 2017 Sheet 2 of 12 US RE46,404 E

FIG. 3

LOGICAL ADDRESS

LOG BLOCK DATA BLOCK
T own]

CUNALDE

U.S. Patent May 16, 2017 Sheet 3 of 12 US RE46,404 E

FIG. 4

FLASH MEMORY

MAP

LOG BLOCKS

DATA BLOCKS

FREE BLOCKS

U.S. Patent May 16, 2017 Sheet 4 of 12 US RE46,404 E

FIG. 5

FLASH MEMORY

MAP

CHECK POCINT

LOG BLOCKS

DATA BLOCKS

FREE BLOCKS I

U.S. Patent

May 16, 2017 Sheet 5 of 12

LOGICAL
ADDRESS

FIG. 6

LOG POINTER TABLE

ENTRY

ENTRY

ENTRY

ENTRY

FIG. 7

US RE46,404 E

FLASH MEMORY

PAGE

le—— BLOCK ADDRESSING ——}= ADDRESSING +|

log_blk

phy_blk

page #0

page #1

page #2

page #N

U.S. Patent

May 16, 2017

Sheet 6 of 12

FIG. 8

log_blk

phy_blk

page #0

page #1

page #2

page #15

log_blk

phy_blk

US RE46,404 E

FLASH MEMORY

page #0

page #1

page #15

log_blk

phy_blk]

~page #0

page

page #2

page #15

LOG BLOCK)

DATA BLOCK

|

U.S. Patent May 16, 2017 Sheet 7 of 12 US RE46,404 E

FIG. 9

FLASH MEMORY

LOG POINTER TABLE ENTRY

log_blk | phy_blk | page #0
page #1
page #2

LOG BLOCK=

page #15

DATA BLQCK~

U.S. Patent May 16, 2017 Sheet 8 of 12 US RE46,404 E

FIG. 10
DATA BLOCK FREE BLOCK LOG BLOCK
INVALID FREE |- VALID
INVALID FREE INVALID
INVALID FREE :.Q VALID
VALID FREE VALID
VALID -~ FREE FREE
FIG. 11
DATA BLOCK LOG BLOCK

INVALID VALID

INVALID VALID

VALID -~ _FREE

VALID FREE

VALID — FREE

U.S. Patent May 16, 2017 Sheet 9 of 12 US RE46,404 E

FIG. 12

VA ST S,
SIS

WRITE
ERASE

YALSSLSILY.

SIS LIS

7

SALLS LA I

SIMPLE MERGE
SWITCH MERGE
COPY MERGE

SWITCH MERGE
COPY MERGE

FREE PAGE
VALID PAGE
e INVALID PAGE

U.S. Patent May 16, 2017 Sheet 10 of 12 US RE46,404 E

FIG.

READ

13

WITH LOGICAL ADDRESS

SEARCH LOG POINTER TABLE] __ 4304

NO
IS ENTRY FOUND?
SEARCH FOR ENTRY }—1303
1304
IS REQUESTED NO
PAGE FOUND?
1306
/
READ PAGE READ PAGE
IN LOG BLOCK IN DATA BLOCK
-

(20

U.S. Patent May 16, 2017 Sheet 11 of 12 US RE46,404 E

FIG. 14

(WRITE)

) 4

SEARCH LOG POINTER TABLE 1401
WITH LOGICAL ADDRESS

IS
ENTRY FOUND?

1408

IS PAGE
AT SAME POSITION
USABLE?

NEW LOG BLOCK YES

BE ALLOCATED?

WRITE TO

CORRESE DG ALLOCATE LOG BLOCK
BLOCK AFTER BLOCK MERGE
1461 WRITE TO 2l
1407-”| ALLOCATED PAGE WRITE TO PAGE
AT SAME POSITION
1405 |
~ 1410
UPDATE LOG
POINTER TABLE

U.S. Patent

May 16, 2017

Sheet 12 of 12

FIG. 15

ARE ALL
PAGES IN LOG BLOCK

SIMPLE NO
MERGEl 1508
| i}
| WRITE RECOVERY !
| INFORMATION |
b e e e - e o
L 1507
/

ALLOCATE FREE BLOCKS
TO COPY VALID PAGES
OF LOG BLOCK

1508
£

COPY REMAINING
UNCOPIED PAGES FROM
DATA BLOCK

1509
!

UPDATE ADDRESS CONVERSION
INFORMATON SO THAT FREE
BLOCK IS NEW DATA BLOCK

1510
W]

ERASE LOG BLOCK AND
DATA BLOCK AND UPDATE
FREE BLOCK LIST

LOCATED AT SAME
POSITIONS?

ARE ALL
PAGES IN LOG BLOCK
VALID?

SWITCH
1503
L

' WRITE RECOVERY
| INFORMATION

US RE46,404 E

! WRITE RECOVERY |
| INFORMATION I

______ .

| I
I 1512
/

READ VALID PAGES OF
DATA BLOCK AND COPY
THEM TO LOG BLOCK

INFORMATON SO THAT LOG
BLOCK IS NEW DATA BLOCK

UPDATE ADDRESS CONVERSION

1504

ERASE LOG BLOCK TO
UPDATE FREE BLOCK LIST

— 1505

END

US RE46,404 E

1
FLASH MEMORY MANAGEMENT METHOD

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue; a claim printed with strikethrough
indicates that the claim was canceled, disclaimed, or held
invalid by a prior post-patent action or proceeding.

This application is a continuation reissue application of
application Ser. No. 13/151,735 filed on Jun. 2, 2011, which
is a divisional reissue application of application Ser. No.
11/848,005 filed Aug. 30, 2007, now U.S. Pat. No. Re.
44,052, which is a veissue application of application Ser. No.
10/029,966 filed Dec. 31, 2001, now U.S. Pat. No. 6,938,
116, issued on Aug. 30, 2005. Notice: More than one reissue
application has been filed for the reissue of U.S. Pat. No.
6,938,116. The reissue applications are this application,
application Ser. No. 13/151,735, application Ser. No.
11/848,005 (now issued as U.S. Pat. No. Re. 44,052), and
application Ser. No. 13/134,225 (now issued as U.S. Pat. No.
Re. 45,222), all of which are reissue applications of appli-
cation Ser. No. 10/029,966 (now U.S. Pat. No. 6,938,116).
Application Ser. No. 11/848,005 is a reissue application of
application Ser. No. 10/029,966; both Ser. No. 13/151,735
and Ser. No. 13/134,225 are divisional reissue applications
of application Ser. No. 11/848,005, and this application is a
continuation reissue application of Ser. No. 13/151,735.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a flash memory, and more
particularly, to a flash memory management method for use
in a flash memory-based system. The present application is
based on Korean Patent Application No. 2001-31124 filed
Jun. 4, 2001.

2. Description of the Related Art

Flash memories are a special type of a nonvolatile
memory capable of electrically erasing and programming
data. Flash memory based storage devices have low power
consumption and small size compared to magnetic disc
memory based devices. Thus, since flash memories can be
substituted for magnetic disk memories, much research and
development is actively in progress. Flash memories are
expected to receive considerable attention as storage devices
for mobile computing devices such as digital cameras,
mobile phones, or personal digital assistants (PDAs).

In magnetic disc drives, new data can be written over
previous old data. However, in flash memories, a block
needs to be erased before it is rewritten with new data; that
is, memory cells are returned to an original state in which
data can be written. This operation is called “erase”. An
erase operation typically requires much more time than a
write operation. Furthermore, since the erase operation is
performed in blocks whose size is much larger than what the
write operation requires, even a portion requested not to be
written to may be erased. In this case, the unnecessarily
erased portion needs to be reclaimed through a write opera-
tion. In the worst scenario, a request to write (overwrite) data
requires one erase operation and write operations to recover
the portion erased by the erase operation. Due to inconsis-
tency between units on which erase and write commands are
executed, write performance is significantly lower than read
performance. Furthermore, the write performance of a flash

10

15

20

25

30

35

40

45

50

55

60

65

2

memory is lower than that of a magnetic disc based storage
device that inevitably involves a delay due to mechanical
operation. Thus, improving write performance is essential in
designing a flash memory based device.

U.S. Pat. No. 5,388,083 proposes a content addressable
memory (CAM) system for converting a logical address
requested by a user to a physical address in a flash memory
while avoiding an erase cycle by writing altered data into an
empty block in order to prevent a delay due to erase-before-
write. However, implementation of the CAM system
requires additional costly circuits. U.S. Pat. No. 5,485,595
proposes an approach which involves writing a logical
address into an extra region of each page and sequentially
comparing each of the logical addresses while avoiding an
erase cycle by writing altered data into an empty space upon
a write request. However, if a unit of read operation is large
like in a NAND-type flash memory, the address conversion
mechanism requires a large amount of time in reading
address conversion information scattered around the flash
memory, thereby degrading system performance.

U.S. Pat. No. 5,845,313 proposes a flash memory storage
architecture in which a linear address conversion table for
performing a direct address conversion is constructed in a
special RAM by scanning a logical address stored in a flash
memory during a system reset. However, a RAM of a large
storage capacity is required to store the address conversion
table. For example, to store an address conversion table of
a flash memory based storage device having a storage
capacity of 32 MB and a page size of 512 bytes, 128 KB of
RAM is required assuming that 2 bytes are provided for each
of 65,536 pages. The storage capacity is too large for a
small-scale system having few resources such as mobile
equipment.

U.S. Pat. No. 5,404,485 proposes an approach for allo-
cating a new block (replacement block) for write operation
and writing data to the allocated block. However, since a
new block continues to be allocated for write operation, a
plurality of different versions of blocks to which the same
page is written exist. That is, at least one replacement block
needs to be provided for every block, thereby significantly
reducing the capacity of a flash memory. A page to be written
to a new block must be written at the same position as the
position at which the page was written to the previous block.
When the page is frequently updated but the remaining
pages are rarely updated, only the content of the specific
page is changed while the remaining pages contain a plu-
rality of the same replacement blocks, thereby wasting a lot
of storage space in a flash memory. Thus, this approach is
not suitable for small-scale systems such as mobile equip-
ment.

SUMMARY OF THE INVENTION

To solve the above problems, it is an object of the present
invention to provide a flash memory based system and
management method therefor capable of improving the
performance of a flash memory.

It is another object of the present invention to provide a
flash memory based system and management method there-
for, which allow for consistent data recovery in an emer-
gency such as power cut-off.

It is still another object of the present invention to provide
a flash memory based system and management method
therefor, which prevent degradation of system performance
in an environment where data updates to a specific page are
frequently made such as a DOS file system based on a file
allocation table (FAT).

US RE46,404 E

3

Accordingly, to achieve the above objects, the present
invention provides a method for writing predetermined data
to a flash memory. The method includes the steps of: (a)
receiving a request to write the predetermined data to a page
to which data has been written; (b) writing the predeter-
mined data to a log block corresponding to a data block
containing the page; (c) receiving a request to write the
predetermined data to the page again; and (d) writing the
predetermined data to an empty free page in the log block.

Preferably, step (b) may include the step (b11) of writing
the predetermined data to an empty free page or the steps of
(b21) allocating the log block; and (b22) writing the prede-
termined data to an empty page at the same position as the
requested page in the data block.

In another embodiment, a method for writing predeter-
mined data to a flash memory includes the steps of: (a)
receiving a request to write the predetermined data to a page;
(b) allocating a log block 1-1 corresponding to a first data
block containing the page; (c¢) writing the predetermined
data to an empty page in the log block 1-1; (d) receiving a
request to write the predetermined data to the page again;
and (e) writing the predetermined data to an empty free page
in the log block 1-1.

Preferably, step (b) comprises the steps of: (bl) perform-
ing a block merge to create a third data block based on a
second data block and a second log block corresponding to
the second data block; and (b2) allocating a free block
obtained by performing an erase operation on the second
data block as the log block 1-1.

Preferably, step (b1) is performed when a free block to be
allocated as the log block 1-1 does not exist or when all
pages of the existing log block corresponding to the first data
block have been used.

More preferably, step (b1) may include the step of (b11)
performing a switch merge to change the second log block
to the third data block when pages of the second log block
are arranged in the same order that pages of the second data
block are arranged, and the pages of the second log block
correspond one-to-one to the pages of the second data block.
Step (b1) may include the step of (b12) performing a copy
merge to copy corresponding pages of the second data block
to free pages in the second log block and create the third data
block when the pages in the second log block are requested
to be written only once. Step (bl) may include the step of
(13) performing a simple merge to copy the latest pages in
the second log block to free pages of a free block to which
data has not been written and copy a corresponding page of
the second data block to the remaining free pages thereof,
thereby creating the third data block.

Most preferably, step (e) includes the steps of: (el)
allocating a new log block 1-2 if a free page does not exist
in the log block 1-1; and (e2) writing the predetermined data
to a free page in the log block 1-2. Step (el) may include the
steps of: (e1l) performing a switch merge to change the log
block to a second data block when pages of the log block 1-1
are arranged in the order in which pages of the first data
block are arranged and the pages of the log block 1-1
correspond one-to-one to the pages of the first data block,
and (el2) allocating a free block obtained by performing an
erase operation on the first data block as the log block 1-2.
Step (el) may include the steps of (e21) performing a copy
merge to copy corresponding pages in the first data block to
a free page in the log block 1-1 when pages in the log block
1-1 are requested to be written only once; and (e22) allo-
cating a free block obtained by performing an erase opera-
tion on the first data block as the log block 1-2. Step (el)
may include the steps of: (e€31) performing a simple merge

25

40

45

4

to copy the latest pages in the log block 1-1 to free pages of
a free block and copy a corresponding page of the first data
block to the remaining free pages thereof, thereby creating
a second data block; and (e32) allocating a free block
obtained by performing an erase operation on the first data
block or the log block 1-1 as the log block 1-2.

Preferably, step (e2) may include the step of (e21) writing
the predetermined data to a free page at the same position as
the requested page in the data block.

The present invention also provides a method for reading
predetermined data from a flash memory. The method
includes the steps of: (a) searching a log pointer table for an
entry in which a block address portion of a logical address
of a requested page is recorded; (b) checking whether the
logical address of the requested page exists in the found
entry; and (c) referring to a physical address of a corre-
sponding log block recorded in the found entry and a
position at which the logical address of the requested page
is written to the found entry and accessing a corresponding
page of the log block. Preferably, in step (c), the correspond-
ing page in the log block is accessed at the same position as
the position to which the logical address of the requested
page is written to the found entry.

The present invention also provides a method for man-
aging a flash memory including a data block and a log block
for writing data for updating the data block. The method
includes the steps of (a) when pages of a first data block are
arranged in the same order in which pages of a first log block
corresponding to the first data block are arranged and all the
pages of the first data block map one-to-one with the pages
of'the first log block, changing the first log block to a second
data block; and (b) updating address conversion informa-
tion.

In another embodiment, a method for managing a flash
memory including a data block and a log block for writing
data for updating the data blocks includes the steps of: (a)
when pages in a first log block are requested to be written
only once, copying a corresponding page of a first data block
to a free page of the first log block in order to create a second
data block; and (b) updating address conversion informa-
tion.

In another embodiment, a method for managing a flash
memory including a data block and a log block for writing
data for updating the data block includes the steps of: (a)
copying the latest pages in a first log block to a free block
to which data has not been written and copying a corre-
sponding page of a first data block corresponding to the first
log block to a remaining free page to create a second data
block; and (b) updating address conversion information.

Preferably, prior to step (a), the flash memory manage-
ment method further includes the step of (a0) writing
recovery information for recovering data in the event of a
system failure during the step (a) or (b).

Preferably, the flash memory management method further
includes the step of (c) recovering data referring to the
recovery information in the event of a system failure during
the step (a) or (b).

The recovery information includes a list of free blocks, a
list of log blocks, and a log pointer table which is the data
structure for managing the log blocks. The log pointer table
contains log pointer table entries corresponding one-to-one
to the log blocks, each entry mapping a physical address of
alog block to a logical address of a corresponding data block
and storing logical addresses of requested pages of a data
block in the order in which pages of a corresponding log
block are physically arranged.

US RE46,404 E

5

In another embodiment, a method for managing a flash
memory including a data block and a log block for writing
data for updating the data blocks includes the steps of: (a)
allocating a predetermined region to a flash memory and
writing lists of data blocks and log blocks and a data
structure for managing the log blocks to the predetermined
region as recovery information; (b) checking states currently
being written to the flash memory based on the recovery
information in the event of a system failure to determine
whether an error occurs; and (c) if the error occurs, recov-
ering data based on the recovery information.

BRIEF DESCRIPTION OF THE DRAWINGS

The above objects and advantages of the present invention
will become more apparent by describing in detail preferred
embodiments thereof with reference to the attached draw-
ings in which:

FIG. 1 is a block diagram of a flash memory based system
according to a preferred embodiment of the present inven-
tion;

FIG. 2 is a reference diagram for explaining blocks for
storing ordinary data provided in the flash memory of FIG.
1 according to the present invention;

FIG. 3 is reference diagram for explaining a read opera-
tion for a log block and a data block;

FIG. 4 is a reference diagram for explaining sections into
which the flash memory of FIG. 1 is divided according to an
embodiment of the present invention;

FIG. 5 is a reference diagram for explaining sections into
which the flash memory of FIG. 1 is divided according to
another embodiment of the present invention;

FIG. 6 is a reference diagram for explaining a log pointer
table;

FIG. 7 shows the structure of an entry of a log pointer
table;

FIG. 8 shows the relationship between a log pointer table
and a flash memory;

FIG. 9 is a reference diagram for explaining an erasable
block;

FIG. 10 is a conceptual diagram of a simple merge;

FIG. 11 is a conceptual diagram of a copy merge;

FIG. 12 shows changes in blocks when a block merge
according to the present invention is performed;

FIG. 13 is a flowchart of a read operation according to the
present invention;

FIG. 14 is a flowchart of a write operation according to the
present invention; and

FIG. 15 is a flowchart of a block merge operation.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1, a flash memory based system
includes a flash memory 1, a read-only memory (ROM) 2,
a random access memory (RAM) 3, and a processor 4. In
combination with program codes typically recorded in the
ROM 2, the processor 4 issues a series of read or write
commands to read data from and write data to the flash
memory 1 or the RAM 3. Write and read operations are
performed on the flash memory 1 in accordance with a flash
memory management method according to the present
invention. The ROM 2 and the RAM 3 store application
program codes executed by the processor 4 or related data
structures.

Referring to FIG. 2, the flash memory 1 includes a
plurality of data blocks and log blocks corresponding to at

10

15

20

25

30

35

40

45

50

55

60

65

6

least some of the plurality of data blocks. A data block is a
block for storing any ordinary data, and a log block is a
block provided for recording modified data if a predeter-
mined part of a data block is to be modified. Thus, a plurality
of log blocks corresponding to the plurality of data blocks
contain modified pages of the corresponding data blocks.
Pages stored in the log blocks have priority over the coun-
terparts stored in the corresponding data blocks to be
referred to. In this specification, the pages having first
priority are called “valid pages”, and pages ignored by the
valid pages even as physically valid data is recorded in the
ignored pages are called “invalid pages” in a logical sense.

Referring to FIG. 3, upon a request of a user to read a
predetermined page at a predetermined logical address, the
processor 4 refers to a log pointer table recorded in the RAM
3 to check whether a log block corresponding to the prede-
termined page exists. If a corresponding log block exists, a
check is made as to whether the requested page is validly
stored in the log block. If the requested page is validly stored
in the log block, the page stored in the log block is read. If
not, a corresponding page stored in the data block corre-
sponding to the log block is read. The log pointer table will
be described below.

FIG. 4 is a reference diagram showing regions into which
the flash memory 1 is divided according to an embodiment
of the present invention. Referring to FIG. 4, the flash
memory 1 is divided into a map region, a log block region,
a data block region, and a free block region. The map region
stores address conversion information, the log block region
is provided for log blocks, the data block region is provided
for data blocks to store ordinary data, and the free block
region is provided for allocating log blocks or data blocks.
Here, the flash memory 1 is logically divided to form the
four regions. Thus, physically, the four regions, in particular,
the data block region, the log block region, and the free
block region could discontinuously exist in the flash
memory 1 in several scattered regions.

FIG. 5 is reference diagram showing regions into which
the flash memory 1 is divided according to another embodi-
ment of the present invention. Referring to FIG. 5, the flash
memory 1 is divided into a map region, a check point region,
a log block region, a data block region, and a free block
region. In this embodiment, the check point region is addi-
tionally provided. Recovery information required for data
recovery is recorded in the check point region. Similar to the
regions shown in FIG. 4, the map region stores address
conversion information, the log block region is provided for
allocating log blocks, the data block region records ordinary
data, and the free block region is provided for allocating log
blocks or data blocks. The address conversion information
and the recovery information stored in the map region and
the check point region, respectively, will be described below
in detail.

The log pointer table refers to a data structure for man-
aging log blocks. The log pointer table contains a logical
address of a data block, a physical address of a correspond-
ing log block, and offset values (a logical address of a
requested page) of updated pages in the corresponding data
block arranged in the same order in which pages in the log
block are physically arranged. According to the present
invention, the processor 4 scans a log block region to
construct the log pointer table in the RAM 3. Referring to
FIG. 6, the log pointer table contains entries corresponding
to each of the log blocks. Upon receiving a request to read
data from or write data to a specific location in the flash
memory 1 along with a logical address of a predetermined

US RE46,404 E

7

page, the processor 4 refers to the log pointer table to access
a log block or a data block depending on the presence of a
corresponding entry.

FIG. 7 shows the structure of a log pointer table entry.
Referring to FIG. 7, the log pointer table entry contains a
logical address log blk of a data block and a physical
address phy_blk of a corresponding log block. Also, the log
pointer table entry records logical addresses page #0,
page#l, . . ., page #N of corresponding pages in the log
block in an order in which pages in the data block are
recorded.

For example, assuming that a block contains sixteen
pages and a logical address is 02FF (hexadecimal number),
the first three digits “02F” denote a block address and the
last digit “F”” denotes an offset value of a requested page in
a log block. Thus, a check is made as to whether 02F exists
among logical addresses log_blk stored in the logical pointer
table to confirm the presence of a corresponding log block.
If the corresponding log block exists, it is checked whether
the logical address 02FF of the requested page or the offset
value F is recorded in the corresponding entry to locate an
updated page in the log block. For example, if page #0 is F,
the requested page is recorded in the first physical page in
the log block.

In this way, a portion of a requested logical address, that
is, a block address portion thereof, is used to check whether
a log block exists and access the block. This technique is
called “block addressing”. Then, the entire logical address
being requested or an offset value is used to access a page
in the corresponding log block, which is called “page
addressing”. Thus, the present invention adopts both block
addressing and page addressing to enable the same page
updated many times to be recorded in one log block.

FIG. 8 is a reference diagram showing the relationship
between the log pointer table and the flash memory 1. As
shown in FIG. 8, the logical address log_blk of a data block
is used to search for a log block corresponding to the data
block, and then a physical address phy_blk is used to find a
location to which the corresponding log block is written.
Furthermore, according to the present invention, logical
addresses page #0, page #1, . . . , page #15 of pages in the
corresponding log block are written to the log pointer table
entry. In this embodiment, each block contains sixteen
pages.

Basically, updated pages are written to the log block at the
same positions as those at which the corresponding pages
are located in the data block. Actually, if an updated page is
first written to the log block, the updated page may be
written at the same position as the corresponding page of the
data block. However, if the updated page is to be updated
again, it is not always possible to be written at the same
position as the corresponding page of the data block. That is,
if the predetermined page in the corresponding data block is
updated once again before updating the remaining pages in
the data block once, the predetermined page is written to an
empty space of the log block.

FIG. 9 is a reference diagram for explaining an erasable
block. If all pages in a data block are updated only once,
pages of a log block map one-to-one with those of the data
block. In this case, since the log block contains all the
content of the data block, data loss does not occur even if the
data block is erased. The (entirely shadowed) data block
where valid data does not exist any more is called an
“erasable block™. The erased block is called a “free block™.
The erasable block can be erased any time, and the free
block can be allocated as a data block or a log block when
necessary for the application.

10

15

20

25

30

35

40

45

50

55

60

65

8

Meanwhile, the present invention involves performing a
block merge. The block merge is performed when a write
operation is repeated so that a page that can be written does
not exist in the log block. In this case, the log block and the
corresponding data block are merged to create a new data
block while erasing the previous log block to be a free block.
In particular, a block merge performed when all pages in a
data block are updated only once to arrange the pages in the
data block in the order in which pages are located in the log
block is called a “switch merge”.

In contrast, if the page arrangement in a log block is not
the same as that in a corresponding data block, a simple
merge is performed. Furthermore, the simple merge is
performed when all pages of the log block are currently
written or read so a new log block needs to be allocated for
a newly requested write operation. In this case, the log block
to be merged may have a free page.

If all the pages in a log block are updated only once,
empty pages are filled with corresponding pages of a data
block to change the log block to the data block. This is called
a “copy merge”. That is to say, there are three types of block
merges; a switch merge, a simple merge, and a copy merge.

As described above with reference to FIG. 9, the switch
merge is performed by changing a log block in which all
pages of a corresponding data block are updated only once
to a data block. This change is made by updating address
conversion information without copying of data that have
been written to the data block or the log block. That is,
address conversion information recorded in a map region is
updated so that the corresponding log block is mapped to a
logical address requested by the user. The map region stores
address conversion information for every block to enable
block addressing. Here, an invalid page refers to a page
ignored by valid pages, and in actual implementation, the
invalid page may be physically valid.

As shown in FIG. 10, a simple merge is performed to
create a new data block by writing valid pages of a data
block and a corresponding log block at the same positions in
a new free block as the positions at which the valid pages
were written to the data block and the log block. Thus, the
merged data block and the log block can be erasable blocks.

As shown in FIG. 11, a copy merge is performed by
copying valid pages written to the existing data block to free
pages in a corresponding log block. The existing data block
is changed to an erasable block. As described, invalid pages
used in the block merge are to pages not firstly referred to,
and in actual implementation, they may be physically valid
pages.

FIG. 12 shows changes in blocks as a block merge
according to the present invention is performed. Referring to
FIG. 12, a free block is changed to a log block or a data
block. A log block is changed to a data block through a
switch merge or a copy merge or to an erasable block
through a simple merge. A data block is changed to an
erasable block through a switch merge, a copy merge, or a
simple merge. An erasable block is erased to be a free block
again.

To perform a block merge, lists for free blocks and
erasable blocks residing in the flash memory 1 are required.
The lists for free blocks and erasable blocks refer to a data
structure recorded in the RAM 3 along with a log pointer
table. The lists may be recorded in the map region and the
check point region of the flash memory 1.

A list of free blocks, a list of erasable blocks, and a log
pointer table must be reconstructed in the RAM 3 during a
system reset. The check point region is allocated according
to an embodiment of the present invention for recording

US RE46,404 E

9

recovery information required for quick and thorough recov-
ery of these data structures. If the check point region is
provided, the list of free blocks, the list of erasable blocks,
and the list of log blocks described above are stored in the
check point region as recovery information. In particular, the
check point region also stores a plan log that lists which type
of block merge is to be performed and changes in blocks as
a result of the block merge in order to prevent loss of
information due to an overwhelmed system, unexpected
power outage and the like, which may occur during the
block merge. More specifically, the plan log contains the
type of block merge to be performed, and physical addresses
of a block changed from a free block to a data block, of a
block changed from a data block to a free block, and of a
block changed from a log block to a free block.

Furthermore, the check point region stores information
necessary for construction of the address conversion infor-
mation such as a location where address conversion infor-
mation is stored. The location of the check point region itself
is recorded in a predefined block in the flash memory 1.

Based on the above configurations, a method for flash
memory management according to a preferred embodiment
of the present invention will now be described. For ease of
understanding, the flash memory management method is
divided into a method of constructing and reconstructing a
data structure upon a system startup, a method for reading
data from the flash memory 1, and a method for writing data
to the flash memory 1.

First, a flash memory management method used during a
system startup means a method for constructing or recon-
structing a data structure. That is, the method involves
constructing address conversion information as well as data
structures including a list of free blocks, a list of erasable
blocks, a list of log blocks, and a log pointer table for write
and read operations, and examining the integrity of the
constructed information to reconstruct the data structures
based on recovery information if reconstruction is needed.
When the system of FIG. 1 is initialized, the processor 4
must construct the log pointer table and the lists of free
blocks, erasable blocks and log blocks. To accomplish this,
the processor 4 reads recovery information from most
recently written pages stored in the check point region of the
flash memory 1. This is because, if the recovery information
is sequentially written, most recent recovery information is
written to a page located immediately before a free page
(empty page) firstly found in the check point region. How-
ever, the order in which the recovery information is written
may be changed when necessary for the application as long
as it is possible to identify the most recently written page.

The log pointer table is constructed by scanning all pages
of each log block designated in the recovery information to
read a logical address stored in a logical block address
portion for each page. Since the map region also sequentially
stores address conversion information, a lastly written page
(the page immediately before a first free page) is considered
to be changed most recently, and address conversion infor-
mation can be constructed based on the lastly written page.
The free block list and the erasable block list can also be
readily reconstructed based on the recovery information.

Next, the constructed information including the log
pointer table and the lists of free blocks, erasable blocks and
log blocks is verified by referring to a plan log. That is, it
should be verified whether the constructed information is the
same as real conditions when the operation of the system is
stopped during a block merge. More specifically, if the
system ceases to operate upon writing recovery information
to the check point region, upon performing a block merge,

10

15

20

25

30

35

40

45

50

55

60

65

10

upon updating address conversion information in the map
region, and upon performing an erase operation, verification
is needed. For each case, it is checked whether the con-
structed information is consistent with real conditions, and
if not, the constructed information is reconstructed as fol-
lows:

1. When the system ceases to operate upon writing
recovery information to the check point region, a first free
page from the recovery information written in the check
point region is located to check whether the found page is
actually an empty page by reading data stored therein. If the
free page is not empty, it is determined that the system
ceased to operate while writing recovery information to the
check point region. Since this occurs before actually writing
data, it is not necessary to perform a recovery procedure, and
finally recorded recovery information is ignored.

2. When the system ceases to operate during a block
merge, it is checked whether data has been properly written
to all pages of a block listed in the plan log as a block to be
changed to a data block. If a page, if any, is not valid, it is
determined that the system ceased to operate during a block
merge. In this case, a block merge is performed again to
recover data appropriately.

3. When the system ceases to operate while updating
address conversion information, a logical address is read
from a block listed in the plan log as a block to be changed
to a data block to check whether the logical address is
consistent with the information stored in the map region. If
not, it can be determined that the system ceased to operate
while updating the address conversion information. In this
case, data can be appropriately recovered by modifying the
address conversion information based on the logical address
read from the data block and a corresponding physical
address.

4. When the system ceases to operate during an erase
operation, it is checked whether blocks listed in the plan log
as a block to be changed to a free block are actually empty
blocks. If a block is a not free block (if all pages in the block
are not empty), an erase operation is performed on the
written block again.

When required data structures are constructed and then
integrity verification is completed in the manner previously
described through a flash memory management method used
upon system startup, read and write operations can be
performed.

FIG. 13, is a flowchart of a read operation according to the
present invention. The processor 4 searches for a log block
in which a page being requested exists, and reads the
requested page from the found log block. More specifically,
the processor 4 sequentially searches a log pointer table for
an entry corresponding to a logical address of a requested
page (step 1301). Since the logical address of the requested
page consists of a block addressing portion and a page
addressing portion, an entry is searched for by referring to
the block addressing portion. If a matched entry is found
(step 1302), it is checked whether the requested page exists
in the found entry (step 1303). If the requested page is found,
the page is read (step 1305). In this case, if two or more
identical pages are found, a lastly found page among those
except for one existing at the position of the same offset
value is determined to be the latest one, and that page is read.
If a match is not found in the step 1302, or if the requested
page does not exist in a log block (step 1304), a correspond-
ing page of a data block is read based on the requested
logical address (step 1306).

FIG. 14 is a flowchart of a write operation according to the
present invention. The processor 4 firstly searches for a log

US RE46,404 E

11

block in which a page being requested exists. If the log block
is found, it checks whether a page in the log block at the
same position as the requested page is usable. If the corre-
sponding page is usable, writing is performed on the page.
If it is not usable, writing is performed on another page that
is usable in the log block. If a usable page does not exist in
the log block, a new log block is allocated to perform writing
at the same position.

More specifically, the processor 4 searches a log pointer
table for an entry based on a logical address of a page being
requested (step 1401). If the entry is found (step 1402),
which means that a log block corresponding to the logical
address exists, an entry is searched to check whether a page
having the same offset value as the requested page is usable
(step 1403). If the page is usable, a write operation is
performed on the corresponding page (step 1404). Here, the
usable page refers to an empty page (free page) that has not
been written to. The presence of a free page can be deter-
mined by whether a page is valid (the page is firstly referred
to or data is written to the page). Next, a physical address of
the page on which the write operation has been performed
corresponding to the logical address is written to the corre-
sponding entry of the log pointer table. In this case, the write
request by the user is completed by one write operation in
the flash memory 1.

If the corresponding log block is found, but the page
having the same offset has been used (step 1403), it is
checked whether another free page in the log block can be
allocated (step 1406), and a write operation is performed on
the allocated free page (step 1407). If two or more free pages
exist, the log block is sequentially searched from the start to
allocate a page closest to the page corresponding to the
requested page to which data have been already written.
Then, a physical address of the allocated page corresponding
to the logical address of the requested page is written to the
corresponding entry of the log pointer table (step 1405).

If an entry corresponding to the requested page is not
found as a result of searching the log pointer table, it is
checked whether a new log block can be allocated (step
1408). If free blocks to be allocated as the new log block
exist, one of the free blocks is allocated as the new log block
(step 1408). If a free block does not exist, the free block is
created by performing a block merge and then allocated as
the new log block (step 1409). A write operation is per-
formed on a page in the allocated log block having the same
offset value as the requested page (step 1410). Then, a
corresponding entry is created in the log pointer table (step
1405).

FIG. 15 is a flowchart of a block merge operation.
Referring to FIG. 15, a block merge is performed in different
ways depending on the arrangement of pages in a log block.
More specifically, the processor 4 checks whether all pages
of a log block are located at the same positions as those of
a corresponding data block (step 1501). If so, it is next
checked whether all the pages of the log block are valid (step
1502). If all pages in the log block are arranged in the same
order in which those of the data block are arranged and they
are valid, a switch merge is performed. Before performing a
switch merge, the processor 4 writes recovery information to
the check point region (step 1503). The step 1503 may be
omitted according to the choice of a system designer. To
perform a switch merge, the processor 4 updates address
conversion information stored in the map region so that the
log block is a new data block (step 1504). That is, if the log
block is changed to the new data block, since a physical
address corresponding to the logical address is changed in
view of the user, the address conversion information must be

10

15

20

25

30

35

40

45

50

55

60

65

12

updated. Actually, the updated address conversion informa-
tion can be written to a first free page in the map region.
Similarly, the map region sequentially stores the address
conversion information, and if a free page does not exist, a
free block is allocated for the map region to write the
information to the allocated free block. The allocation of a
free block is made in the same manner as described with
reference to FIG. 14. Then, the data block is changed to an
erasable block, the data block is erased, and a free block list
recorded in the check point region is updated (step 1505).

If any pages in the log block are not arranged at the same
position as a corresponding page of the data block, a simple
merge is performed. Similarly, the processor 4 writes recov-
ery information to the check point region before performing
a simple merge (step 1506). The step 1506 may be omitted
according to the choice of the system designer. Then, free
blocks are allocated to copy valid pages of the log block to
some of the free blocks (step 1507). Corresponding pages of
the data block are copied to the remaining free blocks (step
1508). Address conversion information in the map region is
updated so that the free blocks are new data blocks (step
1509). The allocation of free blocks is made in the manner
described with reference to FIG. 14. The log block and the
data block are changed to an erasable block, the log block
and the data block are erased, and a free block list recorded
in the check point region is updated (step 1510).

If all pages of the log block are arranged in the same
manner in which those of the data block are arranged but
some of the pages in the data block do not exist in the log
block, a copy merge is performed. Similarly, the processor
4 writes recovery information to the check point region
before performing a copy merge (step 1511).

The step 1511 may be omitted according to the choice of
the system designer. Then, valid pages of the data block are
read to copy them to the log block (step 1512). Address
conversion information stored in the map region is updated
so that the log block is a new data block (step 1504), and
then the data block is erased and a free block list stored in
the check point region is updated (step 1505).

In this way, if the log block for updating data is not found,
a free block is allocated, the free block is changed to a log
block, and writing to the log block is performed. If only one
free block remains so it is not allocated as a log block, one
of the existing log blocks is arbitrarily selected to perform a
block merge, thereby creating a new free block. Then, the
free block is allocated as a log block. In this invention, costs
required for a block merge and usability of blocks should be
appropriately considered. The usability of blocks may vary
depending on the type of application program to be
executed. Replacement algorithms may not be specified in
this invention. Thus, the present invention may be imple-
mented using common replacement algorithms such as least
recently used (LRU).

As described above, the present invention provides a
method for flash memory management for improving the
performance of a flash memory. Conventionally, in order to
update a part of one data block, the remaining parts are also
copied or a large amount of address conversion information
is needed. However, the present invention allows the same
page to be continuously updated within one log block,
thereby improving the effectiveness of flash memory
resources. Furthermore, the present invention allows data to
be recovered consistently in the event that a system mal-
functions due to power outage during a block merge.

What is claimed is:

[1. A method for writing predetermined data to a flash
memory, the method comprising the steps of:

US RE46,404 E

13

(a) receiving a request to write the predetermined data to
a page to which data has been written;

(b) writing the predetermined data to a log block corre-
sponding to a data block containing the page;

(c) receiving a request to write the predetermined data to
the page again; and

(d) writing the predetermined data to an empty free page
in the log block.]

[2. The method of claim 1, wherein the step (b) comprises
the step (b11) of writing the predetermined data to an empty
free page.]

[3. The method of claim 1, wherein the step (b) comprises
the steps of:

(b21) allocating the log block; and

(b22) writing the predetermined data to an empty page at
the same position as the requested page in the data
block.]

[4. The method of claim 1, wherein the data block is
configured to store data and the log block is configured to
store data which has been modified.]

[5. A method for writing predetermined data to a flash
memory, the method comprising the steps of:

(a) receiving a request to write the predetermined data to

a page;

(b) allocating a log block 1-1 corresponding to a first data
block containing the page;

(c) writing the predetermined data to an empty page in the
log block 1-1;

(d) receiving a request to write the predetermined data to
the page again; and

(e) writing the predetermined data to an empty free page
in the log block 1-1.]

[6. The method of claim 5, wherein the step (b) comprises

the steps of:

(b1) performing a block merge to create a third data block
based on a second data block and a second log block
corresponding to the second data block; and

(2) allocating a free block obtained by performing an
erase operation on the second data block as the log
block 1-1.]

[7. The method of claim 6, wherein the step (bl) is
performed when a free block to be allocated as the log block
1-1 does not exist.]

[8. The method of claim 6, wherein the step (bl) is
performed when all pages of the existing log block corre-
sponding to the first data block have been used.]

[9. The method of claim 6, wherein the step (b1) com-
prises the step of (b11) performing a switch merge to change
the second log block to the third data block when pages of
the second log block are arranged in the same order that
pages of the second data block are arranged, and the pages
of the second log block correspond one-to-one to the pages
of the second data block.]

[10. The method of claim 6, wherein the step (bl)
comprises the step of (b12) performing a copy merge to copy
corresponding pages of the second data block to free pages
in the second log block and create the third data block when
the pages in the second log block are requested to be written
only once.]

[11. The method of claim 6, wherein the step (b1) com-
prises the step of (13) performing a simple merge to copy the
latest pages in the second log block to free pages of a free
block to which data has not been written and copy a
corresponding page of the second data block to the remain-
ing free pages thereof, thereby creating the third data block.]

[12. The method of claim 5, wherein thestep (€) comprises
the steps of:

5

10

20

25

30

35

40

45

50

55

60

65

14

(el) allocating a new log block 1-2 if a free page does not
exist in the log block 1-1 and

(e2) writing the predetermined data to a free page in the
log block 1-2.]

[13. The method of claim 12, wherein the step (el)

comprises the steps of:

(ell) performing a switch merge to change the log block
to a second data block when pages of the log block 1-1
are arranged in the order in which 5 pages of the first
data block are arranged and the pages of the log block
1-1 correspond one-to-one to the pages of the first data
block, and

(el2) allocating a free block obtained by performing an
erase operation on the first data block as the log block
1-2]

[14. The method of claim 12, wherein the step (el)
comprises the steps of: (e21) performing a copy merge to
copy corresponding pages in the first data block to a free
page in the log block 1-1 when pages in the log block 1-1 are
requested to be written only once; and

(e22) allocating a free block obtained by performing an
erase operation on the first data block as the log block
1-2]

[15. The method of claim 12, wherein the step (el)

comprises the steps of:

(e31) performing a simple merge to copy the latest pages
in the log block 1-1 to free pages of a free block and
copy a corresponding page of the first data block to the
remaining free pages thereof, thereby creating a second
data block; and

(e32) allocating a free block obtained by performing an
erase operation on the first data block or the log block
1-1 as the log block 1-2.]

[16. The method of claim 12, wherein the step (e2)
comprises the step of (e21) writing the predetermined data
to a free page at the same position as the requested page in
the data block.]

[17. The method of claim 5, wherein the first data block
is configured to store data and the log block 1-1 is configured
to store data which has been modified.]

18. A method of operating a nonvolatile memory includ-
ing a plurality of memory blocks each of which is a minimum
unit of erase, the method comprising:

receiving a first update request for instructing to write
second data to a first logical address corresponding to
a first page, to which first data has been written, among
a plurality of pages of a first data block;

in response to the first update request, writing the second
data to a first free page of a first log block correspond-
ing to the first data block;

receiving a second update rvequest instructing to write
third data to the first logical address;

if no second free page for the third data exists in the first
log block and no free block which is allocatable as a
second log block exists, processing a second data block
including invalid data as an erasable block so as to
create a first free block; and

allocating the first free block as the second log block and
writing the third data to a third free page of the second
log block,

wherein each of the plurality of memory blocks is allo-
catable as one of a data block, a log block, a free block,
and an erasable block.

19. The method of claim 18, further comprising, if the

second free page exists in the first log block, writing the third
data to the second free page of the first log block.

US RE46,404 E

15

20. The method of claim 18, wherein the processing the
second data block as the erasable block so as to create the
first free block comprises performing a switch merge to
switch a third log block corresponding to the second data
block to the second data block.

21. The method of claim 18, wherein the processing the
second data block as the erasable block so as to create the
first free block comprises performing a copy merge to copy
valid data of the second data block to a free page of the third
log block corresponding to the second data block.

22. The method of claim 18, wherein the processing the
second data block as the erasable block so as to create the
first free block comprises performing a simple merge to copy
valid data of the second data block and valid data of a third
log block corresponding to the second data block, to the
third data block.

23. The method of claim 18, wherein the processing the
second data block as the erasable block so as to create the
first free block comprises:

writing to a plan log a type of a block merge performed

to process the second data block as an erasable block
and information about a block transitioned from the
second data block; and

updating recovery information including at least one of a

data block list, a free block list, an erasable block list,
and a log block list of the nonvolatile memory based on
the plan log.

24. The method of claim 23, further comprising, when the
nonvolatile memory is initialized, performing a recovery
operation on the nonvolatile memory based on the recovery
information.

25. The method of claim 24, wherein the performing the
recovery operation comprises.

checking a first free page of a check point region in which

the recovery information is stored; and

if data exists in the first free page of the check point

region, determining that an operation of the nonvolatile
memory is stopped during update of the recovery
information.

26. The method of claim 24, wherein the performing the
recovery operation comprises.

if data of at least one of pages of a block transitioned from

the second data block is not valid, determining that an
operation of the nonvolatile memory is stopped during
the block merge with respect to the second data block;
and

performing a block merge with respect to the second data

block again.
27. The method of claim 24, further comprising updating
address conversion information due to the block merge of
the second data block in a map region of the nonvolatile
memory, wherein the performing the recovery operation
comprises.
comparing a logical address of each of pages scanned
from the block transitioned from the second data block
and address conversion information of the map region;

if the logical address of each of the scanned pages is
different from the address conversion information of the
map region, determining that an operation of the
nonvolatile memory is stopped during update of the
address conversion information; and

updating the address conversion information based on the

logical address of each of the scanned pages.

28. The method of claim 24, wherein the processing the
second data block as the erasable block so as to create the
first free block comprises erasing the second data block so
as to create the first free block,

10

15

20

25

30

35

40

45

50

55

60

65

16

wherein the performing of a recovery operation com-

prises:

if data is written to at least one page of the second data

block, determining that an operation of the nonvolatile
memory is stopped during erase of the second data
block; and

performing an erase with respect to the second data block

again.

29. The method of claim 18, further comprising:

in response to the first update request, if the first log block

is not allocated and no free block that is allocatable as
the first log block exists, processing a fourth data block
among the data blocks as an erasable block so as to
create a second free block; and

allocating the second free block as the first log block.

30. The method of claim 18, further comprising, in
response to the first update request or the second update
request, updating a logical address of the first data block, a
physical address of the first log block or the second log
block, and a log pointer table including an offset value of a
page written in the first log block or the second log block.

31. The method of claim 30, further comprising:

receiving a request for reading the first logical address;

and

in response to the request for reading, accessing one of

the first data block, the first log block, and the second
log block by referring to the log pointer table.

32. A method of operating a nonvolatile memory includ-
ing a plurality of memory blocks each of which is allocatable
as one of a data block, a log block, a free block, and an
erasable block, the method comprising:

receiving a first update request for instructing to write

second data to a first logical address corresponding to
a first page, to which first data is written, among a
plurality of pages of a first data block;

if no first log block corresponding to the first data block

exists, processing a second data block including invalid
data as an erasable block so as to create a first free
block;

allocating the first free block as the first log block and

writing the second data to a first free page of the first
log block;

receiving a second update request for instructing to write

third data to the first logical address; and

in response to the second update vequest, if a second free

page of the first log block exists, writing the third data
to a second free page of the first log block.

33. The method of claim 32, further comprising:

if the second free page for the third data does not exist in

the first log block and no free block that is allocatable
as a second log block exists, processing a third data
block including invalid data as the erasable block so as
to create a second free block; and

allocating the second free block as the second log block

and writing the third data to a thivd free page of the
second log block.

34. The method of claim 32, wherein the processing the
second data block as the erasable block so as to create the

first free block comprises performing one of a switch merge

to switch a third log block corresponding to the second data
block to the second log block, a copy merge to copy valid
data of the second data block to a free page of a third log
block, and a simple merge to copy valid data of the second
data block and valid data of the third log block to a fourth
data block.

US RE46,404 E

17

35. The method of claim 32, wherein the processing the
second data block as the erasable block so as to create the
first free block comprises:

writing to a plan log a type of a block merge performed

to process the second data block as an erasable block
and information about a block transitioned from the
second data block; and

updating recovery information including at least one of a

data block list, a free block list, an erasable block list,
and a log block list of the nonvolatile memory based on
the plan log.

36. A method of operating a nonvolatile memory includ-
ing a plurality of memory blocks which are allocatable as
one of data blocks, log blocks corresponding to the data
blocks, free blocks, and erasable blocks, the method com-
prising:

receiving a first update request for instructing to write

second data to a first logical address corresponding to
a first page, to which first data is written, among a
plurality of pages of a first data block;

in response to the first update request, writing the second

data to a first free page of a first log block correspond-
ing to the first data block;

10

20

18

receiving a second update request for instructing to write
third data to the first logical address;

if no second free page for the third data exists in the first
log block and no free block that is allocatable as a
second log block exists, processing a second data block
including invalid data as an erasable block so as to
create a first free block; and

creating recovery information corresponding to a block
merge performed to process the second data block as
an erasable block.

37. The method of claim 36, wherein the creating the

recovery information comprises:

writing to a plan log a type of the block merge performed
to process the second data block as the erasable block
and information about a block transitioned from the
second data block; and

updating the recovery information including at least one
of a data block list, a free block list, an erasable block
list, and a log block list of the nonvolatile memory
based on the plan log.

#* #* #* #* #*

